\qquad

Fifty three people took the exam. There was 1 in the 90 's, 4 in the 80 's, 9 in the 70 's, 9 in the 60 's, 14 in the 50 's, 6 in the 40 's, 7 in the 30 's and 3 in the 20's.

1. An urn contains twelve balls numbered 1 to 12 . Using simple random sampling with replacement five balls are selected from the urn.
i) What is the expected number of times that ball 1 will appear?
ii) Find the probability that ball 1 does not appear in the five selections.
iii) Find the probability that at least one of the two balls numbered 1 and 2 does not appear in the five selections.

Ans i)

$$
5 \times \frac{1}{12}
$$

ii)

$$
\left(\frac{11}{12}\right)^{5}
$$

iii) Let A_{i} be the event that ball i does not appear in the five selections. Then what we want is

$$
\begin{aligned}
P\left(A_{1} \cup A_{2}\right) & =P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} \cap A_{2}\right) \\
& =\left(\frac{11}{12}\right)^{5}+\left(\frac{11}{12}\right)^{5}-\left(\frac{10}{12}\right)^{5}
\end{aligned}
$$

2. Let X be a random variable with cumulative distribution

$$
F(x)= \begin{cases}0 & \text { if } x<1 \\ 0.1 & \text { if } 1 \leq x<3 \\ 0.3 & \text { if } 3 \leq x<5 \\ 0.9 & \text { if } 5 \leq x<7 \\ 1 & \text { if } x \geq 7\end{cases}
$$

Find the variance of the random variable $Y=2 X+12$.
Ans Now

$$
\begin{gathered}
E(X)=1 \times 0.1+3 \times 0.2+5 \times 0.6+7 \times 0.1=4.4 \\
E\left(X^{2}\right)=1 \times 0.1+9 \times 0.2+25 \times 0.6+49 \times 0.1=21.8
\end{gathered}
$$

and so $V(X)=E\left(X^{2}\right)-(E(X))^{2}=21.8-19.36=2.44$ and $V(Y)=4 V(X)=$ 4×2.44.
3. Let X_{1}, \ldots, X_{6} be iid $\operatorname{normal}(\mu, 9)$.
i) For testing $H: \mu \leq 30$ against $K: \mu>30$ state the usual level $\alpha=.01$ test for this problem and find the probability of making the type II error for this test when $\mu=34$.
ii) If $\bar{x}=31.72$ find the p-value for this outcome.

Ans
i) Since $\operatorname{qnorm}(.99)=z_{.01}=2.33$ we reject H if and only if

$$
\frac{\bar{X}-30}{3 / \sqrt{6}}>2.33 \quad \text { or when } \quad \bar{X}>32.84=c
$$

and so

$$
\left.P_{\mu=34}(\bar{X}<c)=\operatorname{pnorm}(c, 34,3 / \sqrt{6})\right)=0.1718
$$

ii) Since

$$
\frac{31.72-30}{3 / \sqrt{6}}=1.40=z_{\alpha}
$$

we have $\alpha=0.08=1-\operatorname{pnorm}(1.4)$.
4. In a random sample of 15 distance runners the average resting heart rate was 58.3 beats/minute with a standard deviation of 5.7 beats/minute. Assume that the resting heart rates of distance runners are normally distributed.
i) Find a 95% confidence interval for μ, the true mean resting heart rate for the population of all distance runners.
ii) Suppose another 95% confidence interval for μ is to be calculated but this time using a random sample of 40 distance runners. In what respects would this interval likely to be different from the interval of part i)?

Ans i) Since $q t(.975,14)=t_{14, .025}=2.145$ we have

$$
58.3 \mp \frac{5.7}{\sqrt{15}} 2.145
$$

ii) Assuming the sample mean, \bar{x}, and sample standard deviation, s of the second sample are roughly equal to those in the first sample we would expect the interval to be shorter. Recall the t-interval for this problem for a a sample of size n is given by

$$
\bar{x} \bar{\mp} \frac{s}{\sqrt{n}} t_{n-1, .025}
$$

So as n gets larger the second term in the above will tend to get smaller because of the \sqrt{n} in the denominator and because $t_{n-1, .025}$ gets smaller.
5. 95% of the widgets produced by supplier I pass inspection while 90% of those produced by supplier II pass inspection. Suppose 60% of the shipments come from supplier I while the remaining 40% come from supplier II.
i) Find an expression for the probability that in a random shipment containing 90 widgets at least 80 of them will pass inspection.
ii) Given that in a shipment of 90 widgets at least 80 of them passed inspection find an expression for the conditional probability that the shipment came from supplier I.

Ans i) Let A be the event that at least 80 in a shipment of 90 pass inspection then

$$
P(A)=P(I) P(A \mid I)+P(I I) P(A \mid I I)=0.60 p_{1}+0.40 p_{2}
$$

where

$$
\begin{aligned}
& p_{1}=P(A \mid I)=\sum_{x=80}^{90}\binom{90}{x}(.95)^{x}(.05)^{9-x}=1-\operatorname{pinom}(79,90, .95)=0.9947071 \\
& p_{2}=P(A \mid I I)=\sum_{x=80}^{90}\binom{90}{x}(.9)^{x}(.1)^{90-x}=1-\operatorname{pbinom}(79,90, .90)=0.7125117
\end{aligned}
$$

ii) By Bayes theorem

$$
P(I \mid A)=\frac{P(I \cap A)}{P(A)}=\frac{P(I) P(A \mid I)}{P(A)}=\frac{0.60 p_{1}}{0.60 p_{1}+0.40 p_{2}}
$$

