Statistics 5041
 5. Inverses and Determinants

Gary W. Oehlert
School of Statistics
313B Ford Hall
612-625-1557
gary@stat.umn.edu
A few (final?) ideas about matrices.
A square matrix is symmetric if $\mathbf{X}=\mathbf{X}^{\prime}$. In that case, the first row equals the first column, the second row equals the second column, and so on.

$$
\mathbf{X}=\left[\begin{array}{rrrr}
9.8 & 12.6 & 7.0 & 8.9 \\
12.6 & 15.6 & 10.1 & 8.9 \\
7.0 & 10.1 & 11.2 & 8.0 \\
8.9 & 8.9 & 8.0 & 11.6
\end{array}\right]
$$

If \mathbf{X} is square, $\mathbf{X}+\mathbf{X}^{\prime}$ is always symmetric.
If \mathbf{X} is symmetric, $\mathbf{X}=.5\left(\mathbf{X}+\mathbf{X}^{\prime}\right)$.
A diagonal matrix is a square matrix \mathbf{X} with $X_{i j}=0$ whenever $i \neq j$. That is, all the off-diagonal elements are zero.

$$
\mathbf{X}=\left[\begin{array}{rrrr}
9.8 & 0 & 0 & 0 \\
0 & 15.6 & 0 & 0 \\
0 & 0 & 11.2 & 0 \\
0 & 0 & 0 & 11.6
\end{array}\right]
$$

If v is a vector of length n, then $\operatorname{diag}(v)$ is the $n \times n$ diagonal matrix with the elements of v down the diagonal. In MacAnova,

Cmd>	dmat (vector $(9.8,15.6,11.2,11.6))$			
$(1,1)$	9.8	0	0	0
$(2,1)$	0	15.6	0	0
$(3,1)$	0	0	11.2	0
$(4,1)$	0	0	0	11.6

The identity matrix is a diagonal matrix with ones down the diagonal.

$$
\mathbf{I}_{n}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

The identity matrix is to matrix multiplication what 1 is to regular multiplication.
Let \mathbf{X} by $m \times n$, let \mathbf{Y} be $n \times p$, and let \mathbf{Z} be $n \times n$. Then

$$
\mathbf{X} \mathbf{I}_{n}=\mathbf{X}
$$

and

$$
\mathbf{I}_{n} \mathbf{Y}=\mathbf{Y}
$$

and

$$
\mathbf{I}_{n} \mathbf{Z}=\mathbf{Z}=\mathbf{Z} \mathbf{I}_{n}
$$

You can multiply on the left or right, as long as dimensions match.
In MacAnova

Cmd> $I 4$	$<-$	dmat (vector $(1,1,1,1)) ; I 4$		
$(1,1)$	1	0	0	0
$(2,1)$	0	1	0	0
$(3,1)$	0	0	1	0
$(4,1)$	0	0	0	1

Cmd $>$ X $\%$ 年	I4			
$(1,1)$	11.4	11.2	10.2	10.8
$(2,1)$	11.6	11	12.4	9.4

Cmd $>$ Y			
$(1,1)$	12.6	10.6	10.4
$(2,1)$	12	8.6	6.4
$(3,1)$	12.6	12.6	10.4
$(4,1)$	10	11	12

Cmd> I4 \%*\% Y

$(1,1)$	12.6	10.6	10.4
$(2,1)$	12	8.6	6.4
$(3,1)$	12.6	12.6	10.4
$(4,1)$	10	11	12

Let $\mathbf{1}_{n}$ be a column vector of n ones.

$$
\mathbf{1}_{n}=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]
$$

If x is a vector of length n, then

$$
<\mathbf{1}_{n}, x>=\mathbf{1}_{n}^{\prime} x=\sum_{i=1}^{n} 1 \times x_{i}=\sum_{i=1}^{n} x_{i}
$$

expresses the sum of the elements of x in matrix form.
Cmd> $\mathrm{x}<-\operatorname{vector}(2.3,8.7,5.4,6.9)$
Cmd> one4 $<-$ rep $(1,4)$
Cmd> one 4^{\prime} \%*\% x
(1,1) 23.3

Cmd> $\operatorname{sum}(x)$

```
(1)
23.3
```

Vectors $v_{1}, v_{2}, \ldots, v_{k}($ all $n \times 1)$ are linearly independent if none of them can be written as a linear combination of the others. That is, we cannot write

$$
\begin{aligned}
v_{j}= & c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{j-1} v_{j-1}+ \\
& c_{j+1} v_{j+1}+c_{j+2} v_{j+2}+\ldots+c_{k} v_{k}
\end{aligned}
$$

for any $j, 1 \leq j \leq k$ and any set of coefficients c_{i}.
Equivalently, $0=\sum_{i=1}^{k} c_{i} v_{i}$ implies that all the c_{i} 's are zero.
Let \mathbf{X} be $n \times p$. The rank of \mathbf{X} can be defined in many ways, including:

The maximum number of linearly independent columns of \mathbf{X}.
The maximum number of linearly independent rows of \mathbf{X}.

The minimum number of outer products (of vectors) needed to reconstruct \mathbf{X} when summed.

$$
\operatorname{rank}(\mathbf{X}) \leq \min (n, p)
$$

\mathbf{X} has full rank if $\operatorname{rank}(\mathbf{X})=\min (n, p)$.
Some special cases:

- A nonzero row or column vector has rank 1 .
- If vectors v and w are nonzero, then $v w^{\prime}$ has rank 1 .
- If vectors $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ are linearly independent, and vectors $r_{1}, r_{2}, \ldots, r_{k}$ are linearly independent, then

$$
\mathbf{X}=\sum_{i=1}^{k} \ell_{i} r_{i}^{\prime}
$$

has rank k.
Let \mathbf{A} be $n \times n$. Suppose that there exists an $n \times n$ matrix \mathbf{B} such that

$$
\mathbf{A B}=\mathbf{B A}=\mathbf{I}_{n}
$$

Then \mathbf{B} is the inverse of \mathbf{A}, written

$$
\mathbf{A}^{-1}
$$

A^{-1} is unique.
\mathbf{A}^{-1} exists if and only if \mathbf{A} has full rank.

Cmd> A

$(1,1)$	6	2	8
$(2,1)$	8	5	6
$(3,1)$	1	2	3

Cmd $>$	B<-solve (A) ; B \# inversion		
$(1,1)$	0.042857	0.14286	-0.4
$(2,1)$	-0.25714	0.14286	0.4
$(3,1)$	0.15714	-0.14286	0.2

Cmd>A $\mathrm{A} \% *$ B

$(1,1)$	1	0	$3.3 \mathrm{e}-16$
$(2,1)$	0	1	$4.4 \mathrm{e}-16$
$(3,1)$	$2.7 \mathrm{e}-17$	0	1

Cmd> B\%*\%A			
$(1,1)$	1	0	-5.5e-17
$(2,1)$	1.1e-16	1	2. $2 \mathrm{e}-16$
$(3,1)$	5.5e-17	5.5e-17	

```
Cmd> c1 <- vector (3,5,1);
c2 <- vector (1, 1,6)
```

Cmd $>A$	$<-$ hconcat $(c 1, c 2, c 1+c 2) ;$	solve (A)	
$(1,1)$	$2.3 e+15$	$-1.3 e+15$	$-1.5 e+14$
$(2,1)$	$2.3 e+15$	$-1.3 e+15$	$-1.5 e+14$
$(3,1)$	$-2.3 e+15$	$1.3 e+15$	$1.5 e+14$

Cmd $>$ A	\%*\%	solve (A)		
$(1,1)$	0	0	0	
$(2,1)$	0	0	0	
$(3,1)$	0	0	0	

Oops. Nonsense result because numerical singularity not found.
For every square matrix $\mathbf{X}(k \times k)$ we can compute a quantity called the determinant and denoted by $|\mathbf{X}|$.

$$
\operatorname{det}(\mathbf{X})=\sum_{p \in P}(-1)^{s(p)} X_{1 p_{1}} X_{2 p_{2}} \cdots X_{k p_{k}}
$$

where p is a permutation of the numbers 1 through k, P is the set of all such permuations, and $s(p)$ is the number of permuation inversions in the permutation p.

$$
s(p)=\sum_{i=1}^{k-1} \sum_{j=i+1}^{k} I\left(p_{i}>p_{j}\right)
$$

Not very intuitive.

$$
|\mathbf{X}|=\left|\left[\begin{array}{cc}
1 & 5 \\
3 & 10
\end{array}\right]\right|=1 \times 10-3 \times 5=-5
$$

Permuations are $(1,2)$ and (2,1), with 0 and 1 inversions.
For a 3×3, the permuations are

p	$s(p)$
$(1,2,3)$	0
$(1,3,2)$	1
$(2,1,3)$	1
$(2,3,1)$	2
$(3,1,2)$	2
$(3,2,1)$	3

$$
\begin{aligned}
|\mathbf{X}|= & \left|\left[\begin{array}{ccc}
1 & 5 & 3 \\
3 & 10 & 4 \\
5 & 8 & 5
\end{array}\right]\right| \\
= & 1 \times 10 \times 5 \\
& -1 \times 4 \times 8 \\
& -5 \times 3 \times 5 \\
& +5 \times 4 \times 5 \\
& +3 \times 3 \times 8 \\
& -3 \times 10 \times 5 \\
= & -35
\end{aligned}
$$

The definitional form for the determinant is not computationally efficient. Different methods are used in software.

Cmd> X			
$(1,1)$	1	3	5
$(2,1)$	5	10	8
$(3,1)$	3	4	5
Cmd> $\operatorname{det}(X)$			
(1)	-35		

Facts about determinants.
\mathbf{X} (square) has an inverse if and only if $\operatorname{det}(\mathbf{X}) \neq 0$.
If \mathbf{X}^{-1} exists, $\operatorname{det}\left(\mathbf{X}^{-1}\right)=1 / \operatorname{det}(\mathbf{X})$.
Adding a multiple of a row (or column) to any other row (or column) does not change the determinant.
Multiplying a row by a scalar multiplies the determinant by that scalar.
Cmd> det(hconcat(c1,c2,c1+c2))
(1) -1.2603e-14

Cmd> det(solve(X))
(1) -0.028571

Cmd> 1/det (X)
(1) -0.028571

Cmd> $\mathrm{X} 2<-\mathrm{X} ; \mathrm{X} 2[1]<,-2 * \mathrm{X} 2[1,] ; \operatorname{det}(\mathrm{X} 2)$
(1) -70

Cmd> X2 <- X; X2[1,] <- -2*X2[1,]; $\operatorname{det}(X 2)$
(1) 70

Cmd> X3 <- X;X3[,1] <- X3[,1] + 2*X3[,3]; det (X3)
(1) -35

The trace of a square matrix is the sum of the diagonal elements.

$$
\operatorname{trace}(\mathbf{X})=\sum_{i=1}^{k} X_{i i}
$$

Cmd> trace (X)
(1) 16

