Statistics 5401
19. Biplots
Gary W. Oehlert
School of Statistics
313B Ford Hall
612-625-1557
gary@stat.umn.edu

We have seen that principal components are a compact way of "approximating" data.
We have seen that plotting principal components can be a useful way of visualizing data.
But we have also seen that the two-dimensional plot of principal components can be a bit confusing to interpret, because it is difficult to relate back to the original variables.
That is where the biplot comes in.
The biplot is an enhanced plot of principal components that helps us to see connections between components and the original variables.
Let \mathbf{X} be the data matrix with variable means subtracted out. We may, or may not, wish to rescale to make all the columns have unit variance; that depends on the problem.
Make the svd

$$
\mathbf{X}=\mathbf{U D V}^{\prime}
$$

Begin with the first two columns of \mathbf{U}. Let

$$
\ell_{i}=\left[\begin{array}{l}
d_{1} \mathbf{U}_{i 1} \\
d_{2} \mathbf{U}_{i 2}
\end{array}\right]
$$

The bivariate points ℓ_{i} are the points we plot in the usual principal components plot.
Now the first two columns of V. Let

$$
r_{j}=\left[\begin{array}{l}
\mathbf{V}_{j 1} \\
\mathbf{V}_{j 2}
\end{array}\right]
$$

The bivariate point r_{j} tell us how the j th variable enters into the first two principal components. The first two columns of \mathbf{U} and \mathbf{V} along with d_{1} and d_{2} form a rank two approximation to \mathbf{X}

$$
\begin{aligned}
\mathbf{X}_{i j} & \approx \mathbf{U}_{i 1} d_{1} \mathbf{V}_{j 1}+\mathbf{U}_{i 2} d_{2} \mathbf{V}_{j 2} \\
& =<\ell_{i}, r_{j}>=\cos \left(\theta_{i j}\right)\left\|\ell_{i}\right\|\left\|r_{j}\right\|
\end{aligned}
$$

where $\theta_{i j}$ is the angle between the two-vectors ℓ_{i} and r_{j}.
Thus large values of $\mathbf{X}_{i j}$ will occur when there is a small angle between ℓ_{i} and r_{j}, and small values of $\mathbf{X}_{i j}$ will occur when there is a large angle between ℓ_{i} and r_{j}. Or put another way, positively correlated ℓ_{i} and r_{j} mean than $\mathbf{X}_{i j}$ is positive, and negatively correlated ℓ_{i} and r_{j} mean than $\mathbf{X}_{i j}$ is negative.
OK, so here is the biplot.
Plot the points ℓ_{i} with labels to indicate which case is which.
Plot the points $c r_{j}$ with labels to indicate which variable is which, and with a line from the origin to $c r_{j}$. Choose the constant c so that the rescaled $r_{j} \mathrm{~s}$ are about the same size as the $\ell_{i} \mathrm{~s}$.

Cmd> X <- readdata("", x1, x2,x3,x4,d)
Read from file "~/5401/JW5data/T4-3.DAT"
Column 1 saved as REAL vector x 1

```
Column 2 saved as REAL vector x2
Column 3 saved as REAL vector x3
Column 4 saved as REAL vector x4
Column 5 saved as REAL vector d
Cmd> X <- hconcat (x1, x2, x3, x4)
Cmd> rlab <- paste(run(30),multiline:T)
Cmd> rlab
    (1) "1"
    (2) "2"
    (3) "3"
...
(29) "29"
(30) "30"
Cmd> clab <- vector("X1","X2","X3","X4")
Cmd> biplot <- macro("
@X <- $1
@rlabs <- $2
@clabs <- $3
@X <- @X - tabs(@X,mean:T)'
@p <- ncols(@X)
@s <- svd(@X,all:T)
@p1 <- @s$leftvectors[,1]*@s$values[1]
@p2 <- @s$leftvectors[,2]*@s$values[2]
@v1 <- @s$rightvectors[,1]
@v2 <- @s$rightvectors[,2]
@f <- vector(max(@p1)/max(@v1),\
max(@p2)/max(@v2),min(@p1)/min(@v1),\
min(@p2)/min(@v2))
@f <- @f[@f > 0]
@f <- min(@f)
@v1 <- @v1*@f
@v2 <- @v2*@f
@blank <- \" \"
chplot(@p1,@p2,@rlabs,xlab:@blank,\
ylab:@blank, show:F)
for(@i,run(@p))
addpoints(@v1[@i],@v2[@i],\
    symbol:@clabs[@i],show:F)
addlines(vector(0,@v1[@i]), \
    vector(0, @v2[@i]), show:F)
```

; ;
showplot (xmin:?,ymin:?,xmax:?,
ymax: ?, \$K) ", dollars:T)

Cmd> biplot (X, rlab, clab)

Cmd> biplot (X[-16,], rlab[-16], clab)

Cmd> readdata("", name, x1, x2, x3, x4, x5, x6)
Read from file "~/5401/JW5data/T12-9.DAT"
Column 1 saved as factor name

Column 2
Column 3
3 saved as sed vector $x 1$

Cmd> $X<-$ hconcat $(x 1, x 2, x 3, x 4, x 5, x 6)$

Cmd> $\mathrm{X}<-\mathrm{X} /$ tabs (X,stddev:T)'

Cmd> rlabs <- getlabels (name)

Cmd> clabs <- vector("sat", "top", "acc",
"sfr", "exp", "grd")

Cmd> biplot (X,rlabs, clabs)

