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Classification and discrimination are two closely related topics in statistics.
Classification is used for procedures that allocate objects into two or more well defined groups.
Discrimination is used in a more exploratory way for features or aspects of data that separate groups, and thus
may be used as a basis for classification.
I tend to use classification and discrimination more or less interchangeably.
These kinds of ideas and methods have arisen in many contexts and in many areas of research; consequently, they
also go by other names. For example, in computer science, classification methods are called supervised learning.
Example. Spino-cerebullar ataxias are genetic diseases. There are at least eight kinds of SCAs, distinguished
by eight different mutations. There are over 30 different symptoms that have been associated with the different
SCAs.
Suppose you have a patient and wish to classify him or her into SCA type. You can do an expensive DNA analysis,
or you can try to classify based on observed symptoms.
Using a set of over 100 patients for whom we have symptoms AND genetic information, develop a procedure to
classify new patients into type based on symptoms.
Down to specifics. Let � be a � -vector of variables or attributes. Each object (unit, case, subject) has its �
attributes, and it also has a group or type.
For the SCA data, the set of symptoms for a subject is the � vector, and the type of mutation is the group.
There are two populations: ��� and ��� . Let ���
	�� be the density of � when we sample from �� . Let ����	�� be the
density when we sample from ��� .
Here are two densities:
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The basic idea is that if we see an � in a region where � �
	�� is high, then we might want to classify this observation
into � � .
If we see an observation in a region where � ��	 � is high, then we might want to classify the observation into � � .
However, this is not quite enough, because two more factors may influence us.
The first factor is prevalence. Prevalence is the prior probability of each population, or alternatively, the fraction
of the total population belonging to population 1 or population 2.
For two groups, we have prevalences � � and � � , with � � � � ����� .
The issue with prevalence is that if we know, for example, that there are 10 times as many units in population 1
as population 2, then we should be more likely to classify a unit as population 1, even if the density � �
	 � is really
high.
The second factor is misclassification cost.
Let � 	��	��
 � be the cost of classifying a population 2 object as a population 1 object, and let � 	�
��� � be the cost of
classifying a population 1 object as a population 2 object.
If � 	��	��
 ����� 	�
����� , then we’ll tend to classify more objects into population 2, because we’ll tend to reduce our
misclassification cost.
For example, there could be two diseases that present similar symptoms. One disease is not serious, but the second
disease can have life threatening complications.
We will tend to treat this group of symptoms as the second (serious) disease, because the cost of not supplying the
appropriate therapy is so high.
So, lets put the pieces together. Classify � into population 1 if

� �
	 � �
����	 � � �

� 	��	��
 �
� 	�
�����

� �
� �

otherwise classify into population 2. The region where we classify into � � is � � , whereas the region where we
classify into � � is � � .
This is the minimum expected cost classification rule. It minimizes the expected misclassification cost.
We assign to the population with the higher density, but we also weight by prevalence and misclassification cost.
If the misclassification costs are equal, we assign to �� if

��� 	 � �
����	 � � �

� �
� �

If the prevalences are equal, we assign to �� if

� �
	 � �
����	 � � �

� 	�����
 �
� 	�
������

If the both are equal, we assign to ��� if
��� 	 � �
����	 � � ���

When costs or prevalences are unknown, they are often taken to be equal. This is not perfect, but you have to do
something.
With very large data sets, we can estimate � �
	 � and ����	�� without making distributional assumptions.
For most data sets, we need to make distributional assumptions. For example, we might assume that both popula-
tions follow multivariate normal distributions.
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What’s really happening? If � � and � � are the prior probabilities of the populations, and � �
	 � and ����	�� describe the
density of the data for a given population, then the probability that � comes from � � given is� 	 � � � � � �

� 	 � and � � �� 	 � �
�

� 	 � � � � � � 	 � � �� 	 � � � � � � 	 � � � � � 	 � � ��� � � 	 ��� �
� ���
	 � � � �

� � 	 � � � � � ����	 � � � �
Similarly, � 	 ��� � � � � ����	 � � � �

� �
	 � � � � � ����	 � � � �� 	 � � � � � is the posterior probability of ��� ; that is, the probability after seeing the data: among all the potential
data from all the populations that have covariates � , what fraction is from � � .
If we classify this � into � � , we’ll incur the cost � 	�
����� for all the ��� data with that � , but we’ll have no cost for
the data from � � with that � .
Thus the expected cost for classifying into ��� is��� � � � 	�
������ � 	 � � � � � � � 	�
������ � �
	 � � ���

��� 	 � � � � � ����	 � � � �
Go through the same exercise to get the expected cost for classifying into � � is��� � � � 	�����
 � � 	 ��� � � � � � 	�����
 � ����	 � � � �

��� 	 � � � � � ����	 � � � �
The ratio of these costs is ��� ���� � �

� 	�
����� � � 	 � � � �
� 	��	��
 � ����	 � � � �

We classify into � � when this ratio is greater than 1, that is, when the cost of classifying into � � is greater. This is
the least cost rule from above.
Classification with normal distributions.
It turns out that you get very different classification rules when � � ��� � and when � ������ � .
Let’s begin with the equal variance case. Then	�
��� ���
	 � �

����	 � ���
� �


�� 	 ����� � ������� � 	 ����� � � � 	 ����� � ��� ��� � 	 ����� � ��!
� 	 � � ��� � ���"��� � ��� 	 � � ��� � ������� � 	 � � ��� � �$# 


So we classify into � � if

	 � � ��� � � � � � � ��� 	 � � ��� � � � � � � 	 � � ��� � �$# 

� 	�%'& � 	��	��
 �

� 	�
��� �
� �
� �)(
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Otherwise, we classify into � � .
We almost never know � � , � � , or � , so we must use the estimated values � � , � � , and

�
(the pooled variance

estimate). Thus, in practice, we classify into �� if

	 � � � � � ���"��� � ��� 	 � � � � � ���"��� � 	 � � � � � � # 

� 	�%'& � 	��	��
 �

� 	�
��� �
� �
� � (

Otherwise, we classify into � � .

Cmd> men <- matrix(vecread(""),8)’
Read from file "˜/JW5data/T8-6.DAT"

Cmd> women <- matrix(vecread(""),7)’
Read from file "˜/JW5data/T1-9.DAT"

Cmd> men <- men[,-7]

Cmd> xbar1 <- tabs(men,mean:T)

Cmd> xbar2 <- tabs(women,mean:T)

Cmd> dim(men)
(1) 55 7

Cmd> dim(women)
(1) 55 7

Cmd> S <- (tabs(men,covar:T)+ �
tabs(women,covar:T))/2

Cmd> cfs <- (xbar1-xbar2)’%*%solve(S);cfs
(1,1) -14.234 0.43618 0.69155 -113.59
(1,5) -109.25 54.667 -0.13036

Cmd> const <- (xbar1-xbar2)’%*%solve(S)%*% �
(xbar1+xbar2)/2; const
(1,1) -154.55

Cmd> scorem <- men%*%cfs’ - const

Cmd> scorew <- women%*%cfs’ - const

Cmd> hist(scorem);hist(scorew,add:T); �
showplot(xmin:?,xmax:?)
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Cmd> X <- matrix(vecread(""),8)’
Read from file "˜/JW5data/T6-15.DAT"

Cmd> species <- X[,8]+1

Cmd> species <- factor(species)

Cmd> X <- X[,-8]

Cmd> manova("X=species",silent:T)

Cmd> S <- matrix(SS[3,,])/DF[3]

Cmd> xbar1 <- tabs(X[species==1,],mean:T)

Cmd> xbar2 <- tabs(X[species==2,],mean:T)

Cmd> cfs <- (xbar1-xbar2)’%*%solve(S);cfs
(1) 0.0062356 0.15059 -0.85382 0.26757
(5) -0.38279 -2.1873 2.9707

Cmd> const <- (xbar1-xbar2)’%*%solve(S)%*% �
(xbar1+xbar2)/2; const
(1,1) -24.173

Cmd> scores <- X %*% cfs’ - const

Cmd> hist(scores[species==1]); �
hist(scores[species==2],add:T); �
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showplot(xmin:?,ymin:?,xmax:?,ymax:?)
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Cmd> discrim(species,X)
component: coefs

species1 species2
(1) 1.7558 1.7496
(2) -0.022239 -0.17283
(3) 3.8413 4.6951
(4) 1.6597 1.3922
(5) -0.18566 0.19712
(6) 5.7122 7.8995
(7) -3.0088 -5.9795
component: addcon

species1 species2
(1) -174.53 -198.7

Cmd> cfs <- discrim(species,X)$coefs

Cmd> con <- discrim(species,X)$addcon

Cmd> score1 <- X %*% cfs[,1]+con[1]

Cmd> score2 <- X %*% cfs[,2]+con[2]

Cmd> cor(score1-score2,scores)
(1,1) 1 1
(2,1) 1 1

Cmd> both <- hconcat(score1,score2)’
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Cmd> both <- both-max(both)

Cmd> both <- exp(both)

Cmd> pp1 <- both[1,]/sum(both)

Cmd> pp1 <- pp1’

Cmd> chplot(scores,pp1,species)
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