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Linear models relate a target or response or dependent variable � to known predictor or independent variables ��� ,
unknown parameters ��� , and random variation.

��� predictable part � random variation

The predictable part is a function of the predictor variables and the parameters.
Because this is a linear model, the parameters enter the predictable part linearly:

predicatable part �
	�� ��
����
where � is the vector of unknown parameters and 	�� ��
 is some (vector) function of the predictor variables.
Many well known examples.
Multiple regression. ������� � ��� � � ��� ��� � � ����������� ��� � � 
 ��!�" �$#
Usually, � ���&%(' .
Here the part in parentheses is the predictable part, and the part in braces is the unpredictable part.
One-way ANOVA, ) -group means. ��� � �(�+*,� 
 �-!�" � � #
or ��� � ���.* �0/ � 
 �-!�" � � #
with 132�54��/ ���76 or a similar restriction.
This can be rewritten as a multiple regression in several ways.
Nested random effects. �8� � �9�(�+* 
 ��!�: � �0; � ���0" � � �8#
Here the only predictable part is the overall mean. The other terms are random, and because all �<� � � s with the same=

share the same : � , and all �8� � � s with the same
=?>A@

share the same ; � � , there is correlation among the responses.
Randomized complete block. ��� � �(�.* �0/ � 
 �-!�;B�C�0" � � #
with 132�54��/ ���76 or a similar restriction. This assumes that the block effects ;D� are random.
This is a special case of a profile analysis, where we know ahead of time that the correlations are EGFHJI � E�FH �0E�FK
 .
In particular, the distribution of L � does not depend on E FH .
Analysis of Covariance. This combines regression and ANOVA-type predictor terms.

�8� � �M�+* �N/ � ��� � �O�G
 �-!�" � � #
with 1P2�54��/ �Q�R6 or a similar restriction. This is a model with parallel lines, with the slope � and different
intercepts from the different / � s.
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There are many more fancier ANOVA-type structures, including factorials, split plots, and so on. All can be
written as linear models.
In all cases, if we write all the responses in one vector � , all the parameters in one vector � and all the predicting
variables in one matrix � , then ��� �P� �0"
where �P� is predictable, and " is not predictable. The elements of " may be correlated.
We can write the predictable part in many ways. That is,�P� � ��� ���
for lots of different � � and � � pairs.
In one-way ANOVA, we could write *�� or * �0/ � .
In regression, we could replace � � � and � � F with � � � � ��� � F 
 and � � � ��� � � F 
 (and modified coefficients).
In general, the value of the predictable part is well defined, but the expression as independent variables and
parameters is pretty arbitrary.
We have a linear model. The parameters enter linearly, and the unpredicatable term is added to the predictable
term.
We also want to test linear hypotheses about the parameters. Let � be ��� ' , and let 	 be 	�
 ��� of full rank. We
want to test 
 ��� 	 � � 6
versus 
 ��� 	 ���� 6
Important note: if � is not full rank, then some linear combinations � � � are not well defined without further
restrictions.
For example, consider the one-way model * �0/ � . It doesn’t make sense to look at / � , because we can add 10 to* and subtract 10 from / � and not change the predictable part.
We are OK if � � � ��� , that is, if � is a linear combination of the rows of � . In this case, the linear combination
is estimable.
In the one-way model, if the coefficient for * equals the sum of the coefficients for the / � s, then � � � is estimable
in the one-way model.
Examples. Multiple regression with a constant plus four predictors.
H ��� � F �
6 has 	�
 ��' and corresponds to 	 ��� 6 6 ' 6 6��
H ��� � F � ��� � 6 has 	�
 ��� and corresponds to

	 ��� 6 6 ' 6 6
6 6 6 ' 6! 

H ��� � F � ��� �
6 has 	�
 � ' and corresponds to	 � � 6 6 ' � ' 6 �
One-way ANOVA.
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H ��� / � � / F � ��� � � / 2 � 6 has 	�
 � ) �-' and corresponds to ( ) ��� groups)

	 �
����� 6 ' 6 6 6
6 6 ' 6 6
6 6 6 ' 6
6 6 6 6 '

������
or 	 �

��� 6 ' 6 6 6
6 6 ' 6 6
6 6 6 ' 6

� ��
because the sum of the / � s is fixed at zero.
Least Squares. Estimation by least squares finds the estimate 	 of � that minimizes the sum of squared differences
between the observed data and the fitted values using 	 . Least squares estimation is also maximum likelihood
estimation for independent, normally distributed errors.
The sum of squared differences is often referred to as the residual sum of squares RSS, or the sum of squares for
error SS 
 .
Let 	 � be the estimate of � when the null is assumed to be true. That is, the vector that minimizes RSS subject to	�	 �
6 . Call the RSS under the null RSS(H � ).
Let 	 � be the estimate of � when the alternative is assumed to be true. That is, the vector that minimizes RSS
without restrictions. Call the RSS under the alternative RSS(H � ), or SS 
 .
RSS(H � ) and RSS(H � ) do not depend on the parameterization we choose (the 	 ’s depend on the parameterization,
but not the sums of squares). Thus we can always use the most convenient parameterization.
Define ����
 ��� ��� � 
 � 
 ��� ��� � 
 � 

This is the increase in RSS when going from the null fit to the alternative fit.
Large values of SS



imply that the alternative fits much better than the null, thus implying that the null should be

rejected. Specifically, we look at the ratio
����
 I ��� 
 and reject for large values. Under the null (with normality)����
��� 
�� 	�


	������������� 
Of course, this is just the usual F test with the degrees of freedom multiplying the F distribution instead of scaling
sums of squares into mean squares.
The likelihood ratio test is !

�#" � ��� � 
 � 
� ��� � 
 � 
%$'&)(%* F �,+ ' � ����
��� 
.- &)(�* F
For large samples under the null,

��� 
 should be much bigger than
����


, so/ F �  � � �1032 ! �5460327+ ' � ����
��� 
 -98 4 ����
��� 

which agrees asymptotically with the F test.
Here is a shortcut(?). Suppose that the (estimated) variance matrix for 	 is :8F L . Then the sum of squares for the
hypothesis 
 ��� 	 � � 6
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is ����
 �(� 	�	G
�� � 	&L 	C� 
 & � � 	�	G
This is very like a Mahalanobis distance.
A regression example. The actual data follow a quadratic, and we’ll try to fit a cubic.

Cmd> x <- run(20)

Cmd> x2 <- x*x

Cmd> x3 <- x*x*x

Cmd> setseeds(12224,546778)

Cmd> y <- 3 + 2*x - x2/100 + rnorm(20)

Cmd> regress("y=x+x2+x3")
Model used is y=x+x2+x3

Coef StdErr t
CONSTANT 2.7427 1.1934 2.2981
x 1.8668 0.48019 3.8875
x2 0.02275 0.05246 0.43367
x3 -0.0014094 0.0016447 -0.85696

N: 20, MSE: 1.1937, DF: 16, Rˆ2: 0.99120
Regression F(3,16): 600.39, Durbin-Watson: 1.5525

To see the ANOVA table type ’anova()’

Cmd> anova()
Model used is y=x+x2+x3
WARNING: summaries are sequential

DF SS MS
CONSTANT 1 10126 10126
x 1 2140.9 2140.9
x2 1 8.2267 8.2267
x3 1 0.87661 0.87661
ERROR1 16 19.099 1.1937

Cmd> .87661/1.1937
(1) 0.73436

Cmd> .85696*.85696
(1) 0.73438

Cmd> (8.2267+.87661)
(1) 9.1033

Cmd> 9.1033/2
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(1) 4.5517

Cmd> 4.5517/1.1937
(1) 3.8131

Cmd> 1-cumF(3.813,2,16)
(1) 0.044242

Cmd> COEF
CONSTANT x x2 x3
2.7427 1.8668 0.02275 -0.00141

Cmd> SS
CONSTANT x x2 x3 ERROR1

10126 2140.9 8.2267 0.87661 19.099

Cmd> DF
CONSTANT x x2 x3 ERROR1

1 1 1 1 16

Cmd> XTXINV
CONSTANT x x2 x3

CONSTANT 1.1932 -0.4343 0.042312 -0.001204
x -0.4343 0.19317 -0.020548 0.00061435
x2 0.042312 -0.020548 0.0023055 -7.1383e-05

x3 -0.001204 0.00061435 -7.1383e-05 2.2661e-06

Cmd> c <- XTXINV[run(3,4),run(3,4)]

Cmd> lb <- COEF[run(3,4)];lb
x2 x3

0.02275 -0.0014094

Cmd> c
x2 x3

x2 0.0023055 -7.1383e-05
x3 -7.1383e-05 2.2661e-06

Cmd> lb’%*%solve(c)%*%lb
(1)

(1) 9.1034

Cmd> anova("y=x+x2+x3")
Model used is y=x+x2+x3
WARNING: summaries are sequential

DF SS MS
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CONSTANT 1 10126 10126
x 1 2140.9 2140.9
x2 1 8.2267 8.2267
x3 1 0.87661 0.87661
ERROR1 16 19.099 1.1937

Cmd> anova("y=x+x2+x3",fstats:T)
Model used is y=x+x2+x3
WARNING: summaries are sequential

DF SS MS F P-value
CONSTANT 1 10126 10126 8482.63112 0
x 1 2140.9 2140.9 1793.55009 0
x2 1 8.2267 8.2267 6.89193 0.018373
x3 1 0.87661 0.87661 0.73438 0.40412

ERROR1 16 19.099 1.1937

One-way ANOVA with five groups.

Cmd> a <- factor(rep(run(5),4))

Cmd> y <- vector(3,1,6,4,5)[a]+rnorm(20)

Cmd> anova("y=a")
Model used is y=a

DF SS MS
CONSTANT 1 277.99 277.99
a 4 78.37 19.592
ERROR1 15 10.529 0.70191

Cmd> coefs()
component: CONSTANT
(1) 3.7282
component: a
(1) 0.059304 -3.2705 2.7802 -0.51608 0.94706

Cmd> coefs("a",se:T)
component: coefs
(1) 0.059304 -3.2705 2.7802 -0.51608 0.94706
component: se
(1) 0.37468 0.37468 0.37468 0.37468 0.37468

Cmd> contrast("a",vector(1,1,1,-1.5,-1.5))
component: estimate
(1) -1.0775
component: ss
(1) 0.61915
component: se
(1) 1.1472
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Analysis of covariance.

Cmd> y <- vector(3,1,6,4,5)[a]+x/2+rnorm(20)

Cmd> anova("y=x+a",pvals:T)
Model used is y=x+a
WARNING: summaries are sequential

DF SS MS P-value
CONSTANT 1 1685.4 1685.4 0
x 1 157.68 157.68 4.6626e-08
a 4 63.095 15.774 0.00027676
ERROR1 14 19.746 1.4104

Cmd> anova("y=a+x")
Model used is y=a+x
WARNING: summaries are sequential

DF SS MS
CONSTANT 1 1685.4 1685.4
a 4 101.6 25.4
x 1 119.17 119.17
ERROR1 14 19.746 1.4104

Cmd> anova("y=x+a",marginal:T)
Model used is y=x+a
WARNING: SS are Type III sums of squares

DF SS MS
CONSTANT 1 93.258 93.258
x 1 119.17 119.17
a 4 63.095 15.774
ERROR1 14 19.746 1.4104

anova() creates several variables as side effects.

Cmd> SS
CONSTANT x a ERROR1
93.258 119.17 63.095 19.746

Cmd> DF
CONSTANT x a ERROR1

1 1 4 14

Cmd> RESIDUALS
(1) 0.72573 0.19843 0.73128 0.72575 1.4661
(6) -1.0188 -0.48538 -2.1221 -1.6932 -1.7946

(11) -0.053961 -0.22043 1.3752 1.2618 0.32385
(16) 0.34705 0.50739 0.015678 -0.29436 0.00465
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Cmd> HII
(1) 0.34 0.34 0.34 0.34 0.34
(6) 0.26 0.26 0.26 0.26 0.26

(11) 0.26 0.26 0.26 0.26 0.26
(16) 0.34 0.34 0.34 0.34 0.34

Cmd> COEF
UNDEFINED

regress() creates COEF, but anova() does not.
What else can you extract?

Cmd> out <- modelinfo(all:T)

Cmd> compnames(out)
(1) "xvars"
(2) "y"
(3) "parameters"
(4) "xtxinv"
(5) "coefs"
(6) "aliased"
(7) "scale"
(8) "colcounts"
(9) "weights"

(10) "strmodel"
(11) "bitmodel"
(12) "link"
(13) "distrib"
(14) "termnames"
(15) "sigmahat"

The � matrix.

Cmd> print(out$xvars,format:"f5.0")
MATRIX:
(1,1) 1 1 1 0 0 0
(2,1) 1 2 0 1 0 0
(3,1) 1 3 0 0 1 0
(4,1) 1 4 0 0 0 1
(5,1) 1 5 -1 -1 -1 -1

...
(16,1) 1 16 1 0 0 0
(17,1) 1 17 0 1 0 0
(18,1) 1 18 0 0 1 0
(19,1) 1 19 0 0 0 1
(20,1) 1 20 -1 -1 -1 -1
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Cmd> out$termnames
(1) "CONSTANT"
(2) "x"
(3) "a"
(4) "ERROR1"

Cmd> out$strmodel
(1) "y=1+x+a"

Cmd> out$colcounts
(1) 1 1 4

Cmd> print(out$xtxinv,format:"f8.3",labels:F)
MATRIX:

0.226 -0.017 -0.034 -0.017 0.000 0.017
-0.017 0.002 0.003 0.002 -0.000 -0.002
-0.034 0.003 0.206 -0.047 -0.050 -0.053
-0.017 0.002 -0.047 0.202 -0.050 -0.052
0.000 -0.000 -0.050 -0.050 0.200 -0.050
0.017 -0.002 -0.053 -0.052 -0.050 0.202
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