University of Minnesota

School of Statistics' home page.

Recent School Publications

2015 publications

Emma S. Spiro, Almquist, Z.W., Carter T. Butts (in press) "The Persistence of Division:Geography, Institutions, and Online Friendship Ties", Socius: Sociological Research for a Dynamic World DOI:10.1177/2378023116634340

Carter T. Butts,Almquist, Z.W. (2015) "A Flexible Parameterization for Baseline Mean Degree in Multiple Network ERGMs", The Journal of Mathematical Sociology 39(3), 163167. DOI:10.1080/0022250X.2014.967851

Almquist, Z.W., Carter T. Butts. (2015) "Predicting Regional Self-identification from Spatial Network Modelsquot;, Geographical Analysis 47(1), 5072. DOI: 10.1111/gean.12045

Cook, R. D. and Zhang, X. (2015). "Simultaneous envelopes for multivariate linear regression." Technometrics. doi: 10.1080/00401706.2013.872700

Ding, S. and Cook, R.D. (2015). "Tensor sliced inverse regression." Journal of Multivariate Analysis 133, 216-231. doi: 10.1016/j.jmva.2014.08.015

Cook, R. D. and Zhang, X. (2015). "Foundations for envelope models and methods." Journal of the American Statistical Association, . doi: 10.1080/01621459.2014.983235

Cook, R. D., Forzani, L.,Zhang, X. (2015) "Envelopes and reduced rank regression", Biometrika 102, 439-456. DOI:10.1093/biomet/asv001

Cook, R. D., Zhang, X. (2015) "Foundations for envelope models and methods", Journal of the American Statistical Association 110,599-611. DOI:10.1080/01621459.2014.983235

Cook, R. D., Zhang, H. (2015) "Simultaneous envelopes for multivariate linear regression", Technometrics 57, 11-25. DOI:10.1080/00401706.2013.872700

Cook, R. D., Su, Z.,Yang, Y. (2015) "envlp: A MATLAB Toolbox for Computing Envelope Estimators in Multivariate Analysis", Journal of Statistical Software DOI:10.18637/jss.v062.i08

Ding, S., Cook, R.D. (2015) "Tensor sliced inverse regression", Journal of Multivariate Analysis 133, 216-231. DOI:10.1016/j.jmva.2014.08.015

Carr A, Grund B, Neuhaus J, Schwartz A, Bernardino JI, White D, et al. "Prevalence of and risk factors for low bone mineral density in untreated HIV infection: a substudy of the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial." HIV Med. 2015;16 Suppl 1:137-46. DOI 10.1111/hiv.12242 PCMCID: 4341957 URL

INSIGHT START Study Group, Lundgren JD, Babiker AG, Gordin F, Emery S, Grund B, et al. "Initiation of Antiretroviral Therapy in Early Asymptomatic HIV Infection" The New England Journal of Medicine. 2015;373(9):795-807. DOI 10.1056/NEJMoa1506816 URL

Wright EJ, Grund B, Cysique LA, Robertson KR, Brew BJ, Collins G, et al. "Factors associated with neurocognitive test performance at baseline: a substudy of the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial" HIV Med. 2015;16 Suppl 1:97-108. DOI 10.1111/hiv.12238 URL:

Gruson D, Ferracin B, Ahn SA, Zierold C, Blocki F, Hawkins DM, Bonelli F, Rousseau MF. "1,25-Dihydroxyvitamin D to PTH(1-84) Ratios Strongly Predict Cardiovascular Death in Heart Failure" PLoS One. 2015 Aug 26;10(8):e0135427. DOI 10.1371/journal.pone.0135427

Moore, R G, Hawkins, D M, Miller, C M, Landrum, L M, Gajewski, W, Ball, J J, Allard, J W; Skates, S J, "Combining clinical assessment and the Risk of Ovarian Malignancy Algorithm for the prediction of ovarian cancer" Gynecologic Oncology 2014 135 547-551 DOI: 10.1016/j.ygyno.2014.10.017

Gruson D, Ferracin B, Ahn SA, Zierold C, Blocki F, Hawkins D.M., Bonelli F, Rousseau MF. (2015) "1,25-Dihydroxyvitamin D to PTH(1-84) Ratios Strongly Predict Cardiovascular Death in Heart Failure", PLoS One 26;10(8):e0135427. DOI: 10.1371/journal.pone.0135427.0135427.

Moore RG, Hawkins D.M., Miller CM, Landrum LM, Gajewski W, Ball JJ, Allard JW, Skates SJ, (2014) "Combining clinical assessment and the Risk of Ovarian Malignancy Algorithm for the prediction of ovarian cancer", Gynecologic Oncology. 135 547-551 DOI: 10.1016/j.ygyno.2014.10.017

Helwig N.E., Gao, Y., Wang, S., Ma, P. (2015) "Analyzing spatiotemporal trends in social media data via smoothing spline analysis of variance.", Spatial Statistics 14(C), 491-504. DOI:10.1016/j.spasta.2015.09.002

Helwig N.E., Ma, P. (2015) "Fast and stable multiple smoothing parameter selection in smoothing spline analysis of variance models with large samples.", Journal of Computational and Graphical Statistics, 24(3), 715-732. DOI: 10.1080/10618600.2014.926819

Helwig N.E.(in press) "Efficient estimation of variance components in nonparametric mixed-effects models with large samples" Statistics and Computing, Just Accepted DOI: 10.1007/s11222-015-9610-5 [Accepted]

Zhu, Y., Shen, X., and Ye, C. (2015). "Personalized prediction and sparsity pursuit in latent factor models" Journal of the American Statistical Association. DOI 10.1080/01621459.2014.999158

Yang, S., Lu, Z., Shen, X., Wonka, P., and Ye, J. (2015). "Fused multiple graphical Lasso" SIAM Journal on Optimization, 25, 916-943. DOI 10.1137/130936397

Xiang, S, Shen, X., and Ye, J. (2015). "Efficient sparse group feature selection via continuous and discrete optimization" Artificial Intelligence. 224, 28-50. DOI 10.1016/j.artint.2015.02.008

Austin, E., Shen, X., and Pan, W. (2015) "A novel statistic for global assocaition testing based on penalized regression" Genetic Epidemiology. , 39, 415-426. DOI 10.1002/gepi.21915

Wang, J., Shen, X., Qu, P, and Sun, Y. (2015). "Classification with unstructured predictors with an application to sentiment analysis" Journal of the American Statistical Association DOI 10.1080/01621459.2015.1089771

2014 publications

Almquist, Z. W. and C. T. Butts (2014), "Logistic Network Regression for Scalable Analysis of Networks with Joint Edge/Vertex Dynamics." Sociological Methodology.

Boessen, A., J. R. Hipp, E. J. Smith, C. T. Butts, N. N. Nagle, and Z. W. Almquist (2014), "Networks, Space, and Residents’ Perception of Cohesion" American Journal of Community Psychology DOI:10.1007/s10464-014-9639-1.

Cook, R. D. and Zhang, H. (2014). "Fused estimators of the central subspace in sufficient dimension reduction." Journal of the American Statistical Association, 109, 815-827. doi: 10.1080/01621459.2013.866563.

Ding, S. and Cook, R. D. (2014). "Dimensional folding PCA and PFC for matrix-valued predictors." Statistica Sinica, 24, 463-492. doi:

Hawkins, D. M. and Wu, Q., (2014) "The CUSUM and the EWMA Head-to-Head" Quality Engineering. 26, 215-222

Hawkins, D. M., (2014), "A Model for Assay Precision" Statistics in Biopharmaceutical Research

Hawkins, D. M. and Lombard, F., (2014), "Segmentation of Circular Data" Journal of Applied Statistics.

Reicks, M., Degeneffe, D., Rendahl, A., (2014) "Associations between eating occasion characteristics and age, gender, presence of children and BMI among U.S. adults." Journal of the American College of Nutrition, 33(4):315-27. Epub 20 Aug 2014. doi: 10.1080/07315724.2014.887485

Bobowski, N., Rendahl, A., Vickers, Z. (2014) "A longitudinal comparison of two salt reduction strategies: acceptability of a low sodium food depends on the consumer." Food Quality and Preference, in press. Epub 12 Aug 2014. DOI:

Bobowski, N., Rendahl, A., Vickers, Z. (2015) "Preference for salt in a food may be alterable without a low sodium diet." Food Quality & Preference, 39:40-45. Epub 20 June 2014. doi: 10.1016/j.foodqual.2014.06.005

Pieters, M., Rendahl A., (2014) "Intra-farm risk factors for Mycoplasma hyopneumoniae colonization at weaning age. " Veterinary Microbiology, 27 Aug 172(3-4):575-80. Epub 4 Jun 2014. doi: 10.1016/j.vetmic.2014.05.027

Martinson, K.L., Coleman, R.C., Rendahl, A.K., et. al. (2014) "Estimation of body weight and development of a body weight score for adult equids using morpho- metric measurements." Journal of Animal Science, 92(5):2230-38. Epub 18 Mar 2014. doi: 10.2527/jas.2013-6689

Fritz, K.L., Kaese, H.J., Valberg, S.J., Hendrickson, J.A., Rendahl, A.K., et. al. (2014) "Genetic risk factors for insidious equine recurrent uveitis in Appaloosa horses" Animal Genetics, 45:392-399. doi: 10.1111/age.12129

Kelley, J., Sharkey L.C., Christopherson P., Rendahl A., (2014), "Platelet count and plateletcrit in Cavalier King Charles Spaniels and Greyhounds using the Advia 120/2120." Veterinary Clinical Pathology, Mar 2014;43(1):43-49. doi: 10.1111/vcp.12116

Zhang, Y. and Shen, X. (2014). "Adaptive modeling procedure selection by data perturbation." Journal of Business and economic statistics. doi:10.1080/07350015.2014.965307.

Kim, S, Pan, W. and Shen, X. (2014). "Penalized regression approaches to testing for quantitative trait-rare variant association." Frontiers in Genetics, 5:121 doi: 10.3389/fgene.2014.00121

Zhu, Y., Shen, X. and Pan, W. (2014). "Structural pursuit over multiple undirected graphs." Journal of American Statistical Association. doi::10.1080/01621459.2014.921182.

Pan, W., Kim, J., Zhang, Y., Shen, X. and Wei, P. (2014). "A powerful and adaptive association test for rare variants." Genetics, 197, 1-15. (Chosen by the GENETICS Editors as one of the August 2014 Highlights.) doi: 10.1534/genetics.114.165035.

Kim, J., Wonzniak, J., Mueller, B, Shen, X., and Pan, W. (2014). "Comparison of statistical tests for group differences in brain functional networks." NeuroImage. doi: 10.1016/j.neuroimage.2014.07.031.

Xu, Z., Shen, X., and Pan, W. (2014). "Longitudinal analysis is more powerful than cross-sectional analysis in detecting genetic association with neuroimaging phenotypes." Plos One doi: 10.1371/journal.pone.0102312.

Kushnir, H., Weisberg, S., Olson, E., et. al. , (2014), "Using landscape characteristics to predict risk of lion attacks on humans in south-eastern Tanzania" African Journal of Ecology 52, 4, 1365-2028 doi: 10.1111/aje.12157

Xu, G., Lin, G. and Liu, J. (2014), "Rare-Event Simulation for the Stochastic Korteweg--de Vries Equation", SIAM/ASA J. Uncertainty Quantification, 2(1), 698-716. doi: 10.1137/130944473

Xu, G., Sen, B. and Ying, Z. (2014), "Bootstrapping a Change-Point Cox Model for Survival Data." Electronic Journal of Statistics 8, 1345-1379. DOI:

Liu, J. and Xu, G. (2014), "On the Conditional Distributions and the Efficient Simulations of Exponential Integrals of Gaussian Random Fields." The Annals of Applied Probability 24(4), 1691-1738. DOI:

Liu, J. and Xu, G. (2014), "Efficient Simulations for the Exponential Integrals of Hölder Continuous Gaussian Random Fields." The ACM Transactions on Modeling and Computer Simulation 24(2), 9:1--9:24. DOI:

Sen, B. and Xu, G. (2014), "Model based bootstrap methods for interval censored data." Computational Statistics and Data Analysis. DOI:

Chen, Y., Liu, J., Xu, G. and Ying, Z. (2014), "Statistical Analysis of Q-matrix Based Diagnostic Classification Models.@quot; Journal of the American Statistical Association DOI: 10.1080/01621459.2014.934827

Wang, Z., Paterlini, S., Gao, F., and Yang, Y. (2014) "Adaptive minimax regression estimation over sparse $\ell_q$-hulls" Journal of Machine Learning Research, 15, 1675-1711.

Yang, Y. and Zou, H. (2014). "A Coordinate Majorization Descent Algorithm for L1 Penalized Learning" Journal of Statistical Computation and Simulation, 84(1), 84-95. DOI:10.1080/00949655.2012.695374

Yang, Y. and Zou, H. (2013). "Nonparametric Multiple Expectile Regression via ER-Boost" Journal of Statistical Computation and Simulation

Xue, L. and Zou, H. (2014). "Optimal Estimation of Sparse Correlation Matrices of Semiparametric Gaussian Copula" Statistics and Its Interface, 7(2), 201-209.

Fan, J., Xue, L. and Zou, H. (2014). "Strong Oracle Properties of Folded Concave Penalized Estimation" Annals of Statistics, 42(3), 819-849. DOI: 10.1214/13-AOS1198

Zhang, T. and Zou, H. (2014). "Sparse Precision Matrix Estimation via Lasso Penalized D-Trace Loss" Biometrika, 101(1), 103-120. doi: 10.1093/biomet/ast059

Xue, L. and Zou, H. (2014). "Rank-based Tapering Estimation of Bandable Correlation Matrices" Statistica Sinica, 24(1), 83-100.

Zou, H. (2014). "Generalizing Koenker's Distribution" Journal of Statistical Planning and Inference, In Press.

Mai, Q. and Zou, H. (2014). "Nonparametric Variable Transformation in Sufficient Dimension Reduction" Technometrics DOI: 10.1080/00401706.2014.901254

2013 publications

Almquist, Z. W., and Butts, C. T., (2013) "Dynamic Network Logistic Regression: A Logistic Choice Analysis of Inter- and Intra-group Blog Citation Dynamics in the 2004 US Presidential Election", Political Analysis, 21 (4), 430--448 DOI:10.1093/pan/mpt016

Chen, K. C., , Steinhaeuser, K., Boriah, S., Chatterjee, S.,, and Kumar V., "Contextual Time Series Change Detection" 13th SIAM International Conference on Data Mining (SDM 2013), Austin, Texas, USA, May 2-4, 2013

Ganguly, A.R., Kodra, E., Chatterjee, S., Banerjee, A., and Najm, H. N., "Computational data sciences for actionable insights on climate extremes and uncertainty Section II: Computational Intelligent Data Analysis for Climate Change, Chapter 5, page 127-158" In Computational Intelligent Data Analysis for Sustainable Development, Edited by T. Yu, S. Simoff, N. Chawla, CRC Press, 440 pages. April 2013, ISBN:9781439895948

Li, Z., Qiu, P., Chatterjee, S., and Wang, Z., (2013) "Using p-values to design statistical process control charts," Statistical Papers , 54, 523--539.

James H. Faghmous, Matthew Le, Muhammed Uluyol, Vipin Kumar, Snigdhansu Chatterjee, (2013) "A Parameter-Free Spatio-Temporal Pattern Mining Model to Catalog Global Ocean Dynamics" ICDM 151-160

Cook, R.D., and Su Z. (2013) "Scaled envelopes: scale-invariant and efficient estimation in multivariate linear regression", Biometrika,

Cook, R.D.,Helland, I. and Su, Z. (2013) "Envelope models and partial least squares regression", Journal of the Royal Statistical Society B, 75, 851--877. ""

Albrecht, M. C., Nachtsheim, C. J., Albrecht, T. A. and Cook, R. D. (2013) "Experimental design for engineering dimensional analysis (with discussion)." Technometrics 55, 257-270. DOI:

Su, Z. and Cook, R. D. (2013), "Estimation of multivariate means with heteroscedastic errors using envelope models", Statistica Sinica 23, 213-230.

Cook, R. D., Forzani, L. and Rothman, A. J. (2013) "Prediction in abundant high-dimensional linear regression" Electronic Journal of Statistics, Vol. 7, 3059-3088.

Doss C. R., Suchard M. A., Holmes I., Kato-Maeda M., and Minin V. N. (2013) "Fitting Birth-Death Processes to Panel Data with Applications to DNA Bacterial DNA Fingerprinting" , Annals of Applied Statistics

Geyer, C.J. (2013) "Asymptotics of Maximum Likelihoodwithout the LLN or CLT or Sample Size Going to Infinity", Advances in Modern Statistical Theory and Applications: A Festschrift in honor of Morris L. Eaton, G.L. Jones and X. Shen eds IMS Collections, Vol. 10, pp. 1-24. Institute of Mathematical Statistics: Hayward, CA.

Geyer, C.J., Ridley, C.E., Latta, R.G., Etterson, J.R and Shaw, R. G. (2013) "Local Adaptation and Genetic Effects on Fitness: Calculations for Exponential Family Models with Random Effects", Annals of Applied Statistics, 7, 1778-1795.

Grund, B., Wright, E.J., Brew, B.J., Price, R.W., Roediger, M.P., Bain, M.P., Hoy, J.F., Shlay, J.C., Robertson, K.R., for the INSIGHT SMART Study Group (2013) "Improved neurocognitive test performance in both arms of the SMART study: Impact of practice effect", Journal of NeuroVirology, 19(4):383-92. DOI: 10.1007/s13365-013-0190-x

Hoy, J., Grund, B., Roediger, M., Ensrud, K.E., Brar, I., Colebunders, R., De Castro, N., Johnson, M., Sharma, A., Carr, A., for the INSIGHT SMART Body Composition Substudy Group (2013) "Interruption or deferral of antiretroviral therapy reduces markers of bone turnover compared with continuous therapy: The SMART Body Composition substudy", J Bone Mineral Research, 28(6):1264-74. DOI: 10.1002/jbmr.1861

Babiker, A.G., Emery, S., Fätkenheuer, G., Gordin, F.M., Grund, B., Lundgren, J.D., Neaton, J.D., Pett, S.L., Phillips, A., Touloumi, G., Vjechaj, M.J., for the INSIGHT START Study Group (2013) "Considerations in the rationale, design and methods of the Strategic Timing of AntiRetroviral Treatment (START) study", Clinical Trials, 10(1 Suppl):S5-S36. DOI: 10.1177/1740774512440342. Epub 2012 Apr 30.

Hawkins, D. M., (2013) "A General Variance Model for Methods Comparison", Journal of Chemometrics,

Hawkins, D. M. and Maboudou-Tchao, E. M., (2013) "Smoothed Linear Modeling for Smooth Spectral Data.", International Journal of Spectroscopy,

Fogel, P., Hawkins, D. M., Beecher, C., Luta, G., and Young, S. S., (2013) "A Tale of Two Matrix Factorizations", The American Statistician,

Zamba, K. D., Tsiamyrtzis, P., and Hawkins, D. M., (2013) "A Three-State Recursive Sequential Bayesian Algorithm for Biosurveillance", Computational Statistics and Data Analysis, 58, 82-97.

Maboudou-Tchao, E., M., and Hawkins, D. M., (2013), "Detection of Multiple Change-Points in Multivariate Data", Journal of Applied Statistics 40, 1979-1995.

Cai, T., Fan, J., and Jiang, T., (2013) "Distributions of Angles in Random Packing on Spheres", Journal of Machine Learning Research, 14, 1837-1864

Jiang, T., (2013) "Limit Theorems on Beta-Jacobi Ensembles", Bernoulli, 19(3), 1028-1046

Jiang, T. (2013). "Distributions of Eigenvalues of Large Euclidean Matrices Generated from lp Balls and Spheres", Linear Algebra and its Applications.

T. Jiang and F. Yang (2013), " Central Limit Theorems for Classical Likelihood Ratio Tests for High-Dimensional Normal Distributions" Ann. Stat. 41(4), 2029-2074.

Shen, X., and Pan, W. (2013) "Semi-supervised spectral clustering with application to detect population stratification", Frontiers in Statistical Genetics and Methodology

Liu, B., Shen, X., and Pan, W. (2013) "Semi-supervised spectral clustering with application to detect population stratification", Frontiers in Statistical Genetics and Methodology

Shen, X., Pan, W., Zhu, Y., and Zhou, H. (2013). "On constrained and regularized high-dimensional regression," The Annals of the Institute of Statistical Mathematics. 65, 807-32.

Zhu, Y., Shen, X., and Pan, W. (2013). "Simultaneous grouping pursuit and feature selection in regression over an undirected graph." Journal of the American Statistical Association, 108, 713-725.

Kim, S., Pan, W. and Shen, X. (2013). "A network-based penalized regression method with application to genomic data." Biometrics, 69, 582–593.

Liu, B., Shen, X. and Pan, W. (2013). "Semi-supervised spectral clustering with application to detect population stratification," Frontiers in Statistical Genetics and Methodology.

Xiang, S., Ye, J., and Shen, X. (2013). "Efficient sparse group feature selection via nonconvex optimization", Proceedings of the 2013 International Conference on Machine Learning and Applications in Atlanta, Georgia.

Pan, W., Shen, X. and Liu, B. (2013). "Cluster analysis: Unsupervised learning via supervised learning with a noncovex penalty," Journal of Machine Learning Research 14, 1865-1889.

He, X., Wang, L. and Hong, H. (2013) "Quantile-adaptive model-free nonlinear feature screening for high-dimensional heterogeneous data", Annals of Statistics, 41, 342-369.

Luo, X.H., Huang, C.Y. and Wang, L. (2013) "Quantile regression for recurrent gap time data", Biometrics, 69, 375-385.

Wang, L., Kim, Y.D. and Li, R. (2013) "Calibrating non-convex penalized regression in ultra-high dimension," Annals of Statistics, 41, 2505-2536.

Wang, L., Kai, B., Cedric,H. and Tsai, CL. (2013) "Penalized profiled semiparametric estimating functions." Electronic Journal of Statistics, 7, 2656-2682.

Fox, J., Friendly, M., and Weisberg, S., (2013) "Hypothesis Tests for Multivariate Linear Models Using the car package", The R Journal, 5(1), 39--53. URL=

Jayanthi , S., and Weisberg, S., (2013) "The Effects of Cognitive: Linguistic Variables and Language Experience on Behavioural and Kinematic Performances in Nonword Learning", Journal of Psycholinguistic Research, 4, 1-16.

Liu, J. and Xu, G. (2013) "On the Density Functions of Integrals of Gaussian Random Fields", Advances in Applied Probability, 45(2), 398-424.

Luo, X., Xu, G., and Ying, Z. (2013) "Sequential Analysis of the Cox Model under Response Dependent Allocation", Statistica Sinica, 23, 1761-1774.

Liu, J., Xu, G., and Ying, Z. (2013) "Theory of self-learning Q-matrix" Bernoulli, 19(5A), 1790-1817. http://dx/DOI/org/10.3150/12-BEJ430.

Rempala, G.A. and Yang, Y. (2013) "On permutation procedures for strong control in multiple testing with gene expression data", Statistics and its Interface, 6, 79-89. DOI:

Qian, W. and Yang, Y. (2013) "Model selection via standard error adjusted adaptive lasso", Annals of the Institute of Statistical Mathematics, 65, 295-318.

Liu, S. and Yang, Y. (2013) "Mixing partially linear regression models", Sankhya A, 75, 74-95.

Nan, Y. and Yang, Y. (2013) "Variable Selection Diagnostics Measures for High-Dimensional Regression", Journal of Computational and Graphical Statistics, in print.

Gao, F., Ing, C.K., and Yang, Y. (2013) "Metric entropy and sparse linear approximation of Lq -hulls for 0 < q ≤ 1", Journal of Approximation Theory, 166, 42-55. doi =

Rolling, C.A. and Yang, Y. (2013) "Model selection for estimating treatment effects", Journal of the Royal Statistical Society B

Ma, S., Xue, L. and Zou, H. (2013) "Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection", Neural Computation, 25, 2172-2198.

Mai, Q. and Zou, H. (2013) "A Note On the Connection and Equivalence of Three Sparse Linear Discriminant Analysis Method", Technometrics, 55(2), 243-246.

Mai, Q. and Zou, H. (2013) "The Kolmogorov Filter for Variable Screening in High-dimensional Binary Classification", Biometrika, 100(1), 229-234.

Xue, L. and Zou, H. (2013) "Minimax Optimal Estimation of General Bandable Covariance Matrices", Journal of Multivariate Analysis, 116: 45-51.

Yi, F. and Zou, H. (2013) "SURE-tuned Tapering Estimation of Large Covariance Matrices", Computational Statistics and Data Analysis, 58, 339 351.

Yang, Y. and Zou, H. (2013) "An Efficient Algorithm for Computing The HHSVM and Its Generalizations", Journal of Computational and Graphical Statistics, 22(2), 396-415.

Yang, Y. and Zou, H. (2013) "A Cocktail Algorithm for Solving The Elastic Net Penalized Cox's Regression in High Dimensions", Statistics and Its Interface, 6, 167-173. DOI:

Lin, C-Y., Zhang, H.H., Bondell, H. and Zou, H. (2013). "Variable Selection for Nonparametric Quantile Regression via Smoothing Spline ANOVA.&quot Stat 2(1), 255-268.

Song, R., Yi, F. and Zou, H. (2013). "On Varying-coefficient Independence Screening for High-dimensional Varying-coefficient Models." Statistica Sinica. DOI:10.5705/ss.2012.299