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Sample Survey

From one point of view sample survey is the fundamental problem

of statistics.

Sample survey is unusual because it introduces unnecessary ran-

domization into a problem through the sampling design.

In the standard frequentist approach inferences are based on the

sampling design.

Calibration is an attempt to improve inferences when bad samples

are selected.

Does it work?
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The usual simple setup

U = {1, . . . , k . . . , N} is a finite population.

yk is the value of a single characteristic for unit k.

y = (y1, . . . , yN) ∈ Θ ⊆ RN is the unknown parameter.

s ⊂ U is a sample.

p(·), a probability distribution defined on subsets of U, is a sam-

pling design.

y(s) = {yi : i ∈ s} are the “seen”

y(s′) = {yj : j 6∈ s} are the “unseen”
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The problem

To Estimate the Population Total

ty =
N∑

i=1

yi

Under simple random sampling (srs) of size n given the sample

s the usual estimator is

ty,s =
N

n

∑
i∈s

yi

Each unit in the sample is given the same weight.

This estimator is unbiased under srs.
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Using a general sampling design p(·)

For unit k let

πk =
∑

s : k∈s

p(s)

be its inclusion probability.

Under srs of size n, πk = n/N .

Assume πk > 0 for each k. Then

dk = 1/πk

is the design weight associated with unit k.

Under the design p(·) an unbiased estimator of the population
total is

ŷy,π =
∑
i∈s

yi/πi =
∑
i∈s

diyi = t̂y,d
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Standard theory

Wants to calculate the variance of an estimator and find an

unbiased estimator of this variance.

These facts can then be used to construct approximate confi-

dence intervals for the parameter of interest.

Justifications are often asymptotic.

The underlying theory is based on repeated sampling from the

sampling design p(·).
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Adding an auxiliary variable

xk is the value of an auxiliary variable at unit k.

x = (x1, . . . , xk, . . . , xN) may or may not be known a prior.

We assume

tx =
N∑

i=1

xi

is known a priori and that we learn xs, the values of the auxiliary
variable for units in the sample.

Suppose we get a “bad” sample s where∑
i∈s

dixi is far from tx

We calibrate!
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Choosing other sets of weights.

Given a bad sample s we want weights wi for i ∈ s such that

t̂x,w =
∑
i∈s

wixi = tx calibration

and the wi’s are close to the di’s.

Our new estimate will be

t̂y,w =
∑
i∈s

wiyi

What distance measure should we use?
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One possible family of distance measures

Let 1/qi > 0 be a set of know weights unrelated to the di.

Subject to

t̂x,w =
∑
i∈s

wixi = tx calibration

we wish to minimize ∑
i∈s

(wi − di)
2

diqi

Method of Lagrange multipliers considers

∑
i∈s

(wi − di)
2

diqi
− 2λ

∑
i∈s

wixi

Differentiating with respect to wi and setting it equal to 0
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Solving for λ

yields

wi = di + λdiqixi

Multiplying by xi we have

wixi = dixi + λ diqix
2
i

and summing over the sample we get∑
i∈s

wixi =
∑
i∈s

dixi + λ
∑
i∈s

diqix
2
i

Finally we use the calibration constraint to solve for λ.
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Form of the solution

λ =

∑
i∈s wixi −

∑
i∈s dixi∑

i∈s diqix
2
i

=
tx − t̂x,d∑
i∈s diqix

2
i

Now

wi = di +
tx − t̂x,d∑
i∈s diqix

2
i

qixidi

and so

t̂y,w =
∑
i∈s

wiyi

= t̂y,d + (tx − t̂x,d)

∑
i∈s diqixiyi∑
i∈s diqix

2
i
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A special case yields the ratio estimator

If qi = 1/xi then

t̂y,w = tx
t̂y,d

t̂x,d

which in the case of srs becomes

t̂y,w =

 N∑
i=1

xi

∑
i∈s yi∑
i∈s xi

which is the usual ratio estimator. This estimator is based on

the idea ∑N
i=1 yi∑N
i=1 xi

'
∑

i∈s yi∑
i∈s xi
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Some theoretical results

They show for a large class of distance measures and a vector
of auxiliary variables that

1. λs has a unique solution with probability tending to one
as n →∞.

2. λs tends to 0 in design probability.

3. t̂y,w is design-consistent and

N−1(t̂y,w − t̂y,d) = Op(n
−1/2)

4. Variance estimating is not so clear.
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Some remarks

No guidelines for selecting a distance measure!

Note we always have

ty =
∑
i∈s

yi +
∑
i/∈s

yi

The basic question in finite population sampling is:

How to relate the seen to the unseen?

14



Predictive approach

Assumes a model that relates y and x like simple linear regression.

Uses the sample to estimate the unknown parameters of the

model and uses the estimated model to predict the unseen yi’s

not in the sample. Variance estimation uses the model not the

sampling design.

“Finite population sampling and inference” by Valliant, Dorfman

and Royall, Wiley (2000)
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Bayesian approach

Find a joint prior distribution for the population

P
(
y1, y2, . . . , yN

)
After observing sample must find

P
(
yj : j 6∈ s

∣∣∣ yi : i ∈ s
)

the conditional distribution of the unseen given the seen.

Ericson (1969) JRSSB

Simulate from the posterior to get completed copies of the entire
population. Inferences do not depend of the design only on the
prior.

Hard to do.
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