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We have been talking about principal components for data. We can also do principal components for populations.
Population principal components depend on

�
, the population variance matrix.

Let the random � -vector � have mean � and covariance
�

. Note, � need not be normally distributed.
Let �����	��
���
�
�
��	��� be � -vectors of length 1.
The first principal component is the linear combination of � with maximal variance:

� �������� � with maximal ���� � ���
Subsequent principal components are maximal variance linear combinations uncorrelated with previous principal
components: ��� ������ � with maximal ���� � � �

subject to ���� � ������� for � �"!
The coefficients ��# are the eigenvectors of

�
, and the (maximal) variances are the eigenvalues.

If
�

has rank � (the usual case), then all eigenvalues are greater than 0.
Thus testing a null hypothesis that the number of positive eigenvalues is less than � is not usually helpful.
Nevertheless, having several nearly zero eigenvalues implies that we can capture most of the variation in the
random variable with a lower rank model.
When $&%�(' �*) �$ � �(' � ) �,+.-
or $ � �/' %10 � ) �$ � �(' � ) � + �
then

� + $ %�/' �2) � � � � �� .
Note that capturing most of the variation from the � -dimensions in 3 linear combinations does not necessarily
mean that the 3 principal components capture the aspects of the distribution that are important to us.
Overall � �54 �76 �98"�;:
or �<�=4 �"> �
The different components � # are uncorrelated, but the principal components are correlated with the original vari-
ables. ?A@

� 6 ��� �/�B#7:C�
?A@
� 6 �D� ' � � � ���E�F�/�B#G:H�

�D
� ' � � � �

� �(#I� ) � � � #
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? @ � 6 ��� �(�B#G:��
?A@
� 6 ��� �/�B#7:� ��� � 6 ��� : ��� � 6 �B# : �

) � � � #� ) � � # # �
� � #�� )� � # #

Some special cases.	 � � diag 6�
 : where the variances 
 # are all different. Then the eigenvalues are the 
 # and the original components
are the eigenvectors.	 � ���(� All of the eigenvalues equal 1, and any set of orthonormal vectors form the eigenvectors.	 � # # � 
 
�
 � # � � 
 
�� ( 8 -�� 6 � 8 - :�� � � - ). This is the “intraclass correlation model. One eigenvalue is
 
 6 - > 6 �,8 - : � : with eigenvector � . The other eigenvalues are all 
 
 6 - 8 � : , and the remaining eigenvectors are
any set of orthonormal contrasts among the � variables.
Inference. The only relatively simple inference for the eigenvalues ) # arises when � is multivariate normal and all
the eigenvalues of

�
are different.

In that case, and for large � , � � 6��) #E8 ) #G: +�� 6 � ��� ) 
# :
and the various �) # s are asymptotically independent.
This is neat, but it’s not really obvious what to do with this inference.
True eigenvalues 5, 3, 1; sample sizes 30, 100, 300, and 1000; 10,000 random normal samples; average scaled
eigenvalues

30 100 300 1000
first 1.068 1.0181 1.006 1.0012
second 0.92009 0.97838 0.99289 0.99838
third 0.90394 0.97291 0.98981 0.99727

Average scaled variances:
30 100 300 1000

first 0.92518 0.97063 0.97919 0.9972
second 0.78304 0.93409 0.99886 0.98772
third 0.88542 0.97593 0.98973 1.0166

p-values for testing normality of the distribution of the sample eigenvalues using rankit correlations
30 100 300 1000

first 0 0 0 0.013
second 0 0 0 0.021
third 0 0 0 0.002

g1 skewness (mean zero, sd .024 under normal)
30 100 300 1000

first 0.56793 0.29325 0.20918 0.078688
second 0.41542 0.28895 0.16387 0.066393
third 0.52642 0.32936 0.16598 0.087569

g2 kurtosis (mean zero, sd .049 under normal)
30 100 300 1000

first 0.58399 0.11373 0.18838 0.030802
second 0.16045 0.10817 0.056552 0.061182
third 0.38673 0.14261 -0.06519 0.04203
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Approximating density for first eigenvalue with n = 30
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Approximating density for first eigenvalue with n = 1000
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Approximating density for second eigenvalue with n = 30
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Approximating density for third eigenvalue with n = 30
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Just a little nonnormality in the original data messes up all these eigenvalue results rather dramatically. Here we
give 5% of the data a varianace 9 times as large. Repeat the above analysis.
Average scaled means (nonnormal data)

30 100 300 1000
first 1.0989 1.0314 1.0058 1.0027
second 0.86781 0.96156 0.99225 0.99747
third 0.87804 0.9704 0.99203 0.99802

Not too bad.
Average scaled variances:

30 100 300 1000
first 3.1406 3.1532 3.2472 3.3557
second 1.4049 2.4456 3.1024 3.3273
third 1.986 3.0418 3.3247 3.3089
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WAY off.
p-values for testing normality of the distribution of the sample eigenvalues using rankit correlations

30 100 300 1000
first 0 0 0 0
second 0 0 0 0
third 0 0 0 0

g1 skewness (mean zero, sd .024 under normal)
30 100 300 1000

first 1.8504 1.0724 0.66204 0.3557
second 1.4151 0.81224 0.55184 0.37944
third 1.3593 1.0372 0.60801 0.35338

g2 kurtosis (mean zero, sd .049 under normal)
30 100 300 1000

first 5.7039 1.6449 0.73783 0.09948
second 3.688 0.93771 0.31616 0.34205
third 2.5028 1.5674 0.50106 0.27868
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Approximating density for first eigenvalue with n = 30 (nonnormal data)
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Approximating density for first eigenvalue with n = 1000 (nonnormal data)
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Approximating density for second eigenvalue with n = 30 (nonnormal data)
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Approximating density for second eigenvalue with n = 1000 (nonnormal data)
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