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Let’s think about the univariate � -test.
First recall that there are one-sample tests, two-sample tests, paired tests, and so on. Start with the one-sample
situation.� ��� � ���	�����	� � 
 are ���� N ��� ��� ��� , with both � and � unknown. �� estimates � , and � estimates � .���� N ��� ��� ����� �

��� �
� � �� �"! �

� � 
�# �
or � � � � ����$� � � �%� # � � ����&� � � � F �(' 
�# �
To test H )+*,�-�.�/) versus H 01*2�43�5�6) , reject if 7 �87 is too big or if � � is too big. Compute p-values by comparison
with reference distributions.
We assumed normality, but we can get away from that for large sample sizes. As long as the data are ���� with
finite variance, ��9 N �%: ��; � �<�>= as

� 9 ?
and � � 9 @ � � � F �(' = as

� 9 ?
We can also produce confidence intervals.
The ; �BA confidence interval for � is the set of potential values for � that yield p-values of

A
or more in the � or� � test. C

�D*67 �87"EF�HGJI �K' 
�# ��L �
C
�D*,� � E F G 'M�(' 
�# �NL �

����$� �HGJI �K' 
�# � ;! � � ��PO �HGJI �K' 
�# � ;! � �
The paired setup has ���� data pairs � �RQ ��S Q � , with the assumptions that the differences  Q � �TQ�� S Q are �%�U distributed
N ��� ��� ��� .
Just use one-sample procedures on the differences, using � and ��V (still

� � ; degrees of freedom).
Two-sample procedures. Assume that

� ��� � ���������W� � 
 are �%�U N ��� ����� �� � , and that SX����S��	���	���	��SZY are ���U N ��� ����� �� � .
Inference about � � � � � .
If we believe �/� � �T� � � , we can use pooled procedures.
If we allow �/� 3� �T� , we must use unpooled procedures.
Pooling.

Let � �[ �]\ 
�# �%^`_�abNc \ Y # �%^`_�ad
 c Y # � . Under H )e*2� � � � � �5: ,
�� � �Sf � ; ��� O ; �Zg � � �[

� � 
 c Y # �
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or � ; ��� O ; ��g � # � ����&� �S � � # �[ ���� � �S � � F �(' 
 c Y # �
Confidence interval for � � � � � : ��&� �S�� � GJI �K' 
Z# � f ; �Z� O ; ��g � [
The pooled procedures work in large samples even for nonnormally distributed data, if the variances are equal.
The pooled procedures do not work if � � 3� �T� and can give misleading results.
Unpooled procedures.

� [ � �� � �Sf � �� ��� O � �� ��g
is only approximately � distributed. Use � with Satterthwaite approximate degrees of freedom for small

�
and

g
.

���� ��� �� �Z� O � �� �Zg �>��
�# � _��b
 a O �Y # � _��dY a
� [ is approximately standard normal for large

�
and

g
.

Form confidence intervals or � � test in the usual way.
What do we do for multivariate data? We use Hotelling’s T

�
.

For a one-sample problem,
�RQ ���� N[ ��� �	� � , testing H )e*2� �<�6)
 � � � � � �/) ���� ;����� # � � � � �6) � � � � � � �6) ��� � # � � � � �6) �

T
�

is the squared Mahalanobis distance (with estimated variance) between the observed mean and the null hy-
pothesis mean.
For large

�
, T
�

is approximately @ �[ under the null hypothesis.
For small

�
, 
 � � � � � ; ���� � � � ��� [ ' 
Z#Z[

under the null hypothesis.
The p-value for the test is thus �

� � [ ' 
Z#Z[�� � � � � �
� � � ; ��� 
 � �

To construct a ; � A confidence region for � , use�
� * � � � � � ��� � # � � � � � ��� � � � ; ���� � � � � � G ' [ ' 
�#Z[��

This confidence region is an ellipsoid centered at � with axes oriented along the eigenvectors of � and axis lengths
proportional to the square roots of the eigenvalues of � .
Try wood stiffness data from text.

Cmd> readdata("",x1,x2,x3,x4,x5)
Read from file "/cdrom/T4-3.DAT"
Column 1 saved as REAL vector x1

2



Column 2 saved as REAL vector x2
Column 3 saved as REAL vector x3
Column 4 saved as REAL vector x4
Column 5 saved as REAL vector x5

Cmd> X <- hconcat(x1,x2,x3,x4)

Cmd> xbar <- tabs(X,mean:T);xbar
(1) 1906.1 1749.5 1509.1 1725

Cmd> S <- tabs(X,covar:T)

We have the null of all means at 1750.

Cmd> mu0 <- rep(1750,4)

Cmd> T2 <- (xbar - mu0)’%*%solve(S)%*% �
(xbar - mu0)*30

Cmd> T2
(1,1) 277.95

Cmd> T2*(30-4)/(30-1)/4 # F distributed
(1,1) 62.3

Cmd> 1-cumF(62.3,4,26)
(1) 6.1018e-13

Tiny p-value. Can we find where differences are?

Cmd> U <- eigen(S)$vectors

Cmd> lam <- eigenvals(S)

Cmd> (U’%*%(xbar-mu0))/sqrt(lam/30)
(1,1) -0.41258
(2,1) -5.0143
(3,1) -12.831
(4,1) 9.3808

Cmd> 12.83ˆ2+9.38ˆ2+5.01ˆ2+.41ˆ2
(1) 277.86

Cmd> U
(1,1) 0.526 -0.199 -0.240 0.791
(2,1) 0.487 -0.727 0.136 -0.465
(3,1) 0.476 0.445 0.759 0.025
(4,1) 0.510 0.484 -0.590 -0.396
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First element of (U’%*%(xbar-mu0))/sqrt(lam/30)was OK, but others were huge.
First column of U is more or less constant, corresponding to the average of the elements of xbar-mu0. The
others are differences between elements, and they are all too big.
For ease of visualization, just do confidence region for first two variables.

Cmd> xbar12 <- xbar[vector(1,2)]

Cmd> S12 <- S[vector(1,2),vector(1,2)]

Cmd> 2*(30-1)/(30-2)*invF(.95,2,28)
(1) 6.9194

Cmd> ellipse(6.919,S12/30,xbar12,draw:T)

Cmd> showplot(title:"95% confidence ellipse �
for variables 1 and 2")
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Cmd> xbar13 <- xbar[vector(1,3)]

Cmd> S13 <- S[vector(1,3),vector(1,3)]

Cmd> ellipse(6.919,S13/30,xbar13,draw:T)

Cmd> addpoints(1750,1750)

Cmd> showplot(title:"95% confidence ellipse �
for variables 1 and 3")

4



1200

1300

1400

1500

1600

1700

1800

1900

1500 1600 1700 1800 1900 2000 2100 2200 2300

95% confidence ellipse for variables 1 and 3

Let’s be a little more particular about what is happening.
Let � � N[ �%: ��� � � under H ) .
Let

� ����� � � � � independent of � .
Then

� � � # � � � � �� � � O ; � [ ' � #Z[ c �
For the one-sample T

�
, � � � � ; , � � ; ��� .

For a multivariate paired problem, we again take differences and use one-sample T
�

with ��� � � ; and � � ; ��� .
For pooled two-sample T

�
under H )

� � � � � � N[ �%: � � ;� O ;g � � �
� � � [ � � � � ; � � � O � g � ; � � �� O g � �
� ;� O ;g � � ��� 
 c Y # � �K� ;� O ;g � � �

So � � � O g � � and � � � �
 O �Y � .
Thus for two-sample T

�
testing H )+*2� � � � � �5: , we have
 � � � � � � � �
	 � ;� O ;g � � [�� # � � � � � �

and 
 � � � � O g � � ���� O g � � � ; � [ ' 
 c Y #Z[�# �
For large samples, 
 � � @ �[
Illustrate by comparing first 15 observations to last 15 observations in wood stiffness data.

5



Cmd> X1 <- X[run(15),]

Cmd> X2 <- X[run(16,30),]

Cmd> xbar1 <- tabs(X1,mean:T)

Cmd> xbar2 <- tabs(X2,mean:T)

Cmd> S1 <- tabs(X1,covar:T)

Cmd> S2 <- tabs(X2,covar:T)

Cmd> Sp <- ( (15-1)*S1 + (15-1)*S2)/ �
(15+15-2)

Cmd> T2 <- (xbar1-xbar2)’%*% �
solve( (1/15 + 1/15)*Sp) %*% (xbar1-xbar2)

Cmd> T2
(1,1) 4.0808

Cmd> T2/4/(15+15-2)*(15+15-4-1)
(1,1) 0.91089

Cmd> 1-cumF(.91,4,25)
(1) 0.47333

In an analogous way, a ; �BA confidence region for � �5� � � � � is�
� *R� � � � � � ���  � ;� O ;g � � [ � # � � � � � � � � �

� � O g � � ���� � O g � � � ; � � G ' [ ' 
 c Y #Z[�# � �
Just as in univariate statistics, assuming equal variances is a strong assumption, and using pooled procedures when
variances are unequal gives poor results.
Unpooled variance estimate: � � � �� O � �g
Under H ) and for large

�
and

g
: 
 � � � � � � ��� � # � � � � � � � @ �[

Likelihood Ratio Tests are a general method in statistics.
Let � be the likelihood as a function of unknown parameters.
Let ��) be the maximum value of the likelihood when we restrict our parameters to meet the null hypothesis.
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Let � � be the maximum value of the likelihood over all possibilities.� � ��)
� � E ;�

should be pretty close to 1 if the null is true, but could be arbitrarily small if the null is false. Reject H ) for
small

�
.

For large samples and when H ) is true � ����� � � @ ��
where � is the difference in the number of free parameters under the null and alternative hypotheses.
For the T

�
situation, let �� ) � ;� 
� Q
	 � � �TQ � �6) � � �TQ � �6) ���

and let ��e� � ;� 
� Q
	 � � �TQ � � � � �TQ � � ���
be the maximum likelihood estimates of the variance under H ) and H � .
Then

� ) � � #"
�[ I �� �� � 
 I � 7 �� ) 7 
 I �
and

� � � � #"
�[ I �� �� � 
 I � 7 ��e� 7 
 I �
and � � � 7 ��e� 77

�� ),7�� 
 I �
Some tedious algebra will show that 7

��e� 77
�� ) 7 � ;; O � a
�# �

so that � ����� � � 
 � O�� � � # � �
This is asymptotically @ �[ , because the alternative includes

�
additional mean parameters. (But we’d already

figured that out another way.)
Where did the

� � ; degrees of freedom go in T
�
?

Let � � N[ �%: ��� � � under H ) .
Let

� ����� � � � � independent of � .
Find � such that � � � � ��� [ .
Then ��� ��� � � N[ �%: � � [ � and

� � ��� � � � ��� � ��� [ � (still independent).
 � � � � � # � �.� � � � � � # � � �
so we can work with the new variables.
Let ����� be an orthogonal matrix that depends only on � � . (Drop the ��� subscript for ease of notation.)
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Conditional on � , � � � � � ��� � � � � � � � � � ��� [ � .
Because conditional distribution of � � � � � doesn’t depend on � , the unconditional distribution equals the con-
ditional and � � � � � ��� � � � [ �


 � � � � � � � # � � �� � � � � � � � � # � � � � � �� S � � # � S
where S � � � ,

� � � � � � � , and S and
�

are independent.
Choose the first row of � to be � � � � 7 7 ���27 7 ; fill in remaining rows in any orthonormal way
Then

� � � �
���������
7 7 � �"7 7::

...:

����������
and 
 � � S � � # � S � 7 7 � � 7 7 � � �(�
where

� �(�
is the 1,1 element of

� # �
.7 7 ���,7 7 � � @ �[

What is the distribution of
� �(�

when
� ����� ��� [ � ?

; � � �(� � � �(� � � ��� � # ��(� � �K�
where � �
	 � �(� � ���� �K� � �(���
and

� �(� is ;� ; , � ��� is ;� � � � ; � , � �K� is � � � ; �  ; , and
� �K� is � � � ; �  � � � ; � .
 � � 7 7 � � 7 7 � � �(� �5@ �[ � �(� �<@ �[ � 	 � �(� � � ��� � # ��(� � �K� �

If
� ��� � � � [ � , then � �(� � � ��� � # ��(� � �K� � @ � � # \ [�# �%^

Thus we get a ratio of chisquared distributions for T
�
, and an � distribution after suitable rescaling via degrees of

freedom.
The distributional result can be modified for

� � � � � , and modified for a submatrix bigger than ;� ; (we’ll get a
Wishart). But you always lose a degree of freedom for every variable left out of the submatrix.
For you folks in 8401, try to prove the following:
Theorm. Suppose that S ���KS �����	���	��SZY are independent with S Q � N[ ��� � Q �	� � , where � is a fixed matrix and � Q is
some � -vector. Let �]��� YQ
	 � � Q � �Q and assume that � is nonsingular. Let � ��� YQ 	 � S Q � �Q � # � . ThenY�Q
	 � S Q S �Q � ����� � ��� Y #�� � � �
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independent of
�

.
Hint: Let � be the �  g matrix with columns � Q , let � be square such that � ��� � ��� , let � � ����� . Complete
� � to a full

g  g orthogonal matrix �
�5�
	 � �� ���

Let � � S � � , and work with the � vector.
Corollary. Let � � � � � ; � � be the matrix of sums of squares and cross products from an �%�U sample S Q from
N[ ��� �	� � . Partition � into its first � rows and columns and the remaining

� � � rows and columns. Define

� �(�	�U� �
� �(� � � ��� � # ��(� � �K�
and �e�(�	�U� � �e�(� � �e��� � � # ��(� � �K�
Then

� �(�	�U� ��� 
�# � # \ [8#
� ^ � �e�(�	�U� �

Hint: Find the conditional distribution of the first � elements of S Q conditional on the last
� � � . Then use the

preceding theorem.
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