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Abstract for the fundamental ideas. The general goal of the regnessio
is to infer about the conditional distribution gfx as far as
aossible with the available data: How does the conditional
istribution ofy|x change with the value assumedx It is
€assumed that the dag;, x;},i =1,...,n, areiid observa-
tions on(y, x) with finite moments.
The notationU 1L V means that the random vectdrs
andV are independent. Similarly/ 1. V|Z means that/
i andV are independent given any value for the random vector
1 Introduction Z. Subspaces will be denoted & andS(B) means the

One of the themes for this Interface conferencdifsension ~ Subspace of’ spanned by the columns of thex u matrix
reductionwhich is also a leitmotif of statistics. For instance, B+ Finally, Pz denotes the projection operator $8{5) with
starting with a sample, ..., z, from a univariate normal "eSpect to the usual inner product, apg = I — Px.
population with meam and variance 1, we know the sample
meanz is sufficient foru. This means that we can replace
the originaln-dimensional sample with the one-dimensional2  The Central SUbSpaCe
meanz without loss of information of.
In the same spiritdimension reduction without loss of in- Let B denote a fixegh x ¢, ¢ < p, matrix so that
formationis a key theme of regression graphics. The goal
is to reduce the dimension of the predictor vectarithout y I x|BTx 1)
loss of information on the regression. We call thidficient
dimension reductionborrowing terminology from classical This statement is equivalent to saying that the distribbutib
statistics. Sufficient dimension reduction leads natyral  y|x is the same as that @fi B” x for all values ofx in its
sufficient summary plotshich contain all of the information marginal sample space. It implies that the< 1 predictor
on the regression that is available from the sample. vectorx can be replaced by thex 1 predictor vectorB” x
Many graphically oriented methods are based on the idewithout loss of regression information, and thus represant
of dimension reduction, but few formally incorporate the no potentially useful reduction in the dimension of the préatic
tion of sufficient dimension reduction. For example, pro-vector. Such a3 always exists, because (1) is trivially true
jection pursuit involves searching for “interesting” lovir d WhenB = I,,, thep x p identity matrix.
mensional projections by using a user-selected projeation Statement (1) holds if and only if
dex that serves to quantify “interestingness” (Huber 1995)
Such methods may produce interesting results in a largely ex y L x|Ps(p)x
ploratory context, but one may be left wondering what they
have to do with overarching statistical issues like regoess  Thus, (1) is appropriately viewed as a statement alSQi®),
We assume throughout that the scalar respgnsed the  which is called adimension-reduction subspace for the re-
p x 1 vector of predictors have a joint distribution. This as- gression ofy on x (Li 1991, Cook 1994a). The idea of a
sumption is intended to focus the discussion and is notaruci dimension-reduction subspace is useful because it rapiese
*This article was delivered in 1998, at the 30th symposiumheninter a“sufficient’ reduction in the dimension Of the p.redictocve.
face between Statistics and Computér Science, an)(; V\?asqsmmky pub- tor. Clearly, knowledge of the smallest dimension-redarcti

lished in theProceedings of the 30th Interfac&or further information on SUbSpace_WQUId_be useful for parSir_noniOU5|y characteyizin
the Interface, visit www.interfacesymposia.org. how the distribution of|x changes with the value &f.

This article, which is based on an Interface tutorial, pnése
an overview of regression graphics, along with an annotate
bibliography. The intent is to discuss basic ideas and g&ssu
without delving into methodological or theoretical detail
and to provide a guide to the literature.




LetS, x denote the intersection of all dimension-reduction  In regressions withl D structure and central subspace
subspaces. Whilé,, is always a subspace, it is not nec- Sy «(n), a 2D plot ofy versusn”x is a minimal sufficient
essarily a dimension-reduction subspace. Neverthefggs, summary plot. In practices$,«(n) would need to be esti-
is a dimension-reduction subspace under various reasonalbrhated.

conditions (Cook 1994a, 1996, 1998b). In this articdg, The following two models each ha@D structure pro-
is assumed to be a dimension-reduction subspace and, falided the nonzero vectors ands3, are not collinear:

lowing Cook (1994b, 1996, 1998b), is called thentral

dimension-reduction subspacer simply thecentral sub- ylx = p(Blx,05x%)+oe

space The dimensiod = dim(S,|x) is thestructural dimen- yx = M(ﬂlTX) 4 g(ﬁgx)g

sionof the regression; we will identify regressions as having

0D,1D,...,dD structure. In this caseS,x(n) = S(B1,2) and a3D plot of y over

The central subspace, which is taken as the inferential obS,|«(n) is a sufficient summary plot. Again, an estimate of
ject for the regression, is the smallest dimension-reduacti S, would be required in practice.
subspace such thatl. x|n”x, where the columns of the ma- In effect, the structural dimension can be viewed as an in-
trix n form a basis for the subspace. In effect, the centratex of the complexity of the regression. Regressions @ith
subspace is a super parameter that will be used to charactetructure are usually more difficult to summarize than those
ize the regression gfonx. If S|, were known, theninimal  with 1D structure, for example.
sufficient summary plaif y versusn”x could then be used
to guide subsequent analysis. If an estimated baeisS

: vix 2.2 |
were available then the summary plot;p¥ersusi”x could SSUues

be used similarly. There are now two general issues: how can we estimate the
central subspace, including its dimension, and what might w
2.1 Structural Dimension gain in practice by doing so? We will consider the second

issue first by using an example in the next section to con-

The simplest regressions have structural dimengdien0, in  trast the results of a traditional analysis with those based
which casey 1L x and a histogram or density estimate basedan estimate of the central subspace. Estimation methods are
onys, ...,y is @ minimal sufficient summary plot. The idea discussed in Section 4.
of 0.D structure may seem to limiting to be of much practical
value. But it can be quite important when using residuals in
model checking. Letting denote the residual from a fit of a 3 Naphthalene Data
target model in the population, the correctness of the model
can be checked by looking for information in the data to con-Box and Draper (1987, p. 392) describe the results of an
tradict 0D structure for the regression efon x. Sample experiment to investigate the effects of three process vari
residuals® need to be used in practice. ables (predictors) in the vapor phase oxidation of naphtha-

Many standard regression models have structure. For lene. The response variahjas the percentage mole conver-
example, letting be a random error with mean 0, variance 1 sion of naphthalene to naphthoquinone, and the three predic
ande 1 x, the following additive-error models each hav®  tors arex; = logarithm of the air to naphthalene ratio (L/pg),
structure provided # 0: xo = logarithm of contact time (seconds) angl= bed tem-
perature. There are 80 observations.

yx = Bo+8"x+o0e 2)
o T
ylx = u(ﬁTX) +oe , @) 31 Traditional analysis
y(}\)|x _ Iu(ﬁTx) " U(ﬁTX)E (5) oxan raper suggeste an analyslis based on a 1ull second-

order response surface model in the three predictors. In the
Model (2) is just the standard linear model. It hds struc-  ordinary least squares fit of this model, the magnitude dfieac
ture because singell x|57x. Models (3) and (4) allow for  of the 10 estimated regression coefficients is at leastAéxti
a nonlinear mean function and a nonconstant standard devits standard error, indicating that the response surfagetma
ation function, but still havé D structure. Model (5) allows quite complicated. It is not always easy to develop a good
for a transformation of the response. Generalized lineat-mo scientific understanding of such fits. In addition, the stan-
els with link functions that correspond to those in (2)—(4pa dard plot of residuals versus fitted values of Figure 1 shows
havel D structure. In each case, the vectiapans the central curvature, so that a more complicated model may be neces-
subspace. Clearly, the class of regressions widhstructure  sary. Further analysis from this starting point may also be
is quite large. complicated by at least three influential observationsdhat
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Figure 1: Residuals versus fitted values from the fit of thle ful Figure 2: Cook’s distances versus case numbers from the fit
guadratic model to the naphthalene data. of the full quadratic model to the naphthalene data.

apparent in the plot of Cook’s distance (Cook 1997) versusnight transform the response in an effort to straighten the

case numbers shown in Figure 2. relationship. In this way, the estimated central subspreya
While there are many ways to continue the analysis, mosith the corresponding summary plot provide a starting poin

involve iterating between fitted models and diagnosticd unt for traditional modeling that is often more informative tha

a satisfactory solution is found. This analysis paradigm ca gp, initial fit based on a handy model.

yield gseful results, but thg process is often laboriousthad One role that regression graphics can play in an analysis

resulting models can be difficult to interpret. is represented schematically in Figure 4. Many traditional

analyses follow the paradigm represented by the lower two

boxes. We begin in the lower left box studying the problem

) and the data, and formulating an initial model. This is fol-
We next turn to the analysis of the naphthalene data basqfeq by estimation, leading to the fitted model in the right

on the central subspace. Using methods to be discussed a iy pjagnostic methods are then applied to the fitted model,
Igter, the d|men§|on of the central subspace was inferrbd to leading back to the model formulation and the data when re-
dim(Sy ) = 1 with medial action is required. Depending on the adequacy of the
- S(7) initial model, many iterations may be required to reach a sat
ylx isfactory solution. Our brief look at the naphthalene data i
wheren = (0.38,0.46,0.8)”. The corresponding 2D sum- Section 3 represents just one iteration. This paradigm for a
mary plot, which is estimated to contain all the regressien i regression analysis has been discussed by several authors,
formation, is shown in Figure 3 along with a lowess smoothcluding Cook and Weisberg (1982, p. 7) and Box (1980).
and a fitted quadratic. The quadratic matches the lowess Regression graphics is not intended to replace this tradi-
smooth over the upper half of the range on the horizontational paradigm. Rather, as illustrated in the upper lef,bo
axis, but otherwise fails to provide a good fit. This failure its role is to provide a firm starting point through investiga
accounts for the curvature in the residual plot of Figure 1tion of the central subspace and sufficient summary plots. We
The influential observations that would likely complicate a think of the graph in Figure 3 as providing information for
analysis based on response surface models fall mostly aloribe formulation of an initial model for the naphthalene data
directions orthogonal tg and contributed to the estimation which is the first step in the traditional paradigm. The hope
of the central subspace only by hinting at the possibiligtth is that this starting point will be close to a satisfactorgwar
dim(Sy|x) = 2. and that only a few iterations will be required.
There are many ways to continue the analysis, but all can Regression graphics can also be of value in the diagnostic
be based on the summary plot of Figure 3. For example, weortion of an analysis. Letting denote the population resid-

3.2 Graphical analysis



(Cook and Nachtsheim 1994).
We next consider graphical estimates of the central sub-
space using a procedure callg@phical regressiofGREG).

15

4.1 Graphical Regression

10

4.1.1 Two predictors

With p = 2 predictors,S,«(n) can be estimated visually

from a 3D plot withy on the vertical axis andz,,z2) on

the horizontal axes. Visual assessmeriibfcan be based on

the result thay 1L x if and only if y 1L b”x for all b € R?

(Cook 1996, 1998b). As the 3D plot gfversus(zq, z2) is

rotated about its vertical axis, we see 2D plotsyofersus

all linear combination$”x. Thus, if no clear dependence is

ol ° 0 e seen in any 2D plot while rotating we can infer that x. If

775 ;’73% o 8255 55 dependence s seen in a 2D plot, then the structural dimensio
' S must be 1 or 2. Visual methods for deciding betwéénhand

2D, and for estimatings, x whend = 1, were discussed in
Figure 3: Estimated sufficient summary plot for the naphthadetail by Cook (1992a, 1994a, 1998b), Cook and Weisberg
lene data. (1994a), and Cook and Wetzel (1993).

Graphics: Sufficient

4.1.2 More than two predictors
summary plots &Sy |x

The central subspace can be estimated wher by assess-
Estimation ing the structural dimension in a series of 3D plots. Here is
Assumptions, - 7 Inference the general idea. Let; andx, be two of the predictors, and
Model & Data _ _ Fitted model collect all of the remaining predictors into thg — 2) x 1
D'a%HOSt'CS vectorxs. We seek to determine if there are constantand
rix ¢ SO that
y L x|(c121 + cowa, X3) (6)

Figure 4: Analysis paradigm incorporating central subspac

If (6) is true ande; = ¢2 = 0 thenx; andzx, can be deleted

from the regression without loss of information, reducing t
ual from the fitted model in the lower right box, we can usedimension of the predictor vector by 2. If (6) is true and ei-
the central subspac®. , for the regression af onx to guide  there; # 0 or ¢, # 0 then we can replace; andx, with the
diagnostic considerations (Cook 1998b). single predictorr;s = cyx1 + cax2 Without loss of informa-

tion, reducing the dimension of the predictor by 1. In which

] ) case we would have a new regression problem with predic-

4 Estimating the Central Subspace tors (z12,x3). If (6) is false for all values ofcy, c;) then

the structural dimension is at least 2, and we could selext tw
There are both numerical and graphical methods for estimasther predictors to combine. This methodology was devel-
ing subspaces @, (). All methods presently require that oped by Cook (1992a, 1994a, 1996, 1998b), Cook and Weis-
the conditional expectation(k|n”’x) is linear wherp > 2. berg (1994a), and Cook and Wetzel (1993), where it is shown
We will refer to this as thdinearity condition In addition, that various 3D plots, including 3D added-variable plogs) c
methods based on second moments work best when the cobe used to study the possibilities associated with (6) and to
ditional covariance matrix véx|n? x) is constant. Both the estimate(ci, cz) visually. Details are available from Cook
linearity condition and theonstant variance conditioapply ~ (1998b).
to the marginal distribution of the predictors and do notin- The summary plot of Figure 3 was produced by this means
volve the response. Hall and Li (1993) show that the lingarit (Cook 1998b, Section 9.1). It required a visual analysis of 2
condition will hold to a reasonable approximation in many 3D plots and took only a minute or two to construct. Graphi-
problems. In addition, these conditions might be inducedtal regression is not time intensive with a modest number of
by using predictor transformations and predictor weigitin predictors. Even with many predictors, it often takes lemst



than more traditional methods which may require that a bateondition fails then we may well havim (S, ) = 2. In this

tery of numerical and graphical diagnostics be appliedr aftecase the residual regression is intrinsically more corapdid
each fit. Graphical regression has the advantage that igothinthan the original regression and a residual analysis may do
is hidden since all decisions are based only on visual inspeenore harm than good.

tion. In effect, diagnostic considerations are an intepeat The objective function (7) can also be used with quadratic
of the graphical regression process. Outliers and inflaénti kernelsz+b7 x+x” Bx whereB is ap x p Symmetric matrix
observations are usually easy to identify, for example. of quadratic coefficients. When the predictors are normally
distributed,S(B) converges to a subspace that is contained
4.2 Numerical methods in the central subspace (Cook 1992b; 1998b, Section 8.2).

Several numerical methods are available for estimating thg 5 5

= Inverse regression methods
central subspace. We begin with standard methods and then

turn to more recent developments. In addition to the standard fitting methods discussed in the
previous section, there are at least three other numerigthl-m

4.2.1 Standard fitting methods and residual plots. ods that can be used to estimate subspaces of the central sub-
space:

Consider summarizing the regression by minimizing a convex _ . . .

objective function of a linear kernel+ v 'x: e sliced inverse regressiosir (Li 1991),

. 1 . e principal Hessian directions, Hol (Li 1992, Cook
(a,b) = argmin — > " L(a +bTx;, y;) (7) 1998a), and

i=1
e sliced average variance estimatiogave (Cook and

whereL(-, ) is a convex function of its first argument. This Weisberg 1991, Cook and Lee 1998).

class of objective functions includes most of the usual meth
ods including ordinary least squares with= (y; — a —  Allrequire the linearity condition. The constant variacoa-
b"x;)?, Huber's M-estimate, and various maximum likeli- dition facilitates analyses with all three methods, butds n
hood estimates based on generalized linear models. Thisssential for progress. Without the constant varianceieond
setup is being used only as a summarization device and dogsn, the subspaces estimated will likely still be dimensio
not imply the assumption of a model. Next, let reduction subspaces, but they may not be central. All othes
methods can produce useful results, but recent work (Cook
and Lee 1998) indicates thakvEe is the most comprehen-
sive.
denote the population version @f, 13). Then under the linear- SAVE, SIR, pHd, the standard fitting methods mentioned in
ity condition, 3 is in the central subspace (Li and Duan 1989,the previous section and other methods not discussed tere ar
Cook 1994a). Under some regularity conditiohspnverges  all based on the following general procedure. First, let
to 3 at the usual root: rate.

There are many important implications of this result. First z=Y""2(x - E(x))

if dim(S,|x) = 1 and the linearity condition holds then a plot ] ]
ST . - denote the standardized versionxgf where¥ = var(x).

of y versush’ x is an estimated sufficient summary plot, and —1/2 .
. . . ThenS,, = X Syjz- Thus there is no loss of general-
is often all that is needed to carry on the analysis. Second, i Y 4 .
: ; %y working on thez scale because any basis ), can be
is probably a reason for the success of standard method |Il% : : :

. . Dack-transformed to a basis f6y.. Suppose we can find a
ordinary least squares. Third, the result can be used tb faci ] . N : N
itate other graphical methods. For example, it can be usefonsistent estimat&/ of ap x k procedure-specific popula-
to facilitate the analysis of the 3D plots encountered dygin 10N matrix M with the property that5(M) C Syj,. Then
GREGanalysis. inference on at least a part §f,, can be based oh/. SAVE,

Finally, under the linearity condition, this result can be SIR, pHd and other numerical procedures differ ahand the
used to show tha$, , C S,x (Cook 1994a, 1998b). Con- method of estimating it. For example, for the ordinary least
sequently, the analysis of residual plots provides infdioma ~ Squares option of (7), sét= 1 andM = cov(y, z).
that is directly relevant to the regressionbnx. Onthe  Lets > 5 > ... > §, denote the singular values of
other hand, if the linearity condition does not hold itisipro M, and leta,, . . ., 4, denote the corresponding left singular
able thatS, x ¢ S,|x and thus that a residual analysis will be vectors, wherg = min(p, k). Assuming thatl = S(M) is
complicated by irrelevant information (the part$f, thatis  known,

notinS,x). For example, iflim(S,x) = 1 and the linearity S(M) =S8(i,...,14q)

Y

(o, B) = arg migl E(L(a+b"x,y))

u’)



is a consistent estimate 6{Af). For use in practice] will
typically need to be replaced with an estimateased on in-
ferring about which of the singular valugésis estimating 0,
Or on usingGREGto infer about the regression gfon thegq

linearly transformed predicto:fsfz,j =1,...,q.

(11]
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