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No fooling this time ������� we’re almost done with the matrix stuff.
Let

�
be a ����� matrix. Suppose that vector 	 is such that

� 	�
��	
for some scalar � . Then 	 is an eigenvector of

�
and � is its associated eigenvalue.

Cmd> X <- matrix(vector(2,1,1,2),2);X
(1,1) 2 1
(2,1) 1 2

Cmd> X %*% vector(1,1)
(1,1) 3
(2,1) 3

Cmd> X %*% vector(1,-1)
(1,1) 1
(2,1) -1

Eigenvalue 3 with eigenvector ��� � ����� ; eigenvalue 1 with eigenvector ��� ��� ����� .
Note that � 	�
��	�
�������	
so that

� � � �������
is a singular matrix and � � � ������� 
"! . The eigenvalues of

�
are the values of � that make

� � ���#� singular.

Cmd> X - 3*I;det(X - 3*I)
(1,1) -1 1
(2,1) 1 -1
WARNING: argument to det() is singular
(1) 0

Cmd> X - I;det(X - I)
(1,1) 1 1
(2,1) 1 1
WARNING: argument to det() is singular
(1) 0
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Cmd> eigenvals(X)
(1) 3 1

Cmd> eigen(X)
component: values
(1) 3 1
component: vectors
(1,1) -0.70711 0.70711
(2,1) -0.70711 -0.70711

Cmd> vector(1,1)/sqrt(2)
(1) 0.70711 0.70711

Cmd> vector(1,-2)/sqrt(2)
(1) 0.70711 -1.4142

The eigenvalues of a diagonal matrix are the diagonal elements of the matrix. Euclidean basis vectors (forming
��� ) are the eigenvectors.
All eigenvalues are nonzero if a matrix is nonsingular. (Otherwise

� 	 
 ! 	 
 ! for some nonzero 	 , which
means that there is a (nonzero) linear combination of columns that is zero, which means that

�
is not full rank.)

The trace of a square matrix equals the sum of its eigenvalues
Note that if

� 	 
 ��	 , then
� � � 	 � 
 � � 	 
 � ��	 
� � � 	 � for any scalar � .

By convention, take � � 	 � � 
 � , but direction (multiplication by 1 or –1) is arbitrary. A normalized eigenvector.
By convention, arrange so that eigenvalues are in decreasing order.
Special rules for symmetric

�
. When

�
is symmetric:

There are always � real (as opposed to complex) eigenvalues ��� � ��� � ����� � � � .
Exactly � linearly independent eigenvectors 	�� � 	�� � ����� � 	 � with real (as opposed to complex) elements.
Eigenvectors corresponding to distinct eigenvalues are orthogonal.
It is possible to choose eigenvalues to be mutually orthogonal.
An orthogonal matrix is a � ��� matrix � with orthogonal column of norm 1.

� � � 
"��� 
��	� �

For orthogonal � and vector 

� � 
 � � 
 ��
 � 
 �� � 
 ��
 � �	� � 
 �� � 
 � ����
 � �

Similarly, � � 
 � ��
 � � � � 
 � � .
Let

�
be a symmetric matrix, let � be a diagonal matrix with the eigenvalues of

�
on the diagonal, and let � be

a matrix with columns containing orthogonal eigenvectors of
�

( � is not unique). Then

� � 
 ���� ��� � 
 ����� �� 
 ����� �� 
 ����������� � ��� ����������� � ��� ����� � � ���� � �� ��
This is the spectral decomposition of

�
.
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Let � � � be a diagonal matrix with � ��� down the diagonal; let ��� � � be a diagonal matrix with ����� ��� down the
diagonal; and let � � � be a diagonal matrix with �	� �
� down the diagonal, the ordinary inverse of � . (The negative
power matrices require nonzero eigenvalues.)
Let

� 
 ����� �� �� 
 ��� � � � � 
 ��� � � � � �
�

,
�

,
�

, and


are all symmetric.

��� 
 � ��� � �� � � ����� � � � � � 
 ����� � 
 �
� � 
 � ��� � � � � � ������� � � 
���� � 
 ������ 
 � ����� � � � ��� � � � � � 
���� � 
 ��� �  
 � ��� � � � � � � ����� � � � ����� � � � � � � 
��	� � 
 ���

�
is a square root of

�
;
�

is the inverse of
�

;


is an inverse square root of
�

.
The eigenvalues of the inverse are the reciprocals of the eigenvalues.
Consider a ����� symmetric matrix � and a � -vector x. The expression

� � � �
is called a quadratic form. When you expand it out, you get terms in � �� and � � ��� , all second order polynomial
terms.
Let � 
 � � � � .
If ��� ! for all � , � is called positive definite.
If � � ! for all � , � is called positive semi-definite or nonnegative definite.
If ��� ! for some values of � and ��� ! for other values of � , � is called indefinite.
Let � be an orthogonal matrix consisting of the eigenvectors of � , and let � be some � -vector. Then

� 
 ���
where the coefficients � are the coordinates of � in the new basis formed by � . Note that � 
�� � � .
Recall that � 
 ��� � � . Then

� � � � 
 ����� � � ����� � ����� �

 � � � � ����� � ���

 � � ���

 � ��� ���� ����� ���� � ��� � � ��� ��

Eigenvalues of � determine positive definite, semi-definite, or indefinite.
We’ve seen quadratic forms before. �


 � � � �
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was the locus of points at constant Mahalanobis distance from the origin and formed an ellipse.

x1

x2

θ

v1

v2

Recall that Mahalanobis distance (squared) is �

 � ��� � � �

Let ��� ��� be the spectral decomposition of � . � � � is the standard deviation along the � th rotated axis. Let
��� ��� 
���� � � ��� be the spectral decomposition of � 
 � � � . Then�


 � ��� � � � 
 � � � � 
 � � � � � � 
 � � ���
In this picture, the new axes are the eigenvectors of � . The coordinates of a point on the new axes are just
� 
�� � � .
The eigenvalues of � are the reciprocal squares of the elongation along the new axes. That is, make the identifi-
cation

��� � �� 
 � ��
� � 


� ��
� ��

where � � is length of the ellipse in the � th new axis direction (corresponds to standard deviation of the point cloud
in along the � th new axis).
Maximization for ����� positive definite

�
.

�
	����
 !
� � � �� � � 
����

�������
 !
� � � �� � � 
�� �

The first is achieved with the first eigenvector, the second is achieved with the last eigenvector.
Cauchy-Schwarz inequality: � and 
 any two � -vectors;

� � � 
�� ��� � � � � � ��
 � 
��
Maximum achieved if � 
 � 
 for some scalar � .
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Extended Cauchy-Scharz inquality: � and 
 any two � -vectors;
� ����� positive definite.

� � � 
 � � � � � � � � ����
 � � � � 
 �
Maximum achieved if � 
 � � � � 
 for some scalar � .
Maximization lemma: � and 
 any two � -vectors;

� ����� positive definite.

�
	����
!
� � 
� � � � 
 
 � � 


Maximum is achieved when � 
 � � � � 
 for some scalar � .
One other important case. Let

� 
 � 
where

�
and


are symmetric. Then the eigenvectors and eigenvalues

of
�

are real.

Cmd> B
(1,1) 18.45 -0.8878 1.8833
(2,1) -0.8878 9.1963 -0.88071
(3,1) 1.8833 -0.88071 3.3216

Cmd> C
(1,1) 6.2696 -4.5205 -1.4487
(2,1) -4.5205 13.702 1.2594
(3,1) -1.4487 1.2594 11.073

Cmd> A <- B%*%C; A
(1,1) 116.96 -93.195 -6.9941
(2,1) -45.862 128.91 3.1162
(3,1) 10.977 -16.398 32.941

Cmd> v <- rnorm(3)

Cmd> for(i,run(200)) v <- A%*%v
v<-v/sum(vˆ2)ˆ.5;;

Power method gets eigenvector for largest eigenvalue.

Cmd> v
(1,1) -0.78615
(2,1) 0.60628
(3,1) -0.11995

Cmd> (A %*% v)/v
(1,1) 187.76
(2,1) 187.76
(3,1) 187.76
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Cmd> out<-releigen(C,solve(B));out
component: values
(1) 187.76 57.253 33.795
component: vectors
(1,1) 2.9966 -3.072 0.18176
(2,1) -2.3109 -1.9634 0.029876
(3,1) 0.45721 -0.062747 1.7631

Cmd> A%*%out$vectors/out$values’
(1,1) 2.9966 -3.072 0.18176
(2,1) -2.3109 -1.9634 0.029876
(3,1) 0.45721 -0.062747 1.7631
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