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Elevator Pitch

In exponential family models for discrete multivariate analysis

(logistic regression, Poisson regression, categorical data analysis,

Markov spatial lattice processes, Markov point processes, Markov

random graphs, aster models), when the MLE does not exist in the

conventional sense,

currently available software does no valid inference,

currently available software often fails to detect this situation,

consequently, no one knows how much applied statistics is

garbage because of this,

but we know how to do valid point estimates, hypothesis tests,

and con�dence intervals in this situation,

and we will release good software real soon now.

http://catb.org/jargon/html/R/Real-Soon-Now.html


Time Line

Circa 1975 I independently invent Bradley-Terry models with ties

and home �eld advantage (33 years after Bradley and Terry). I

understand �solutions at in�nity� in this context.

Circa 1978 my sister Ruth Shaw gives me Bishop, Fienberg, and

Holland (1975) for a birthday present.

Circa 1980 my sister Ruth Shaw and I invent the �rst aster model.

We don't publish, although in hindsight could have.

Early 1980's I somehow discover Barndor�-Nielsen (1978) and start

reworking his theory of completion of exponential families.

Fall 1986. I start grad school at UW never having had a statistics

course.



Time Line (cont.)

Ruth also knows Elizabeth, but I don't meet Elizabeth until the

�rst day of class; she is the teacher for the 580's that year.

Spring 1987. Elizabeth posts ad for RA. I apply and am accepted. I

start learning C so I can extend Alun Thomas's pedigree analysis

software to do gene extinction.

Summer 1987. John Haslett's summer spatial statistics course

introduces me to spatial lattice processes and MCMC.

Elizabeth becomes my thesis advisor even though I want to do a

bunch of stu� outside her area.



Time Line (cont.)

Sometime in 1988 Ollie Ryder (research director, San Diego Zoo)

brings Elizabeth the DNA �ngerprinting problem. Elizabeth and I

�gure out how to do it with exponential families and MCMC. This

eventually becomes RSS read paper (Geyer and Thompson, 1992).

So MCMC gets into my thesis even though application of MCMC

to probabilities on pedigrees is Nuala Sheehan's thesis topic. This

paper also had �solutions at in�nity�.

PhD thesis Geyer (1990).

2005 I start R package rcdd (Geyer, Meeden, and Fukuda, 2017)

which does computational geometry. Impetus is Glen Meeden

wanting it for Bayesian �nite population sampling with linear

equality and inequality constraints on probabilities.



Time Line (cont.)

Geyer, Wagenius, and Shaw (2007). Aster models �nally published.

R package aster (Geyer, 2018) on CRAN since 2005. Package and

�rst draft of paper written while on sabbatical at UW 2004�2005.

Package detects �solutions at in�nity�.

Geyer (2009). My theory of completion of exponential families

�nally published. All the computations are in Sweave tech report

and use R package rcdd extensively. New hypothesis tests and

con�dence intervals when MLE does not exist in conventional

sense. Impetus is Steve Fienberg getting interested in subject.

Hypothesis tests are due to Fienberg. He gave a talk on the subject

at Minnesota. I asked about inference, and he sketched theory in

his answer to my question. After the talk I told him my thesis had

the complete solution to everything he talked about (except that

answer to my question).



Time Line (cont.)

Summer 2012 Dan Eck writes R package gdor and puts on CRAN

but doesn't keep it there (archived). It does some calculations from

Geyer (2009).

I become Dan Eck's thesis advisor even though he wants to do a

bunch of stu� outside my area. What goes around comes around. I

particularly need Elizabeth's example of how to deal with this.

PhD thesis Eck (2017).

Eck and Geyer (submitted). Doesn't use R package rcdd.

Calculations fast enough for users to tolerate. Also a bunch of new

theory.



Binomial Example

First something everyone understands: the binomial distribution.

The binomial family of distributions is an exponential family of

distributions with the usual data as canonical statistic but

θ = logit(p) as canonical parameter.

When the observed data y is at either end of its range (y = 0 or

y = n) the MLE for the canonical parameter does not exist. The

MLE for the usual parameter does exist p̂ = y/n.

logit(0) and logit(1) are unde�ned or one can say logit(0) = −∞
and logit(1) = +∞, but these are not exponential family parameter

values.

So the distributions corresponding to p = 0 or p = 1 are not in the

binomial family considered as an exponential family. They are in

the Barndor�-Nielsen completion of this exponential family.



Binomial Example (cont.)

The distributions in the completion but not in the original model

(p = 0 and p = 1) are degenerate, concentrated at one point

(p = 0 implies Y = 0 almost surely, and p = 1 implies Y = n
almost surely).

The usual asymptotics of maximum likelihood don't work on or

near the boundary.

Intro stats books teach the rule of thumb that you need np ≥ 5

and n(1− p) ≥ 5 for asymptotics to �work�.

The Wald con�dence intervals

p̂ ± 1.96
√

p̂(1− p̂)/n

are worthless, having width zero, when p̂ = 0 or p̂ = 1.



Binomial Example (cont.)

Textbooks recommend using Rao (a.k.a. score, a.k.a. Wilson)

intervals done by

prop.test(x, n, correct = FALSE)

But Rao intervals are hard to do for multivariate problems.

Moreover, Rao intervals are justi�ed by the same asymptotics as

Wald intervals, so aren't valid near the boundary either. They just

aren't as obviously completely worthless as Wald intervals.



Complete Separation Example of Agresti
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Figure: Scatterplot of Agresti complete separation toy data.



Complete Separation Example of Agresti (cont.)

gout <- glm(y ~ x, family = binomial, x = TRUE)

## Warning: glm.fit: fitted probabilities

numerically 0 or 1 occurred

R gives a warning when �tting, but

The warning is based on inexact computer arithmetic. Both

false positives and false negatives occur.

R provides no methods for valid inference when the warning is

correct.



Complete Separation Example of Agresti (cont.)

as.vector(predict(gout))

## [1] -94.52642 -70.89481 -47.26321 -23.63160

## [5] 23.63160 47.26321 70.89481 94.52642

as.vector(zapsmall(predict(gout, type = "response")))

## [1] 0 0 0 0 1 1 1 1

MLE for saturated model canonical parameter vector (�linear

predictor� in GLM parlance) has all components nearly plus or

minus in�nity. MLE of mean value parameter has degenerate

distribution for all components.



Complete Separation Example of Agresti (cont.)

Degeneracy is not a problem. The sample is not the population.

Estimates are not the parameters they estimate.

There is a problem only if we are naive about statistical inference.

Geyer (2009) has a proposal for valid con�dence intervals when the

MLE does not exist in the conventional sense.



Complete Separation Example of Agresti (cont.)
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Figure: 95% con�dence intervals for Agresti complete separation toy data.



Complete Separation Example of Agresti (cont.)

options(show.signif.stars = FALSE)

drop1(gout, ~ x, test = "LRT")

## Single term deletions

##

## Model:

## y ~ x

## Df Deviance AIC LRT Pr(>Chi)

## <none> 0.00 4.00

## x 1 11.09 13.09 11.09 0.0008678



Complete Separation Example of Agresti (cont.)

Even though the MLE does not exist for one of the models being

compared, the LRT is valid because the MLE does exist (and is not

close to the boundary) for the null hypothesis.

Conclusion: the only model that �ts the data has �solution at

in�nity� and we need this theory to analyze it.

Because the MLE in the Barndor�-Nielsen completion is completely

degenerate, it �ts the data perfectly and no larger model can �t

better.



General Theory

Saturated model, with canonical parameter vector θ (a.k.a. linear

predictor) and canonical statistic vector y (a.k.a. response vector)

is an exponential family.

Submodel given by θ = Mβ, where M is model matrix, is also

exponential family. Because of

〈y , θ〉 = 〈y ,Mβ〉 = 〈MT y , β〉

MT y is the submodel canonical statistic vector, and

β is the submodel canonical parameter vector.



General Theory (cont.)

Theory (Barndor�-Nielsen, 1978; Geyer, 1990, 2009; Eck and

Geyer, submitted) says the MLE exists in the conventional sense if

and only if the observed value of the canonical statistic is not on

the boundary of the convex hull of its support.

For a GLM, this means the submodel canonical statistic vector

MT y .

For a two-parameter model with two-dimensional canonical statistic

vector, we can visualize this support.

Otherwise, we cannot and need computational geometry R package

rcdd or the new methods in Eck and Geyer (submitted).



General Theory (cont.)
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Figure: Support of t = MT y for Agresti complete separation toy data.
Dots are possible values. Black dot is observed value.



General Theory (cont.)

Geyer (2009) shows that when the MLE does not exist in the

conventional sense the MLE in the Barndor�-Nielsen completion is

the MLE for the GLM that conditions on MT y lying in the

hyperplane H that separates its observed value from other possible

values (the line in the �gure).

That conditional model is called the limiting conditional model

(LCM).



General Theory (cont.)

Fisher information matrix

I (β̂) = varβ̂(M
TY )

is close to correct (theorem in Dan's thesis).

If V is the null space of the Fisher information matrix, then the

hyperplane that supports the LCM is

H = MT y + V

Whether I (β̂) has null eigenvectors is a much better test than what

glm uses. Finding V and H allows all of the rest of our theory to

go though: maximum likelihood, hypothesis tests, and con�dence

intervals.

This is also the test R package aster has used since 2005, but

with no theory to back it up until now.



Fienberg's Theory of Hypothesis Tests

When the MLE does not exist in the conventional sense for the null

hypothesis, the LRT statistic is still approximately chi-squared but

not with the degrees of freedom conventional theory says.

One has to understand the degeneracy of the MLE model in the

completion to calculate degrees of freedom correctly. Condition

both null and alternative on MTY ∈ H, where H is the hyperplane

for the null hypothesis. Then calculate LRT as usual with these

conditional models.



My Theory of Con�dence Intervals

A simple argument in Geyer (2009) says that the region of the

parameter space which puts probability at least α on the support of

the LCM is a 100(1− α)% con�dence region for the parameter.

Binomial(n, p), observe x = 0, con�dence interval is [0, 1− α1/n]

Binomial(n, p), observe x = n, con�dence interval is [α1/n, 1]

Poisson(µ), observe x = 0, con�dence interval is [0,− log(α)]

For α = 0.05 Poisson bound is 2.9957323.

Same recipe works in general and produces complicated intervals

like shown in the �gure.



Slides for this Talk

http://users.stat.umn.edu/~geyer/ElizabethFest/

http://users.stat.umn.edu/~geyer/ElizabethFest/
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