Statistics 5401

14. Univariate Linear Models

Gary W. Oehlert
School of Statistics
313B Ford Hall
612-625-1557
gary@stat.umn.edu
Linear models relate a target or response or dependent variable y to known predictor or independent variables x_{j}, unknown parameters β_{j}, and random variation.

$$
y=\text { predictable part }+ \text { random variation }
$$

The predictable part is a function of the predictor variables and the parameters.
Because this is a linear model, the parameters enter the predictable part linearly:

$$
\text { predicatable part }=f(x)^{\prime} \beta
$$

where β is the vector of unknown parameters and $f(x)$ is some (vector) function of the predictor variables. Many well known examples.
Multiple regression.

$$
y_{i}=\left(x_{i 0} \beta_{0}+x_{i 1} \beta_{1}+\ldots+x_{i k} \beta_{k}\right)+\left\{\epsilon_{i}\right\}
$$

Usually, $x_{i 0} \equiv 1$.
Here the part in parentheses is the predictable part, and the part in braces is the unpredictable part.
One-way ANOVA, g-group means.

$$
y_{i j}=\left(\mu_{i}\right)+\left\{\epsilon_{i j}\right\}
$$

or

$$
y_{i j}=\left(\mu+\alpha_{i}\right)+\left\{\epsilon_{i j}\right\}
$$

with $\sum_{i=Q_{i}}^{g}=0 \quad$ or a similar restriction.
This can be rewritten as a multiple regression in several ways.
Nested random effects.

$$
y_{i j k}=(\mu)+\left\{A_{i}+B_{i j}+\epsilon_{i j k}\right\}
$$

Here the only predictable part is the overall mean. The other terms are random, and because all $y_{i j k} \mathrm{~s}$ with the same i share the same A_{i}, and all $y_{i j k}$ s with the same i, j share the same $B_{i j}$, there is correlation among the responses. Randomized complete block.

$$
y_{i j}=\left(\mu+\alpha_{i}\right)+\left\{B_{j}+\epsilon_{i j}\right\}
$$

with $\sum_{i \Omega_{i}=0}^{g}$ or a similar restriction. This assumes that the block effects B_{j} are random.
This is a special case of a profile analysis, where we know ahead of time that the correlations are $\sigma_{B}^{2} /\left(\sigma_{B}^{2}+\sigma^{2}\right)$. In particular, the distribution of $\mathbf{C} y$ does not depend on σ_{B}^{2}.
Analysis of Covariance. This combines regression and ANOVA-type predictor terms.

$$
y_{i j}=\left(\mu+\alpha_{i}+x_{i j} \beta\right)+\left\{\epsilon_{i j}\right\}
$$

with $\sum_{i=1}^{g} q_{i}=0$ or a similar restriction. This is a model with parallel lines, with the slope β and different intercepts from the different $\alpha_{i} \mathrm{~s}$.

There are many more fancier ANOVA-type structures, including factorials, split plots, and so on. All can be written as linear models.
In all cases, if we write all the responses in one vector y, all the parameters in one vector β and all the predicting variables in one matrix \mathbf{X}, then

$$
y=\mathbf{X} \beta+\epsilon
$$

where $\mathbf{X} \beta$ is predictable, and ϵ is not predictable. The elements of ϵ may be correlated. We can write the predictable part in many ways. That is,

$$
\mathbf{X} \beta=\mathbf{X}^{\star} \beta^{\star}
$$

for lots of different \mathbf{X}^{\star} and β^{\star} pairs.
In one-way ANOVA, we could write μ_{i} or $\mu+\alpha_{i}$.
In regression, we could replace $x_{i 1}$ and $x_{i 2}$ with $\left(x_{i 1}+x_{i 2}\right)$ and $\left(x_{i 1}-x_{i 2}\right)$ (and modified coefficients).
In general, the value of the predictable part is well defined, but the expression as independent variables and parameters is pretty arbitrary.
We have a linear model. The parameters enter linearly, and the unpredicatable term is added to the predictable term.
We also want to test linear hypotheses about the parameters. Let β be $r \times 1$, and let \mathbf{L} be $f_{h} \times r$ of full rank. We want to test

$$
H_{0}: \mathbf{L} \beta=0
$$

versus

$$
H_{0}: \mathbf{L} \beta \neq 0
$$

Important note: if \mathbf{X} is not full rank, then some linear combinations $\ell^{\prime} \beta$ are not well defined without further restrictions.
For example, consider the one-way model $\mu+\alpha_{i}$. It doesn't make sense to look at α_{1}, because we can add 10 to μ and subtract 10 from α_{i} and not change the predictable part.
We are OK if $\ell=\mathbf{X}^{\prime} \gamma$, that is, if ℓ is a linear combination of the rows of \mathbf{X}. In this case, the linear combination is estimable.
In the one-way model, if the coefficient for μ equals the sum of the coefficients for the α_{i} s, then $\ell^{\prime} \beta$ is estimable in the one-way model.
Examples. Multiple regression with a constant plus four predictors.
$\mathrm{H}_{0}: \beta_{2}=0$ has $f_{h}=1$ and corresponds to

$$
\mathbf{L}=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

$\mathrm{H}_{0}: \beta_{2}=\beta_{3}=0$ has $f_{h}=2$ and corresponds to

$$
\mathbf{L}=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

$\mathrm{H}_{0}: \beta_{2}-\beta_{3}=0$ has $f_{h}=1$ and corresponds to

$$
\mathbf{L}=\left[\begin{array}{lllll}
0 & 0 & 1 & -1 & 0
\end{array}\right]
$$

One-way ANOVA.
$\mathrm{H}_{0}: \alpha_{1}=\alpha_{2}=\ldots=\alpha_{g}=0$ has $f_{h}=g-1$ and corresponds to ($g=4$ groups)

$$
\mathbf{L}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

or

$$
\mathbf{L}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

because the sum of the α_{i} s is fixed at zero.
Least Squares. Estimation by least squares finds the estimate \mathbf{b} of β that minimizes the sum of squared differences between the observed data and the fitted values using \mathbf{b}. Least squares estimation is also maximum likelihood estimation for independent, normally distributed errors.
The sum of squared differences is often referred to as the residual sum of squares RSS, or the sum of squares for error SS_{E}.
Let \mathbf{b}^{0} be the estimate of β when the null is assumed to be true. That is, the vector that minimizes RSS subject to $\mathbf{L b}=0$. Call the RSS under the null $\operatorname{RSS}\left(\mathrm{H}_{0}\right)$.
Let \mathbf{b}^{1} be the estimate of β when the alternative is assumed to be true. That is, the vector that minimizes RSS without restrictions. Call the RSS under the alternative $\operatorname{RSS}\left(\mathrm{H}_{1}\right)$, or SS_{E}.
$\operatorname{RSS}\left(\mathrm{H}_{0}\right)$ and $\operatorname{RSS}\left(\mathrm{H}_{1}\right)$ do not depend on the parameterization we choose (the b's depend on the parameterization, but not the sums of squares). Thus we can always use the most convenient parameterization.
Define

$$
S S_{H}=R S S\left(H_{0}\right)-R S S\left(H_{1}\right)
$$

This is the increase in RSS when going from the null fit to the alternative fit.
Large values of SS_{H} imply that the alternative fits much better than the null, thus implying that the null should be rejected. Specifically, we look at the ratio $S S_{H} / S S_{E}$ and reject for large values. Under the null (with normality)

$$
\frac{S S_{H}}{S S_{E}} \sim \frac{f_{h}}{f_{e}} F_{f_{h}, f_{e}}
$$

Of course, this is just the usual F test with the degrees of freedom multiplying the F distribution instead of scaling sums of squares into mean squares.
The likelihood ratio test is

$$
\Lambda=\left(\frac{R S S\left(H_{0}\right)}{R S S\left(H_{1}\right)}\right)^{-n / 2}=\left(1+\frac{S S_{H}}{S S_{E}}\right)^{-n / 2}
$$

For large samples under the null, $S S_{E}$ should be much bigger than $S S_{H}$, so

$$
\chi_{f_{e}}^{2} \sim-2 \ln \Lambda=n \ln \left(1+\frac{S S_{H}}{S S_{E}}\right) \approx n \frac{S S_{H}}{S S_{E}}
$$

which agrees asymptotically with the F test.
Here is a shortcut(?). Suppose that the (estimated) variance matrix for \mathbf{b} is $s^{2} \mathbf{C}$. Then the sum of squares for the hypothesis

$$
H_{0}: \mathbf{L} \beta=0
$$

is

$$
S S_{H}=(\mathbf{L b})^{\prime}\left(\mathbf{L C L}^{\prime}\right)^{-1}(\mathbf{L b})
$$

This is very like a Mahalanobis distance.
A regression example. The actual data follow a quadratic, and we'll try to fit a cubic.

Cmd> 4.5517/1.1937

$$
\text { (1) } 3.8131
$$

Cmd> 1-cumF $(3.813,2,16)$
(1) 0.044242

Cmd $>$ COEF			
CONSTANT	x	$x 2$	$x 3$
2.7427	1.8668	0.02275	-0.00141

Cmd> SS

CONSTANT	x	x 2	x 3	ERROR1
10126	2140.9	8.2267	0.87661	19.099
Cmd> DF				
CONSTANT	x	x 2	x 3	ERROR1
1	1	1	1	16

Cmd> XTXINV

	CONSTANT	x	x2	x3
CONSTANT	1.1932	-0.4343	0.042312	-0.001204
x	-0.4343	0.19317	-0.020548	0.00061435
x2	0.042312	-0.020548	0.0023055	$-7.1383 \mathrm{e}-05$
x3	-0.001204	0.00061435	$-7.1383 e-05$	$2.2661 \mathrm{e}-06$

Cmd> c <- XTXINV[run $(3,4)$, run $(3,4)]$

Cmd> c

	$x 2$	$x 3$
x2	0.0023055	$-7.1383 e-05$
x3	$-7.1383 e-05$	$2.2661 e-06$

Cmd> lb'\%*\%solve (c) \% * $\%$ lb
(1)
(1)
9.1034

Cmd> anova(" $y=x+x 2+x 3$ ")
Model used is $y=x+x 2+x 3$
WARNING: summaries are sequential
DF SS
MS

CONSTANT	1	10126	10126
x	1	2140.9	2140.9
x2	1	8.2267	8.2267
x3	1	0.87661	0.87661
ERROR1	16	19.099	1.1937

Cmd> anova("y=x+x2+x3", fstats:T)
Model used is $y=x+x 2+x 3$
WARNING: summaries are sequential

	DF	SS	MS	F	P-value
CONSTANT	1	10126	10126	8482.63112	0
x	1	2140.9	2140.9	1793.55009	0
x2	1	8.2267	8.2267	6.89193	0.018373
x3	1	0.87661	0.87661	0.73438	0.40412
ERROR1	16	19.099	1.1937		

One-way ANOVA with five groups.
Cmd> a <- factor(rep(run(5),4))
Cmd> y <- vector $(3,1,6,4,5)[a]+r n o r m(20)$
Cmd> anova("y=a")
Model used is $y=a$

	DF	SS	MS
CONSTANT	1	277.99	277.99
a	4	78.37	19.592
ERROR1	15	10.529	0.70191

Cmd> coefs()
component: CONSTANT
(1) 3.7282
component: a
(1) $0.059304 \quad-3.2705 \quad 2.7802 \quad-0.51608 \quad 0.94706$

Cmd> coefs("a", se:T)
component: coefs
$\begin{array}{llllll}\text { (1) } & 0.059304 & -3.2705 & 2.7802 & -0.51608 & 0.94706\end{array}$
component: se
$\begin{array}{llllll}\text { (1) } 0.37468 & 0.37468 & 0.37468 & 0.37468 & 0.37468\end{array}$

Cmd> contrast("a", vector(1,1,1,-1.5,-1.5))
component: estimate
(1) -1.0775
component: ss
(1) 0.61915
component: se
(1)
1.1472

Analysis of covariance.

Cmd> anova("y=x+a", pvals:T)				
Model used is $\mathrm{y}=\mathrm{x}+\mathrm{a}$				
WARNING:	nari	are seq	tial	
	DF	SS	MS	P-value
CONSTANT	1	1685.4	1685.4	0
x	1	157.68	157.68	$4.6626 \mathrm{e}-08$
a	4	63.095	15.774	0.00027676
ERROR1	14	19.746	1.4104	

Cmd> anova("y=a+x")
Model used is $y=a+x$
WARNING: summaries are sequential

	DF	SS	MS
CONSTANT	1	1685.4	1685.4
a	4	101.6	25.4
x	1	119.17	119.17
ERROR1	14	19.746	1.4104

Cmd> anova(" $y=x+a$ ", marginal:T)
Model used is $y=x+a$
WARNING: SS are Type III sums of squares
DF
SS
93.258
$119.17 \quad 119.17$
$63.095 \quad 15.774$
19.746
1.4104
anova () creates several variables as side effects.
Cmd> SS

CONSTANT	x	a	ERROR1
93.258	119.17	63.095	19.746

Cmd> DF
CONSTANT
1

x	a	ERROR1
1	4	14

Cmd> RESIDUALS

(1)	0.72573	0.19843	0.73128	0.72575	1.4661
(6)	-1.0188	-0.48538	-2.1221	-1.6932	-1.7946
(11)	-0.053961	-0.22043	1.3752	1.2618	0.32385
(16)	0.34705	0.50739	0.015678	-0.29436	0.00465

Cmd> HII

(1)	0.34	0.34	0.34	0.34	0.34
(6)	0.26	0.26	0.26	0.26	0.26
(11)	0.26	0.26	0.26	0.26	0.26
(16)	0.34	0.34	0.34	0.34	0.34

Cmd $>$ COEF

UNDEFINED

regress () creates COEF, but anova () does not. What else can you extract?

```
Cmd> out <- modelinfo(all:T)
Cmd> compnames (out)
    (1) "xvars"
    (2) "y"
    (3) "parameters"
    (4) "xtxinv"
    (5) "coefs"
    (6) "aliased"
    (7) "scale"
    (8) "colcounts"
    (9) "weights"
(10) "strmodel"
(11) "bitmodel"
(12) "link"
(13) "distrib"
(14) "termnames"
(15) "sigmahat"
```


The \mathbf{X} matrix.

Cmd> print (out \$xvars, format: "f5.0")
MATRIX:

$(1,1)$	1	1	1	0	0	0
$(2,1)$	1	2	0	1	0	0
$(3,1)$	1	3	0	0	1	0
$(4,1)$	1	4	0	0	0	1
$(5,1)$	1	5	-1	-1	-1	-1
\ldots						
$(16,1)$	1	16	1	0	0	0
$(17,1)$	1	17	0	1	0	0
$(18,1)$	1	18	0	0	1	0
$(19,1)$	1	19	0	0	0	1
$(20,1)$	1	20	-1	-1	-1	-1

Cmd> out\$termnames
(1) "CONSTANT"
(2) "x"
(3) "a"
(4) "ERROR1"

Cmd> out\$strmodel
(1) $" y=1+x+a "$

Cmd> out\$colcounts
(1)
1
1
4

Cmd> print(out\$xtxinv,format:"f8.3", labels:F)
MATRIX:

0.226	-0.017	-0.034	-0.017	0.000	0.017
-0.017	0.002	0.003	0.002	-0.000	-0.002
-0.034	0.003	0.206	-0.047	-0.050	-0.053
-0.017	0.002	-0.047	0.202	-0.050	-0.052
0.000	-0.000	-0.050	-0.050	0.200	-0.050
0.017	-0.002	-0.053	-0.052	-0.050	0.202

