In R numbers can used in vectors and in matrices. We begin by creating a vector and then doing some elementary operations on it.

```
> W<-c(1,2,4)
> w[3]<-3
> W
```

[1] 123
$>\mathrm{w} 1<-\mathrm{c}(\mathrm{w}, 4)+4$
> w1
[1] 5678
> w2<-1:4
$>\mathrm{w} 1 * \mathrm{w} 2$
[1] $\quad \begin{array}{llll}5 & 12 & 21 & 32\end{array}$

Next we generate a random sample of size 50 from a normal distribution with mean 100 and standard deviation 7 and apply some of R 's built in functions to the result.

```
> x<-rnorm(50,100,7)
```

$>x[c(1,3)]$
[1] 94.62999101 .39920

```
>mean(x)
```

[1] 99.25023
$>\operatorname{var}(\mathrm{x})$
[1] 62.40661
$>\min (x)$
[1] 82.3573
$>\operatorname{median}(x)$
[1] 98.77586
> quantile (x)

0%	25%	50%	75%	100%
82.35730	94.87472	98.77586	105.88346	111.89912
$>$				

[1] 94.8747299 .44699
In the above hist(x) would make a histogram of the values in x.
In the next bit of code we generate observations from 5 independent binomial distributions and play around with matrix notation.

```
> N<-c (10, 20, 30,40,50)
> p<-seq(0.1,0.9,length=5)
> y<-rbinom (5,N,p)
> M1<-rbind(N,y)
> dim(M1)
[1] 2 5
```

> M1 [2,]
[1] $\begin{array}{lllll}1 & 6 & 13 & 30 & 46\end{array}$
> M1 $[2,5]$
y
46
> apply(M1,1,mean)
N \quad y
30.019 .2

Suppose 5 subjects in an experiment received the treatment and 4 belonged to the control group. In the following x identifies which group the subject belonged to and y is the measurement of interest.

```
> x<-c(1,1,2,1,2,2,1,2,2)
> y<-c(11,9,15,14,11,14,12,15,16)
> y[x==1]
[1] 11 
> dum<-split(y,x) #this creates a list
> length(dum)
```

[1] 2
> dum[[1]]
[1] $\begin{array}{lllll}11 & 9 & 14 & 12\end{array}$
> dum[[1]] [2]
[1] 9
> sapply(dum,mean)
12
11.514 .2

