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Multidimensional scaling tries to find low dimensional representations of points, based originally on a matrix of
distances between the points.
It is a cousin of principal components, but the original distances do not have to be Euclidean.
We have a distance matrix

�������
. We want to choose a dimension � (typically ���
	 ) and construct an � ��� ��

matrix � so that the distances between the rows of � match the corresponding elements of
�

.
Then distances we see when plotting points in � reflect the more complex, presumably high-dimensional distances
coming from

�
.

What we will actually try to do is match the squares of the distances between the rows with the squares of the
distances in

�
. The squared distance between ���� and �������������  is
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If we make a matrix of the � ���� s, the ( row contains an additive term of ) ���� � ! �� � , the * column contains an additive
term of ) ��+� � !,�� � , and the (.-/* th element contains an additive term of # 	 ) ���� � !�� � !%� � .
If we take the matrix of squared distances � ���� , subtract the row means, then subtract the column means, and then
take #1032 times the difference, we are left with a matrix with elements

4�5���6�
��
��� � !�� � !%� �

Look at this again, we get
4�5���6�

��
��� � !�� � !%� �

This expresses our (centered and rescaled) matrix of squared distances as a sum of outer products of the columns
of � .
Thus we can “recover” � from the (centered and rescaled) matrix of squared distances

4� via SVD or an eigenvalue
decomposition.

4�7�98;:68�<
so

�=�>8�: ��? �
and 4�@�>�A��<
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where : ��? � is a diagonal matrix of the square roots of the eigenvalues of
4� .

Hold on! We haven’t really recovered � . Let 8 � be any � � � orthogonal matrix. Note that

� � ��8 � �98�: ��? � 8 �

also satisfies 4� � ��� <
Thus we only recover � up to some rotation.
So how do we do multidimensional scaling. We’re trying to find an � with distances between rows that match

�
.

So pretend that
�

really came from � and “recover” � .
Square the elements in

�
, subtract row means, subtract column means, multiply the difference by #10 2 , and then

do an eigenvector/eigenvalue decomposition of the result. Rescale the first � eigenvectors by the square roots of
the corresponding eigenvalues, and voila, we have
Classic (metric) Multidimensional Scaling.

Cmd> readdata("",school,x1,x2,x3,x4,x5,x6)
Read from file "˜/JW5data/T12-9.DAT"
Column 1 saved as factor school
Column 2 saved as REAL vector x1
Column 3 saved as REAL vector x2
Column 4 saved as REAL vector x3
Column 5 saved as REAL vector x4
Column 6 saved as REAL vector x5
Column 7 saved as REAL vector x6

Cmd> X <- hconcat(x1,x2,x3,x4,x5,x6)

Cmd> X <- X/describe(X,stddev:T)’

Cmd> dim(X)
(1) 25 6

Cmd> D2 <- matrix(rep(0,25*25),25)

Cmd> for(i,run(6)) �
D2 <- D2 + (X[,i]-X[,i]’)ˆ2
;;�

Cmd> D2s <- D2

Cmd> D2s <- D2s - sum(D2s)/25

Cmd> D2s <- D2s - sum(D2s’)’/25
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Cmd> D2s <- -.5 * D2s

Cmd> eigenvals(D2s)
(1) 110.69 18.884 6.8775 3.9307
(5) 2.9833 0.63482 lots of 0s

Cmd> (110.69+18.884)/sum(eigenvals(D2s))
(1) 0.89982

Cmd> Y <- eigen(D2s)$vectors[,run(2)]* �
sqrt(eigenvals(D2s)[run(2)]’)

Cmd> chplot(Y[,1],Y[,2]," ",xaxis:F,yaxis:F)

Cmd> addstrings(Y[,1],Y[,2],getlabels(school))
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Cmd> s <- vecread("")
Read from file "˜/JW5data/T12-4.DAT"

Cmd> S <- triunpack(s)

Cmd> D <- 10-S

Cmd> print(D,format:"f3.0",labels:F)
D:
0 2 2 7 6 6 6 6 7 9 9
2 0 1 5 4 6 6 6 7 8 9
2 1 0 6 5 6 5 5 6 8 9
7 5 6 0 5 9 9 9 10 8 9
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6 4 5 5 0 7 7 7 8 9 9
6 6 6 9 7 0 2 1 5 10 9
6 6 5 9 7 2 0 1 3 10 9
6 6 5 9 7 1 1 0 4 10 9
7 7 6 10 8 5 3 4 0 10 9
9 8 8 8 9 10 10 10 10 0 8
9 9 9 9 9 9 9 9 9 8 0

Cmd> D2 <- Dˆ2

Cmd> D2s <- D2

Cmd> D2s <- D2s - sum(D2s)/11

Cmd> D2s <- D2s - sum(D2s’)’/11

Cmd> D2s <- -.5 * D2s

Cmd> eigenvals(D2s)
(1) 110.8 71.209 31.683 21.895
(5) 13.598 8.5499 2.3585 0
(9) -0.06506 -1.0985 -3.1124

Cmd> (110.8+71.2)/sum(abseigenvals(D2s)))
(1) 0.68843

Cmd> Y <- eigen(D2s)$vectors[,run(2)]* �
sqrt(eigenvals(D2s)[run(2)]’)

Cmd> lang <- vector("E","N","Da","Du", �
"G","Fr","Sp","I","P","H","F")

Cmd> chplot(Y[,1],Y[,2],lang,xaxis:F,yaxis:F)
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In some instances, we have dissimilarities, but not really distances. In particular, the difference of 1 between
dissimilarities of 0 and 1 may not have any relation to the difference of 1 between dissimilarities of 9 and 10.
In such a case, we want points � such that the distances between the rows of � have the same order as the
dissimilarities, but the actual distances don’t matter.
This is Nonmetric Multidimensional Scaling.
For any set of points � , compute the distances � ��� .
Let ��5��� be an isotonic fit of these distances to the ordering from

�
. This means that the ��5��� s are the closest numbers

to the ����� s that obey the correct ordering from
�

. (Use the pool adjacent violators algorithm to get the isotonic
fit.)
Define the stress to be

Stress �
� ) ��� � �+�5� � # ��5� �  �

) ��� � � �� � �
��? �

Nonmetric MDS finds a matrix of points � to minimize the stress. � is not unique; rotations don’t change the
stress, and rescaling all the variables by the same factor doesn’t change the stress.
Some people prefer to minimize the SStress

SStress �
� ) ��� � ��� �� � # �� �� �  �

) ��� � ���� � �
��? �
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