Statistics 5041
 11. Hotelling's T^{2}
 Gary W. Oehlert
 School of Statistics
 313B Ford Hall
 612-625-1557
 gary@stat.umn.edu

Let's think about the univariate t-test.
First recall that there are one-sample tests, two-sample tests, paired tests, and so on. Start with the one-sample situation.
$x_{1}, x_{2}, \ldots, x_{n}$ are iid $\mathrm{N}\left(\mu, \sigma^{2}\right)$, with both μ and σ unknown. \bar{x} estimates μ, and s estimates σ.
$\bar{x} \sim \mathrm{~N}\left(\mu, \sigma^{2} / n\right)$

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{n}} \sim t_{n-1}
$$

or

$$
t^{2}=n(\bar{x}-\mu)\left(s^{-2}\right)(\bar{x}-\mu) \sim \mathrm{F}_{1, n-1}
$$

To test $\mathrm{H}_{0}: \mu=\mu_{0}$ versus $\mathrm{H}_{a}: \mu \neq \mu_{0}$, reject if $|t|$ is too big or if t^{2} is too big. Compute p-values by comparison with reference distributions.
We assumed normality, but we can get away from that for large sample sizes. As long as the data are iid with finite variance,

$$
t \rightarrow \mathrm{~N}(0,1)=t_{\infty} \quad \text { as } \quad n \rightarrow \infty
$$

and

$$
t^{2} \rightarrow \chi_{1}^{2}=\mathrm{F}_{1, \infty} \quad \text { as } \quad n \rightarrow \infty
$$

We can also produce confidence intervals.
The $1-\alpha$ confidence interval for μ is the set of potential values for μ that yield p-values of α or more in the t or t^{2} test.

$$
\begin{gathered}
\left\{\mu:|t|<t_{\alpha / 2, n-1}\right\}=\left\{\mu: t^{2}<\mathrm{F}_{\alpha, 1, n-1}\right\}= \\
\left(\bar{x}-t_{\alpha / 2, n-1} \frac{1}{\sqrt{n}}, \quad \bar{x}+t_{\alpha / 2, n-1} \frac{1}{\sqrt{n}}\right)
\end{gathered}
$$

The paired setup has iid data pairs $\left(x_{i}, y_{i}\right)$, with the assumptions that the differences $d_{i}=x_{i}-y_{i}$ are iid distributed $\mathrm{N}\left(\mu, \sigma^{2}\right)$.
Just use one-sample procedures on the differences, using \bar{d} and s_{d} (still $n-1$ degrees of freedom).
Two-sample procedures. Assume that $x_{1}, x_{2}, \ldots, x_{n}$ are iid $\mathrm{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$, and that $y_{1}, y_{2}, \ldots, y_{m}$ are iid $\mathrm{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$.
Inference about $\mu_{1}-\mu_{2}$.
If we believe $\sigma_{1}=\sigma_{2}=\sigma$, we can use pooled procedures.
If we allow $\sigma_{1} \neq \sigma_{2}$, we must use unpooled procedures.
Pooling.
Let $s_{p}^{2}=\frac{(n-1) s_{x}^{2}+(m-1) s_{y}^{2}}{n+m-2}$. Under $\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0$,

$$
\frac{\bar{x}-\bar{y}}{\sqrt{(1 / n+1 / m) s_{p}^{2}}} \sim t_{n+m-2}
$$

or

$$
(1 / n+1 / m)^{-1}(\bar{x}-\bar{y}) s_{p}^{-2}(\bar{x}-\bar{y}) \sim \mathrm{F}_{1, n+m-2}
$$

Confidence interval for $\mu_{1}-\mu_{2}$:

$$
\bar{x}-\bar{y} \pm t_{\alpha / 2, n-1} \sqrt{1 / n+1 / m} s_{p}
$$

The pooled procedures work in large samples even for nonnormally distributed data, if the variances are equal. The pooled procedures do not work if $\sigma_{1} \neq \sigma_{2}$ and can give misleading results. Unpooled procedures.

$$
t_{p}=\frac{\bar{x}-\bar{y}}{\sqrt{s_{x}^{2} / n+s_{y}^{2} / m}}
$$

is only approximately t distributed. Use t with Satterthwaite approximate degrees of freedom for small n and m.

$$
d f=\frac{\left(s_{x}^{2} / n+s_{y}^{2} / m\right)^{2}}{\frac{1}{n-1} \frac{s_{x}^{4}}{n^{2}}+\frac{1}{m-1} \frac{s_{y}^{4}}{m^{2}}}
$$

t_{p} is approximately standard normal for large n and m.
Form confidence intervals or t^{2} test in the usual way.
What do we do for multivariate data? We use Hotelling's T^{2}.
For a one-sample problem, x_{i} iid $\mathrm{N}_{p}(\mu, \Sigma)$, testing $\mathrm{H}_{0}: \mu=\mu_{0}$

$$
T^{2}=\left(\overline{\mathbf{x}}-\mu_{0}\right)^{\prime}\left(\frac{1}{n} \mathbf{S}\right)^{-1}\left(\overline{\mathbf{x}}-\mu_{0}\right)=n\left(\overline{\mathbf{x}}-\mu_{0}\right)^{\prime} \mathbf{S}^{-1}\left(\overline{\mathbf{x}}-\mu_{0}\right)
$$

T^{2} is the squared Mahalanobis distance (with estimated variance) between the observed mean and the null hypothesis mean.
For large $n, \mathrm{~T}^{2}$ is approximately χ_{p}^{2} under the null hypothesis.
For small n,

$$
T^{2} \sim \frac{(n-1) p}{(n-p)} F_{p, n-p}
$$

under the null hypothesis.
The p-value for the test is thus

$$
P\left(F_{p, n-p}>\frac{(n-p)}{(n-1) p} T^{2}\right)
$$

To construct a $1-\alpha$ confidence region for μ, use

$$
\left\{\mu: n(\overline{\mathbf{x}}-\mu)^{\prime} \mathbf{S}^{-1}(\overline{\mathbf{x}}-\mu) \leq \frac{(n-1) p}{(n-p)} F_{\alpha, p, n-p}\right\}
$$

This confidence region is an ellipsoid centered at $\overline{\mathbf{x}}$ with axes oriented along the eigenvectors of \mathbf{S} and axis lengths proportional to the square roots of the eigenvalues of \mathbf{S}.
Try wood stiffness data from text.
Cmd> readdata(" ", x1, x2, x3, x4, x5)
Read from file "/cdrom/T4-3.DAT"
Column 1 saved as REAL vector x 1

```
Column 2 saved as REAL vector x2
Column 3 saved as REAL vector x3
Column 4 saved as REAL vector x4
Column 5 saved as REAL vector x5
Cmd> X <- hconcat (x1,x2,x3,x4)
Cmd> xbar <- tabs(X,mean:T); xbar
(1) 1906.1 1749.5 1509.1 1725
Cmd> S <- tabs (X, covar:T)
We have the null of all means at 1750 .
```

```
Cmd \(>\) mu0 \(<-\operatorname{rep}(1750,4)\)
```

Cmd $>$ mu0 $<-\operatorname{rep}(1750,4)$
Cmd> T2 <- (xbar - mu0) \quad \%**solve (S) \% *\%
Cmd> T2 <- (xbar - mu0) \quad \%**solve (S) \% *\%
(xbar - mu0)*30
(xbar - mu0)*30
Cmd> T2
Cmd> T2
(1,1) 277.95
(1,1) 277.95
Cmd> T2*(30-4)/(30-1)/4 \# F distributed
Cmd> T2*(30-4)/(30-1)/4 \# F distributed
$(1,1) \quad 62.3$
$(1,1) \quad 62.3$
Cmd> 1-cumF (62.3, 4, 26)
Cmd> 1-cumF (62.3, 4, 26)
(1) $6.1018 e-13$

```
(1) \(6.1018 e-13\)
```

Tiny p-value. Can we find where differences are?
Cmd> U <- eigen (S) \$vectors

```
Cmd> lam <- eigenvals(S)
Cmd> (U'%*%(xbar-mu0))/sqrt(lam/30)
(1,1) -0.41258
(2,1) -5.0143
(3,1) -12.831
(4,1) 9.3808
```

Cmd $>12.83^{\wedge} 2+9.38^{\wedge} 2+5.01^{\wedge} 2+.41^{\wedge} 2$
(1) 277.86
Cmd> U
$(1,1) \quad 0.526 \quad-0.199 \quad-0.240 \quad 0.791$
$\begin{array}{lllll}(2,1) & 0.487 & -0.727 & 0.136 & -0.465\end{array}$
$\begin{array}{lllll}(3,1) & 0.476 & 0.445 & 0.759 & 0.025\end{array}$
$\begin{array}{lllll}(4,1) & 0.510 & 0.484 & -0.590 & -0.396\end{array}$

First element of ($\left.U^{\prime} \% * \%(x b a r-m u 0)\right) /$ sqrt (lam/30) was OK, but others were huge.
First column of U is more or less constant, corresponding to the average of the elements of xbar-mu0. The others are differences between elements, and they are all too big.
For ease of visualization, just do confidence region for first two variables.


```
Cmd> xbar13 <- xbar[vector \((1,3)]\)
Cmd> S13 <- S[vector \((1,3)\), vector \((1,3)]\)
Cmd> ellipse(6.919,S13/30, xbar13, draw:T)
Cmd> addpoints (1750,1750)
Cmd> showplot(title:"95\% confidence ellipse\}
    for variables 1 and 3")
```


Let's be a little more particular about what is happening.
Let $w \sim \mathrm{~N}_{p}(0, a \Sigma)$ under H_{0}.
Let $\mathbf{V} \sim W_{f}(a \Sigma)$ independent of w.
Then

$$
w^{\prime} \mathbf{V}^{-1} w \sim \frac{f p}{f-p+1} F_{p, f-p+1}
$$

For the one-sample $\mathrm{T}^{2}, f=n-1, a=1 / n$.
For a multivariate paired problem, we again take differences and use one-sample T^{2} with $f=n-1$ and $a=1 / n$. For pooled two-sample T^{2} under H_{0}

$$
\begin{gathered}
(\overline{\mathbf{x}}-\overline{\mathbf{y}}) \sim \mathrm{N}_{p}\left(0,\left(\frac{1}{n}+\frac{1}{m}\right) \Sigma\right) \\
\mathbf{V}=\mathbf{S}_{p}=\frac{(n-1) \mathbf{S}_{x}+(m-1) \mathbf{S}_{y}}{n+m-2} \\
\left(\frac{1}{n}+\frac{1}{m}\right) \mathbf{V} \sim W_{n+m-2}\left(\left(\frac{1}{n}+\frac{1}{m}\right) \Sigma\right)
\end{gathered}
$$

So $f=n+m-2$ and $a=\left(\frac{1}{n}+\frac{1}{m}\right)$.
Thus for two-sample T^{2} testing $\mathrm{H}_{0}: \mu_{x}-\mu_{y}=0$, we have

$$
T^{2}=(\overline{\mathbf{x}}-\overline{\mathbf{y}})^{\prime}\left[\left(\frac{1}{n}+\frac{1}{m}\right) \mathbf{S}_{p}\right]^{-1}(\overline{\mathbf{x}}-\overline{\mathbf{y}})
$$

and

$$
T^{2} \sim \frac{(n+m-2) p}{n+m-p-1} F_{p, n+m-p-1}
$$

For large samples,

$$
T^{2} \sim \chi_{p}^{2}
$$

Illustrate by comparing first 15 observations to last 15 observations in wood stiffness data.

```
Cmd> X1 <- X[run(15),]
Cmd> X2 <- X[run(16,30),]
Cmd> xbar1 <- tabs(X1,mean:T)
Cmd> xbar2 <- tabs(X2,mean:T)
Cmd> S1 <- tabs(X1, covar:T)
Cmd> S2 <- tabs(X2, covar:T)
Cmd> Sp <- ( (15-1)*S1 + (15-1)*S2)/\
(15+15-2)
Cmd> T2 <- (xbar1-xbar2)' %*%\
solve( (1/15 + 1/15)*Sp) %*% (xbar1-xbar2)
Cmd> T2
(1,1) 4.0808
Cmd> T2/4/(15+15-2)* (15+15-4-1)
(1,1) 0.91089
Cmd> 1-cumF(.91, 4, 25)
(1) 0.47333
```

In an analogous way, a $1-\alpha$ confidence region for $\mu=\mu_{x}-\mu_{y}$ is

$$
\begin{gathered}
\left\{\mu:(\overline{\mathbf{x}}-\overline{\mathbf{y}}-\mu)^{\prime}\left(\left(\frac{1}{n}+\frac{1}{m}\right) \mathbf{S}_{p}\right)^{-1}(\overline{\mathbf{x}}-\overline{\mathbf{y}}-\mu) \leq\right. \\
\left.\frac{(n+m-2) p}{(n+m-p-1)} F_{\alpha, p, n+m-p-1}\right\}
\end{gathered}
$$

Just as in univariate statistics, assuming equal variances is a strong assumption, and using pooled procedures when variances are unequal gives poor results.
Unpooled variance estimate:

$$
\mathbf{V}=\frac{S_{x}}{n}+\frac{S_{y}}{m}
$$

Under H_{0} and for large n and m :

$$
T^{2}=(\overline{\mathbf{x}}-\overline{\mathbf{y}})^{\prime} \mathbf{V}^{-1}(\overline{\mathbf{x}}-\overline{\mathbf{y}}) \sim \chi_{p}^{2}
$$

Likelihood Ratio Tests are a general method in statistics.
Let L be the likelihood as a function of unknown parameters.
Let L_{0} be the maximum value of the likelihood when we restrict our parameters to meet the null hypothesis.

Let L_{1} be the maximum value of the likelihood over all possibilities.

$$
\Lambda=\frac{L_{0}}{L_{1}}<1
$$

Λ should be pretty close to 1 if the null is true, but could be arbitrarily small if the null is false. Reject H_{0} for small Λ.
For large samples and when H_{0} is true

$$
-2 \ln \Lambda \sim \chi_{q}^{2}
$$

where q is the difference in the number of free parameters under the null and alternative hypotheses.
For the T^{2} situation, let

$$
\widehat{\Sigma}_{0}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)\left(x_{i}-\mu_{0}\right)^{\prime}
$$

and let

$$
\widehat{\Sigma}_{1}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\overline{\mathbf{x}}\right)\left(x_{i}-\overline{\mathbf{x}}\right)^{\prime}
$$

be the maximum likelihood estimates of the variance under H_{0} and H_{1}.
Then

$$
L_{0}=\frac{e^{-n p / 2}}{(2 \pi)^{n / 2}\left|\widehat{\Sigma}_{0}\right|^{n / 2}}
$$

and

$$
L_{1}=\frac{e^{-n p / 2}}{(2 \pi)^{n / 2}\left|\hat{\Sigma}_{1}\right|^{n / 2}}
$$

and

$$
\Lambda=\left(\frac{\left|\widehat{\Sigma}_{1}\right|}{\left|\widehat{\Sigma}_{0}\right|}\right)^{n / 2}
$$

Some tedious algebra will show that

$$
\frac{\left|\widehat{\Sigma}_{1}\right|}{\left|\widehat{\Sigma}_{0}\right|}=\frac{1}{1+\frac{T^{2}}{n-1}}
$$

so that

$$
-2 \ln \Lambda=T^{2}+O\left(n^{-1}\right)
$$

This is asymptotically χ_{p}^{2}, because the alternative includes p additional mean parameters. (But we'd already figured that out another way.)
Where did the $p-1$ degrees of freedom go in T^{2} ?
Let $w \sim \mathrm{~N}_{p}(0, a \Sigma)$ under H_{0}.
Let $\mathbf{V} \sim W_{f}(a \Sigma)$ independent of w.
Find \mathbf{D} such that $\mathbf{D} a \Sigma \mathbf{D}=\mathbf{I}_{p}$.
Then $w^{\star}=\mathbf{D} w \sim \mathbf{N}_{p}\left(0, \mathbf{I}_{p}\right)$ and $\mathbf{V}^{\star}=\mathbf{D V D} \mathbf{D}^{\prime} \sim W_{f}\left(\mathbf{I}_{p}\right)$ (still independent).

$$
T^{2}=w^{\prime} \mathbf{V}^{-1} w=w^{\star \prime} \mathbf{V}^{\star-1} w^{\star}
$$

so we can work with the new variables.
Let $\mathbf{Q}_{w^{\star}}$ be an orthogonal matrix that depends only on w^{\star}. (Drop the w^{\star} subscript for ease of notation.)

Conditional on $\mathbf{Q}, \mathbf{Q V}^{\star} \mathbf{Q}^{\prime} \sim W_{f}\left(\mathbf{Q Q}^{\prime}\right)=W_{f}\left(\mathbf{I}_{p}\right)$.
Because conditional distribution of $\mathbf{Q} \mathbf{V}^{\star} \mathbf{Q}^{\prime}$ doesn't depend on \mathbf{Q}, the unconditional distribution equals the conditional and

$$
\begin{aligned}
& \mathbf{Q} \mathbf{V}^{\star} \mathbf{Q}^{\prime} \sim W_{f}\left(\mathbf{I}_{p}\right) \\
T^{2} & =w^{\star} \mathbf{V}^{\star-1} w^{\star} \\
& =w^{\star} \mathbf{Q}^{\prime} \mathbf{Q} \mathbf{V}^{\star-1} \mathbf{Q}^{\prime} \mathbf{Q} w^{\star} \\
& =y^{\prime} \mathbf{B}^{-1} y
\end{aligned}
$$

where $y=\mathbf{Q} w, \mathbf{B}=\mathbf{Q V}^{\star} \mathbf{Q}^{\prime}$, and y and \mathbf{B} are independent.
Choose the first row of \mathbf{Q} to be $w^{\star \prime} /\left\|w^{\star}\right\|$; fill in remaining rows in any orthonormal way Then

$$
\mathbf{Q} w^{\star}=\left[\begin{array}{c}
\left\|w^{\star}\right\| \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

and

$$
T^{2}=y^{\prime} \mathbf{B}^{-1} y=\left\|w^{\star}\right\|^{2} \mathbf{B}^{11}
$$

where \mathbf{B}^{11} is the 1,1 element of \mathbf{B}^{-1}.
$\left|\left|w^{\star}\right|^{2} \sim \chi_{p}^{2}\right.$
What is the distribution of \mathbf{B}^{11} when $\mathbf{B} \sim W_{f}\left(\mathbf{I}_{p}\right)$?

$$
1 / \mathbf{B}^{11}=\mathbf{B}_{11}-\mathbf{B}_{12} \mathbf{B}_{22}^{-1} \mathbf{B}_{21}
$$

where

$$
\mathbf{B}=\left[\begin{array}{ll}
\mathbf{B}_{11} & \mathbf{B}_{12} \\
\mathbf{B}_{21} & \mathbf{B}_{22}
\end{array}\right]
$$

and \mathbf{B}_{11} is $1 \times 1, \mathbf{B}_{12}$ is $1 \times(p-1), \mathbf{B}_{21}$ is $(p-1) \times 1$, and \mathbf{B}_{21} is $(p-1) \times(p-1)$.

$$
T^{2}=\| w^{\star}| |^{2} \mathbf{B}^{11}=\chi_{p}^{2} \mathbf{B}^{11}=\chi_{p}^{2} /\left[\mathbf{B}_{11}-\mathbf{B}_{12} \mathbf{B}_{22}^{-1} \mathbf{B}_{21}\right]
$$

If $\mathbf{B} \sim W_{f}\left(\mathbf{I}_{p}\right)$, then

$$
\mathbf{B}_{11}-\mathbf{B}_{12} \mathbf{B}_{22}^{-1} \mathbf{B}_{21} \sim \chi_{f-(p-1)}^{2}
$$

Thus we get a ratio of chisquared distributions for T^{2}, and an F distribution after suitable rescaling via degrees of freedom.
The distributional result can be modified for $W_{f}(\Sigma)$, and modified for a submatrix bigger than 1×1 (we'll get a Wishart). But you always lose a degree of freedom for every variable left out of the submatrix.
For you folks in 8401, try to prove the following:
Theorm. Suppose that $y_{1}, y_{2}, \ldots, y_{m}$ are independent with $y_{i} \sim \mathrm{~N}_{p}\left(\Gamma w_{i}, \Sigma\right)$, where Γ is a fixed matrix and w_{i} is some r-vector. Let $\mathbf{H}=\sum_{i=1}^{m} w_{i} w_{i}^{\prime}$ and assume that \mathbf{H} is nonsingular. Let $\mathbf{G}=\sum_{i=1}^{m} y_{i} w_{i}^{\prime} \mathbf{H}^{-1}$. Then

$$
\sum_{i=1}^{m} y_{i} y_{i}^{\prime}-\mathbf{G H G}^{\prime} \sim W_{m-r}(\Sigma)
$$

independent of \mathbf{B}.
Hint: Let \mathbf{W} be the $r \times m$ matrix with columns w_{i}, let \mathbf{F} be square such that $\mathbf{F H F}{ }^{\prime}=\mathbf{I}$, let $\mathbf{E}_{2}=\mathbf{F W}$. Complete \mathbf{E}_{2} to a full $m \times m$ orthogonal matrix \mathbf{E}

$$
\mathbf{E}=\left[\begin{array}{l}
\mathbf{E}_{1} \\
\mathbf{E}_{2}
\end{array}\right]
$$

Let $u=y \mathbf{E}^{\prime}$, and work with the u vector.
Corollary. Let $\mathbf{P}=(n-1) \mathbf{S}$ be the matrix of sums of squares and cross products from an $i i d$ sample y_{i} from $\mathrm{N}_{p}(\mu, \Sigma)$. Partition \mathbf{P} into its first q rows and columns and the remaining $p-q$ rows and columns. Define

$$
\mathbf{P}_{11 \bullet 2}=\mathbf{P}_{11}-\mathbf{P}_{12} \mathbf{P}_{22}^{-1} \mathbf{P}_{21}
$$

and

$$
\Sigma_{11 \bullet 2}=\Sigma_{11}-\Sigma_{12} \Sigma P_{22}^{-1} \Sigma_{21}
$$

Then

$$
\mathbf{P}_{11 \bullet 2} \sim W_{n-1-(p-q)}\left(\Sigma_{11 \bullet 2}\right)
$$

Hint: Find the conditional distribution of the first q elements of y_{i} conditional on the last $p-q$. Then use the preceding theorem.

