Statistics 5401

34. Multidimensional Scaling

Gary W. Oehlert
School of Statistics
313B Ford Hall
612-625-1557
gary@stat.umn.edu
Multidimensional scaling tries to find low dimensional representations of points, based originally on a matrix of distances between the points.
It is a cousin of principal components, but the original distances do not have to be Euclidean.
We have a distance matrix $\mathbf{D} n \times n$. We want to choose a dimension k (typically $k=2$) and construct an $(n \times k)$ matrix \mathbf{X} so that the distances between the rows of \mathbf{X} match the corresponding elements of \mathbf{D}.
Then distances we see when plotting points in \mathbf{X} reflect the more complex, presumably high-dimensional distances coming from \mathbf{D}.
What we will actually try to do is match the squares of the distances between the rows with the squares of the distances in \mathbf{D}. The squared distance between $\overrightarrow{\mathbf{X}}_{i}$ and $\overrightarrow{\mathbf{X}}_{j}\left(d_{i j}^{2}\right)$ is

$$
\begin{aligned}
d_{i j}^{2} & =\sum_{\ell=1}^{k}\left(X_{i \ell}-X_{j \ell}\right)^{2} \\
& =\sum_{\ell=1}^{k} X_{i \ell}^{2}+\sum_{\ell=1}^{k} X_{j \ell}^{2}-2 \sum_{\ell=1}^{k} X_{i \ell} X_{j \ell}
\end{aligned}
$$

If we make a matrix of the $d_{i j}^{2} \mathrm{~s}$, the i row contains an additive term of $\sum_{\ell=1}^{k} X_{i \ell}^{2}$, the j column contains an additive term of $\sum_{\ell=1}^{k} X_{j \ell}^{2}$, and the i, j th element contains an additive term of $-2 \sum_{\ell=1}^{k} X_{i \ell} X_{j \ell}$.
If we take the matrix of squared distances $d_{i j}^{2}$, subtract the row means, then subtract the column means, and then take -.5 times the difference, we are left with a matrix with elements

$$
\tilde{d}_{i j}=\sum_{\ell=1}^{k} X_{i \ell} X_{j \ell}
$$

Look at this again, we get

$$
\tilde{d}_{i j}=\sum_{\ell=1}^{k} X_{i \ell} X_{j \ell}
$$

This expresses our (centered and rescaled) matrix of squared distances as a sum of outer products of the columns of \mathbf{X}.
Thus we can "recover" \mathbf{X} from the (centered and rescaled) matrix of squared distances \tilde{d} via SVD or an eigenvalue decomposition.

$$
\tilde{d}=\mathbf{H} \Lambda \mathbf{H}^{\prime}
$$

so

$$
\mathbf{X}=\mathbf{H} \Lambda^{1 / 2}
$$

and

$$
\tilde{d}=\mathbf{X} \mathbf{X}^{\prime}
$$

where $\Lambda^{1 / 2}$ is a diagonal matrix of the square roots of the eigenvalues of \tilde{d}.
Hold on! We haven't really recovered \mathbf{X}. Let \mathbf{H}_{k} be any $k \times k$ orthogonal matrix. Note that

$$
\mathbf{Y}=\mathbf{X H}_{k}=\mathbf{H} \Lambda^{1 / 2} \mathbf{H}_{k}
$$

also satisfies

$$
\tilde{d}=\mathbf{Y} \mathbf{Y}^{\prime}
$$

Thus we only recover \mathbf{X} up to some rotation.
So how do we do multidimensional scaling. We're trying to find an \mathbf{X} with distances between rows that match \mathbf{D}. So pretend that \mathbf{D} really came from \mathbf{X} and "recover" \mathbf{X}.
Square the elements in \mathbf{D}, subtract row means, subtract column means, multiply the difference by -.5 , and then do an eigenvector/eigenvalue decomposition of the result. Rescale the first k eigenvectors by the square roots of the corresponding eigenvalues, and voila, we have
Classic (metric) Multidimensional Scaling.

```
Cmd> readdata("", school,x1,x2,x3,x4,x5,x6)
Read from file "~/JW5data/T12-9.DAT"
Column 1 saved as factor school
Column 2 saved as REAL vector x1
Column 3 saved as REAL vector x2
Column 4 saved as REAL vector x3
Column 5 saved as REAL vector x 4
Column 6 saved as REAL vector x 5
Column 7 saved as REAL vector x 6
Cmd> \(X\) <- hconcat (x1,x2,x3,x4,x5,x6)
Cmd> X <- X/describe (X, stddev:T)'
Cmd> dim(X)
(1) 25
Cmd> D2 <- matrix(rep \((0,25 * 25), 25)\)
Cmd> for(i,run(6)) \{
D2 <- D2 + (X[,i]-X[,i]') ^2
;
\}
Cmd> D2s <- D2
Cmd> D2s <- D2s - sum(D2s)/25
Cmd> D2s <- D2s - sum(D2s')'/25
```

```
Cmd> D2s <- -.5 * D2s
```

```
Cmd> eigenvals(D2s)
    \(\begin{array}{lllll}\text { (1) } & 110.69 & 18.884 & 6.8775 & 3.9307\end{array}\)
    (5) \(2.9833 \quad 0.63482\) lots of 0 s
```

Cmd> (110.69+18.884)/sum(eigenvals(D2s))
(1) 0.89982
Cmd> Y <- eigen(D2s) \$vectors[,run(2)]*\}
sqrt (eigenvals(D2s) [run(2)]')
Cmd> chplot(Y[,1],Y[,2]," ",xaxis:F,yaxis:F)
Cmd> addstrings(Y[,1],Y[,2],getlabels(school))

Cmd> s <- vecread("")
Read from file "~/JW5data/T12-4.DAT"
Cmd> S <- triunpack(s)
Cmd> D <- 10-S
Cmd> print(D,format:"f3.0",labels:F)
D:

0	2	2	7	6	6	6	6	7	9	9
2	0	1	5	4	6	6	6	7	8	9
2	1	0	6	5	6	5	5	6	8	9
7	5	6	0	5	9	9	9	10	8	9

6	4	5	5	0	7	7	7	8	9	9
6	6	6	9	7	0	2	1	5	10	9
6	6	5	9	7	2	0	1	3	10	9
6	6	5	9	7	1	1	0	4	10	9
7	7	6	10	8	5	3	4	0	10	9
9	8	8	8	9	10	10	10	10	0	8
9	9	9	9	9	9	9	9	9	8	0

Cmd> D2 <- D^2

Cmd> D2s <- D2
Cmd> D2s <- D2s - sum(D2s)/11
Cmd> D2s <- D2s - sum(D2s')'/11

Cmd> D2s <- -. 5 * D2s
Cmd> eigenvals(D2s)
$\begin{array}{rrrrr}(1) & 110.8 & 71.209 & 31.683 & 21.895 \\ (5) & 13.598 & 8.5499 & 2.3585 & 0 \\ (9) & -0.06506 & -1.0985 & -3.1124 & \end{array}$

Cmd> (110.8+71.2)/sum(abseigenvals(D2s))) (1) 0.68843

Cmd> Y <- eigen(D2s) \$vectors[,run(2)]* sqrt (eigenvals(D2s) [run(2)]')

Cmd> lang <- vector("E","N","Da","Du", \} "G","Fr","Sp","I","P","H","F")

Cmd> chplot(Y[,1],Y[,2],lang, xaxis:F,yaxis:F)

In some instances, we have dissimilarities, but not really distances. In particular, the difference of 1 between dissimilarities of 0 and 1 may not have any relation to the difference of 1 between dissimilarities of 9 and 10 .
In such a case, we want points \mathbf{X} such that the distances between the rows of \mathbf{X} have the same order as the dissimilarities, but the actual distances don't matter.
This is Nonmetric Multidimensional Scaling.
For any set of points \mathbf{X}, compute the distances $d_{i j}$.
Let $\hat{d}_{i j}$ be an isotonic fit of these distances to the ordering from \mathbf{D}. This means that the $\hat{d}_{i j}$ sare the closest numbers to the $d_{i j}$ s that obey the correct ordering from \mathbf{D}. (Use the pool adjacent violators algorithm to get the isotonic fit.)
Define the stress to be

$$
\text { Stress }=\left[\frac{\sum_{i<k}\left(d_{i k}-\hat{d}_{i k}\right)^{2}}{\sum_{i<k} d_{i k}^{2}}\right]^{1 / 2}
$$

Nonmetric MDS finds a matrix of points \mathbf{X} to minimize the stress. \mathbf{X} is not unique; rotations don't change the stress, and rescaling all the variables by the same factor doesn't change the stress.
Some people prefer to minimize the SStress

$$
\text { SStress }=\left[\frac{\sum_{i<k}\left(d_{i k}^{2}-\hat{d}_{i k}^{2}\right)^{2}}{\sum_{i<k} d_{i k}^{4}}\right]^{1 / 2}
$$

