Introduction to hypotheses testing

A sadistic monarch hands one of his subjects a coin and states that the probability of tossing a head, say p, is either 0.3 or 0.8. The subject is required to toss the coin 5 times and then to state whether she believes p to be either 0.3 or 0.8. If the subject makes the correct decision she wins 100 pieces of gold. If she says p = 0.8 when p = 0.3 she will go to jail for 7 years. If she says p = 0.3 when p = 0.3 she will go to jail for 7 years. If she says p = 0.3 when p = 0.8 she will go to jail for 1 month.

The dilemma facing the subject can be formulated as a statistical testing problem.

Let $X \sim \text{Binomial}(5, p)$. After observing X we must decide between the two hypotheses

$$H: p = 0.3$$
 $K: p = 0.8$

H is call the <u>Null</u> hypothesis.

K is called the <u>Alternative</u> hypothesis.

Before actually tossing the coin 5 times the subject can perform a thought experiment where she just imagines tossing the coin. For each possible outcome of X = x she can decide whether or not she would reject H, that is decide p = 0.8. (For us rejecting H is the same as accepting K. Similarly accepting H is the same as rejecting K.)

A strategy for the subject is to determine for what points in $\{0, 1, 2, 3, 4, 5\}$, the sample space of X, she wishes to reject H. We will call such a set a critical region and denote it by C. How should the subject evaluate a possible critical region? Our answer depends on the lack of symmetry in the consequences of making the two types of error.

The two types of error are:

- 1. Type I error: Rejecting H when in fact H is true.
- 2. Type II error: Accepting H when in fact K is true.

For the subject the Type I error is deciding p = 0.8 when p = 0.3 is true and the Type II error is deciding p = 0.3 when p = 0.8. Note that for the subject the Type I error is the more serious of the two. The theory is based on this assumption and a testing problem needs to be set up to reflect this fact.

To evaluate a critical region \mathcal{C} we must find the probability of making the Type I error when H is true and the probability of making the Type II error when K is true and we are using \mathcal{C} .

$$\alpha = \alpha(\mathcal{C}) = \text{Probability of making Type I error}$$
$$= P_H(X \in \mathcal{C})$$
$$= \sum_{x \in \mathcal{C}} {5 \choose x} (0.3)^x (0.7)^{5-x}$$

$$\begin{split} \beta &= \beta(\mathcal{C}) = \text{Probability of making Type II error} \\ &= P_K(X \notin \mathcal{C}) \\ &= \sum_{x \notin \mathcal{C}} \binom{5}{x} (0.8)^x (0.2)^{5-x} \end{split}$$

We evaluate the critical region C by considering its two error probabilities $\alpha = \alpha(C)$ and $\beta = \beta(C)$.

	$\mathcal C$	$\alpha(\mathcal{C})$	$eta(\mathcal{C})$
1	$\{1, 2, 3, 4, 5\}$	0.8319	0.0003
2	$\{2, 3, 4, 5\}$	0.4718	.0067
3	$\{3, 4, 5\}$	0.1630	0.0579
4	$\{4, 5\}$	0.0308	0.2627
5	$\{5\}$	0.0024	0.6723
6	$\{0, 1, 2, 3, 4, 5\}$	1	0
$\overline{7}$	ϕ	0	1
8	$\{0, 1, 2\}$	0.8369	0.9421

Note the critcal region 8 is silly. In fact all of the critical regions from 1 trough 5 are better than it.

One can prove that the critical regions 1 through 7 are the only sensible ones for this testing problem.

No best choice amoung 1 through 7. The answer depends on how strongly the subject wishes to avoid making the Type I error.

and