Statistics 5041 7. Eigen structure Gary W. Oehlert School of Statistics 313B Ford Hall 612-625-1557 gary@stat.umn.edu

No fooling this time ..., we're almost done with the matrix stuff. Let X be a $p \times p$ matrix. Suppose that vector u is such that

 $\mathbf{X}u = \lambda u$

for some scalar λ . Then u is an *eigenvector* of **X** and λ is its associated *eigenvalue*.

Cmd> X <- matrix(vector(2,1,1,2),2);X</pre> (1,1)2 1 1 2 (2, 1)Cmd> X %*% vector(1,1) (1,1)3 3 (2, 1)Cmd> X %*% vector(1,-1) (1,1)1 (2, 1)-1

Eigenvalue 3 with eigenvector (1, 1)'; eigenvalue 1 with eigenvector (1, -1)'. Note that

 $\mathbf{X}u = \lambda u = \lambda \mathbf{I}_p u$

so that

 $(\mathbf{X} - \lambda \mathbf{I}_p)$

is a singular matrix and $|\mathbf{X} - \lambda \mathbf{I}_p| = 0$. The eigenvalues of \mathbf{X} are the values of λ that make $\mathbf{X} - \lambda \mathbf{I}_p$ singular.

```
Cmd> X - 3*I;det(X - 3*I)
(1,1)
                 -1
                                 1
(2, 1)
                  1
                                -1
WARNING: argument to det() is singular
(1)
                0
Cmd > X - I;det(X - I)
(1,1)
                                 1
                  1
                  1
                                 1
(2,1)
WARNING: argument to det() is singular
(1)
                0
```

Cmd> eigenvals(X) (1)1 3 Cmd> eigen(X) component: values (1)1 3 component: vectors (1,1)-0.70711 0.70711 -0.70711 (2,1)-0.70711 Cmd> vector(1,1)/sqrt(2) 0.70711 (1)0.70711 Cmd> vector(1,-2)/sqrt(2) 0.70711 -1.4142 (1)

The eigenvalues of a diagonal matrix are the diagonal elements of the matrix. Euclidean basis vectors (forming I_p) are the eigenvectors.

All eigenvalues are nonzero if a matrix is nonsingular. (Otherwise Xu = 0u = 0 for some nonzero u, which means that there is a (nonzero) linear combination of columns that is zero, which means that X is not full rank.) The trace of a square matrix equals the sum of its eigenvalues

Note that if $\mathbf{X}u = \lambda u$, then $\mathbf{X}(cu) = c\mathbf{X}u = c\lambda u = \lambda(cu)$ for any scalar c.

By convention, take ||u|| = 1, but direction (multiplication by 1 or -1) is arbitrary. A normalized eigenvector.

By convention, arrange so that eigenvalues are in decreasing order.

Special rules for symmetric X. When X is symmetric:

There are always p real (as opposed to complex) eigenvalues $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_p$.

Exactly *p* linearly independent eigenvectors u_1, u_2, \ldots, u_p with real (as opposed to complex) elements.

Eigenvectors corresponding to *distinct* eigenvalues are *orthogonal*.

It is possible to choose eigenvalues to be mutually orthogonal.

An *orthogonal* matrix is a $p \times p$ matrix U with orthogonal column of norm 1.

$$\mathbf{U}'\mathbf{U} = \mathbf{I}_p = \mathbf{U}\mathbf{U}'$$

For orthogonal U and vector y

$$||y|| = (y'y)^{.5} = (y'\mathbf{U}\mathbf{U}'y)^{.5} = ||\mathbf{U}y|$$

Similarly, ||y|| = ||U'y||.

Let X be a symmetric matrix, let Λ be a diagonal matrix with the eigenvalues of X on the diagonal, and let U be a matrix with columns containing orthogonal eigenvectors of X (U is not unique). Then

$$\begin{aligned} \mathbf{X}\mathbf{U} &= \mathbf{U}\Lambda\\ \mathbf{X}\mathbf{U}\mathbf{U}' &= \mathbf{U}\Lambda\mathbf{U}'\\ \mathbf{X} &= \mathbf{U}\Lambda\mathbf{U}'\\ \mathbf{X} &= \lambda_1\check{\mathbf{U}}_1\check{\mathbf{U}}_1' + \lambda_2\check{\mathbf{U}}_2\check{\mathbf{U}}_2' + \ldots + \lambda_p\check{\mathbf{U}}_p\check{\mathbf{U}}_p' \end{aligned}$$

This is the *spectral decomposition* of **X**.

Let $\Lambda^{.5}$ be a diagonal matrix with $\sqrt{\lambda_i}$ down the diagonal; let $\Lambda^{-.5}$ be a diagonal matrix with $1/\sqrt{\lambda_i}$ down the diagonal; and let Λ^{-1} be a diagonal matrix with $1/\lambda_i$ down the diagonal, the ordinary inverse of Λ . (The negative power matrices require nonzero eigenvalues.) Let

$$\mathbf{A} = \mathbf{U}\Lambda^{.5}\mathbf{U}'$$
$$\mathbf{B} = \mathbf{U}\Lambda^{-1}\mathbf{U}'$$
$$\mathbf{C} = \mathbf{U}\Lambda^{-.5}\mathbf{U}'$$

X, A, B, and C are all symmetric.

$$\mathbf{AA} = (\mathbf{U}\Lambda^{.5}\mathbf{U}')(\mathbf{U}\Lambda^{.5}\mathbf{U}') = \mathbf{U}\Lambda\mathbf{U}' = \mathbf{X}$$

$$\mathbf{BX} = (\mathbf{U}\Lambda^{-1}\mathbf{U}')(\mathbf{U}\Lambda\mathbf{U}') = \mathbf{U}\mathbf{U}' = \mathbf{I}_p$$

$$\mathbf{XB} = (\mathbf{U}\Lambda\mathbf{U}')(\mathbf{U}\Lambda^{-1}\mathbf{U}') = \mathbf{U}\mathbf{U}' = \mathbf{I}_p$$

$$\mathbf{CXC} = (\mathbf{U}\Lambda^{-.5}\mathbf{U}')(\mathbf{U}\Lambda\mathbf{U}')(\mathbf{U}\Lambda^{-.5}\mathbf{U}') = \mathbf{U}\mathbf{U}' = \mathbf{I}_p$$

A is a square root of X; B is the inverse of X; C is an inverse square root of X. The eigenvalues of the inverse are the reciprocals of the eigenvalues. Consider a $p \times p$ symmetric matrix H and a *p*-vector x. The expression

$x'\mathbf{H}x$

is called a *quadratic form*. When you expand it out, you get terms in x_i^2 and $x_i x_j$, all second order polynomial terms.

Let $q = x' \mathbf{H} x$.

If q > 0 for all x, **H** is called *positive definite*.

If $q \ge 0$ for all x, **H** is called *positive semi-definite* or *nonnegative definite*.

If q > 0 for some values of x and q < 0 for other values of x, **H** is called *indefinite*.

Let U be an orthogonal matrix consisting of the eigenvectors of H, and let x be some p-vector. Then

$$x = \mathbf{U}v$$

where the coefficients v are the coordinates of x in the new basis formed by U. Note that v = U'x. Recall that $H = U\Lambda U'$. Then

$$x'\mathbf{H}x = (\mathbf{U}v)' \mathbf{U}\Lambda\mathbf{U}' (\mathbf{U}v)$$

= $v'\mathbf{U}'\mathbf{U}\Lambda\mathbf{U}'\mathbf{U}v$
= $v'\Lambda v$
= $\lambda_1 v_1^2 + \lambda_2 v_2^2 + \ldots + \lambda_p v_p^2$

Eigenvalues of **H** determine positive definite, semi-definite, or indefinite. We've seen quadratic forms before.

$$D = x'\mathbf{H}x$$

was the locus of points at constant Mahalanobis distance from the origin and formed an ellipse.

Recall that Mahalanobis distance (squared) is

 $D = x' \mathbf{S}^{-1} x$

Let $\mathbf{U}\Omega\mathbf{U}'$ be the spectral decomposition of **S**. $\sqrt{\omega_i}$ is the standard deviation along the *i*th rotated axis. Let $\mathbf{U}\Lambda\mathbf{U}' = \mathbf{U}\Omega^{-1}\mathbf{U}'$ be the spectral decomposition of $\mathbf{H} = \mathbf{S}^{-1}$. Then

$$D = x' \mathbf{S}^{-1} x = x' \mathbf{H} x = v' \Omega^{-1} v = v' \Lambda v$$

In this picture, the new axes are the eigenvectors of **H**. The coordinates of a point on the new axes are just $v = \mathbf{U}' x$.

The eigenvalues of \mathbf{H} are the reciprocal squares of the elongation along the new axes. That is, make the identification

$$\lambda_i v_i^2 = \frac{v_i^2}{\omega_i} = \frac{v_i^2}{s_i^2}$$

where s_i is length of the ellipse in the *i*th new axis direction (corresponds to standard deviation of the point cloud in along the *i*th new axis).

Maximization for $p \times p$ positive definite **B**.

$$x \neq 0 \quad \frac{x'\mathbf{B}x}{x'x} = \lambda_1$$
$$x \neq 0 \quad \frac{x'\mathbf{B}x}{x'x} = \lambda_p$$

The first is achieved with the first eigenvector, the second is achieved with the last eigenvector. Cauchy-Schwarz inequality: x and y any two p-vectors;

$$(x'y)^2 \le (x'x)(y'y)$$

Maximum achieved if x = cy for some scalar c.

Extended Cauchy-Scharz inquality: x and y any two p-vectors; $\mathbf{B} p \times p$ positive definite.

$$(x'y)^2 \le (x'\mathbf{B}x)(y'\mathbf{B}^{-1}y)$$

Maximum achieved if $x = c\mathbf{B}^{-1}y$ for some scalar c.

Maximization lemma: x and y any two p-vectors; $\mathbf{B} p \times p$ positive definite.

$$x \neq^{\max} 0 \ \frac{x'y}{x'\mathbf{B}x} = y'\mathbf{B}y$$

Maximum is achieved when $x = c\mathbf{B}^{-1}y$ for some scalar c.

One other important case. Let A = BC where B and C are symmetric. Then the eigenvectors and eigenvalues of A are real.

Cmd> B			
(1,1)	18.45	-0.8878	1.8833
(2,1)	-0.8878	9.1963	-0.88071
(3,1)	1.8833	-0.88071	3.3216
Cmd> C			
(1,1)	6.2696	-4.5205	-1.4487
(2,1)	-4.5205	13.702	1.2594
(3,1)	-1.4487	1.2594	11.073
Cmd> A <	- B%*%C; A		
(1,1)	116.96	-93.195	-6.9941
(2,1)	-45.862	128.91	3.1162
(3,1)	10.977	-16.398	32.941

Cmd> v <- rnorm(3)

Cmd> for(i,run(200)) v <- A%*%v v<-v/sum(v²)^{.5;;}

Power method gets eigenvector for largest eigenvalue.

Cmd> v	
(1,1)	-0.78615
(2,1)	0.60628
(3,1)	-0.11995
Cmd> (A	%*% v)/v
(1,1)	187.76
(2,1)	187.76
(3,1)	187.76

Cmd> out<	-releigen(C	,solve(B));out	ī.
component	: values		
(1)	187.76	57.253	33.795
component	: vectors		
(1,1)	2.9966	-3.072	0.18176
(2,1)	-2.3109	-1.9634	0.029876
(3,1)	0.45721	-0.062747	1.7631
Cmd> A%*8	out\$vectors	/out\$values′	
(1,1)	2.9966	-3.072	0.18176
(2,1)	-2.3109	-1.9634	0.029876
(3,1)	0.45721	-0.062747	1.7631