Statistics 5041
 7. Eigen structure
 Gary W. Oehlert
 School of Statistics
 313B Ford Hall
 612-625-1557
 gary@stat.umn.edu

No fooling this time ..., we're almost done with the matrix stuff.
Let \mathbf{X} be a $p \times p$ matrix. Suppose that vector u is such that

$$
\mathbf{X} u=\lambda u
$$

for some scalar λ. Then u is an eigenvector of \mathbf{X} and λ is its associated eigenvalue.
Cmd> X <- matrix(vector $(2,1,1,2), 2)$; X

$(1,1)$	2	1
$(2,1)$	1	2

Cmd> X \%*\% vector $(1,1)$
$(1,1) \quad 3$
$(2,1) \quad 3$
$\begin{array}{lc}\text { Cmd> } X ~ \% * \% & \operatorname{vector}(1,-1) \\ (1,1) & 1 \\ (2,1) & -1\end{array}$
Eigenvalue 3 with eigenvector $(1,1)^{\prime}$; eigenvalue 1 with eigenvector $(1,-1)^{\prime}$.
Note that

$$
\mathbf{X} u=\lambda u=\lambda \mathbf{I}_{p} u
$$

so that

$$
\left(\mathbf{X}-\lambda \mathbf{I}_{p}\right)
$$

is a singular matrix and $\left|\mathbf{X}-\lambda \mathbf{I}_{p}\right|=0$. The eigenvalues of \mathbf{X} are the values of λ that make $\mathbf{X}-\lambda \mathbf{I}_{p}$ singular.

```
Cmd> X - 3*I; det(X - 3*I)
(1,1) -1 1
(2,1) 1 -1
WARNING: argument to det() is singular
(1) 0
Cmd> X - I; det(X - I)
(1,1) 1 1
(2,1) 1 1
WARNING: argument to det() is singular
(1) 0
```

```
Cmd> eigen(X)
component: values
(1) 3
1
component: vectors
(1,1) -0.70711 0.70711
(2,1) -0.70711 -0.70711
```

Cmd> vector (1,1)/sqrt(2)
(1) $0.70711 \quad 0.70711$
Cmd> vector (1,-2)/sqrt(2)
(1) $0.70711 \quad-1.4142$

The eigenvalues of a diagonal matrix are the diagonal elements of the matrix. Euclidean basis vectors (forming \mathbf{I}_{p}) are the eigenvectors.
All eigenvalues are nonzero if a matrix is nonsingular. (Otherwise $\mathbf{X} u=0 u=0$ for some nonzero u, which means that there is a (nonzero) linear combination of columns that is zero, which means that \mathbf{X} is not full rank.)
The trace of a square matrix equals the sum of its eigenvalues
Note that if $\mathbf{X} u=\lambda u$, then $\mathbf{X}(c u)=c \mathbf{X} u=c \lambda u=\lambda(c u)$ for any scalar c.
By convention, take $\|u\|=1$, but direction (multiplication by 1 or -1) is arbitrary. A normalized eigenvector.
By convention, arrange so that eigenvalues are in decreasing order.
Special rules for symmetric \mathbf{X}. When \mathbf{X} is symmetric:
There are always p real (as opposed to complex) eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{p}$.
Exactly p linearly independent eigenvectors $u_{1}, u_{2}, \ldots, u_{p}$ with real (as opposed to complex) elements.
Eigenvectors corresponding to distinct eigenvalues are orthogonal.
It is possible to choose eigenvalues to be mutually orthogonal.
An orthogonal matrix is a $p \times p$ matrix \mathbf{U} with orthogonal column of norm 1 .

$$
\mathbf{U}^{\prime} \mathbf{U}=\mathbf{I}_{p}=\mathbf{U} \mathbf{U}^{\prime}
$$

For orthogonal \mathbf{U} and vector y

$$
\|y\|=\left(y^{\prime} y\right)^{.5}=\left(y^{\prime} \mathbf{U U}^{\prime} y\right)^{.5}=\|\mathbf{U} y\|
$$

Similarly, $\|y\|=\left\|\mathbf{U}^{\prime} y\right\|$.
Let \mathbf{X} be a symmetric matrix, let Λ be a diagonal matrix with the eigenvalues of \mathbf{X} on the diagonal, and let \mathbf{U} be a matrix with columns containing orthogonal eigenvectors of \mathbf{X} (\mathbf{U} is not unique). Then

$$
\begin{aligned}
\mathbf{X U} & =\mathbf{U} \Lambda \\
\mathbf{X U U} \mathbf{U}^{\prime} & =\mathbf{U} \Lambda \mathbf{U}^{\prime} \\
\mathbf{X} & =\mathbf{U} \Lambda \mathbf{U}^{\prime} \\
\mathbf{X} & =\lambda_{1} \check{\mathbf{U}}_{1} \check{\mathbf{U}}_{1}^{\prime}+\lambda_{2} \check{\mathbf{U}}_{2} \check{\mathbf{U}}_{2}^{\prime}+\ldots+\lambda_{p} \check{\mathbf{U}}_{p} \check{\mathbf{U}}_{p}^{\prime}
\end{aligned}
$$

This is the spectral decomposition of \mathbf{X}.

Let $\Lambda^{.5}$ be a diagonal matrix with $\sqrt{\lambda_{i}}$ down the diagonal; let $\Lambda^{-.5}$ be a diagonal matrix with $1 / \sqrt{\lambda_{i}}$ down the diagonal; and let Λ^{-1} be a diagonal matrix with $1 / \lambda_{i}$ down the diagonal, the ordinary inverse of Λ. (The negative power matrices require nonzero eigenvalues.)
Let

$$
\begin{aligned}
& \mathbf{A}=\mathbf{U} \Lambda^{.5} \mathbf{U}^{\prime} \\
& \mathbf{B}=\mathbf{U} \Lambda^{-1} \mathbf{U}^{\prime} \\
& \mathbf{C}=\mathbf{U} \Lambda^{-.5} \mathbf{U}^{\prime}
\end{aligned}
$$

$\mathbf{X}, \mathbf{A}, \mathbf{B}$, and \mathbf{C} are all symmetric.

$$
\begin{aligned}
\mathbf{A A} & =\left(\mathbf{U} \Lambda^{.5} \mathbf{U}^{\prime}\right)\left(\mathbf{U} \Lambda^{.5} \mathbf{U}^{\prime}\right)=\mathbf{U} \Lambda \mathbf{U}^{\prime}=\mathbf{X} \\
\mathbf{B X} & =\left(\mathbf{U} \Lambda^{-1} \mathbf{U}^{\prime}\right)\left(\mathbf{U} \Lambda \mathbf{U}^{\prime}\right)=\mathbf{U} \mathbf{U}^{\prime}=\mathbf{I}_{p} \\
\mathbf{X B} & =\left(\mathbf{U} \Lambda \mathbf{U}^{\prime}\right)\left(\mathbf{U} \Lambda^{-1} \mathbf{U}^{\prime}\right)=\mathbf{U} \mathbf{U}^{\prime}=\mathbf{I}_{p} \\
\mathbf{C X C} & =\left(\mathbf{U} \Lambda^{-.5} \mathbf{U}^{\prime}\right)\left(\mathbf{U} \Lambda \mathbf{U}^{\prime}\right)\left(\mathbf{U} \Lambda^{-.5} \mathbf{U}^{\prime}\right)=\mathbf{U} \mathbf{U}^{\prime}=\mathbf{I}_{p}
\end{aligned}
$$

\mathbf{A} is a square root of $\mathbf{X} ; \mathbf{B}$ is the inverse of $\mathbf{X} ; \mathbf{C}$ is an inverse square root of \mathbf{X}.
The eigenvalues of the inverse are the reciprocals of the eigenvalues.
Consider a $p \times p$ symmetric matrix \mathbf{H} and a p-vector \mathbf{x}. The expression

$$
x^{\prime} \mathbf{H} x
$$

is called a quadratic form. When you expand it out, you get terms in x_{i}^{2} and $x_{i} x_{j}$, all second order polynomial terms.
Let $q=x^{\prime} \mathbf{H} x$.
If $q>0$ for all x, H is called positive definite.
If $q \geq 0$ for all x, \mathbf{H} is called positive semi-definite or nonnegative definite.
If $q>0$ for some values of x and $q<0$ for other values of x, H is called indefinite.
Let \mathbf{U} be an orthogonal matrix consisting of the eigenvectors of \mathbf{H}, and let x be some p-vector. Then

$$
x=\mathbf{U} v
$$

where the coefficients v are the coordinates of x in the new basis formed by \mathbf{U}. Note that $v=\mathbf{U}^{\prime} x$.
Recall that $\mathbf{H}=\mathbf{U} \Lambda \mathbf{U}^{\prime}$. Then

$$
\begin{aligned}
x^{\prime} \mathbf{H} x & =(\mathbf{U} v)^{\prime} \mathbf{U} \Lambda \mathbf{U}^{\prime}(\mathbf{U} v) \\
& =v^{\prime} \mathbf{U}^{\prime} \mathbf{U} \Lambda \mathbf{U}^{\prime} \mathbf{U} v \\
& =v^{\prime} \Lambda v \\
& =\lambda_{1} v_{1}^{2}+\lambda_{2} v_{2}^{2}+\ldots+\lambda_{p} v_{p}^{2}
\end{aligned}
$$

Eigenvalues of \mathbf{H} determine positive definite, semi-definite, or indefinite.
We've seen quadratic forms before.

$$
D=x^{\prime} \mathbf{H} x
$$

was the locus of points at constant Mahalanobis distance from the origin and formed an ellipse.

Recall that Mahalanobis distance (squared) is

$$
D=x^{\prime} \mathbf{S}^{-1} x
$$

Let $\mathbf{U} \Omega \mathbf{U}^{\prime}$ be the spectral decomposition of \mathbf{S}. $\sqrt{\omega_{i}}$ is the standard deviation along the i th rotated axis. Let $\mathbf{U} \Lambda \mathbf{U}^{\prime}=\mathbf{U} \Omega^{-1} \mathbf{U}^{\prime}$ be the spectral decomposition of $\mathbf{H}=\mathbf{S}^{-1}$. Then

$$
D=x^{\prime} \mathbf{S}^{-1} x=x^{\prime} \mathbf{H} x=v^{\prime} \Omega^{-1} v=v^{\prime} \Lambda v
$$

In this picture, the new axes are the eigenvectors of \mathbf{H}. The coordinates of a point on the new axes are just $v=\mathbf{U}^{\prime} x$.
The eigenvalues of \mathbf{H} are the reciprocal squares of the elongation along the new axes. That is, make the identification

$$
\lambda_{i} v_{i}^{2}=\frac{v_{i}^{2}}{\omega_{i}}=\frac{v_{i}^{2}}{s_{i}^{2}}
$$

where s_{i} is length of the ellipse in the i th new axis direction (corresponds to standard deviation of the point cloud in along the i th new axis).
Maximization for $p \times p$ positive definite \mathbf{B}.

$$
\begin{aligned}
& \max _{x \neq 0} \frac{x^{\prime} \mathbf{B} x}{x^{\prime} x}=\lambda_{1} \\
& \min _{x \neq 0} \frac{x^{\prime} \mathbf{B} x}{x^{\prime} x}=\lambda_{p}
\end{aligned}
$$

The first is achieved with the first eigenvector, the second is achieved with the last eigenvector. Cauchy-Schwarz inequality: x and y any two p-vectors;

$$
\left(x^{\prime} y\right)^{2} \leq\left(x^{\prime} x\right)\left(y^{\prime} y\right)
$$

Maximum achieved if $x=c y$ for some scalar c.

Extended Cauchy-Scharz inquality: x and y any two p-vectors; $\mathbf{B} p \times p$ positive definite.

$$
\left(x^{\prime} y\right)^{2} \leq\left(x^{\prime} \mathbf{B} x\right)\left(y^{\prime} \mathbf{B}^{-1} y\right)
$$

Maximum achieved if $x=c \mathbf{B}^{-1} y$ for some scalar c.
Maximization lemma: x and y any two p-vectors; $\mathbf{B} p \times p$ positive definite.

$$
\max _{x \neq 0}^{\max } \frac{x^{\prime} y}{x^{\prime} \mathbf{B} x}=y^{\prime} \mathbf{B} y
$$

Maximum is achieved when $x=c \mathbf{B}^{-1} y$ for some scalar c.
One other important case. Let $\mathbf{A}=\mathbf{B C}$ where \mathbf{B} and \mathbf{C} are symmetric. Then the eigenvectors and eigenvalues of \mathbf{A} are real.

Cmd> B			
$(1,1)$	18.45	-0.8878	1.8833
$(2,1)$	-0.8878	9.1963	-0.88071
$(3,1)$	1.8833	-0.88071	3.3216

Cmd> C

$(1,1)$	6.2696	-4.5205	-1.4487
$(2,1)$	-4.5205	13.702	1.2594
$(3,1)$	-1.4487	1.2594	11.073

Cmd> A <- B\%*\%C; A			
$(1,1)$	116.96	-93.195	-6.9941
$(2,1)$	-45.862	128.91	3.1162
$(3,1)$	10.977	-16.398	32.941

```
Cmd> v <- rnorm(3)
Cmd> for(i,run(200)) v <- A%*%v
v<-v/sum(v^2)^.5;;
```

Power method gets eigenvector for largest eigenvalue.

Cmd> v	
$(1,1)$	-0.78615
$(2,1)$	0.60628
$(3,1)$	-0.11995

Cmd>	(A \% \% \% V)/v
$(1,1)$	187.76
$(2,1)$	187.76
$(3,1)$	187.76

Cmd> out<-releigen(C,solve(B)); out component: values

(1)	187.76	57.253	33.795
component:	vectors		
$(1,1)$	2.9966	-3.072	0.18176
$(2,1)$	-2.3109	-1.9634	0.029876
$(3,1)$	0.45721	-0.062747	1.7631

Cmd> A\%*\%out\$vectors/out\$values'

$(1,1)$	2.9966	-3.072	0.18176
$(2,1)$	-2.3109	-1.9634	0.029876
$(3,1)$	0.45721	-0.062747	1.7631

