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Abstract

This article, which is based on an Interface tutorial, presents
an overview of regression graphics, along with an annotated
bibliography. The intent is to discuss basic ideas and issues
without delving into methodological or theoretical details,
and to provide a guide to the literature.

1 Introduction

One of the themes for this Interface conference isdimension
reduction,which is also a leitmotif of statistics. For instance,
starting with a samplez1, . . . , zn from a univariate normal
population with meanµ and variance 1, we know the sample
meanz̄ is sufficient forµ. This means that we can replace
the originaln-dimensional sample with the one-dimensional
meanz̄ without loss of information onµ.

In the same spirit,dimension reduction without loss of in-
formation is a key theme of regression graphics. The goal
is to reduce the dimension of the predictor vectorx without
loss of information on the regression. We call thissufficient
dimension reduction, borrowing terminology from classical
statistics. Sufficient dimension reduction leads naturally to
sufficient summary plotswhich contain all of the information
on the regression that is available from the sample.

Many graphically oriented methods are based on the idea
of dimension reduction, but few formally incorporate the no-
tion of sufficient dimension reduction. For example, pro-
jection pursuit involves searching for “interesting” low di-
mensional projections by using a user-selected projectionin-
dex that serves to quantify “interestingness” (Huber 1995).
Such methods may produce interesting results in a largely ex-
ploratory context, but one may be left wondering what they
have to do with overarching statistical issues like regression.

We assume throughout that the scalar responsey and the
p× 1 vector of predictorsx have a joint distribution. This as-
sumption is intended to focus the discussion and is not crucial
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for the fundamental ideas. The general goal of the regression
is to infer about the conditional distribution ofy|x as far as
possible with the available data: How does the conditional
distribution ofy|x change with the value assumed byx? It is
assumed that the data{yi,xi}, i = 1, . . . , n, are iid observa-
tions on(y,x) with finite moments.

The notationU V means that the random vectorsU

andV are independent. Similarly,U V |Z means thatU
andV are independent given any value for the random vector
Z. Subspaces will be denoted byS, andS(B) means the
subspace ofRt spanned by the columns of thet × u matrix
B. Finally,PB denotes the projection operator forS(B) with
respect to the usual inner product, andQB = I − PB.

2 The Central Subspace

Let B denote a fixedp × q, q ≤ p, matrix so that

y x|BT
x (1)

This statement is equivalent to saying that the distribution of
y|x is the same as that ofy|BT

x for all values ofx in its
marginal sample space. It implies that thep × 1 predictor
vectorx can be replaced by theq × 1 predictor vectorBT

x

without loss of regression information, and thus represents a
potentially useful reduction in the dimension of the predictor
vector. Such aB always exists, because (1) is trivially true
whenB = Ip, thep × p identity matrix.

Statement (1) holds if and only if

y x|PS(B)x

Thus, (1) is appropriately viewed as a statement aboutS(B),
which is called adimension-reduction subspace for the re-
gression ofy on x (Li 1991, Cook 1994a). The idea of a
dimension-reduction subspace is useful because it represents
a “sufficient” reduction in the dimension of the predictor vec-
tor. Clearly, knowledge of the smallest dimension-reduction
subspace would be useful for parsimoniously characterizing
how the distribution ofy|x changes with the value ofx.



LetSy|x denote the intersection of all dimension-reduction
subspaces. WhileSy|x is always a subspace, it is not nec-
essarily a dimension-reduction subspace. Nevertheless,Sy|x

is a dimension-reduction subspace under various reasonable
conditions (Cook 1994a, 1996, 1998b). In this article,Sy|x

is assumed to be a dimension-reduction subspace and, fol-
lowing Cook (1994b, 1996, 1998b), is called thecentral
dimension-reduction subspace, or simply thecentral sub-
space. The dimensiond = dim(Sy|x) is thestructural dimen-
sionof the regression; we will identify regressions as having
0D, 1D, . . . , dD structure.

The central subspace, which is taken as the inferential ob-
ject for the regression, is the smallest dimension-reduction
subspace such thaty x|ηT

x, where the columns of the ma-
trix η form a basis for the subspace. In effect, the central
subspace is a super parameter that will be used to character-
ize the regression ofy onx. If Sy|x were known, theminimal
sufficient summary plotof y versusηT

x could then be used
to guide subsequent analysis. If an estimated basisη̂ of Sy|x

were available then the summary plot ofy versusη̂T
x could

be used similarly.

2.1 Structural Dimension

The simplest regressions have structural dimensiond = 0, in
which casey x and a histogram or density estimate based
ony1, . . . , yn is a minimal sufficient summary plot. The idea
of 0D structure may seem to limiting to be of much practical
value. But it can be quite important when using residuals in
model checking. Lettingr denote the residual from a fit of a
target model in the population, the correctness of the model
can be checked by looking for information in the data to con-
tradict 0D structure for the regression ofr on x. Sample
residualŝr need to be used in practice.

Many standard regression models have1D structure. For
example, lettingε be a random error with mean 0, variance 1
andε x, the following additive-error models each have1D

structure providedβ 6= 0:

y|x = β0 + βT
x + σε (2)

y|x = µ(βT
x) + σε (3)

y|x = µ(βT
x) + σ(βT

x)ε (4)

y(λ)|x = µ(βT
x) + σ(βT

x)ε (5)

Model (2) is just the standard linear model. It has1D struc-
ture because sincey x|βT

x. Models (3) and (4) allow for
a nonlinear mean function and a nonconstant standard devi-
ation function, but still have1D structure. Model (5) allows
for a transformation of the response. Generalized linear mod-
els with link functions that correspond to those in (2)–(4) also
have1D structure. In each case, the vectorβ spans the central
subspace. Clearly, the class of regressions with1D structure
is quite large.

In regressions with1D structure and central subspace
Sy|x(η), a 2D plot ofy versusηT

x is a minimal sufficient
summary plot. In practice,Sy|x(η) would need to be esti-
mated.

The following two models each have2D structure pro-
vided the nonzero vectorsβ1 andβ2 are not collinear:

y|x = µ(βT
1 x, βT

2 x) + σε

y|x = µ(βT
1 x) + σ(βT

2 x)ε

In this case,Sy|x(η) = S(β1, β2) and a3D plot of y over
Sy|x(η) is a sufficient summary plot. Again, an estimate of
Sy|x would be required in practice.

In effect, the structural dimension can be viewed as an in-
dex of the complexity of the regression. Regressions with2D

structure are usually more difficult to summarize than those
with 1D structure, for example.

2.2 Issues

There are now two general issues: how can we estimate the
central subspace, including its dimension, and what might we
gain in practice by doing so? We will consider the second
issue first by using an example in the next section to con-
trast the results of a traditional analysis with those basedon
an estimate of the central subspace. Estimation methods are
discussed in Section 4.

3 Naphthalene Data

Box and Draper (1987, p. 392) describe the results of an
experiment to investigate the effects of three process vari-
ables (predictors) in the vapor phase oxidation of naphtha-
lene. The response variabley is the percentage mole conver-
sion of naphthalene to naphthoquinone, and the three predic-
tors arex1 = logarithm of the air to naphthalene ratio (L/pg),
x2 = logarithm of contact time (seconds) andx3 = bed tem-
perature. There are 80 observations.

3.1 Traditional analysis

Box and Draper suggested an analysis based on a full second-
order response surface model in the three predictors. In the
ordinary least squares fit of this model, the magnitude of each
of the 10 estimated regression coefficients is at least 4.9 times
its standard error, indicating that the response surface may be
quite complicated. It is not always easy to develop a good
scientific understanding of such fits. In addition, the stan-
dard plot of residuals versus fitted values of Figure 1 shows
curvature, so that a more complicated model may be neces-
sary. Further analysis from this starting point may also be
complicated by at least three influential observations thatare
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Figure 1: Residuals versus fitted values from the fit of the full
quadratic model to the naphthalene data.

apparent in the plot of Cook’s distance (Cook 1997) versus
case numbers shown in Figure 2.

While there are many ways to continue the analysis, most
involve iterating between fitted models and diagnostics until
a satisfactory solution is found. This analysis paradigm can
yield useful results, but the process is often laborious andthe
resulting models can be difficult to interpret.

3.2 Graphical analysis

We next turn to the analysis of the naphthalene data based
on the central subspace. Using methods to be discussed a bit
later, the dimension of the central subspace was inferred tobe
dim(Sy|x) = 1 with

Ŝy|x = S(η̂)

whereη̂ = (0.38, 0.46, 0.8)T . The corresponding 2D sum-
mary plot, which is estimated to contain all the regression in-
formation, is shown in Figure 3 along with a lowess smooth
and a fitted quadratic. The quadratic matches the lowess
smooth over the upper half of the range on the horizontal
axis, but otherwise fails to provide a good fit. This failure
accounts for the curvature in the residual plot of Figure 1.
The influential observations that would likely complicate an
analysis based on response surface models fall mostly along
directions orthogonal tôη and contributed to the estimation
of the central subspace only by hinting at the possibility that
dim(Sy|x) = 2.

There are many ways to continue the analysis, but all can
be based on the summary plot of Figure 3. For example, we
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Figure 2: Cook’s distances versus case numbers from the fit
of the full quadratic model to the naphthalene data.

might transform the response in an effort to straighten the
relationship. In this way, the estimated central subspace along
with the corresponding summary plot provide a starting point
for traditional modeling that is often more informative than
an initial fit based on a handy model.

One role that regression graphics can play in an analysis
is represented schematically in Figure 4. Many traditional
analyses follow the paradigm represented by the lower two
boxes. We begin in the lower left box studying the problem
and the data, and formulating an initial model. This is fol-
lowed by estimation, leading to the fitted model in the right
box. Diagnostic methods are then applied to the fitted model,
leading back to the model formulation and the data when re-
medial action is required. Depending on the adequacy of the
initial model, many iterations may be required to reach a sat-
isfactory solution. Our brief look at the naphthalene data in
Section 3 represents just one iteration. This paradigm for a
regression analysis has been discussed by several authors,in-
cluding Cook and Weisberg (1982, p. 7) and Box (1980).

Regression graphics is not intended to replace this tradi-
tional paradigm. Rather, as illustrated in the upper left box,
its role is to provide a firm starting point through investiga-
tion of the central subspace and sufficient summary plots. We
think of the graph in Figure 3 as providing information for
the formulation of an initial model for the naphthalene data,
which is the first step in the traditional paradigm. The hope
is that this starting point will be close to a satisfactory answer
and that only a few iterations will be required.

Regression graphics can also be of value in the diagnostic
portion of an analysis. Lettingr denote the population resid-
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Figure 3: Estimated sufficient summary plot for the naphtha-
lene data.
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Figure 4: Analysis paradigm incorporating central subspaces.

ual from the fitted model in the lower right box, we can use
the central subspaceSr|x for the regression ofr onx to guide
diagnostic considerations (Cook 1998b).

4 Estimating the Central Subspace

There are both numerical and graphical methods for estimat-
ing subspaces ofSy|x(η). All methods presently require that
the conditional expectation E(x|ηT

x) is linear whenp > 2.
We will refer to this as thelinearity condition. In addition,
methods based on second moments work best when the con-
ditional covariance matrix var(x|ηT

x) is constant. Both the
linearity condition and theconstant variance conditionapply
to the marginal distribution of the predictors and do not in-
volve the response. Hall and Li (1993) show that the linearity
condition will hold to a reasonable approximation in many
problems. In addition, these conditions might be induced
by using predictor transformations and predictor weighting

(Cook and Nachtsheim 1994).
We next consider graphical estimates of the central sub-

space using a procedure calledgraphical regression(GREG).

4.1 Graphical Regression

4.1.1 Two predictors

With p = 2 predictors,Sy|x(η) can be estimated visually
from a 3D plot withy on the vertical axis and(x1, x2) on
the horizontal axes. Visual assessment of0D can be based on
the result thaty x if and only if y bT

x for all b ∈ R2

(Cook 1996, 1998b). As the 3D plot ofy versus(x1, x2) is
rotated about its vertical axis, we see 2D plots ofy versus
all linear combinationsbT

x. Thus, if no clear dependence is
seen in any 2D plot while rotating we can infer thaty x. If
dependence is seen in a 2D plot, then the structural dimension
must be 1 or 2. Visual methods for deciding between1D and
2D, and for estimatingSy|x whend = 1, were discussed in
detail by Cook (1992a, 1994a, 1998b), Cook and Weisberg
(1994a), and Cook and Wetzel (1993).

4.1.2 More than two predictors

The central subspace can be estimated whenp > 2 by assess-
ing the structural dimension in a series of 3D plots. Here is
the general idea. Letx1 andx2 be two of the predictors, and
collect all of the remaining predictors into the(p − 2) × 1
vectorx3. We seek to determine if there are constantsc1 and
c2 so that

y x|(c1x1 + c2x2,x3) (6)

If (6) is true andc1 = c2 = 0 thenx1 andx2 can be deleted
from the regression without loss of information, reducing the
dimension of the predictor vector by 2. If (6) is true and ei-
therc1 6= 0 or c2 6= 0 then we can replacex1 andx2 with the
single predictorx12 = c1x1 + c2x2 without loss of informa-
tion, reducing the dimension of the predictor by 1. In which
case we would have a new regression problem with predic-
tors (x12,x3). If (6) is false for all values of(c1, c2) then
the structural dimension is at least 2, and we could select two
other predictors to combine. This methodology was devel-
oped by Cook (1992a, 1994a, 1996, 1998b), Cook and Weis-
berg (1994a), and Cook and Wetzel (1993), where it is shown
that various 3D plots, including 3D added-variable plots, can
be used to study the possibilities associated with (6) and to
estimate(c1, c2) visually. Details are available from Cook
(1998b).

The summary plot of Figure 3 was produced by this means
(Cook 1998b, Section 9.1). It required a visual analysis of 2
3D plots and took only a minute or two to construct. Graphi-
cal regression is not time intensive with a modest number of
predictors. Even with many predictors, it often takes less time



than more traditional methods which may require that a bat-
tery of numerical and graphical diagnostics be applied after
each fit. Graphical regression has the advantage that nothing
is hidden since all decisions are based only on visual inspec-
tion. In effect, diagnostic considerations are an integralpart
of the graphical regression process. Outliers and influential
observations are usually easy to identify, for example.

4.2 Numerical methods

Several numerical methods are available for estimating the
central subspace. We begin with standard methods and then
turn to more recent developments.

4.2.1 Standard fitting methods and residual plots.

Consider summarizing the regression by minimizing a convex
objective function of a linear kernela + bT

x:

(â, b̂) = arg min
a,b

1

n

n∑

i=1

L(a + bT
xi, yi) (7)

whereL(·, ·) is a convex function of its first argument. This
class of objective functions includes most of the usual meth-
ods including ordinary least squares withL = (yi − a −
bT

xi)
2, Huber’s M-estimate, and various maximum likeli-

hood estimates based on generalized linear models. This
setup is being used only as a summarization device and does
not imply the assumption of a model. Next, let

(α, β) = arg min
a,b

E(L(a + bT
x, y))

denote the population version of(â, b̂). Then under the linear-
ity condition,β is in the central subspace (Li and Duan 1989,
Cook 1994a). Under some regularity conditions,b̂ converges
to β at the usual root-n rate.

There are many important implications of this result. First,
if dim(Sy|x) = 1 and the linearity condition holds then a plot

of y versuŝbT
x is an estimated sufficient summary plot, and

is often all that is needed to carry on the analysis. Second, it
is probably a reason for the success of standard method like
ordinary least squares. Third, the result can be used to facil-
itate other graphical methods. For example, it can be used
to facilitate the analysis of the 3D plots encountered during a
GREGanalysis.

Finally, under the linearity condition, this result can be
used to show thatSr|x ⊂ Sy|x (Cook 1994a, 1998b). Con-
sequently, the analysis of residual plots provides information
that is directly relevant to the regression ofy on x. On the
other hand, if the linearity condition does not hold it is prob-
able thatSr|x 6⊂ Sy|x and thus that a residual analysis will be
complicated by irrelevant information (the part ofSr|x that is
not inSy|x). For example, ifdim(Sy|x) = 1 and the linearity

condition fails then we may well havedim(Sr|x) = 2. In this
case the residual regression is intrinsically more complicated
than the original regression and a residual analysis may do
more harm than good.

The objective function (7) can also be used with quadratic
kernelsa+bT

x+x
T Bx whereB is ap×p symmetric matrix

of quadratic coefficients. When the predictors are normally
distributed,S(B̂) converges to a subspace that is contained
in the central subspace (Cook 1992b; 1998b, Section 8.2).

4.2.2 Inverse regression methods

In addition to the standard fitting methods discussed in the
previous section, there are at least three other numerical meth-
ods that can be used to estimate subspaces of the central sub-
space:

• sliced inverse regression,SIR (Li 1991),

• principal Hessian directions, pHd (Li 1992, Cook
1998a), and

• sliced average variance estimation,SAVE (Cook and
Weisberg 1991, Cook and Lee 1998).

All require the linearity condition. The constant variancecon-
dition facilitates analyses with all three methods, but is not
essential for progress. Without the constant variance condi-
tion, the subspaces estimated will likely still be dimension-
reduction subspaces, but they may not be central. All of these
methods can produce useful results, but recent work (Cook
and Lee 1998) indicates thatSAVE is the most comprehen-
sive.

SAVE, SIR, pHd, the standard fitting methods mentioned in
the previous section and other methods not discussed here are
all based on the following general procedure. First, let

z = Σ−1/2(x − E(x))

denote the standardized version ofx, whereΣ = var(x).
ThenSy|x = Σ−1/2Sy|z. Thus there is no loss of general-
ity working on thez scale because any basis forSy|z can be
back-transformed to a basis forSy|x. Suppose we can find a

consistent estimatêM of a p × k procedure-specific popula-
tion matrix M with the property thatS(M) ⊂ Sy|z. Then

inference on at least a part ofSy|z can be based on̂M . SAVE,
SIR, pHd and other numerical procedures differ onM and the
method of estimating it. For example, for the ordinary least
squares option of (7), setk = 1 andM = cov(y, z).

Let ŝ1 ≥ ŝ2 ≥ . . . ≥ ŝq denote the singular values of
M̂ , and letû1, . . . , ûq denote the corresponding left singular
vectors, whereq = min(p, k). Assuming thatd = S(M) is
known,

Ŝ(M) = S(û1, . . . , ûd)



is a consistent estimate ofS(M). For use in practice,d will
typically need to be replaced with an estimated̂ based on in-
ferring about which of the singular valuesŝj is estimating 0,
or on usingGREG to infer about the regression ofy on theq

linearly transformed predictorŝuT
j z, j = 1, . . . , q.
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