
Parallel Processing here at
the School of Statistics

Charles J. Geyer

School of Statistics

University of Minnesota

http://www.stat.umn.edu/~charlie/parallel/

1

http://www.stat.umn.edu/~charlie/parallel/


• batch processing

• R package multicore

• R package rlecuyer

• R package snow

• grid engine (CLA)

• clusters (MSI)

2



Batch Processing

This is really old stuff (from 1975). But not everyone knows it.

If you do the following at a unix prompt

nohup nice -n 19 some job &

where “some job” is replaced by an actual job, then

• the job will run in background (because of &).

• the job will not be killed when you log out (because of nohup).

• the job will have low priority (because of nice -n 19).

3



Batch Processing (cont.)

For example, if foo.R is a plain text file containing R commands,

then

nohup nice -n 19 R CMD BATCH --vanilla foo.R &

executes the commands and puts the printout in the file foo.Rout.

And

nohup nice -n 19 R CMD BATCH --no-restore foo.R &

executes the commands, puts the printout in the file foo.Rout,

and saves all created R objects in the file .RData.

4



Batch Processing (cont.)

nohup nice -n 19 R CMD BATCH foo.R &

is a really bad idea! It reads in all the objects in the file .RData (if

one is present) at the beginning. So you have no idea whether

the results are reproducible.

Always use --vanilla or --no-restore except when debugging.

5



Batch Processing (cont.)

This idiom has nothing to do with R. If foo is a compiled C or
C++ or Fortran main program that doesn’t have command line
arguments (or a shell, Perl, Python, or Ruby script), then

nohup nice -n 19 foo &

runs it. And

nohup nice -n 19 foo < foo.in > foo.out &

runs it taking input from the file foo.in and placing output in the
file foo.out. Regular output and error messages are interspersed
and not necessarily in order.

nohup nice -n 19 foo < foo.in > foo.out 2> foo.err &

puts the error messages in a separate file.

6



Batch Processing (cont.)

Don’t omit the nice -n 19. If you omit it, and we notice it, you’ll

be in trouble. Or if we got up on the wrong side of bed that

morning, we’ll just kill your jobs.

7



Batch Processing (cont.)

We’ve got lots of computers, and each one has eight processors

(so eight jobs can run simultaneously).

That allows a lot of parallel processing without knowing anything

more than how to background a job.

8



Multicore Package

Now we start talking about parallel processing within one R job

using the multicore package (available from CRAN) and installed

on our computers. If you do the following in R

library(multicore)

setup statements

for (isplit in 1:nsplit) {

parallel(some R expression involving isplit)

}

out <- collect()

then the expressions that are arguments to parallel will execute

in parallel and out will be a list of length nsplit containing the

results.
9



Multicore Package (cont.)

Each invocation of the parallel makes a copy of the entire R

process using the unix fork command and runs it independently

of the main R process.

Call the main R process the “parent” process and the forked

copies the “child” processes (unix terminology).

The parent process keeps going when a child process is forked,

eventually spawning nsplit child processes running in parallel.

When the collect function is invoked, the parent process waits

until all the child processes finish and collects their results into

a list, which is the value of the collect function.

10



Multicore Package (cont.)

There is no special setup for the child processes, the unix fork

command in effect copies the whole state of the process (it

actually uses copy-on-write, no copying is done until the value

of an object changes). No child process has any effect on the

parent process except via the collect function.

11



Multicore Package (cont.)

If that’s too complicated, you can just think it’s magic, and it

really works!

There are options to parallel and collect that allow waiting for

some but not all child processes.

You can start as many child processes as you want, but there’s no

point in having more than 8 running simultaneously (or however

many processors you have in the computer if you are not using

our linux workstations).

12



Multicore Package (cont.)

There is an alternative to parallel and collect as a way to

make child processes and gets results from them (from the R

help page)

mclapply(X, FUN, ..., mc.preschedule = TRUE,

mc.set.seed = TRUE, mc.silent = FALSE,

mc.cores = getOption("cores"))

13



Multicore Package (cont.)

Warning! Child processes all compete for the memory in the

computer. If they are all trying to use most of the memory in

the computer, there will be no speed up from parallel processing.

In fact the computer may slow to unusability.

If the problem is compute cycles, multicore works great.

If the problem is memory, multicore is no help!

14



Multicore Package (cont.)

Note on the help for the parallel function

Windows operating system lacks the fork system call

so it cannot be used with multicore.

15



Multicore Package (cont.)

The optional argument mc.set.seed = TRUE given to the parallel

function will make each child process use a different random

number stream.

But the method used,

set.seed(Sys.getpid())

invoked in each child process, has no theoretical guarantees.

16



Rlecuyer Package

The rlecuyer package (available from CRAN) makes available

multiple parallel random number streams that do have theoretical

guarantees.

library(rlecuyer)

.lec.SetPackageSeed(c(42, 66, 101, 123454, 7, 54321))

nstream <- 8

stream.names <- LETTERS[1:nstream]

.lec.CreateStream(stream.names)

creates nstream streams named "A" through "H"

17



Rlecuyer Package (cont.)

With that setup

library(multicore)

foo <- function(name) {

.lec.CurrentStream(name)

result <- runif(5)

.lec.CurrentStreamEnd()

return(result)

}

for (i in 1:nstream)

parallel(foo(stream.names[i]), name = stream.names[i])

out <- collect()

produces different random vectors in each component of out

18



Rlecuyer Package (cont.)

Random number seeds to not propagate back to parent process

when using multicore.

No surprise. Nothing propagates back except what is returned

in the list returned by the collect function.

So running the loop again will produce the same random numbers

as before (probably not what is wanted).

19



Snow Package

The snow package (Simple Network of Workstations, available

from CRAN) provides parallel processing via clusters of processes

running on different computers.

20



Snow Package (cont.)

library(snow)

machines <- c("hyland", "dogleg", "crab", "sugar",

"strike", "pool", "pool", "pool")

cl <- makeSOCKcluster(machines)

invisible(clusterEvalQ(cl, library(nice)))

invisible(clusterEvalQ(cl, set.my.priority(19)))

some R statements doing some work on the cluster

stopCluster(cl)

sets up a cluster of eight processes on five machines (three on

pool), nices all eight processes, and stops the cluster.

Don’t forget the stopCluster command. It cleans up after you!

21



Snow Package (cont.)

If your work involves random numbers, then some R statements

doing some work on the cluster on the preceding slide expands

as follows

library(rlecuyer)

clusterSetupRNG(cl)

some R statements doing some work on the cluster

22



Snow Package (cont.)

The cluster consists of eight processes (the slave processes) on

five different machines. They are all controlled by the master

process which is executing the statements shown here.

23



Snow Package (cont.)

The main tool for getting work done on the cluster is the function
clusterEvalQ, which we have already seen used to nice the slave
processes. This function evaluates the same R expression on
each slave and returns the results to the master process as a list
with one component for each slave. For example,

out1 <- clusterEvalQ(cl, runif(5))

out2 <- clusterEvalQ(cl, runif(5))

Makes two different lists of vectors of uniform random numbers,
all of which are different. The ones done on different slaves
are different because clusterSetupRNG sets up a different stream
of random numbers on each slave, and the ones in different
calls (out1 and out2) are different because the slaves persist until
stopCluster is called.

24



Snow Package (cont.)

There are a bunch of other functions used to do work on the

cluster (from the R help page)

clusterSplit(cl, seq)

clusterCall(cl, fun, ...)

clusterApply(cl, x, fun, ...)

clusterApplyLB(cl, x, fun, ...)

clusterExport(cl, list)

clusterMap(cl, fun, ..., MoreArgs = NULL, RECYCLE = TRUE)

25



Snow Package (cont.)

snow solves one problem we had with multicore, that it was hard

to propagate the state of random number generators back to

the master process.

snow solves another problem we had with multicore which doesn’t

work well with more child processes than the number of cores in

one box.

snow solves yet another problem we had with multicore with all

child processes competing for memory in the same box.

snow can use all the cores in all the machines in the department

simultaneously. But everyone will get mad at you if you try!

26



Logging in Without Typing a Password

In order to avoid having to type your password once for each
slave process started you need to set up ssh so that you can log
in without typing your password (this is still completely secure).

Step 1. Use

ssh-keygen -t dsa

to set up an encryption key. Type a long passphrase that you
can remember when asked.

If successful, files

~/.ssh/id_dsa

~/.ssh/id_dsa.pub

will be created.
27



Logging in Without Typing a Password (cont.)

Step 2. Copy the file

~/.ssh/id_dsa.pub

into

~/.ssh/authorized_keys

on all machines you want to log into this authentication method.

For machines inside the department, which all share the same
home directory (via NFS)

cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

does the job.

28



Logging in Without Typing a Password (cont.)

Steps 1 and 2 get done once.

Step 3. This gets done each time you want to do ssh without

a password, once per unix login.

ssh-add

and type your passphrase. It will be remembered (but not written

down anywhere) until you log out of unix.

Now ssh won’t ask for a password.

29



Sun Grid Engine (CLA)

CLA has a bunch of servers running the Sun Grid Engine that is

supposed to make parallelism via batch processing easier.

It’s not clear that it does, and they don’t have as many processors

available as the School of Statistics does (last time I checked,

Glen and I tried it more than a year ago).

30



Massive Clusters (MSI)

The Minnesota Supercomputing Institute (MSI) located across

Northrop mall in Walter Library has some very large clusters,

some of which an U of M faculty can apply to get time on. So

once your application is working here using snow it can be moved

to a bigger cluster in Walter. (I haven’t tried this.)

31


