You may use one 8 " by 11 " formula sheet (both sides) but you may not use any electronic computing device. There is no need to reduce numerical formulas to their simplest form. Your answers may contain R commands for finding quantiles of the appropriate distribution.

Thirty six people took the exam. The high score was 95 . There were 3 in the 90 's, 4 in the 80 's, 8 in the 70 's, 6 in the 60 's, 6 in the 50 's, 5 in the 40 's, and 4 in the 30 's.

1. Suppose the diameter of ball bearings produce by a factory follow a normal distribution with a mean of 10 centimeters and a variance of .04 centimeters. Assume a random sample of seven such ball bearings was collected.
i) What is the excepted number of sampled bearings whose diameters fall between 9.8 and 10.1 ?
ii) Give a mathematical expression (no R commands here) for the probability that at least five of the sample bearings have a diameter between 9.8 and 10.1.

Solution:

i)

$$
P(9.8<N(10, .04)<10.1)=\operatorname{pnorm}(10.1,10, .2)-\operatorname{pnorm}(9.8,10, .2)=0.53
$$

So $7(.53)=3.71$ is the expected number.
ii) $\sum_{x=5}^{7}\binom{7}{x} .53^{x} \cdot 47^{7-x}$
2. i) In a survey of 95 randomly selected Minnesota residents 65 stated that they had traveled outside the state in the last six months. Give a mathematical expression for the 99% confidence interval for the true proportion p_{1} of Minnesota residents who have traveled outside the state in the last six months.

Solution:

$$
\frac{65}{95} \pm 2.58 \sqrt{\frac{65}{95} \frac{30}{95} \frac{1}{95}}
$$

since q norm $(.995)=2.575829$
ii) In a similar survey of Florida residents 42 of 85 surveyed state that they had traveled outside the state in the last six months. If p_{2} is the true proportion of Florida residents have traveled outside the state in the last six months. give a mathematical ex[ression for the 99% confidence interval for $p_{1}-p_{2}$.

Solution:

$$
\left(\frac{65}{95}-\frac{42}{85}\right) \pm 2.58 \sqrt{\frac{65}{95} \frac{30}{95} \frac{1}{95}+\frac{42}{85} \frac{43}{85} \frac{1}{85}}
$$

3. A random sample of 200 adults were asked to indicated their agreement or disagreement with the following statement. The government needs to be able to scan Internet messages to be able to prevent fraud and other crimes. They were also asked to identify themselves as high or low users of the Internet. Their responses are given below.

	agree	disagree
low usage	30	50
high usage	40	80

Give a mathematical expression to test whether a individual's attitude towards the statement is independent of their usage at level $\alpha=.01$.

Solution:

Under the hypothesis of independence $200(80 / 200)(70 / 200)=28$ is the expected number of low users who agree. In similar fashion we can find the other expected numbers and find that

$$
\sum \frac{(O-E)^{2}}{E}=\frac{4}{28}+\frac{4}{52}+\frac{4}{42}+\frac{4}{78}<6.64
$$

because $\operatorname{qgamma}(.99, .5, .5)=6.634897$ or $P\left(\chi_{1}^{2}>6.64\right)=.01$ and so we would accept the hypothesis of independence.
4.An engineer is interested in the compressive strength of concrete cylinders. He wishes to compare three different methods of the capping treatment and two different types of concrete. This is a 3 by 2 factorial experiment with two replications for each combination. The data is given below along with the usual anova table and a plot of the means for each combination.

method type strength			
1	I	A	613
2	II	A	648
3	III	A	585
4	I	B	612
5	II	B	575
6	III	B	629
7	I	A	603
8	II	A	638
9	III	A	595
10	I	B	619
11	II	B	568
12	III	B	621

	Df	Sum of Sq	Mean Sq	F Value	$\operatorname{Pr}(F)$
method	2	51.167	25.583	0.66450	0.5486796
type	1	280.333	280.333	7.28139	0.0356516
method:type	2	6113.167	3056.583	79.39177	0.0000483
Residuals	6	231.000	38.500		

```
sapply(split(y,interaction(method,type)),mean)
```

 \(\begin{array}{llllll}1.1 & 2.1 & 3.1 & 1.2 & 2.2 & 3.2\end{array}\)
 608.0643 .0590 .0615 .5571 .5625 .0
i) At level $\alpha=.01$ test the null hypothesis that there is no interaction against the alternative that interaction is present.
ii) Find a 99% confidence interval for $\mu_{B, I I}-\left(\mu_{B, I}+\mu_{B, I I I}\right) / 2$ where $\mu_{B, I I}$ is the true average strength of a cylinder made from concrete B with capping method $I I$.
iii) What conclusions are suggested by the above output?

Solution:

i) From the anova table the p-value for the hypothesis of no interaction is 0.0000483 so we reject the null hypothesis of no interaction.
ii) Note

$$
\bar{Y}_{B, I I}-\left(\bar{Y}_{B, I}+\bar{Y}_{B, I I I}\right) / 2 \sim N\left(\mu_{B, I I}-\left(\mu_{B, I}+\mu_{B, I I I}\right) / 2, \frac{\sigma^{2}}{2}(1+1 / 4+1 / 4)\right)
$$

Since $q t(.995,6)=3.71$ we have

$$
\frac{575+568}{2}-\frac{(612+619) / 2+(629+621) / 2}{2} \mp 3.71 \sqrt{\frac{38.5}{2}(1+1 / 4+1 / 4)}
$$

iii) Because of the presence on interaction the test for the main effects do not mean much here. Looking at the plots of the sample means the most striking inference is that method $I I$ seems to work much better on concrete of Type A than on type B.
5. A manager was interested in developing a model that would allow her to predict predict the yearly income for her sale persons. The variables were
$Y=$ this years income in thousand of dollars
$X_{1}=$ months on the job
$X_{2}=$ years of education
$X_{3}=$ last years income in thousand of dollars
The regression model

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{1} X_{2}+Z \tag{1}
\end{equation*}
$$

was fit to the data for twenty sales persons. The results along with three anova tables for the full model and the predict command are given at the end of the exam If a question cannot be answered with the output at hand specify what additional output is needed.
i) Find a 95% confidence interval for the expected value of Y when $X_{1}=54, X_{2}=18$ and $X_{3}=130$.

Solution:

$$
138.47 \pm 2.131 \times 5.09
$$

since $q t(.975,15)=2.13145$
ii) In the full model at level $\alpha=.05$ test $H: \beta_{1}=0$ against $K: \beta_{1}<0$.

Solution: Since $q t(.05,15)=-1.75305$ and

$$
-1.093=\frac{-3.1026-0}{2.8393}>-1.753
$$

we accept H.
iii) In the full model, at level $\alpha=.05$, test $H: \beta_{2}=\beta_{3}=0$ against K : At least one is not zero.

Solution: Cannot do; you need an Anova table where $X 2$ and $X 3$ are the last two independent variables.
iv) Among the three models $Y=\beta_{0}+\beta_{i} X_{i}+Z$ for $i=1,2$ and 3 which will have the largest R^{2} ? Find this value.

Solution: Note from the first anova table

$$
\operatorname{SSReg}\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4} \mid \beta_{0}\right)=2580.88+1332.23+132.46+275.52=4321.09
$$

and so we have

$$
T C S S=4321.09+1534.66=5855.75
$$

Again from the first anova table we have that for the model $Y=\beta_{0}+\beta_{1} X_{1}+Z$ the value of R^{2} is

$$
\frac{S S R e g\left(\beta_{1} \mid \beta_{0}\right)}{T C S S}=\frac{2580.88}{5855.75}=.44
$$

which is larger than R^{2} for the other two models which we can find from the second and third anova tables.
v) In the full model, at level $\alpha=.05$, test $H: \beta_{2}=\beta_{4}=0$ against K : At least one is not zero. Solution: Since

$$
\frac{\left(S S \operatorname{Reg}\left(\beta_{2} \mid \beta_{0}, \beta_{3}, \beta_{1}\right)+S S \operatorname{Reg}\left(\beta_{4} \mid \beta_{0}, \beta_{3}, \beta_{1}, \beta_{2}\right)\right) / 2}{\operatorname{RSS} / 15}=\frac{(1267.05+275.52) / 2}{102.31}=7.539>3.68
$$

we reject H because $q f(.95,2,15)=3.68$
vi) In the model $Y=\beta_{0}+\beta_{2} X_{2}+\beta_{3} X_{3}+Z$, at level $\alpha=.05$, test $H: \beta_{3}=0$ against $K: \beta_{3} \neq 0$.

Solution: Recall from part iv) $T C S S=5855.75$. Let $R S S^{*}$ be the residual sum of squares for this model. Then from the third anova table we have

$$
\begin{aligned}
T C S S & =S S \operatorname{Reg}\left(\beta_{2} \mid \beta_{0}\right)+S S \operatorname{Reg}\left(\beta_{3} \mid \beta_{0}, \beta_{2}\right)+R S S^{*} \\
5855.75 & =1335.51+1086.36+\operatorname{RS} S^{*}
\end{aligned}
$$

and we have $R S S^{*}=3433.88$. Since it will have $20-3-1=16$ degrees of freedom we see that

$$
\frac{1086.36 / 1}{3433.88 / 16}=5.062
$$

and so we reject H because $q f(.95,1,16)=4.45$.
vii) If you could choose just one independent variable from the four that appear in the full model in equation 1 to use to predict Y in a simple linear regression model which one would it be? Why? How useful is this variable in explaining Y in the full model? Briefly explain.

Solution: In the full model the t tests tell us that amoung the four variables the fourth, $X_{1} \times X_{2}$ contributes the most explanation given the other three are in the model however its t-value $=0.122$ is not particularly small. On the other hand we see from the last anova table that

$$
S S R e g\left(\beta_{4} \mid \beta_{0}\right)=3997.6
$$

and so $R^{2}=3997.6 / 5855.75=.68$ for the simple linear regression model with $X_{1} \times X_{2}$ is the largest amoung the four possible one variable models. (See part iv).) Moreover its R^{2} of .68 is close to .74 the R^{2} value for the full model and so this simple model does almost as well as the full model. It does not appear so important in the full model because X_{1} and X_{2} are present.

Output for problem 5

```
> Y
    [1] 103 118 121 109 95 129 108 148 98 93 96 95 86 124 90 117 138 108 96
    [20] 133
> X1
    [1] 51 48 55 50 50 49 45 54 40 33 43 39 47 50 33 45 57 37 42 47
> X2
    [1] 14 14 13 14 14 16 16 18 18 15 13 19 12 16 15 19 19 15 15 18
> X3
    [1] 133 128 135 115 118 131 114 125 122 117 109 112 109 107 117 110 135 118 128
    [20] 126
>prob3.lm <- lm(formula = Y ~ X1 + X2 + X3 + X1 * X2)
>summary(prob3.lm)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-14.9283 & -8.3197 & 0.1343 & 8.9662 & 11.8035
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 166.7439 140.3360 1.188 0.253
X1 -3.1026 2.8393 -1.093 0.292
X2 -10.1122 8.5143 -1.188 0.253
X3 0.2852 0.2849 1.001 0.333
llllll}\begin{array}{llll}{\textrm{X}*2}&{0.2924}&{0.1782}&{1.641}
Residual standard error: 10.11 on 15 degrees of freedom Multiple R-Squared: 0.7379,
F-statistic: 10.56 on 4 and 15 degress of freedom, p-value: 0.0002841
```

```
>predict(prob3.lm, data.frame(X1=44, X2=15, X3=120), se.fit=T)
\$fit=105.7500, \$se.fit=2.488824 and \$df=15
> predict(prob3.lm,data.frame(X1=54, X2=18,X3=130), se.fit=T)
\$fit=138.4665, \$se.fit=5.092558 and \$df=15
Response: Y
    Df Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\)
X1 \(\quad 12580.88 \quad 2580.88 \quad 25.22590 .0001516\) ***
X2 \(\quad 11332.231332 .2313 .0214 \quad 0.0025802\) **
\(\begin{array}{lllllll}X 3 & 1 & 132.46 & 132.46 & 1.2947 & 0.2730410\end{array}\)
\(\begin{array}{llllll}\mathrm{X} 1 * \mathrm{X} 2 & 1 & 275.52 & 275.52 & 2.6929 & 0.1215888\end{array}\)
Residuals 151534.66102 .31
Response: Y
    Df Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\)
X3 \(\quad 11240.341240 .3412 .12330 .003346\) **
\(\begin{array}{llllllllllll}X 1 & 1538.17 & 1538.17 & 15.0343 & 0.001488 & \text { ** }\end{array}\)
X2 \(\quad 11267.051267 .0512 .38430 .003099\) **
\(\begin{array}{lllllll}\mathrm{X} 1 * \mathrm{X} 2 & 1 & 275.52 & 275.52 & 2.6929 & 0.121589\end{array}\)
Residuals 151534.66102 .31
Response: Y
    Df Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\)
\(\begin{array}{lllllll}X 2 & 1335.51 & 1335.51 & 13.0534 & 0.002557\end{array}\) **
X3 \(\quad 11086.361086 .3610 .61830 .005290\) **
X1 \(\quad 11623.701623 .7015 .87020 .001198\) **
\(\begin{array}{lllllll}\mathrm{X} 2 * \mathrm{X} 1 & 1 & 275.52 & 275.52 & 2.6929 & 0.121589\end{array}\)
Residuals 151534.66102 .31
Response: Y
    Df Sum Sq Mean Sq F value \(\quad \operatorname{Pr}(>F)\)
X1*X2 \(13997.63997 .639 .07331 .553 \mathrm{e}-05\) ***
\(\begin{array}{llllll}X 3 & 1 & 161.0 & 161.0 & 1.5741 & 0.2288\end{array}\)
\(\begin{array}{llllll}\mathrm{X} 2 & 1 & 40.2 & 40.2 & 0.3933 & 0.5400\end{array}\)
\(\begin{array}{llllll}\text { X1 } & 1 & 122.2 & 122.2 & 1.1941 & 0.2917\end{array}\)
Residuals 151534.7102 .3
```

