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No fooling this time . .., we’re almost done with the matrix stuff.
Let X be a p x p matrix. Suppose that vector u is such that

Xu = A\u
for some scalar . Then w is an eigenvector of X and A is its associated eigenvalue.

Cmd> X <- matrix(vector(2,1,1,2),2);X

(1, 2 1
2,1) 1 2
Cmd> X %*% vector(l,1)
(1,1 3
2,1 3
Cmd> X %*% vector(l,-1)
(1,1) 1
(2 L] 1) _1
Eigenvalue 3 with eigenvector (1, 1)’; eigenvalue 1 with eigenvector (1, —1)".
Note that
Xu = Au= A,u
so that

(X = AL)

is a singular matrix and | X — AI,| = 0. The eigenvalues of X are the values of A that make X — AI,, singular.

Cmd> X - 3*1;det(X - 3*1)

(1,1) -1 1

2,1 1 -1
WARNING: argument to det() is singular
&Y 0

Cmd> X - l;det(X - 1)

(1,1) 1 1

2,1 1 1
WARNING: argument to det() is singular
&Y 0



Cmd> eigenvals(X)
(&H) 3 1

Cmd> eigen(X)
component: values

(D 3 1
component: vectors

(1,1) ~0.70711 0.70711
(2,1) ~0.70711 -0.70711

Cmd> vector(1,1)/sqrt(2)
€D 0.70711 0.70711

Cmd> vector(1,-2)/sqrt(2)
&Y 0.70711 -1.4142

The eigenvalues of a diagonal matrix are the diagonal elements of the matrix. Euclidean basis vectors (forming
I,) are the eigenvectors.

All eigenvalues are nonzero if a matrix is nonsingular. (Otherwise Xu = Ou = 0 for some nonzero u, which
means that there is a (nonzero) linear combination of columns that is zero, which means that X is not full rank.)
The trace of a square matrix equals the sum of its eigenvalues

Note that if Xu = Au, then X(cu) = ¢Xu = cAu = A(cu) for any scalar c.

By convention, take ||u|| = 1, but direction (multiplication by 1 or —1) is arbitrary. A normalized eigenvector.
By convention, arrange so that eigenvalues are in decreasing order.

Special rules for symmetric X. When X is symmetric:

There are always p real (as opposed to complex) eigenvalues Ay > Ay > ... > A,,.

Exactly p linearly independent eigenvectors u,, us, . . ., u, With real (as opposed to complex) elements.
Eigenvectors corresponding to distinct eigenvalues are orthogonal.

It is possible to choose eigenvalues to be mutually orthogonal.

An orthogonal matrix is a p x p matrix U with orthogonal column of norm 1.

U'Uu=1,=0U
For orthogonal U and vector y

lyl| = (y'y)® = (y'UU"y)° = ||Uy|

Similarly, [[y[| = |[U"y]|.
Let X be a symmetric matrix, let A be a diagonal matrix with the eigenvalues of X on the diagonal, and let U be
a matrix with columns containing orthogonal eigenvectors of X (U is not unique). Then

XU = UA
XUU = UAU
X = UAU

X = MUU + 00,0, +...+2,0,U)

This is the spectral decomposition of X.



Let A be a diagonal matrix with \/); down the diagonal; let A~ be a diagonal matrix with 1/1/A; down the
diagonal; and let A~! be a diagonal matrix with 1/); down the diagonal, the ordinary inverse of A. (The negative
power matrices require nonzero eigenvalues.)

Let
A = UAU
B = UA U
C = UASU

X, A, B, and C are all symmetric.

AA = (UA°U)(UASU')=UAU =X
BX = (UA'U)(UAU)=UU =1,
XB (UAU)(UA'U) =UU' =1,
CXC = (UA °U)(UAU)(UA®°U)=UU' =1,

A is a square root of X; B is the inverse of X; C is an inverse square root of X.
The eigenvalues of the inverse are the reciprocals of the eigenvalues.
Consider a p x p symmetric matrix H and a p-vector X. The expression

' Hz

is called a quadratic form. When you expand it out, you get terms in zZ and z;z;, all second order polynomial
terms.

Let ¢ = 2'Hzx.

If ¢ > 0 for all z, H is called positive definite.

If ¢ > 0 for all z, H is called positive semi-definite or nonnegative definite.

If ¢ > 0 for some values of = and ¢ < 0 for other values of =, H is called indefinite.

Let U be an orthogonal matrix consisting of the eigenvectors of H, and let = be some p-vector. Then

z = Uv

where the coefficients v are the coordinates of x in the new basis formed by U. Note that v = U'z.
Recall that H = UAU’. Then

?Hz = (Uv) UAU’ (Uv)
= v'U'UAU'Uv
v Av

Ao} + Mv3 4. 4 A

Eigenvalues of H determine positive definite, semi-definite, or indefinite.
We’ve seen quadratic forms before.
D = z'Hx



was the locus of points at constant Mahalanobis distance from the origin and formed an ellipse.

A

A

v

Recall that Mahalanobis distance (squared) is
D =1'S1z

Let UQU' be the spectral decomposition of S. ,/w; is the standard deviation along the sth rotated axis. Let
UAU' = UQ U’ be the spectral decomposition of H = S~!. Then

D=2'S 'z =2Hz =vQ v =0vAv

In this picture, the new axes are the eigenvectors of H. The coordinates of a point on the new axes are just
v = Uz,

The eigenvalues of H are the reciprocal squares of the elongation along the new axes. That is, make the identifi-
cation

2
)\Z"U? =1 =1

<

where s; is length of the ellipse in the ith new axis direction (corresponds to standard deviation of the point cloud
in along the sth new axis).
Maximization for p x p positive definite B.

max B
$7£Ox,x:/\1
rx

min B
x#Ox,x:)\p
rx

The first is achieved with the first eigenvector, the second is achieved with the last eigenvector.
Cauchy-Schwarz inequality: = and y any two p-vectors;

(z'y)* < (2'2)(y'y)

Maximum achieved if z = cy for some scalar c.



Extended Cauchy-Scharz inquality: x and y any two p-vectors; B p x p positive definite.
(«'y)* < (2'Bz)(y'B'y)

Maximum achieved if z = ¢cB~'y for some scalar c.

Maximization lemma: x and y any two p-vectors; B p x p positive definite.

/

ry
'Bx

max
z#0 =1y'By
Maximum is achieved when z = ¢cB ™'y for some scalar c.
One other important case. Let A = BC where B and C are symmetric. Then the eigenvectors and eigenvalues
of A are real.

Cmd> B

(1,0 18.45 -0.8878 1.8833
2, -0.8878 9.1963 -0.88071
3,D) 1.8833 -0.88071 3.3216
Cmd> C

(1,1 6.2696 -4.5205 -1.4487
(2,1 -4 .5205 13.702 1.2594
(3,1) -1.4487 1.2594 11.073
Cmd> A <- B%*%C; A

(1, 116.96 -93.195 -6.9941
2, -45.862 128.91 3.1162
3,D) 10.977 -16.398 32.941

Cmd> v <- rnorm(3)

Cmd> for(i,run(200)) v <- A%*%v
v<-v/sum(v"2)".5;;

Power method gets eigenvector for largest eigenvalue.

Cmd> v

(1,1) -0.78615
(2,1) 0.60628
(3,1 -0.11995
Cmd> (A %*% v)/v
(1,1) 187.76
(2,1) 187.76
(3,1) 187.76



Cmd> out<-releigen(C,solve(B));out
component: values

@) 187.76 57.253 33.795
component: vectors

(1,0 2.9966 -3.072 0.18176
2,1 -2.3109 -1.9634 0.029876
(3,1) 0.45721 -0.062747 1.7631
Cmd> A%*%out$vectors/out$values’

(1,0 2.9966 -3.072 0.18176
2,1 -2.3109 -1.9634 0.029876
(3,1) 0.45721 -0.062747 1.7631



