Statistics 5401 20. Population Principal Components Gary W. Oehlert School of Statistics 313B Ford Hall 612-625-1557 gary@stat.umn.edu

We have been talking about principal components for data. We can also do principal components for populations. Population principal components depend on Σ , the population variance matrix.

Let the random p-vector x have mean μ and covariance Σ . Note, x need not be normally distributed.

Let v_1, v_2, \ldots, v_p be *p*-vectors of length 1.

The first principal component is the linear combination of x with maximal variance:

 $w_1 = v'_1 x$ with maximal $v'_1 \Sigma v_1$

Subsequent principal components are maximal variance linear combinations uncorrelated with previous principal components:

 $w_j = v'_j x$ with maximal $v'_j \Sigma v_j$ subject to $v'_j \Sigma v_k = 0$ for k < j

The coefficients v_i are the eigenvectors of Σ , and the (maximal) variances are the eigenvalues.

If Σ has rank p (the usual case), then all eigenvalues are greater than 0.

Thus testing a null hypothesis that the number of positive eigenvalues is less than p is not usually helpful.

Nevertheless, having several nearly zero eigenvalues implies that we can capture most of the variation in the random variable with a lower rank model.

When

$$\frac{\sum_{j=1}^{m} \eta_j}{\sum_{j=1}^{p} \eta_j} \approx 1$$
$$\frac{\sum_{j=m+1}^{p} \eta_j}{\sum_{j=m+1}^{p} \eta_j} \approx 0$$

or

$$\frac{\sum_{j=m+1}^{p}\eta_{j}}{\sum_{j=1}^{p}\eta_{j}}\approx$$

then $\Sigma \approx \sum_{j=1}^{m} \eta_j v_j v'_j$.

Note that capturing most of the variation from the p-dimensions in m linear combinations does not necessarily mean that the m principal components capture the aspects of the distribution that are important to us. Overall

$$w = \mathbf{V}'(x - \mu)$$

or

 $x = \mathbf{V}w + \mu$

The different components w_i are uncorrelated, but the principal components are correlated with the original variables.

$$Cov(w_j, x_i) = Cov(\sum_{k=1}^{p} v_{jk} x_k, x_i) = \sum_{k=1}^{p} v_{jk} \Sigma_{ki} = \eta_j v_{ji}$$

$$Cor(w_j, x_i) = \frac{Cov(w_j, x_i)}{\sqrt{Var(w_j)Var(x_i)}} = \frac{\eta_j v_{ji}}{\sqrt{\eta_j \Sigma_{ii}}} = \frac{v_{ji}\sqrt{\eta_j}}{\sqrt{\Sigma_{ii}}}$$

Some special cases.

• $\Sigma = \text{diag}(\sigma)$ where the variances σ_i are all different. Then the eigenvalues are the σ_i and the original components are the eigenvectors.

• $\Sigma = \mathbf{I}_p$ All of the eigenvalues equal 1, and any set of orthonormal vectors form the eigenvectors.

• $\Sigma_{ii} = \sigma^2$; $\Sigma_{ij} = \sigma^2 \rho \ (-1/(p-1) \le \rho \le 1)$. This is the "intraclass correlation model. One eigenvalue is $\sigma^2(1 + (p-1)\rho)$ with eigenvector 1. The other eigenvalues are all $\sigma^2(1 - \rho)$, and the remaining eigenvectors are any set of orthonormal contrasts among the *p* variables.

Inference. The only relatively simple inference for the eigenvalues η_i arises when x is multivariate normal and all the eigenvalues of Σ are different.

In that case, and for large n,

$$\sqrt{n}(\hat{\eta}_i - \eta_i) \approx N(0, 2\eta_i^2)$$

and the various $\hat{\eta}_i$ s are asymptotically independent.

This is neat, but it's not really obvious what to do with this inference.

True eigenvalues 5, 3, 1; sample sizes 30, 100, 300, and 1000; 10,000 random normal samples; average scaled eigenvalues

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		30	100	300	1000				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	first	1.068	1.0181	1.006	1.0012				
third 0.90394 0.97291 0.98981 0.99727 Average scaled variances: $\begin{array}{c c c c c c c c c c c c c c c c c c c $	second	0.92009	0.97838	0.99289	0.99838				
Average scaled variances: 30 100 300 1000 first 0.92518 0.97063 0.97919 0.9972 second 0.78304 0.93409 0.99886 0.98772 third 0.88542 0.97593 0.98973 1.0166 p-values for testing normality of the distribution of the sample eigenvalues using ranking 30 100 300 1000 first 0 0 0 0.021 third 0 0 0.002 gl skewness (mean zero, sd. 0.24 under normal) 30 100 300 1000 first 0.56793 0.29325 0.20918 0.078688 second 0.41542 0.28895 0.16387 0.066393 third 0.52642 0.32936 0.16598 0.087569 g2 kurtosis (mean zero, sd. 0.49 under normal) 30 100 300 1000 1000 1000 first 0.58399	third	0.90394	0.97291	0.98981	0.99727				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Average s	caled var	iances:						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		30	100	300	1000				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	first	0.92518	0.97063	0.97919	0.9972				
third 0.88542 0.97593 0.98973 1.0166 p-values for testing normality of the distribution of the sample eigenvalues using ranking 30 100 300 1000 first $0 0 0 0 0.013$ second $0 0 0 0 0.021$ third $0 0 0 0 0.002$ g1 skewness (mean zero, sd .024 under normal) 30 100 300 1000 first $0.56793 0.29325 0.20918 0.078688$ second $0.41542 0.28895 0.16387 0.066393$ third $0.52642 0.32936 0.16598 0.087569$ g2 kurtosis (mean zero, sd .049 under normal) 30 100 300 1000 first $0.58399 0.11373 0.18838 0.030802$ second $0.16045 0.10817 0.056552 0.061182$ third $0.38673 0.14261 -0.06519 0.04203$	second	0.78304	0.93409	0.99886	0.98772				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	third	0.88542	0.97593	0.98973	1.0166				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p-values f	for testing	, normality	of the distri	bution of the	e sample eige	envalues u	sing ranki	it correlatio
first000.013second000.021third000.002g1 skewness (mean zero, sd .024 under normal) 30 100 30 100first0.567930.293250.293250.209180.078688second0.415420.288950.163870.066393third0.526420.329360.165980.087569g2 kurtosis (mean zero, sd .049 under normal) 30 10030100first0.583990.113730.188380.030802second0.160450.108170.0565520.061182third0.386730.14261-0.065190.04203		30 100) 300 10	000					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	first	0 0	0 0.	013					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	second	0 0	0 0.	021					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	third	0 0	0 0.	002					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	g1 skewne	ess (mear	zero, sd .0	24 under no	ormal)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		30	100	300	1000				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	first	0.56793	0.29325	0.20918	0.078688				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	second	0.41542	0.28895	0.16387	0.066393				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	third	0.52642	0.52642 0.32936		0.087569				
30 100 300 1000 first 0.58399 0.11373 0.18838 0.030802 second 0.16045 0.10817 0.056552 0.061182 third 0.38673 0.14261 -0.06519 0.04203	g2 kurtosi	is (mean z	zero, sd .04	9 under nor	mal)				
first0.583990.113730.188380.030802second0.160450.108170.0565520.061182third0.386730.14261-0.065190.04203		30	100	300	1000				
second 0.16045 0.10817 0.056552 0.061182 third 0.38673 0.14261 -0.06519 0.04203	first	0.58399	0.11373	0.18838	0.030802	-			
third 0.38673 0.14261 -0.06519 0.04203	second	0.16045	0.10817	0.056552	0.061182				
	third	0.38673	0.14261	-0.06519	0.04203				

D e n s i t y

D e n s i t У

D e n s i t Y

D e n s i t y

4

Just a little nonnormality in the original data messes up all these eigenvalue results rather dramatically. Here we give 5% of the data a varianace 9 times as large. Repeat the above analysis. Average scaled means (nonnormal data)

U	30	100	300	100	0	
first	1.0989	1.0314	1.005	8 1.00)27	
second	0.86781	0.96150	6 0.992	25 0.99	9747	
third	0.87804	0.9704	0.992	03 0.99	9802	
Not too b	ad.					
Average s	scaled var	iances:				
-	30	100	300	1000		
first	3.1406	3.1532	3.2472	3.3557	_	
second	1.4049	2.4456	3.1024	3.3273		
third	1.986	3.0418	3.3247	3.3089	3089	

WAY off.

p-values for testing normality of the distribution of the sample eigenvalues using rankit correlations

1	30	100	300	1000				··· ·	0	0
first	0	0	0	0	_					
second	0	0	0	0						
third	0	0	0	0						
g1 skewn	ess (r	nean	zero, se	d .024	under	normal)				
	30		100	30	0	1000				
first	1.85	604	1.0724	0.6	66204	0.3557				
second	1.41	51	0.8122	4 0.5	5184	0.37944				
third	1.35	93	1.0372	0.6	50801	0.35338				
g2 kurtosi	is (m	ean ze	ero, sd	.049 u	nder n	ormal)				
	30		100	30	0	1000				
first	5.70	39	1.6449	0.7	3783	0.09948				
second	3.68	8	0.9377	1 0.3	81616	0.34205				
third	2.50	28	1.5674	0.5	50106	0.27868				
Approxima	ating	dens	sity fo	or fir	st eig	genvalue w	vith n	= 30	(nonnorma	l data)
0.2 0. 0. 0. 0.1 s i t y 0.0	25- . 2- . 1- . 1-				Î	1				
			5	1	0	15 ut[,i,j]		20	25	

D e n s i t y