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Abstract

Graphical methods based on dimension-reduction
subspaces for regression problems (Cook 1994) may
be useful for studying the relative importance of in-
puts in computer models of physical systems. Sliced
inverse regression (Li 1991), principal Hessian direc-
tions (Li 1992), ceres plots (Cook 1993), and in-
verse response plots (Cook and Weisberg 1994) are
recent methods that can identify characteristics of
dimension-reduction subspaces and facilitate graphi-
cal analyses of the important variables. These meth-
ods work well in the problem under consideration
and may serve as important graphical methodology
more generally, particularly when combined into a
single paradigm for graphical regression analysis.

1 Introduction

A large simulation code was developed at Los
Alamos National Laboratories (lanl) to aid in a
study of the fate of an environmental contaminant
introduced into an ecosystem. Environmental con-
taminants have the potential for ecological and hu-
man health effects due to their toxicological proper-
ties. A good appreciation of the ecological risk asso-
ciated with contamination requires an understand-
ing of the dynamics of contamination.

The lanl code is essentially a compartment model
with 8 compartments: vegetation interior, vegeta-
tion surface, terrestrial invertebrates, small herbi-
vores, large herbivores, insectivores, predators and
litter. The litter compartment is a sink that only
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receives the contaminant. The model consists of a
set of coupled differential equations representing the
various compartments in the ecosystem. It is based
on the assumption that the contaminant enters the
ecosystem by dissolution to water and then moves
through the food web by one organism consuming
another. The concentration of the contaminant in
water is assumed to be constant for any run of the
code. In total, the model requires 84 inputs and,
for the purposes of this study, the response y is the
amount of contamination in the terrestrial inverte-
brates at day 5000. The specific issue addressed in
this article is how to assess the relative importance
of the inputs for explaining the variation in y. In
short, which inputs are most important?

Any assessment of relative importance will depend
on the joint distribution of the inputs. The scientists
who developed the lanl model provided ranges for
each of the 84 input variables and an estimate of
the nominal value. Based on this and other infor-
mation, Dick Beckman and Mike McKay, members
of the lanl Statistics Group, developed beta distri-
butions for each of the 84 inputs. No J-shaped or
U-shaped beta distributions were allowed, but the
distributions could be symmetric or highly skewed.
The inputs were regarded as mutually independent
so their joint distribution is the product of the indi-
vidual marginal beta densities. This general setup
will be called the beta sampling plan. Let x denote
the 84 × 1 vector of inputs. I will refer to the sam-
ple space for the inputs as the operability region and
use p as a generic representation for the number of
inputs.

2 Assessment rationale

The notion of relative importance is perhaps easiest
to quantify locally, where measures of importance
might be based on rates of change around selected
points. The results of such an analysis could be elu-
sive, however, particularly if the response surface is
flat on the average but has many local peaks and
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valleys. The local relative importance of the inputs
near the nominal value of x need not be the same
as that near the edges of the operability region, for
example.

Alternatively, relative importance might be ap-
proached globally, looking for inputs or functions of
inputs that account for most of the variation in the
response across the operability region. Such an ap-
proach might yield useful results if there are clear
global trends, but it could well fail if the primary
variation in the response is local. In this article I
concentrate on the global approach since experience
with a distinct but similar simulation code indicated
that there may well be clear global trends.

Let F (y|x) denote the cdf of the response given
the inputs. Since the simulation code itself is de-
terministic, F (y|x) places mass 1 at the value of y

corresponding to the value of x. The basic idea in
a global analysis is to find a low dimensional func-
tion g(x) that can serve as a substitute for x itself
without important loss of information. In particu-
lar, F (y|g(x)) should be a good approximation of
F (y|x),

F (y|g(x)) ≈ F (y|x) (1)

for all values of x in the operability region. If a
low dimensional function g can be found so that (1)
holds to a useful approximation, then the problem
of assessing relative importance might be eased con-
siderably. The success of this approach depends in
part on the specific types of functions allowed for g.
In this article I concentrate on linear functions and
linear functions after coordinate transformations of
the inputs.

In the next section I briefly review the methodol-
ogy that will be adapted to study the relative im-
portance of the inputs.

3 Methodology

Though out this section I consider a generic regres-
sion problem with response y and p × 1 vector of
predictors x. The cdf for the regression problem
will still be denoted as F (y|x). The notation u⊥⊥ v

will be used to indicate that the random variables
u and v are independent. Similarly, u⊥⊥ v|z means
that u and v are independent given any value for the
random variable z. The subspace of ℜp spanned by
the columns of a p×k matrix B will be indicated by
S(B).

3.1 Dimension-reduction subspaces

Let B = (b1, . . . , bk) denote a p × k, k ≤ p, matrix
so that

F (y|BT x) = F (y|x) (2)

for all values of x in the relevant sample space. In
reference to (1), g(x) = BT x. If (2) holds then
y ⊥⊥ x|BT x and x can be replaced with BT x in the
regression problem without loss of information. Ad-
ditionally, if (2) holds then it also holds with B re-
placed by BA for any full rank k×k matrix A. Thus,
(2) is really a statement about S(B) rather than
about a particular basis B.

If (2) holds then S(B) is called a dimension-

reduction subspace for F (y|x). Dimension-reduction
subspaces with the minimum dimension are of par-
ticular importance since they provide the maximum
reduction of the predictor dimension without loss of
information: If Sy|x is a dimension-reduction sub-
space that is contained in all dimension-reduction
subspaces Sdrs,

Sy|x = ∩Sdrs, (3)

then Sy|x is called a central dimension-reduction

subspace for F (y|x). Clearly, a central dimension-
reduction subspace has minimum dimension. How-
ever, a dimension-reduction subspace with minimal
dimension need not be a central dimension-reduction
subspace because such subspaces need not exist. In
this article central dimension-reduction subspaces
are assumed to exist and will be denoted by Sy|x

with the subscripts indicating the particular regres-
sion.

While central dimension-reduction subspaces do
not always exist, conditions can be imposed to guar-
antee their existence: If x has a density that is
positive everywhere on ℜp then central dimension-
reduction subspaces always exist (Cook 1994). This
result does not apply in the lanl problem because
the density of x is zero outside the unit cube. How-
ever, the following lemma shows that if E(y|x) is
well-behaved then central dimension-reduction sub-
spaces again exist.

Lemma 1 Let S(α) and S(φ) be dimension-

reduction subspaces for a regression problem

that is characterized by its regression function,

y ⊥⊥ x|E(y|x). If x has a density f(x) > 0 for

x ∈ Ω ⊂ ℜp and if E(y|x) can be expressed as a con-

vergent power series in the coordinates of x = (xk),

E(y|x) =

∞∑

k1,...,kp

ak1,...,kp
xk1

1 · · ·xkp

p

then S(α)∩S(φ) is a dimension-reduction subspace.

2



In view of this lemma it seems reasonable to as-
sume that central dimension-reduction subspaces ex-
ist in the lanl problem. For further discussion
of dimension-reduction subspaces, see Cook (1994),
Cook and Wetzel (1993) and Li (1991).

3.2 sir and phd

Several methods have been proposed in recent years
to estimate dimension-reduction subspaces. I will
confine attention to two methods in this section.
The first is sliced inverse regression (sir), as pro-
posed by Li (1991) and Duan and Li (1991). Letting
η denote a basis for Sy|x, sir is based on the result
that if E(x|ηT x) is a linear function of the value of
ηT x then

E[Σ−1(x − E(x))|y] ∈ Sy|x (4)

for all values of y. The sir procedure for estimating
Sy|x employs a principal components analysis of an
estimate of the covariance matrix

var{E[Σ−1(x − E(x))|y]}

obtained by slicing on the observed values of y. Al-
though sir requires no conditions on F (y|x), circum-
stances can arise in which the manifold

E[Σ−1(x − E(x))|y]

obtained by allowing y to vary over its sample space
fails to span Sy|x. In the extreme, it is possible to
have

E[Σ−1(x − E(x))|y] = 0

for all values of y while F (y|x) 6= F (y). The exis-
tence of central dimension-reduction subspaces helps
avoid such non-informative possibilities but provides
no universal guarantees. For example, experience
has shown that sir may miss directions in Sy|x when
the regression function E(y|x) is curved with little
linear trend (Cook and Weisberg 1991). Tests to as-
sist in estimating the dimension of Sy|x are a part
of the sir procedure but require x to be normally
distributed.

The second method is based on finding the prin-
cipal Hessian directions (phd), as proposed by Li
(1992). Let Σ = var(x) and

Σyxx = E[y − E(y)][x − E(x)][x − E(x)]T

Next, define the eigenvectors νk and eigenvalues λk

as the solutions to

Σyxxνk = λkΣνk

If x is normally distributed then (Li 1992)

νk ∈ Sy|x (5)

for all λk 6= 0. Thus, Sy|x can be estimated via
an eigenvalue decomposition of Σyxx relative to Σ.
phd seems to work well for finding directions in Sy|x

when E(y|x) is curved and has little linear tend. For
this reason it may serve as a useful compliment to
sir. On the down side, phd can be sensitive to non-
normality in x. The weighting procedure proposed
by Cook and Nachtsheim (1994) might be used to
reduce the importance of predictor normality. The
results of Hall and Li (1993) suggest that the various
conditions for sir and phd may hold to a reasonable
approximation in many problems.

3.3 Predictor transformations

In many regression problems, coordinate-wise trans-
formations of the predictors t(x) = (tj(xj)) can
facilitate an analysis. Specifically, transformations
might be found so that F (y|x) = F (y|t(x)) for
all values of x in the relevant sample space while
dim(Sy|t(x)) < dim(Sy|x) where “dim” denotes di-
mension.

For example, suppose that p = 2 and that F (y|x)
can be described by the linear model

y|x = x1 + log(x2) + ǫ

where ǫ⊥⊥ x. For that regression problem, Sy|x = I2

and dim(Sy|x) = 2. However, defining t1(x1) = x1

and t2(x2) = log(x2) gives a new regression prob-
lem with Sy|t(x) = S((1, 1)T ) and dim(Sy|t(x)) = 1
so that the dimension of the central dimension-
reduction subspace has been reduced by 1.

ceres plots as described by Cook (1993) will be
used to determine predictor transformations that
may result in a simplified regression. ceres plots are
a generalization of partial residual plots that do not
require linear regression functions among the predic-
tors.

3.4 Response transformations

Let ty(y) denote a strictly monotonic transformation
of the response. Then it is not difficult to see that

Sty(y)|x = Sy|x (6)

Accordingly, central dimension-reduction subspaces
are invariant under monotonic transformations of
the response and thus such transformations have
essentially no technical role in the identification of
Sy|x. Response transformations may be important
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for increasing the resolution of various plots and dur-
ing the traditional modeling phase of an analysis,
however.

3.5 An analysis paradigm

In broad terms, one paradigm for combining the
tools of the previous sections in a regression analysis
is as follows. The first step is to explain variation
in the y by using response and predictor transfor-
mations to linearize the regression function as far as
practically reasonable. Specifically, write the regres-
sion function as

E(ty(y)|t(x)) = β0 + βT t(x) + d(t(x)) (7)

where

d(t(x)) = [E(ty(y)|t(x)) − β0 − βT t(x)],

ty is a monotonic transformation of the response and
t(x) is a coordinate-wise transformation of the pre-
dictors as described in Section 3.3. The general idea
is to choose ty and t(x) so that the variation in the
deviations from linearity d(t(x)) is small relative to
the variation in the linear component βT t(x). Once
the transformations have been determined, the lin-
ear component might be estimated by using sir, or-
dinary least squares or a number of other procedures,
depending on the behavior of the predictors.

Let
et = ty(y) − β0 − βT t(x)

denote the population residuals from a linear regres-
sion of ty(y) on t(x). Under fairly general conditions
on the marginal distribution of t(x), β ∈ Sty|t(x)

(Li and Duan 1989, Hall and Li 1993, Cook 1994,
Cook and Nachtsheim 1994). It then follows that
Set|t(x) ⊂ Sty|t(x). phd might now be applied to
the regression of et on t(x) to estimate vectors νk in
Set|t(x). Plots of ty versus the q important phd lin-
ear combinations νT

k t(x), k = 1, . . . , q, of the trans-
formed predictors can then be smoothed, and the
smooth

g1(V
T
1 t(x)) = g1(ν

T
1 t(x), . . . , νT

q t(x))

included in the regression function

E(ty(y)|t(x)) = β0 + βT t(x) +

g1(V
T
1 t(x)) + d1(t(x))

where V1 = (νk) is the p × q matrix with columns
νk. Hopefully q will typically be small, say 1 or 2.

Iteration can be used at this point, recalculating
residuals and reapplying phd until the residual sub-
spaces Set|t(x) has apparently been exhausted. The

final regression function will be of the form,

E(ty(y)|t(x)) = β0 + βT t(x) + g1(V
T
1 t(x)) +

· · · + gm(V T
m t(x)) + dm(t(x))

where g1, . . . , gm are the smooths deriving from ap-
plication of phd. With luck, the variation in the final
deviations dm(t(x)) will be small relative to that in
the rest of the regression function.

4 Analysis

The analysis described in this section is based on the
beta sampling plan as described in Section 1. More
specifically, 500 Latin hypercube samples (McKay,
Beckman and Conover 1979) were taken at the mid-
points of equal probable slices across the ranges of
the inputs. Although more observations could have
been taken easily, it was felt that 500 would be suffi-
cient to gain useful information about the inputs and
to guide further sampling as necessary. All sampling
was carried out by members of the lanl Statistics
Group.

As a baseline, Figure 1a gives a plot of the fit-
ted values versus the response from the ols regres-
sion of the response on the first-order model con-
taining all 84 inputs. Letting η denote a basis for
Sy|x, this starting point is based on the rationale
that if E(x|ηT x) is a linear function of the value of
ηT x and certain regularity conditions hold then the
84 × 1 vector of coefficient estimates b̂ converges to
a vector in Sy|x (Li and Duan 1989). ols estimation
was used for convenience only. Many other methods
based on convex objective functions could be used
as well.

Figure 1a indicates that the response variable is
highly skewed, ranging over several orders of magni-
tude from 2×10−5 to 4.5. Figure 1b was constructed
as Figure 1a, except that y was replaced by log(y).
There is fairly strong linearity in at least one direc-
tion in the log scale with R2 = 0.86. Figure 1b seems
to be a reasonable starting point for further analysis.
The transformation from y to log(y) does not change
the objective of the analysis because Slog(y)|x = Sy|x.

Application of sir with 100 slices of 5 observa-
tions each to the regression with log(y) did not pro-
vide anything beyond the projection in Figure 1b.
sir strongly indicated that dim(Slog(y)|x) = 1. The
correlation between the linear combination of the in-
puts implied by sir and the ols fitted values is 0.99,
so both procedures indicate essentially the same so-
lution. phd did not produce any information that
was felt relevant to Slog(y)|x beyond that provided
by ols.
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a. Fit 1 b. Fit 2

c. Fit 3 d. Fit 4

Figure 1: Plots of the log response versus the ols fitted values from four stages in the analysis of the data
from the beta sampling plan. (a) Original data. (b) log(y) and original inputs. (c) log(y) and transformed
predictors following the removal of nonessential inputs. (d) Final fit.

The plot in Figure 1b shows a strong linear trend
and thus attempting to find an improved approxi-
mation through input transformations as described
in Sections 3.3 and 3.5 may yield useful results. Be-
cause of the way in which the inputs were gener-
ated, conditional expectations of the form E(xj |xk)
should be essentially constant, implying that partial
residual plots may be used to suggest appropriate
input transformations (Cook 1993). The two panels
of Figure 2 show illustrative partial residual plots for
inputs 1 and 68 along with superimposed estimated
power curves. The implications from Figure 2 are
that dim(Slog(y)|x) > 1 and that improvements may
result by replacing x1 and x68 with their logarithms.
Partial residual plots were used iteratively, restrict-
ing the class of transformations to power transforma-
tions. This procedure essentially fits a generalized
additive model (Hastie and Tibshirani 1990) with a
restricted class of smooths. Because powers seemed
to work well in each case, there was little reason to
allow more general smoothing of the partial residual

plots. In total, 13 inputs were transformed in this
way and, as it turned out, the only transformations
used were the logarithm and the square root.

Following the transformation there seemed to be
many inputs that had little if any effect on the log re-
sponse under the beta sampling plan. Using a back-
ward elimination procedure, 54 input variables were
removed in the hope of increasing the power of subse-
quent analysis. The variables removed were judged
to be relatively unimportant. Let X30 denote the
vector of the 30 remaining inputs with the transfor-
mations applied. A plot of the log response versus
the ols fitted values for the regression on X30 is
shown in Figure 1c. A reduction in variance relative
to Figure 1b is evident and R2 = 0.976. Figure 1d,
which is the result of further analysis based on the
reduced model with transformed predictors, will be
discussed a bit later.

Following the rationale in Section 3.5, phd was
next applied to the residuals from the ols regression
of log(y) on X30. The results indicated one clear di-
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a. log(x1) b. log(x68)

Figure 2: Partial residual plots for the first and 68th input variables with response log(y). The superimposed
curves, (a) log(x1) and (b) log(x68), are the estimated input transformations.

a. View 1 b. View 2

Figure 3: Two views of the 3D partial residual plot for t68 and t69 in the regression with the transformed
and reduced inputs.

rection, with the possibility of one or two more. Ev-
idently, the associated central dimension-reduction
subspace is at least 2 and possibly 3 dimensional.
An inspection of the coefficients associated with the
first principal Hessian direction indicated that the
nonlinearity rests almost exclusively with the sum
of the two transformed inputs t68 = log(x68) and
t69 = log(x69). Two views of a 3D partial residual
plot (Cook 1993, Cook and Weisberg 1994) for t68
and t69 are shown in Figure 3. View 2 is provided
for contrast. View 1 gives a 2D projection of best
visual fit and strongly suggests that the structural
dimension of the 3D plot is 1 (Cook 1994, Cook and
Weisberg 1994, Cook and Wetzel 1993). The 3D
partial residual plot then confirms the indication of
phd that the sum t68 + t69 is relevant. Because the
coefficients of t68 and t69 are nearly identical in the
visual fit of Figure 1c and because the projection
in Figure 3a is well fit with a quadratic, these two

predictors were replaced with linear and quadratic
terms in their sum, t68 + t69 = log(x68x69). Let
X1

30 denote the resulting set of 30 transformed in-
puts and let e1

30 denote the ols residuals from the
regression of log(y) on X1

30. Finally, let X1
29 denote

the vector of 29 predictors constructed from X30 by
replacing (t68, t69) with the sum t68 + t69. The in-
put vectors X1

30 and X1
29 differ only by the quadratic

term (t68 + t69)
2

phd was now applied to the regression of e1
30 on

X1
29. Two significant linear combinations phd1 and

phd2 were indicated, implying that

dim(Se1

30
|X1

29

) = 2

The 3D plot of e1
30 versus phd1 and phd2 seems fairly

complicated, resembling a saddle with a high back.
Plots of e1

30 versus phd1 and phd2 are shown in Fig-
ure 4. These plots were smoothed and the smooths
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a. Direction 1 b. Direction 2

Figure 4: Plots of the response versus the first two principal Hessian directions from the regression on X1
29

of the residuals from log(y) on X1
30.

added to X1
30, giving a new vector of 32 predictors

X2
32. Using a two-dimensional smooth may have pro-

duced somewhat better results.
Beyond this point little improvement seemed pos-

sible. A plot of log(y) versus the ols fitted values
from the regression of log(y) on X2

32 is shown in Fig-
ure 1d. The corresponding R2 = 0.999.

The final regression function is of the form

E(log(y)|X) ≈ β0 + βT X1
29 (8)

+α1 log2(x68x69)

+g1(α
T
2 X1

29)

+g2(α
T
3 X1

29)

where g1 and g2 represent the smooths resulting from
the second application of pHd. Further refinement
may be desirable for a parsimonious predictive re-
gression function but the present analysis seems suf-
ficient for a reasonable idea about the important
inputs. Figure 1d suggests that there is a domi-
nant linear trend cross the operability region in the
transformed scale. This combined with the relative
simplicity of the nonlinear terms in (8) and the ap-
proximate independence of the inputs can be used
to assess the relative importance of the transformed
inputs by partitioning var(y) in terms of the various
components of the final model.

Based on a partition of var(y), the sum log(x68)+
log(x69) was judged to be the most important in-
put, accounting for about 35 percent of the varia-
tion. The second most important predictor log(x1)
accounts for about 25 percent of var(y). Other pre-
dictors in X30 were partially ordered in 3 sets as
follows: the three inputs

[log(x24), log(x63), log(x84)]

account for about 17 percent of the variation and
are more important than the four inputs

[log(x35), x48, x67, x83]

which are in turn more important that the five in-
puts

[x19, x54, log(x55), log(x61), x65]

The remaining inputs were judged to of relatively
minor importance.

5 Discussion

Guided by central dimension-reduction subspaces,
the basic procedure employed here consists of using
generalized additive modeling followed by iterative
application of phd to the residuals. sir did not pro-
vide any information beyond that provided by ols.
As indicated by the sequence of plots in Figure 1,
the method seemed to produce good results and may
represent a useful basis for graphical analyses more
generally.

It turns out that the decision to replace the pair of
predictors (t68, t69) with their sum was exactly right:
The lanl code depends only on the product x68x69,
as pointed out by Dick Beckman in response to the
first draft of this article.

The inputs were generated to be independent and
many steps in the analysis were taken with this in
mind. Linear relationships among the inputs may
have made the analysis somewhat harder, but would
not have required changing the underlying method-
ology. However, nonlinear relationships among the
predictors could have made assessing importance
much more difficult.
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All techniques used in this analysis are easily ac-
cessible in the R-code (Cook and Weisberg 1994).
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