
Statistics 5041
10. Assessing Normality

Gary W. Oehlert
School of Statistics

313B Ford Hall
612-625-1557

gary@stat.umn.edu

Many procedures assume normality.
Some procedures fall apart if the data aren’t normal, whereas others can take a lot of abuse and keep going.
In either case, it’s nice to know how close to normal the data are.
Assessing normality is an example of a goodness-of-fit problem.
Goodness-of-fit is a difficult problem.
There are many approaches. We will emphasize a graphical approach and the numerical follow-ons to the graphs.
Start with the univariate case.
Q-Q plots. Q-Q is short for “quantile-quantile.” When testing normality, these are also known as normal proba-
bility plots and (locally) as rankit plots.
Make pairs

���������	��

, where

���
is the th quantile of some theoretical distribution, and

���
is the th quantile of the

data.
Then make a plot of the pairs. If the data come from the theoretical distribution, the points on the plot should
fall on a line with slope 1 and intercept 0. Plot will be linear if

�
quantiles are scaled

�
quantiles plus a constant:�����������

.
Usually we choose levels something like ��� ��������

or
� �! #"%$
 � � or

� �& �'��	(
 � ������� �*)
 for � �+�,�.-/� "�"�" ��� , so
that the data quantiles are just the ordered data

�10325476#�80:9;4<6 "="�" 6#�>0@?A4
.

For a continuous theoretical distribution with cumulative B �5

, the theoretical quantiles are just BDC

2 � =E
 .
It generally makes little difference which version of AE we use.

Cmd> readdata("",dr,r,dh,h,du,u)
Read from file "/cdrom/T1-8.DAT"
Column 1 saved as REAL vector dr
Column 2 saved as REAL vector r
Column 3 saved as REAL vector dh
Column 4 saved as REAL vector h
Column 5 saved as REAL vector du
Column 6 saved as REAL vector u

Cmd> q1 <- invnor((run(25)-.5)/25)

Cmd> q2 <- invnor(run(25)/26)

Cmd> q3 <- invnor((run(25)-3/8)/(25.25))

Cmd> cor(hconcat(q1,q2,q3))
(1,1) 1 0.99912 0.99991
(2,1) 0.99912 1 0.9996

1

(3,1) 0.99991 0.9996 1

Cmd> cor(hconcat(q3,rankits(q3)))
(1,1) 1 1
(2,1) 1 1

Cmd> ord <- grade(dr)

Cmd> plot(q3,dr[ord], �
xlab:"normal quantiles", �
ylab:"sorted data", �
title:"Dominant radius")

0.5

0.6

0.7

0.8

0.9

1

1.1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Dominant radius

normal quantiles

s
o
r
t
e
d

d
a
t
a

Cmd> plot(rankits(h),h, �
xlab:"normal quantiles", �
ylab:"sorted data",title:"Humerus")

2

1.4

1.6

1.8

2

2.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Humerus

normal quantiles

s
o
r
t
e
d

d
a
t
a

Cmd> yall <- hconcat(dr,r,dh,h,du,u)

Cmd> syall <- sort(yall)

Cmd> chplot(q3,syall,lines:T, �
xlab:"normal quantiles", �
ylab:"sorted data",title:"All data")

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

All data

normal quantiles

s
o
r
t
e
d

d
a
t
a

1

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1

1 1 1 1 1 1 1

1

2
2

2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2

23

3
3 3 3

3 3 3 3 3 3 3
3 3

3 3 3 3
3 3

3
3 3 3

3

4
4

4 4 4 4
4
4 4 4

4 4 4
4 4 4 4

4 4 4

4 4
4

4 4

5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5

6
6 6 6 6 6 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 6 6

As a test of normality, consider the correlation of the normal quantiles
� �

and the data quantiles
� �

. Large values
of the correlation are consistent with normality; small values are inconsistent.

Cmd> cor(q3,syall)[1,]
(1,1) 1 0.948 0.970 0.983 0.991
(1,6) 0.984 0.995

3

How small is too small?
No simple answer, so simulate the distribution.

Cmd> rs <- rep(0,10000)

Cmd> for(i,run(10000))
x <- sort(rnorm(25))
rs[i] <- cor(q3,x)[2];;

Cmd> min(rs)
(1) 0.86155

Cmd> max(rs)
(1) 0.99734

Cmd> hist(rs,run(.85,1,.005))

0

10

20

30

40

50

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Histogram of rs with total area 1

rs

D
e
n
s
i
t
y

Cmd> obsr <- cor(q3,syall)[1,-1];obsr
(1,1) 1 0.948 0.970 0.983 0.991
(1,6) 0.984 0.995

Cmd> sum(rs<obsr)/10000
(1,1) 0.023 0.144 0.472 0.861 0.503
(1,6) 0.984

These are the simulated p-values for testing normality for the six variables.
I am not completely happy with many tests of normality, including this one.
When

�
is small, they have low power.

4

When
�

is big, they can detect deviations from normality that might be safe to ignore.
They need to be used in conjuction with judgement and other methods, such as assessment of the QQ plot.
What do we do for multivariate normal?
Usual approach is to see if properties known to hold for MVN hold for these data.
Normal marginals, normal conditionals, normal linear combinations, linear regressions of each variable on other
variables, constant conditional variance, chi-squared distances, etc.
When we test normality for each variable, we are testing marginal normality. Recall the p-values:

Cmd> sum(rs<obsr)/10000
(1,1) 0.023 0.144 0.472 0.861 0.503
(1,6) 0.984

Should we reject normality because variable one has a p-value of .023?
Not necessarily.
We have a multiple testing situation (also called multiple comparisons or simultaneous inference).
In this problem we have � null hypotheses H � E (normality of variable �) and an overall null hypothesis H � which
is true if all the H � E are true. If we test each H � E at level � , then

�
6��
�
��� �

reject H �

 6

���
�
� tends to be closer to ��� for small � , but high correlations make

�
� closer to � .

The Bonferroni adjustment says to reject H � if the smallest individual p-value is less than �<�
	 , or equivalently if
	 times the smallest p-value is less than � , where 	 is the number of tests.
The Bonferronizes the test.
In our example �� "�� - ' � " � ',(is not very small, and we would not take the marginal results as strong evidence
against multivariate normality.
One common recommendation is to check the normality of ���

�
, where � is the matrix of eigenvectors for � , the

variance matrix of
�

.
This rotates the data to axes of the “ellipse” and does normal testing marginally down each axis.
The word ellipse is in quotes above, because we might not have elliptical point clouds for nonnormal data.

Cmd> V <- tabs(yall,covar:T)

Cmd> U <- eigen(v)$vectors

Cmd> w <- yall%*%U; sw <- sort(w)

Cmd> obsrw <- cor(q3,sw)[1,-1];obsrw
(1,1) 0.990 0.968 0.985 0.970 0.987
(1,6) 0.986

Cmd> sum(rs<obsrw)/10000
(1,1) 0.808 0.121 0.571 0.149 0.650
(1,6) 0.605

5

If
���

N� � �<���
 , then ��� �&
 � � C
2 ��� �
���� 9�

If
� � is large, then � 9

E �+�
	� E� �
 ��!C
2 �
	� E� �

should also be approximately
� 9� .

Use a Q-Q plot with data
� 9
E and horizontal values the percent points of

� 9� . The square roots of these values will
sometimes work better for small � .

Cmd> d <- distcomp(yall);d
(1) 8.866 7.459 0.848 3.159 4.374
(6) 10.283 3.569 3.208 3.254 2.600

(11) 1.570 9.402 1.897 2.742 5.529
(16) 7.511 6.931 2.560 7.714 7.170
(21) 11.057 7.345 13.922 3.607 7.422

Cmd> sd <- sort(d)

Cmd> q <- invchi((run(25)-.5)/25,6)

Cmd> plot(q,sd, �
xlab:"chi-square with 6 df quantiles", �
ylab:"squared distance", �
title:"QQ distance plot for bone data",
show:F)

Cmd> addlines(vector(0,15),vector(0,15), �
show:F)

Cmd> showplot(xmin:0,ymin:0)

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

QQ distance plot for bone data

chi-square with 6 df quantiles

s
q
u
a
r
e
d

d
i
s
t
a
n
c
e

6

Cmd> plot(qˆ.5,sdˆ.5, �
xlab:"chi with 6 df quantiles", �
ylab:"distance", �
title:"QQ distance plot for bone data", �
show:F)

Cmd> addlines(vector(0,4),vector(0,4), �
show:F)

Cmd> showplot(xmin:0,ymin:0)

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5

QQ distance plot for bone data

chi with 6 df quantiles

d
i
s
t
a
n
c
e

We might want to build a test based on this plot, but we can’t use correlation. We really want it to be on the line
with intercept 0 and slope 1.
Try deviations from the line, or weighted deviations from the line. For example, (sd-q)ˆ2 or (sd-q)ˆ2/q. I
suspect that larger order statistics have more variance, so I may want to downweight them. Maybe dividing by q
(more or less the expected value) will work.
Sample a bunch of chisquares, order them, and compute variances.

Cmd> D <- matrix(invchi(runi(25000),6),25)

Cmd> D <- sort(D)

Cmd> D <- D’

Cmd> tabs(D,var:T)
(1) 0.286 0.329 0.340 0.375 0.402
(6) 0.424 0.448 0.472 0.498 0.549

(11) 0.581 0.611 0.654 0.700 0.785
(16) 0.833 0.908 1.086 1.190 1.361
(21) 1.658 2.044 2.886 4.467 10.124

7

Cmd> tabs(D,var:T)/q
(1) 0.252 0.186 0.154 0.146 0.138
(6) 0.131 0.127 0.123 0.121 0.124

(11) 0.123 0.121 0.122 0.123 0.130
(16) 0.130 0.134 0.150 0.154 0.165
(21) 0.187 0.212 0.271 0.370 0.673

Cmd> tabs(D,var:T)/qˆ2
(1) 0.222 0.106 0.070 0.057 0.047
(6) 0.041 0.036 0.032 0.029 0.028

(11) 0.026 0.024 0.023 0.022 0.022
(16) 0.020 0.020 0.021 0.020 0.020
(21) 0.021 0.022 0.025 0.031 0.045

Cmd> D <- D’

Cmd> dout <- sum((D-q)ˆ2/q)

Cmd> dout <- vector(dout)

Cmd> sum((sd-q)ˆ2/q)
(1) 2.0092

Cmd> length(dout)
(1) 1000

Cmd> sum(dout > 2.009)/1000
(1) 0.8

This messing around with q as a scaling factor is not the best we can do.
We estimated the variance matrix of the order statistics during our simulation. We can make a better test using
those variances.

8

