Statistics 5041 3. Matrix Multiplication Gary W. Oehlert School of Statistics 313B Ford Hall 612-625-1557 gary@stat.umn.edu

Two matrices, X and Y. X has dimension $a \times b$, and Y has dimension $b \times c$. Then we can form the *matrix product* (ie, us *matrix multiplication*)

 $\mathbf{Z} = \mathbf{X}\mathbf{Y}$

Z is $a \times c$. Note, **YX** may not be possible (dimension mismatch), and even if possible, **XY** need not equal **YX**.

$$z_{ij} = \sum_{k=1}^{b} x_{ik} y_{kj}$$

Multiply corresponding elements of *i*th row of \mathbf{X} with *j*th column of \mathbf{Y} , then add up.

$\mathbf{X} = \begin{bmatrix} 6 & 2 & 8 \\ 8 & 5 & 6 \\ 1 & 2 & 3 \\ 9 & 4 & 5 \end{bmatrix} \qquad \qquad \mathbf{Y} = \begin{bmatrix} 2 & 5 \\ 1 & 4 \\ 7 & 3 \end{bmatrix}$	X =	$\mathbf{X} = \begin{bmatrix} \\ \\ \end{bmatrix}$	$\begin{bmatrix} 6 & 2 & 8 \\ 8 & 5 & 6 \\ 1 & 2 & 3 \\ 9 & 4 & 5 \end{bmatrix}$	$\mathbf{Y} = \begin{bmatrix} & & \\ & & & \\ & & & \end{pmatrix}$	$2 \\ 1 \\ 7$	$5\\4\\3$	
--	------------	--	--	--	---------------	-----------	--

z_{11}	=	$6 \times 2 + 2 \times 1 + 8 \times 7 = 70$
z_{21}	=	$8 \times 2 + 5 \times 1 + 6 \times 7 = 63$
z_{22}	=	$8 \times 5 + 5 \times 4 + 6 \times 3 = 78$

Cmd> X%*%Y		
(1,1)	70	62
(2,1)	63	78
(3,1)	25	22
(4,1)	57	76

Cmd> Y%*%X ERROR: Dimension mismatch: 3 by 2 %*% 4 by 3 near Y%*%X

. . .

The *i*, *j* element of **XY** is the matrix product of the *i*th row a **X** (the *i*th row is a $1 \times b$ matrix) and the *j*th column of **Y** (the *j*th column is a $b \times 1$ matrix). Let $\check{\mathbf{X}}_j$ be the *j*th column of **X**.

$$\mathbf{X} = \begin{bmatrix} \check{\mathbf{X}}_1 : \check{\mathbf{X}}_2 : \ldots : \check{\mathbf{X}}_p \end{bmatrix}$$

Let $\vec{\mathbf{X}}_i'$ be the *i*th row of \mathbf{X} .

$$\mathbf{X} = egin{bmatrix} \mathbf{X}_1' \ ec{\mathbf{X}}_2' \ ec{\mathbf{X}}_n \ ec{\mathbf{X}}_n' \end{bmatrix} = egin{bmatrix} ec{\mathbf{X}}_1 : ec{\mathbf{X}}_2 : \ldots : ec{\mathbf{X}}_n \end{bmatrix}'$$

Note: $\vec{\mathbf{X}}_i$ is a column vector.

Inner Products Let x and y be two vectors with the same length n. Then the inner product of x and y is the scalar

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = x' y$$

The i, j element of **XY** sums the cross products of the *i*th row of **X** and the *j*th column of **Y**; that is,

$$\mathbf{Z}_{ij} = (\mathbf{X}\mathbf{Y})_{ij} = ec{\mathbf{X}}_i' \check{\mathbf{Y}}_j =$$

Sums of Squares and Products Suppose that X is an $n \times p$ matrix of data, n cases on p variables.

$$\mathbf{X'X} = \left[\check{\mathbf{X}}_i'\check{\mathbf{X}}_j
ight]_{1\leq i,j\leq p}$$

Each element of X'X is an inner product of two columns of X. Diagonal elements of X'X are

$$\check{\mathbf{X}}_{j}'\check{\mathbf{X}}_{j} = \sum_{k=1}^{n} X_{kj}^{2}$$

a sum of squares. Off diagonal elements are

$$\check{\mathbf{X}}_i'\check{\mathbf{X}}_j = \sum_{k=1}^n X_{ki} X_{kj}$$

a sum of products.

All together, SSP matrix.

Matrices of this type are the basis of variance/covariance matrices and will appear throughout the course. *Outer Products* Let x and y be two vectors with lengths n and m. Then the outer product of x and y is an $n \times m$ matrix

$$xy' = \begin{bmatrix} x_1y_1 & x_1y_2 & \dots & x_1y_m \\ x_2y_1 & x_2y_2 & \dots & x_2y_m \\ \vdots & \vdots & & \vdots \\ x_ny_1 & x_ny_2 & \dots & x_ny_m \end{bmatrix}$$

We can also write a matrix multiplication as a sum of outer products (here, X is $a \times b$ and Y is $b \times c$).

$$\mathbf{X}\mathbf{Y} = \check{\mathbf{X}}_1 \vec{\mathbf{Y}}_1 + \check{\mathbf{X}}_2 \vec{\mathbf{Y}}_2 + \ldots + \check{\mathbf{X}}_b \vec{\mathbf{Y}}_b$$

3,]

Cmd> X[,1] ⁹	%*%Y[1,]+X[,2]%*%Y[2,]+X[,3	\$]왕*왕Y[
(1,1)	70	62	
(2,1)	63	78	
(3,1)	25	22	
(4,1)	57	76	

Two MacAnova shortcuts

X %C% Y is X'Y.

X %C% Y is XY'.