Statistics 5041

3. Matrix Multiplication

Gary W. Oehlert
School of Statistics
313B Ford Hall
612-625-1557
gary@stat.umn.edu

Two matrices, \mathbf{X} and \mathbf{Y}. \mathbf{X} has dimension $a \times b$, and \mathbf{Y} has dimension $b \times c$. Then we can form the matrix product (ie, us matrix multiplication)

$$
\mathbf{Z}=\mathbf{X Y}
$$

\mathbf{Z} is $a \times c$.
Note, YX may not be possible (dimension mismatch), and even if possible, XY need not equal YX.

$$
z_{i j}=\sum_{k=1}^{b} x_{i k} y_{k j}
$$

Multiply corresponding elements of i th row of \mathbf{X} with j th column of \mathbf{Y}, then add up.

$$
\begin{gathered}
\mathbf{X}=\left[\begin{array}{lll}
6 & 2 & 8 \\
8 & 5 & 6 \\
1 & 2 & 3 \\
9 & 4 & 5
\end{array}\right] \quad \mathbf{Y}=\left[\begin{array}{ll}
2 & 5 \\
1 & 4 \\
7 & 3
\end{array}\right] \\
z_{11}=6 \times 2+2 \times 1+8 \times 7=70 \\
z_{21}=8 \times 2+5 \times 1+6 \times 7=63 \\
z_{22}=8 \times 5+5 \times 4+6 \times 3=78
\end{gathered}
$$

Cmd> $X \% * \% Y$		
$(1,1)$	70	62
$(2,1)$	63	78
$(3,1)$	25	22
$(4,1)$	57	76

Cmd> Y\%*\% X
ERROR: Dimension mismatch: 3 by $2 \% * \% 4$ by 3 near $Y \% * \% X$
The i, j element of $\mathbf{X Y}$ is the matrix product of the i th row a \mathbf{X} (the i th row is a $1 \times b$ matrix) and the j th column of \mathbf{Y} (the j th column is a $b \times 1$ matrix).
Let $\check{\mathbf{X}}_{j}$ be the j th column of \mathbf{X}.

$$
\mathbf{X}=\left[\check{\mathbf{X}}_{1}: \check{\mathbf{X}}_{2}: \ldots: \check{\mathbf{X}}_{p}\right]
$$

Let $\overrightarrow{\mathbf{X}}_{i}^{\prime}$ be the i th row of \mathbf{X}.

$$
\mathbf{X}=\left[\begin{array}{c}
\overrightarrow{\mathbf{X}}_{1}^{\prime} \\
\overrightarrow{\mathbf{X}}_{2}^{\prime} \\
\vdots \\
\overrightarrow{\mathbf{X}}_{n}^{\prime}
\end{array}\right]=\left[\overrightarrow{\mathbf{X}}_{1}: \overrightarrow{\mathbf{X}}_{2}: \ldots: \overrightarrow{\mathbf{X}}_{n}\right]^{\prime}
$$

Note: $\overrightarrow{\mathbf{X}}_{i}$ is a column vector.
Inner Products Let x and y be two vectors with the same length n. Then the inner product of x and y is the scalar

$$
<x, y>=\sum_{i=1}^{n} x_{i} y_{i}=x^{\prime} y
$$

The i, j element of $\mathbf{X Y}$ sums the cross products of the i th row of \mathbf{X} and the j th column of \mathbf{Y}; that is,

$$
\mathbf{Z}_{i j}=(\mathbf{X Y})_{i j}=\overrightarrow{\mathbf{X}}_{i}^{\prime} \check{\mathbf{Y}}_{j}=<\overrightarrow{\mathbf{X}}_{i}, \check{\mathbf{Y}}_{j}>
$$

Sums of Squares and Products Suppose that \mathbf{X} is an $n \times p$ matrix of data, n cases on p variables.

$$
\mathbf{X}^{\prime} \mathbf{X}=\left[\check{\mathbf{X}}_{i}^{\prime} \check{\mathbf{X}}_{j}\right]_{1 \leq i, j \leq p}
$$

Each element of $\mathbf{X}^{\prime} \mathbf{X}$ is an inner product of two columns of \mathbf{X}. Diagonal elements of $\mathbf{X}^{\prime} \mathbf{X}$ are

$$
\check{\mathbf{X}}_{j}^{\prime} \check{\mathbf{X}}_{j}=\sum_{k=1}^{n} X_{k j}^{2}
$$

a sum of squares.
Off diagonal elements are

$$
\check{\mathbf{X}}_{i}^{\prime} \check{\mathbf{X}}_{j}=\sum_{k=1}^{n} X_{k i} X_{k j}
$$

a sum of products.
All together, SSP matrix.
Matrices of this type are the basis of variance/covariance matrices and will appear throughout the course.
Outer Products Let x and y be two vectors with lengths n and m. Then the outer product of x and y is an $n \times m$ matrix

$$
x y^{\prime}=\left[\begin{array}{llll}
x_{1} y_{1} & x_{1} y_{2} & \ldots & x_{1} y_{m} \\
x_{2} y_{1} & x_{2} y_{2} & \ldots & x_{2} y_{m} \\
\vdots & \vdots & & \vdots \\
x_{n} y_{1} & x_{n} y_{2} & \ldots & x_{n} y_{m}
\end{array}\right]
$$

We can also write a matrix multiplication as a sum of outer products (here, \mathbf{X} is $a \times b$ and \mathbf{Y} is $b \times c$).

$$
\mathbf{X Y}=\check{\mathbf{X}}_{1} \overrightarrow{\mathbf{Y}}_{1}+\check{\mathbf{X}}_{2} \overrightarrow{\mathbf{Y}}_{2}+\ldots+\check{\mathbf{X}}_{b} \overrightarrow{\mathbf{Y}}_{b}
$$

Cmd> $\mathrm{X}[, 1] \% * \% \mathrm{Y}[1]+,\mathrm{X}[, 2] \% * \% \mathrm{Y}[2]+,\mathrm{X}[, 3] \% * \% \mathrm{Y}[3$,
$(1,1) \quad 70 \quad 62$
$\begin{array}{lll}(2,1) & 63\end{array}$
$\begin{array}{ll}(3,1) & 25\end{array}$
$\begin{array}{ll}(4,1) & 57\end{array}$
Two MacAnova shortcuts
$X \% C \% Y$ is $X^{\prime} Y$.
$X \circ \mathrm{C} \% \mathrm{Y}$ is $\mathbf{X Y}^{\prime}$.

