
This file consists of Chapter 5 of MacAnova User’s Guide by Gary W. Oehlert and
Christopher Bingham, issued as Technical Report Number 617, School of Statistics,
University of Minnesota, revised August 1998, describing Version 4.07 of MacAnova.

This manual is Copyright © 1998 Gary W. Oehlert and Christopher Bingham, all rights
reserved.

Fonts used in this manual are Palatino, Courier, and Symbol.

For information concerning MacAnova, write University of Minnesota, Department of
Applied Statistics, 352 Classroom Office Building, 1994 Buford Avenue, St. Paul, MN
55108-6042.

kb
This is Chapter 5 of the MacAnova Users' Guide for MacAnova version 4.07. The complete Users' Guide is available at http://www.stat.umn.edu/~gary/macanova/documentationug.htmlPlease notify the authors (kb@stat.umn.edu or gary@stat.umn.edu) of any inaccuracies or typographical errors. What may appear as bold face Greek symbols should be italic.List of PDF files making up manual PDF File PDF FileContents mancntnt.pdf Chapter 8 manchp08.pdfPreface manprfac.pdf Chapter 9 manchp09.pdfChapter 1 manchp01.pdf Chapter 10 manchp10.pdfChapter 2 (a) manchp2a.pdf Chapter 11 manchp11.pdfChapter 2 (b) manchp2b.pdf Appendix A manapdxa.pdfChapter 3 manchp03.pdf Appendix B manapdxb.pdfChapter 4 manchp04.pdf Appendix C manapdxc.pdfChapter 5 manchp05.pdf Appendix D manapdxd.pdfChapter 6 manchp06.pdf Appendix E manapdxe.pdfChapter 7 manchp07.pdf Appendix F manapdxf.pdf

MacAnova Version 4.07

5. Time Series related functions

5.1 Introduction MacAnova has a suite of functions useful in the frequency analysis of
univariate and multivariate time series. Besides the basic Fourier transform functions,
rft(), hft(), and cft(), there are functions to compute discrete convolutions and
sums of lagged products and to manipulate complex (real + i*imaginary) data.
autoreg() and movavg() can be used to generate data from ARIMA models, or to
compute innovations from ARIMA data when the coefficients in the model are
known. yulewalker() and partacf() allow computing autoregression coefficients
and partial autocorrelation functions from autocorrelation functions and vice versa.
toeplitz() transforms an autocovariance function into a variance/covariance matrix.

Distributed with MacAnova is a file, Tser.mac, which contains macros that are useful
in time series analysis and which illustrate the use of some of the functions described
in this chapter. The most important of these macros are described in Sec. 5.4. File
Tser.hlp contains help on these macros. See Sec. 8.6.1 for information on how to use
an alternate help file.

5.2 Operations useful in frequency domain time series analysis Although MacAnova
has no built in commands specifically for spectrum and cross-spectrum analyses of time
series, its functions for computing discrete Fourier transforms and for working with
complex data allow quite sophisticated frequency domain analyses, either directly or by
using macros. These are the basis of the macros in Tser.mac.

Here are some conventions used in this chapter:

The uncapitalized words “real”, “imaginary”, and “complex” are used in their
mathematical sense.

The capitalized words “Real” and “Complex” are used to describe a MacAnova
variable when it is an argument to or output from one of the functions described
in this section. See Sec. 5.2.3.

REAL is used when referring to the type of a MacAnova variable.

For example, we will write that 3 + 4i is a complex number, that cmplx() takes two
Real arguments and returns a Complex result, and that a n by p Complex matrix is
represented by a REAL matrix with 2p columns.

5.2.1 The DFT (Discrete Fourier Transform) Let {Xt} = {X0, X1, ..., XN–1} be a finite
complex or real series, that is, a series of N complex or real numbers. Then the DFT of
{Xt} is the finite complex series of length N

{ ˆ X k }, where ˆ X k =

Xte
− i 2πtk / N

t =0

N −1

∑ , k = 0, 1, ..., N – 1.

We will also use the notation DFT{X}k = ˆ X k and will often omit the qualifier “finite”
and refer simply to complex and real series.

Note that in the definition of the DFT, indices start with 0 rather than 1 as is assumed

5-1

MacAnova Version 4.07

in MacAnova. In working with Fourier transforms in MacAnova, this correspondence

must be kept in mind. The first element in a series is always considered to be X0 or
ˆ X 0 ,

but to access it you will need to use x[1].

If {
ˆ X k }k =0

N− 1 is the DFT of {Xt}t = 0
N − 1, then the following inversion formula holds:

Xt =

1

N
ˆ X ke

+ i 2πtk / N

k = 0

N − 1

∑ = N
−1DFT{DFT{X}}t , t = 0, 1, ..., N –1,

where z is the complex conjugate of the complex number z.

When dealing with the DFT it is sometimes convenient to consider a finite complex or
real series as a segment of length N from a periodic infinite complex or real series

 {Xt
(N)}t =−∞

∞ with period N . With this in mind, we define

 Xt
(N) = X t , t = 0, 1, ..., N –1, XN + s

(N) = Xs
(N) , s = 0, 1, ... and X− s

(N) = X− s+ N
(N) , s = 1, 2,

With this extended definition, it can be verified that, if t0 is an arbitrary integer,
DFT{X} can be expressed as

ˆ X k =

Xt

(N)e−i 2 πtk /N

t = to

N + t0 −1

∑ , k = 0, ±1, ±2, ...

that is, as a summation over an arbitrary complete period of Xt
(N) .

More generally, we can define a periodic extension { Xt
(S) } with period S ≥ N

 Xt
(S) = Xt , t = 0, 1, ..., N –1, Xt

(S) = 0, s=N ,...,S–1,

 XS + s
(S) = Xs

(S) , s = 0, 1, ... and X− s
(S) = X−s + S

(S) , s = 1, 2,

We notate the DFT of { Xt
(S) } as ˆ X k

(S) = Xt
(S)e− i2 πtk / S

t = 0

S −1

∑ , k = 0, ..., S–1. This definition

makes sense for an arbitrary integer k , and thus can be taken to define an infinite

sequence with period S. With this notation,
ˆ X k = ˆ X k

(N) .

A complex series {Yj} of length N that satisfies

Y0 is real and YN − j = Yj , j = 1, ..., N –1

is said to have Hermitian symmetry, or simply to be a Hermitian series.

This definition implies that when N is even, YN/2 is real. Viewed as a segment of an

infinite periodic complex series { Yj
(N) }, a Hermitian series satisfies Y− j

(N) = Yj
(N) , j = 0, 1,

..., . When {Xt}t = 0
N − 1 is a real series, then its DFT, {

ˆ X k }k =0
N− 1, is a Hermitian series.

Conversely, when {Xt}t = 0
N − 1 is Hermitian, {

ˆ X k }k =0
N− 1 is real.

If {X j} j= 0
N −1 is an unrestricted complex series, its Hermitian symmetrized form is the

Hermitian series {
˜ X j} j= 0

N −1 where

5-2

MacAnova Version 4.07

˜ X 0 = Re(X0), ~

˜ X j = (1/2)(X j + XN − j), j = 1, ..., N –1

As an infinite periodic series, this can be equivalently written

˜ X j = (1/2)(X j + X− j), j = 0, ±1, ±2, ...

5.2.2 Continuous Fourier transform of a finite series The continuous Fourier
transform of a finite real or complex series {Xt}t = 0

N − 1 is the continuous function of the
real variable f

ˆ X (f) = CFT{X}(f) =

Xte

− i 2πtf

t =0

N −1

∑

The argument f is the frequency at which
ˆ X (f) is evaluated and is in units of cycles.

ˆ X (f) is a periodic function of f with period 1, that is

ˆ X (f ± k) =
ˆ X (f) for any integer k .

You can consider the DFT to be a “sampling” of the CFT, in the sense that
ˆ X k =

ˆ X (k/N) .

Define the finite series { Xt
#} of length S > N by Xt

= Xt
(S) , t = 1, ..., N –1, Xt

= 0, t =

N , ..., S–1, that is, {Xt} padded with S–N zeros. Then
ˆ X k

=
ˆ X k

(S) = ̂ X (k /S). Thus, by
padding {Xt} by additional zeros, you can use the DFT to compute the CFT at a denser
set of frequencies.

5.2.3 Representation of Real, Hermitian and Complex Series Real series {Xt}t = 0
N − 1 are

stored as columns of REAL matrices with N rows, with X0 in row 1.

Hermitian series of length N are also stored as columns of REAL matrices with N
rows. This is possible because a Hermitian series {Xj} of length N is fully determined
by N real numbers, X0, Re(X1), ..., Re(

X (N −1)/2

), Im(X1), ..., Im(

X (N −1)/2

), and, if N is

even, XN/2. Here the notation α means the largest integer not greater than α, and
corresponds to the floor() function in MacAnova. These N numbers are stored in a
column of a REAL matrix in the somewhat peculiar order

X0, Re(X1), ..., Re(

X (N −1)/2

),{XN/2}, Im(

X (N −1)/2

), ..., Im(X2), Im(X1),

where XN/2 is included only when N is even. That is, the real parts of the elements in
the first half of the series come first, followed by their imaginary parts, in reverse
order , omitting the one or two imaginary parts, Im(X0) and Im(XN/2), known to be
zero .

Unrestricted Complex series are stored in adjacent pairs of columns of REAL matrices,
the real parts in odd numbered columns and the imaginary parts in even numbered
columns. Thus a n by p complex matrix is represented by a n by 2p REAL MacAnova
matrix, with the real and imaginary parts of column j of the complex matrix in
columns 2j–1 and 2j of the MacAnova matrix, j = 1, . . ., p .

5-3

MacAnova Version 4.07

Examples:

Cmd> print(hx,hy) # two matrices, each containing 2 Hermitian series
hx:
(1,1) 1 2
(2,1) 3 4
(3,1) 5 6
(4,1) 7 8
(5,1) 9 10
hy:
(1,1) 1 2
(2,1) 3 4
(3,1) 5 6
(4,1) 7 8
(5,1) 9 10
(6,1) 11 12

When considered as containing two Hermitian series, matrix hx represents the 5 by 2

complex matrix

1+ 0i 2 + 0i

3 + 9i 4 + 10i

5 + 7i 6 + 8i

5 − 7i 6 − 8i

3 − 9i 4 − 10i

, and matrix hy represents the 6 by 2 complex matrix

1+ 0i 2 + 0i

3 + 11i 4 + 12i

5 + 9i 6 + 10i

7 + 0i 8 − 0i

5 − 9i 6 − 10i

3 −11i 4 − 12i

.

Cmd> print(cx) # Complex matrix containing 2 complex series
cx:
(1,1) 1 2 3 4
(2,1) 5 6 7 8
(3,1) 9 10 11 12
(4,1) 13 14 15 16
(5,1) 17 18 19 20

Matrix cx represents the 5 by 2 complex matrix

1 + 2i 3 + 4i

5 + 6i 7 + 8i

9 + 10i 11+ 12i

13 + 14i 15 +16i

17 +18i 19 + 20i

.

If a matrix with an odd number of columns is an argument to any function expecting a
Complex series, it is considered to have adjoined an extra column consisting of zeros,
that is the last column of the Complex matrix is considered to be real. When a m by n
Complex matrix (m by 2n or m by 2n–1 REAL matrix) is an argument to function

5-4

MacAnova Version 4.07

cft(), rows 1, 2, ..., m correspond to first subscript 0, 1, ..., m –1.

Let z = x + iy be a complex number. Then x and y are its rectangular or Cartesian

coordinates. Its polar coordinates are its amplitude or modulus r = |z| = x2 + y2 ,
and its phase or argument φ = arg(z), where φ satisfies x = r cosφ and y = rsinφ .
Thus z = r (cos φ + i sin φ) = re iφ . One way of representing the polar form of re iφ is
as the complex number r + i φ . If X0, X1, ..., XN–1 is a Hermitian series, thaen,
provided r0 is defined to be X0, the series r0, r1 + iφ 1, r2 + iφ 2, ..., , rN–1+ iφ N–1 is also
Hermitian sinc rk = rN–k and φ k = –φ N–k. By an abuse of notation we define r0 = X0,
and rm/2 = Xm/2 to be the “amplitudes” of the real elements of a Hermitian series, even
though they may be negative. This representation is exploited by hpolar() and
cpolar() (Sec. 5.2.4).

A Complex series of length m , can be specified in rectangular form by exactly 2m real
numbers. Because of the representation of the polar form as r + i φ this is also true for
its polar form. Similarly, both the rectangular and polar forms of a Hermitian series
{Xk} of length m require m real numbers since the polar form has a Hermitian
complex representation. For this reason, MacAnova stores the polar forms of both
Hermitian and Complex matrices as matrices of the same type, Hermitian or Complex,
with real parts {rk} and imaginary parts {φ k}. Functions hpolar(), cpolar(),
hrect(), and crect() allow conversion from rectangular form to polar form and vice
versa.

Note that these conventions concern only the interpretation of the contents of certain
REAL MacAnova matrices and vectors. No internal record is maintained as to whether
a matrix is Real, Hermitian, or Complex. In particular, many functions such as
solve() and diag(), and operations such as * and %*% yield nonsense results when
applied to matrices whose columns are considered to be Hermitian or Complex series.
Elementwise addition and subtraction, + and -, give correct results as long as
dimensions match.

In examples, variable names such as rx and ry will represent matrices whose columns
are considered to be Real series; hx and hy will represent matrices whose columns are
considered to be Hermitian series; and cx and cy will represent matrices whose
columns are considered in pairs to be unrestricted Complex series. Also, by an abuse of
terminology we sometimes will use “Real series”, “Hermitian series”, or “Complex
series” to refer to entire matrices whose columns represent such series.

5.2.4 Functions for manipulating Complex and Hermitian series – hconj(), cconj(),
hreal(), creal(), himag(), cimag(), cpolar(), hpolar(), crect(), hrect(), htoc(), ctoh(), cmplx()
Most of these operations come in two “flavors”, one whose name starts with “h”
expecting a Hermitian series as argument, and one whose name starts with “c”
expecting a Complex series.

hconj() and cconj() compute the complex conjugates of their arguments.

5-5

MacAnova Version 4.07

Cmd> hxj <- hconj(hx);cxj <- cconj(cx);print(hxj,cxj)
hxj:
(1,1) 1 2
(2,1) 3 4
(3,1) 5 6
(4,1) -7 -8
(5,1) -9 -10
cxj:
(1,1) 1 -2 3 -4
(2,1) 5 -6 7 -8
(3,1) 9 -10 11 -12
(4,1) 13 -14 15 -16
(5,1) 17 -18 19 -20

hreal() and creal() return the real parts of their arguments as Real series. Similarly,
himag() and cimag() return the imaginary parts of their arguments, also as Real
series.

Cmd> print(REhx:hreal(hx),IMhx:himag(hx)) # Note the symmetries
REhx:
(1,1) 1 2
(2,1) 3 4
(3,1) 5 6
(4,1) 5 6
(5,1) 3 4
IMhx:
(1,1) 0 0
(2,1) 9 10
(3,1) 7 8
(4,1) -7 -8
(5,1) -9 -10

Cmd> print(REcx:creal(cx),IMcx:cimag(cx))
REcx:
(1,1) 1 3
(2,1) 5 7
(3,1) 9 11
(4,1) 13 15
(5,1) 17 19
IMcx:
(1,1) 2 4
(2,1) 6 8
(3,1) 10 12
(4,1) 14 16
(5,1) 18 20

You can use htoc() (Hermitian to Complex) and ctoh() (Complex to Hermitian) to
translate between the two forms. htoc(hx) returns the Complex form of the
Hermitian series hx, while ctoh(cx) returns the Hermitian symmetrized form of the
Complex series cx. The composition ctoh(htoc(hx)) amounts to the identity
transformation, but htoc(ctoh(cx)) does not, unless cx has Hermitian symmetry to
start with.

5-6

MacAnova Version 4.07

Cmd> htoc(hx)
(1,1) 1 0 2 0
(2,1) 3 9 4 10
(3,1) 5 7 6 8
(4,1) 5 -7 6 -8
(5,1) 3 -9 4 -10

Cmd> ctoh(cx)
(1,1) 1 3
(2,1) 11 13
(3,1) 11 13
(4,1) -2 -2
(5,1) -6 -6

cmplx() creates a Complex series from one or two Real series.

Cmd> cmplx(creal(cx),cimag(cx)) # same as cx
(1,1) 1 2 3 4
(2,1) 5 6 7 8
(3,1) 9 10 11 12
(4,1) 13 14 15 16
(5,1) 17 18 19 20

Cmd> cmplx(creal(cx)) # missing 2nd arg assumed 0
(1,1) 1 0 3 0
(2,1) 5 0 7 0
(3,1) 9 0 11 0
(4,1) 13 0 15 0
(5,1) 17 0 19 0

hpolar() and cpolar() transform Hermitian or Complex series in rectangular form
into polar form (Sec. 5.2.3). hrect() and crect() are inverses to hpolar() and
cpolar(), transforming from polar form to rectangular form.

Cmd> print(hpolar:hpolar(hx),cpolar:cpolar(cx))
hpolar:
(1,1) 1 2
(2,1) 9.4868 10.77
(3,1) 8.6023 10
(4,1) 0.95055 0.9273
(5,1) 1.249 1.1903
cpolar:
(1,1) 2.2361 1.1071 5 0.9273
(2,1) 7.8102 0.87606 10.63 0.85197
(3,1) 13.454 0.83798 16.279 0.82885
(4,1) 19.105 0.82242 21.932 0.81765
(5,1) 24.759 0.81396 27.586 0.81103

Cmd> # Use hypot() & atan() (Sec. 2.8.6) to confirm result

Cmd> hypot(cx[,vector(1,3)],cx[,vector(2,4)]) # = creal(polar(cx))
(1,1) 2.2361 5
(2,1) 7.8102 10.63
(3,1) 13.454 16.279
(4,1) 19.105 21.932
(5,1) 24.759 27.586

5-7

MacAnova Version 4.07

Cmd> atan(cx[,vector(2,4)],cx[,vector(1,3)]) # = cimag(polar(cx))
(1,1) 1.1071 0.9273
(2,1) 0.87606 0.85197
(3,1) 0.83798 0.82885
(4,1) 0.82242 0.81765
(5,1) 0.81396 0.81103

Cmd> print(hrect:hrect(hpolar(hx)),crect:crect(cpolar(cx)))
hrect:
(1,1) 1 2 Same as hx
(2,1) 3 4
(3,1) 5 6
(4,1) 7 8
(5,1) 9 10
crect:
(1,1) 1 2 3 4 Same as
(2,1) 5 6 7 8 cx
(3,1) 9 10 11 12
(4,1) 13 14 15 16
(5,1) 17 18 19 20

The φ ’s in the “imaginary” parts of the output of hpolar() and cpolar() (see Sec.
5.2.4) are in the units specified by option angles as set by setoptions() (see Sec. 8.1.3).
Possible values for angles are "radians", "degrees", and "cycles", with
"radians" being the default. Conversely the “imaginary” parts of arguments to
hrect() and crect() are assumed to be in these same units. In the example, angles
are in radians. However, although it takes a bit of getting used to, in the frequency
analysis of time series, measuring angles in cycles (360° = 1 cycle) is often the most
convenient.

Cmd> setoptions(angles:"cycles") # angles assumed in cycles

Cmd> cpolar(cx)
(1,1) 2.2361 0.17621 5 0.14758
(2,1) 7.8102 0.13943 10.63 0.13559
(3,1) 13.454 0.13337 16.279 0.13192
(4,1) 19.105 0.13089 21.932 0.13013
(5,1) 24.759 0.12955 27.586 0.12908

A complicating fact is that φ = arg(z) is not uniquely defined, in that, when
z = r(cos φ + i sin φ), then also z = r{cos(φ ± 2k π) + i sin(φ ± 2k π)} for any
integer k . The usual mathematical definition obtains uniqueness by imposing some
simple condition such as –π < φ ≤ π or 0 ≤ φ < 2π. For example, MacAnova
function atan(x,y) returns values between –π and +π (–180° and +180° or –.5 and
+.5 if option angles:"degrees" or angles:"cycles" is in effect). This results in
discontinuities (jumps) in arg(Xk) as k varies, when Xk winds around the origin of the
complex plane, even when its trajectory in the complex plane is smooth. Both
hpolar() and cpolar() attempt to eliminate these jumps. They “unwind” arg(Xk) by
adding or subtracting a multiple of 2π radians, 360 degrees, or 1 cycle when a jump is
considered to be large. Large jumps are recognized as those for which the change in
|arg(Xk+1) – arg(Xk)| exceeds the value of a criterion whose default value is .75 cycles.
You can specify a different value of the criterion by including keyword phrase
criterion:0.65, for example, on hpolar() and cpolar(). The value of criterion

5-8

MacAnova Version 4.07

is always in cycles and must be between .5 and 1. The smoothing of jumps can be
suppressed altogether by keyword phrase unwind:F.

Cmd> setoptions(angles:"cycles") # use cycles for angular units

Cmd> phi <- .2*run(2,6);phi# smoothly changing phi in cycles
(1) 0.4 0.6 0.8 1 1.2

Cmd> z <- cmplx(run(5)*cos(phi),run(5)*sin(phi)) # Complex series

Cmd> cpolar(z) # col 1 is modulus, column 2 is unwound phase
(1,1) 1 0.4
(2,1) 2 0.6
(3,1) 3 0.8
(4,1) 4 1
(5,1) 5 1.2

Cmd> cpolar(z,unwind:F) # suppress unwinding and you get a jump
(1,1) 1 0.4
(2,1) 2 -0.4 |(-.4)-.4| =.8 > .75
(3,1) 3 -0.2
(4,1) 4 0
(5,1) 5 0.2

When the columns of matrix phi are considered to be series of angles, function
unwind(phi) performs the same unwinding on the columns of phi. Again you can
use keyword crit to change the criterion used.

Cmd> @tmp <- atan(sin(phi),cos(phi)); hconcat(@tmp,unwind(@tmp))
(1,1) 0.4 0.4
(2,1) -0.4 0.6
(3,1) -0.2 0.8
(4,1) 0 1
(5,1) 0.2 1.2

5.2.5 padto() and rotate() We saw above that by extending a series with zero elements to
length S > N , the DFT could be used to compute the CFT at equally spaced frequencies
0, 1/S, 2/S, (S–1)/S cycles. To make this easier, function padto(x,S) appends
sufficient rows of zeros to x to make the total number of rows S.

Cmd> padto(run(5),9)
(1) 1 2 3 4 5
(6) 0 0 0 0

Because of the implicit periodicity involved in the DFT, it is useful to be able to “rotate”
a Real series so as to shift the elements in each column up or down, with any elements
“pushed” off one end being moved to the other end. For any integer k , rotate(x,k)
moves moves the ith row of x to row i’ where i’ = i + k - jN where the j is the
unique integer such that 0 ≤ i’ < N .

Cmd> b <- vector(3,2,1,1,2); rotate(b, 2)
(1) 1 2 3 2 1

Cmd> rotate(b, -2)
(1) 1 1 2 3 2

5-9

MacAnova Version 4.07

Cmd> rotate(b, 17)
(1) 1 2 3 2 1

Note that, since length(b) = 5 and 17 = 3×5 + 2, rotate(b,2) and rotate(b,17) are
equivalent.

5.2.6 Elementwise products of Complex and Hermitian series – hprdh(), hprshj(),
cprdc(), cprdcj() Again functions come in pairs. hprdh(hx1,hx2) computes the
elementwise complex product of Hermitian series hx1 and hx2, and cprdc(cx1,cx2)
computes the product of Complex series cx1 and cx2. hprdhj(hx1,hx2) and
cprdcj(cx1,cx2) are equivalent to hprdh(hx1,hconj(hx2)) and
cprdc(cx1,cconj(cx2)), respectively, that is they compute elementwise products of
the first argument with the complex conjugate of the second. The two arguments must
be the same size and shape except that one can represent a single Hermitian or Complex
series, to multiply all the series in the other argument. You can omit the second
argument, in which case it is assumed to be the same as the first. Thus, hprdhj(hx)
and cprdcj(cx) are equivalent to hprdhj(hx,hx) and cprdcj(cx,cx), computing
the squared amplitude of their arguments.

Cmd> hprdhj(hx) #same as hprdhj(hx,hx); note 0 imaginary parts
(1,1) 1 4
(2,1) 90 116
(3,1) 74 100
(4,1) 0 0
(5,1) 0 0

Cmd> cprdcj(cx) # or cprdcj(cx,cx); note 0 imaginary parts
(1,1) 5 0 25 0
(2,1) 61 0 113 0
(3,1) 181 0 265 0
(4,1) 365 0 481 0
(5,1) 613 0 761 0

If either of the arguments of any of these functions represents a single complex series,
that series multiplies all the series in the other argument. For example, if hx1 has 3
columns and hx2 has 1 column, hprdhj(hx1,hx2) is equivalent to hprdhj(hx1,
hconcat(hx2,hx2,hx2)). And if cx1 has 2 columns representing a single complex
series, and cx2 has 6 columns, representing 3 complex series, then cprdc(cx1,cx2) is
equivalent to cprdc(hconcat(cx1,cx1,cx1),cx2).

5.2.7 Discrete Fourier Transforms – rft(), hft() and cft() rft(rx), hft(hx), and
cft(cx) compute the DFT of Real, Hermitian and Complex series in the columns of
rx, hx, and cx, respectively. Each uses the so called Fast Fourier Transform or FFT, an
algorithm that allows the rapid computation of a DFT provided all the factors of N , the
number of rows of the argument, are small. The particular algorithm used by
MacAnova requires that no prime factors of N exceed 29 and is based on code written
by Gordon Sande. In most time series applications, if the underlying data has length
that does not satisfy this restriction, it can be augmented by zeros to a length S that
does. padto() (sec. 5.2.5) allows you to do this easily. Macro factors available in file
MacAnova.mac can be useful in finding an appropriate length.

5-10

MacAnova Version 4.07

The inversion formula involves division by N , the length of the series. To make this
easier, rft(), hft(), and cft() all recognize keyword phrase divbyt:T as signalling
that the result should be divided by the length. Thus, bearing in mind that the DFT of a
real series is Hermitian and vice versa, the following MacAnova commands produce
results equal to their arguments, rx, hx or cx, except for rounding error:

hft(hconj(rft(rx)),divbyt:T)

hconj(rft(hft(hx),divbyt:T))

cconj(cft(cconj(cft(cx)),divbyt:T))

Examples:

Cmd> rx <- run(5)^2; hx <- rft(rx)

Cmd> hx # Hermitian form of the DFT of {1, 4, 9, 16, 25}
(1) 55 -10.264 -14.736 5.6861 24.087

Cmd> cx <- cmplx(rx) ; cft(cx) # Complex form of the same
(1,1) 55 0
(2,1) -10.264 24.087
(3,1) -14.736 5.6861
(4,1) -14.736 -5.6861
(5,1) -10.264 -24.087

Cmd> hconj(rft(hft(hx),divbyt:T)) # inversion applied to hft(hx)
(1) 55 -10.264 -14.736 5.6861 24.087

Cmd> hft(hconj(rft(rx)),divbyt:T) # inversion applied to rft(hx)
(1) 1 4 9 16 25

Cmd> cconj(cft(cconj(cft(cx)),divbyt:T))#inversion applied to cft(cx)
(1,1) 1 0
(2,1) 4 0
(3,1) 9 0
(4,1) 16 0
(5,1) 25 0

Cmd> rft(run(31)) # can't do this one
ERROR: largest prime factor > 29 in length of rft

Suppose N = 365 = 5×73 and you want to use at least 2N = 730 = 2×5×73 frequencies.
Since 73 > 29 you need to find some small value of k such that 2N + k has all small
factors. Macro factors can help.

Cmd> getmacros(factors,quiet:T) # retrieve it from MacAnova.mac

Cmd> factors(2*365+run(5)) # get factors of 731, 732, 733, 734, 735
component: composite
(1) 17 43
component: composite
(1) 2 2 3 61
component: prime
(1) 733
component: composite
(1) 2 367
component: composite
(1) 3 5 7 7

5-11

MacAnova Version 4.07

We see we can use 730 + 5 = 735 = 3×5×7×7.

5.2.8 Convolving series using the DFT and function convolve() A fundamental
operation in the frequency analysis of time series is the convolution of two series. If
{at} and {Xt} are finite series of length N , the circular convolution {Y(t)} is defined by

Yt = a sXt −s

s =0

t

∑ + as Xt − s+ N
s= t +1

N −1

∑ ,

where the second summation is omitted when t = N –1. If { as
(N) } and { Xt

(N) } are
periodic extensions with period N , this can be expressed as

Yt = Yt

(N) = as
(N)Xt − s

(N)

s = 0

N − 1

∑
which also defines { Yt

(N) }, the periodic extension of {Yt}.

If X is a m by n REAL MacAnova matrix whose columns are considered as Real series,
and a is a REAL vector of length m representing a Real series, convolve(a,X)
computes the circular convolution of a with each of the columns of X. It is legal for
vector a to have length r < m , in which case it is implicitly padded with m – r zeros.
In fact, the principal use of convolve() is precisely the situation in which a is much
shorter than X.

Cmd> x <- vector(1,3,2,4,5); a <- vector(1,-3,2); convolve(a,x)
(1) -6 10 -5 4 -3

Cmd> vector(1*1+(-3)*5+2*4, 1*3+(-3)*1+2*5, 1*2+(-3)*3+2*1,\
1*4+(-3)*2+2*3, 1*5+(-3)*4+2*2) # explicit expressions
(1) -6 10 -5 4 -3

There is a close relationship between circular convolution and the DFT. If {ˆ a k} and

{ ˆ X k} are the discrete Fourier transforms of two series {at} and {Xt} of the same length

N , then the product series {ˆ a k
ˆ X k} is the DFT of the series which is the circular

convolution of {at} and {Xt}. One consequence is that circular convolution can be

computed by applying the inversion formula to {ˆ a k
ˆ X k}. Because of the speed of the FFT,

the DFT can often compute the circular convolution of two long series faster than can
convolve(). For two series of length 5000, on one computer, using convolve() took
about 60 times as long as when the DFT was used.

Cmd> aft <- rft(padto(a,5)); xft <- rft(x)#compute DFT's of length 5

Cmd> hft(hconj(hprdh(aft,xft)),divbyt:T) #inv. transform of product
(1) -6 10 -5 4 -3

If {at} and {Xt} are finite series, not necessarily the same length, their non-circular

convolution is the series {Yt}, where Yt = asX t −ss∑ , the sum extending over all s such

that both as and Xt-s are defined. In particular if at is defined for 0 ≤ t < r and Xt is

5-12

MacAnova Version 4.07

defined for 0 ≤ t < N , then

Yt =

0 t < 0

asX t− s
s= 0

t

∑ 0 ≤ t < r − 1

asX t− s
s= 0

r −1

∑ r − 1 ≤ t < N

asXt − s
s = t− N+ 1

r −1

∑ N ≤ t ≤ N + r − 1

0 t > N + r

.

If { Xt
(∞) } is defined so that Xt

(∞) = Xt when 0 ≤ t < N , and Xt
(∞) = 0 when t < 0 or t ≥ N ,

then

Yt = asXt − s
(∞)

s =0

r−1

∑ , 0 ≤ t < N –1.

This suggests a way to compute a non-circular convolution using a circular
convolution by padding the longer of the two series with enough zeros so that its
length is at least equal to the combined length less 1:

Cmd> convolve(a,padto(x,7))
(1) 1 0 -5 4 -3
(6) -7 10

Cmd> vector(1*1, 1*3+(-3)*1, 1*2+(-3)*3+2*1, 1*4+(-3)*2+2*3,\
1*5+(-3)*4+2*2, (-3)*5+2*4, 2*5) # explicit expressions
(1) 1 0 -5 4 -3
(6) -7 10

A variant on circular convolution are the sums of circularly lagged products of two
series of equal length N :

Yt = a sXs −t + N

s= 0

t −1

∑ + a sXs − t
s =t

N −1

∑ , t = 0, 1, ..., N –1

where the first summation is omitted when t = 0. This is almost the same as a circular
convolution with {Xt} in reverse order. Sums of circularly lagged products can be
computed by convolve() using keyword phrase reverse:T. As before, if the first
argument is shorter than the second it is implicitly extended with zeros.

Cmd> convolve(a,x,reverse:T)
(1) -4 8 -9 0 5

Cmd> vector(1*1+(-3)*3+2*2, 1*5+(-3)*1+2*3, 1*4+(-3)*5+2*1,\
1*2+(-3)*4+2*5, 1*3+(-3)*2+2*4) # explicit expressions
(1) -4 8 -9 0 5

The DFT of a series of circularly lagged sums is the product of the DFT of the first factor

times the complex conjugate of the DFT of the second, that is, ˆ Y k = ˆ a k
ˆ X k . Consequently,

the inversion formula can be used to compute sums of circularly lagged products from
DFT's.

Cmd> hft(hconj(hprdhj(aft,xft)),divbyt:T)
(1) -4 8 -9 0 5

5-13

MacAnova Version 4.07

The non-zero elements of the series of non-circularly lagged products

Zt = asX s− t
(∞)

s∑ , t = 0, ±1, ±2, ...,

where { Xt
(∞) } is as above, can be computed from circularly lagged products by padding

the second factor with enough zeros to make its length S greater than the sum of the
lengths minus 1:

Cmd> convolve(a,padto(x,7),reverse:T)
(1) -4 3 2 5 -11
(6) 0 5

Cmd> vector(1*1+(-3)*3+2*2, (-3)*1+2*3, 2*1, 1*5, 1*4+(-3)*5,\
1*2+(-3)*4+2*5, 1*3+(-3)*2+2*4) # explicit expressions
(1) -4 3 2 5 -11
(6) 0 5

These values are in the order Z0, Z1, Z2, Z–4, Z–3, Z–2, Z–1. Alternatively, using the
DFT,

Cmd> hft(hconj(hprdhj(rft(padto(a,7)),rft(padto(x,7)))),divbyt:T)
(1) -4 3 2 5 -11
(6) 7.613e-16 5

5.3 Functions related to time domain time series analysis At present, MacAnova has
relatively few commands directly related to the time domain analysis of time series.
movavg() and autoreg() implement moving average (MA) and autoregressive (AR)
operators in the Box-Jenkins sense. They can be used to generate artificial univariate
ARIMA data, to compute innovations from a ARIMA model, given its coefficients, and
to compute the spectrum of an ARMA process. They also have some purely
mathematical uses, such as computing the coefficients of power series representing the
reciprocal of a polynomial or the ratio of two polynomials, computing successive
differences, and computing cumulative sums. yulewalker() and partacf() allow
computing autoregression coefficients and partial autocorrelation functions from
autocorrelation functions and vice versa. toeplitz() transforms an autocovariance
function into a variance/covariance matrix.

5.3.1 Moving average and autoregressive operators A vector [θ1, θ2, ..., θq]’ of real
constants defines a moving average (MA) operator of order q acting on a series {Xt},

transforming it to the series {Yt}, where Yt = Xt − θ sXt − s
s= 1

q

∑ . Let θ(z) be the polynomial

θ(z) ≡ 1 − θ sz
s

s =1

q

∑ . Then the MA operator can also be expressed as {Yt} = θ(B){Xt},

where B is the backward lag operator, defined by BXt = Xt–1, B2Xt = Xt–2, If q = 1
and θ1 = 1, then θ(B) = 1 – B and the MA operator is the backwards first difference
operator transforming Xt to Xt – Xt–1.

5-14

MacAnova Version 4.07

If {ct} is a sequence with ct = 0 for t < 0, define f(z) = ctz
t

t = 0

∞

∑ to be a formal power

series in z. Then the sequence {d t} = θ(B){ct} consists of the coefficients of the
function θ(z)f(z) considered as a power series in z. In particular, if ct = 0 for t > m ,
so that f(z) is a polynomial of degree at most m , then applying the MA operator to
{ct} corresponds to computing the coefficients of the product of two polynomials.

If θ1(B) and θ2(B) are polynomials of degree q1 and q2 corresponding to two MA
operators of length q1 and q2, respectively, then the polynomial θ1(B)θ2(B) of
degree q1 + q2 corresponds to the operator obtained by first transforming a series using
θ1(B) and then transforming the output using θ2(B).

A vector [φ 1, φ 2, ...,φ p]’ of real constants defines an autoregressive (AR) operator of
order p , transforming a series {Xt} to the series {Yt}, defined recursively by

Yt = Xt + φ sYt − s
s=1

p

∑ , or, equivalently, by φ (B)Yt ≡ Yt − φ sYt − s
s=1

p

∑ = Xt, where φ (z) is the

polynomial φ (z) = 1 − φsz
s

s =1

p

∑ . This is conveniently expressed symbolically as Yt =

φ (B)–1Xt, where φ (B)–1 represents the operator inverse to φ (B), that is

φ (B)–1φ (B) = 1. φ (B)–1 can also be expressed as φ (B)–1 = 1 + ψ sB
s

s =1

∞

∑ where

1 + ψ sz
s

s = 1

∞

∑ is the formal power series expansion such that

1 + ψ sB

s

s =1

∞

∑

 × 1 − φs zs

s =1

p

∑

 = 1.

Because of the recursive nature of this definition, you generally need to consider an AR
operator as acting only on values of Xt for t ≥ t0, with specified “starting values”
Yt 0

, Yt 0 −1, Yt0 − 2 , ..., Yt 0 − p . If p = 1 and φ 1 = 1, then Yt = Yt–1 + Xt and the AR operator
corresponds to the cumulative sum

Yt = Yt 0
+ Xt 0 +1 + Xt0 +2 +… Xt = Yt 0

+ Xs
s =t 0 +1

t

∑ for t > t0.

As before, let {ct} be a sequence with ct = 0 for t < 0 and let f(z) = ctz
t

t = 0

∞

∑ . Then

specifying starting values c–1 = c–2 = ... = c–p = 0, the sequence φ (B)–1{ct} consists of
the coefficients in the power series representation for f(z)/φ (z). If f(z) is a
polynomial, then {ct} are the power series coefficients of a rational function. If X0 = 1
and Xt = 0, t ≠ 0, then {ct} is the sequence of the power series coefficients of 1/φ (z).

A time series {Xt} with mean µ t satisfying φ (B)(Xt – µ t) = at, where {at} is a
sequence of independent identically distributed random variables with mean 0 is called
an AR(p) (autoregressive series of order p) series. When {Xt} satisfies Xt = µ t +
θ(B)at, it is called a MA(q) (moving average series of order q) series. When {Xt}
satisfies φ (B)(Xt – µ t) = θ(B)at it is called an ARMA(p ,q) (autoregressive-
moving average) series. See Box and Jenkins (1976).

5-15

MacAnova Version 4.07

5.3.2 movavg() If theta is a REAL vector of length q and a is a matrix, then
movavg(theta,a) applies the order q MA operator specified by theta to each column
of a, with a[k,] assumed 0 for k < 1. That is, the output is a matrix x of the same size
and shape as a with

x[i,j] = a[i,j]- (
k =1

q

∑ theta[k]*a[i-k,j]), with a[l,j] = 0 for l < 1

Cmd> setseeds(287236458,760033449) # set seeds (See Sec. 2.12)

Cmd> theta <- vector(.5, .3); n <- 5; a <- rnorm(n); a
(1) 1.212 0.63568 -1.8396 -0.5317 0.41061

Cmd> movavg(theta,a)
(1) 1.212 0.029677 -2.5211 0.1974 1.2283

An equivalent, but much clumsier, computation is

Cmd> a-theta[1]*vector(0,a[-n])-theta[2]*vector(0,0,a[-run(n-1,n)])
(1) 1.212 0.029677 -2.5211 0.1974 1.2283

You also can use movavg() to compute first and higher order differences of a series.

Cmd> d1 <- movavg(1,a); d1 # first differences a[i]-a[i-1] of a
(1) 1.212 -0.57633 -2.4753 1.3079 0.94231

Cmd> d2 <- movavg(vector(2,-1),a); d2 # second differences of a
(1) 1.212 -1.7883 -1.899 3.7832 -0.3656

Note that d1[1] = a[1] - 1*0 = a[1], d2[1] = a[1] - 2*0 + 1*0 = a[1], and
d2[2] = a[2] - 2*a[1] + 1*0 = a[2] - 2*a[1]. The second difference
computation works because (at – a t–1) – (at–1 – a t–2) = at – 2at–1 – (–1) at–2.

Sometimes you may need to apply a moving average operator backwards, that is to
carry out the computation

 x[i,j] = a[i,j] - (
k =1

q

∑ theta[k]*a[i+k,j]), with a[l,j]=0 for l > nrows(a)

You do this using keyword phrase reverse:T.

Cmd> movavg(theta,a,reverse:T)
(1) 1.4461 1.715 -1.6969 -0.73701 0.41061

Cmd> a - theta[1]*vector(a[-1],0) - theta[2]*vector(a[-run(2)],0,0)
(1) 1.4461 1.715 -1.6969 -0.73701 0.41061

In some situations you may need to restrict a moving average operator to a subset of
the rows of the input matrix. If b is a matrix with the same size and shape as a and i1
and i2 are integers between 1 and nrows(a), the output of

movavg(theta,a,limits:vector(i1,i2),start:b)

is computed as just described only for rows i1, i1+1,..., i2. The remaining rows are
copied from rows 1 to i1-1 and rows i2+1 to nrows(x) of matrix b.

Cmd> movavg(theta,a,limits:vector(2,4),start:run(5))
(1) 1 0.029677 -2.5211 0.1974 5

5-16

MacAnova Version 4.07

Cmd> movavg(theta,a,limits:vector(2,4),start:run(5),reverse:T)
(1) 1 1.715 -1.6969 -0.73701 5

In both cases, rows i1 through i2 of b are ignored.

Function movavg() is the inverse of autoreg() (Sec. 5.3.3) and vice versa, in that, if
movavg() is applied to the output x of autoreg() with the same coefficients, direction,
and starting values, if any, the input a is recovered, except for rounding error.

5.3.3 autoreg() If phi is a REAL vector of length p and a is a matrix, autoreg(phi,a)
applies the order p AR operator specified by vector phi to each column of a, with any
needed starting values assumed 0. The output is a matrix x of the same size and shape
as a with

x[i,j] = a[i,j]+ (
k =1

p

∑ phi[k]*x[i-k,j]), with x[l,j] = 0 for l < 1.

Cmd> phi <- vector(1.43,-.57) ; x <- autoreg(phi,a); x
(1) 1.212 2.3689 0.857 -0.65643 -1.0166

Cmd> a + phi[1] * vector(0,x[-5]) + phi[2]*vector(0,0,x[-run(4,5)])
(1) 1.212 2.3689 0.857 -0.65643 -1.0166

Cmd> autoreg(1,a) # cumulative sums a[1], a[1]+a[2], ...
(1) 1.212 1.8477 0.0080789 -0.52362 -0.11301

It is often important to be able to specify starting values for an AR transformation. If b
is a matrix which is the same size and shape as a and i1 and i2 are integers between 1
and nrows(a), the output of

autoreg(phi,a,limits:vector(i1,i2),start:b)

is computed as just described only for rows i1, i1+1,..., i2, with rows 1, ..., i1-1 of b
copied to the output and then used as starting values, and with rows i2+1,...,nrows(a)
of b copied to the corresponding rows of the output but otherwise ignored.

Cmd> b <- run(5);x1 <- autoreg(phi,a,limits:vector(2,4),start:b);x1
(1) 1 2.0657 0.54431 -0.93077 5

Cmd> a[3]+phi[1]*x1[2]+phi[2]*x1[1] # x1[1] is the same as b[1]
(1) 0.54431 Same as x1[3]

autoreg(phi,a,reverse:T) applies the autoregressive operator in reverse, that is

 x[i,j] = a[i,j]+ (
k =1

p

∑ phi[k]x[i+k,j]), with x[l,j] = 0 for l > nrows(a).

Cmd> x1r <- autoreg(phi,a,limits:vector(2,4),start:b,reverse:T);x1r
(1) 1 3.6909 4.7746 6.6183 5

Cmd> a[3]+phi[1]*x1r[4]+phi[2]*x1r[5] # x1r[5] is the same as b[5]
(1) 4.7746 Same as x1r[3]

In both cases, rows i1 through i2 of b are ignored.

5-17

MacAnova Version 4.07

One way to describe the action of autoreg() is to note that it computes a solution to

the inhomogeneous linear difference equation Xt − φs
s=1

p

∑ Xt − s = at, with starting values

Xt = 0 for t < 0. The Fibonacci numbers {Ft} with F0 = F1 = 1 and Ft = Ft–2 + Ft–2

satisfy such an equation with φ 1 = 1 and φ 2 = 1 and a0 = 1, at = 0, t ≠ 0. Thus the first
10 Fibonacci numbers are computed by:

Cmd> autoreg(vector(1,1),padto(1,10)) # compute 10 Fibonacci numbers
 (1) 1 1 2 3 5
 (6) 8 13 21 34 55

These are also the starting coefficients of the power series for 1/(1–z–z2) = 1 + z + 2z2

+ 3z3+ 5z4+ … .

autoreg() is the inverse of movavg() and vice versa, in that, when autoreg() is
applied to the output x of movavg() with the same coefficients, direction, and starting
values, if any, the input a is recovered, except for rounding error.

If a is a vector of independent random variables with zero mean, perhaps produced by
rnorm() (See. Sec. 2.13), you can use movavg() and autoreg() to generate an
ARMA(p ,q) time series . If phi and theta are vectors that contain the autoregressive
and moving average coefficients, respectively, then y <- autoreg(phi,
movavg(theta,a)) or y <- movavg(theta,autoreg(phi,a)) computes an ARMA
series with innovation series {..., 0, 0,..., a[1], a[2], a[3], ..., a[nrows(a)]}. To avoid
the effect of transients from the zero starting values, it may be wise to discard some
values from the start of y.

Conversely, using the fact that autoreg() and movavg() are inverses of one another,
the innovation series can be recovered from y by movavg(phi,autoreg(theta,y)) or
autoreg(theta,movavg(phi,a)).

5.3.4 yulewalker() and partacf() If {Xt} is a stationary time series with expectation µ and
autocorrelations ρs = corr[Xt, Xt+s] = ρ-s, and you want to predict Xt by an expression

of the form µ + φkp (Xt − k − µ)
k =1

p

∑ depending linearly on the p preceding observations

Xt–1, Xt–2, ..., Xt–p, then the optimal values (in the sense of minimum variance of the
prediction error) for φ 1p, φ 2p, ..., φ pp can be shown to satisfy the Yule-Walker
equations

ρs = φkpρs −k
k =1

p

∑ , s = 1, 2, ... ,p

The sequence φ 11, φ 22, φ 33, ... is the partial autocorrelation function of {Xt}. It can

further be shown that the prediction variance σ p
2 = V[Xt − µ − φkp (Xt − k − µ)

k =1

p

∑] satisfies

σ p
2 = (1− φkk

2

k =1

p

∏)V[Xt]

5-18

MacAnova Version 4.07

There are fairly stringent conditions that a sequence {ρ1, ρ2, ... } of autocorrelations

must satisfy. For example |ρs| ≤ 1, 1 − 2ρ1
2 + ρ2 > 0 , 1 − ρ1

2 − ρ2
2 −ρ3

2 + 2ρ1ρ2ρ3 > 0 , The
conditions may also be expressed as |φ kk| ≤ 1, k = 1, 2, ..., where φ 11, φ 22, ..., φ pp are the
partial autocorrelations. Moreover, if |φ kk| = 1, φ jj = 0, for j > k .

In particular, if {Xt} is an AR(p) series with autoregression coefficients {φ 1, ..., φ p} and

innovation variance σ2, φ pp = φ p, φ kk = 0 for k > p , σ p
2 = σ p+1

2 = σp +2
2 =... = σ2 and the

best linear prediction of Xt is

µ + φk(Xt −k − µ)

k =1

p

∑ . Thus, the coefficients {φ 1, ..., φ p}can be

recovered from ρ1, ..., ρp by solving ρs = φkρs −k
k =1

p

∑ , s = 1, 2, ..., p .

yulewalker(rho), where rho is a REAL matrix, solves the Yule-Walker equations for
each column of rho, considered as the first nrows(rho) autocorrelations of a stationary
time series. If a column of rho violates the conditions for it to be a sequence of
autocorrelations, then yulewalker() does the best it can. If k is the first index such
that |φ kk| > 1, then the corresponding column of the result is set to φ 1k, φ 2k, ..., φ k–1,k,
φ kk/|φ kk|, 0, 0, ... and a warning message is printed.

yulewalker(phi,inverse:T) is the inverse operation. If a column of phi contains
the coefficients of a stationary autoregressive series, then the corresponding column of
the result contains the autocorrelations. Again there are fairly stringent conditions for
this to be possible; if these are not satisfied for a column of phi, the corresponding
column of the result is set to 0 and a warning message is printed.

Cmd> rho <- vector(0.2,-0.248,0.31232)

Cmd> phi <-yulewalker(rho); phi
(1) 0.41 -0.43 0.5

Cmd> yulewalker(phi,inverse:T) # recover rho from phi.
(1) 0.2 -0.248 0.31232

Cmd> yulewalker(vector(.1,-.7,.29,.4))
WARNING: Col. 1 of argument not positive definite at row 3
 Remaining elements in column assumed zero
(1) 0.88889 -0.88889 1 0

Cmd> movavg(phi,vector(rho[run(3,1)],1,rho))[run(5,7)]
(1) -1.3878e-17 -2.7756e-17 0

The last line shows that phi satisfies the Yule-Walker equations to within rounding
error.

5.3.5 toeplitz() A m ×m Toeplitz matrix A = [a ij] is one with constant elements down
each diagonal, that is a ij = d i–j. For a symmetric Toeplitz matrix, d–k = dk–1 = ak1, k = 1,
..., m . If {Xt} is a covariance stationary time series with autocovariances {γ s}, γ s =

Cov[Xt, Xt+s] = γ –s, then the covariance matrix of any m consecutive values {Xt}t= t0

t0 + m −1

is a m ×m symmetric Toeplitz matrix with γ 0 down the main diagonal. Similarly, if

ρs = γ s/γ 0, = 0, ±1, ±2, ... are autocorrelations, the correlation matrix of {Xt}t= t0

t0 + m −1 is a
m ×m symmetric Toeplitz matrix.

5-19

MacAnova Version 4.07

toeplitz(d) returns a symmetric Toeplitz matrix whose first column is the same as
REAL vector d. The principal use of toeplitz(d) is to create a covariance or
correlation matrix from the autocovariance or autocorrelations of a time series.

Cmd> toeplitz(vector(1,.6,-.17,-.52,-.2))
(1,1) 1 0.6 -0.17 -0.52 -0.2
(2,1) 0.6 1 0.6 -0.17 -0.52
(3,1) -0.17 0.6 1 0.6 -0.17
(4,1) -0.52 -0.17 0.6 1 0.6
(5,1) -0.2 -0.52 -0.17 0.6 1

5.3.6 Finding zeros of polynomials – polyroot() Some important properties of moving
average and autoregressive operators depend on the values of the zeros of their

associated polynomials. Let θ(z) = 1 − θ sz
s

s =1

q

∑ be the polynomial associated with a MA

operator and let {at} be a “white noise” series, that is a sequence of independent
identically distributed random variables. Then the MA(q) series {Yt} defined by

Yt = at − θ sat − s
s=1

q

∑ is “invertible” if and only if all the zeros of θ(z) are outside the unit

circle, that is |z| > 1 for all z such that θ(z) = 0. Similarly, if φ (z) = 1 − φsz
s

s =1

p

∑ is the

polynomial associated with an AR operator and the AR(p) series {Yt} is defined by

Yt = at + φ sYt − s
s= 1

p

∑ , then {Yt} can be stationary only when all the zeros of φ (z) are outside

the unit circle.

polyroot(c) computes the real and possibly complex roots of the polynomial P(x) =

xn − ckx
n−k

k =1

n

∑ = xnQ(1/x), where Q(t) = 1 − ckt
k

k= 1

n

∑ , with ck = c[k]. It is clear that Q(t)

has all its zeros outside the unit circle if and only if P(x) has all its zeros inside the
unit circle. If c is n by m , the result returned is a n by 2m matrix with the real and
imaginary parts of the roots associated with column j of c in columns 2j–1 and 2j,
that is, in Complex form.

Cmd> phi <- vector(1.42, -.73)

Cmd> z <- polyroot(phi); z # zeros of z^2 - 1.42z + .73
(1,1) 0.71 0.47529
(2,1) 0.71 -0.47529

Cmd> cprdc(z) - phi[1]*z - cmplx(phi[2]) # they are zeros
(1,1) -1.1102e-16 0
(2,1) -1.1102e-16 0

Cmd> creal(cpolar(z)) # modulus of zeros of z^2-phi[1]*z-phi[2]
(1) 0.8544 0.8544

Since the modulus of the zeros of z2– φ 1z – φ 2 are inside the unit circle, the roots of
φ (z) = 1 – φ 1z – φ 2z2 are outside the unit circle and Yt = φ 1Yt–1 – φ 2Yt–2 + at is
stationary.

5-20

MacAnova Version 4.07

5.4 Macros useful in time series analysis Several macros that are useful in time series
analysis are in file Tser.mac which is distributed with MacAnova. Note that these
must be read in using macroread() (Sec. 7.5.1) or macro getmacros (Sec. 7.5.3).

Some of the macros use the value of variable DELTAT, when it exists, as the interval ∆t
between observations. When it does not exist, ∆t is assumed to be 1. DELTAT is pre-
defined to have value 1. Some macros use the value of variable S, when it exists, as the
number S of frequencies at which frequency functions such as spectra or cross spectra
will be computed. S is not a pre-defined variable.

In the examples below we use artificial data generated by the following MacAnova
commands.

Cmd> phi <- vector(1.42, -.73)# coefs of oscillatory AR(2) series

Cmd> theta <- .7 # coef of MA(1) series

Cmd> setseeds(2013847346, 1009143553)# set seeds (Sec. 2.13.1)

Cmd> x <- 12 + 2*autoreg(phi,rnorm(250))[-run(50)] # Sec. 5.3.3

Cmd> y <- 50 + 4*movavg(theta,rnorm(201))[-1] # Sec. 5.3.2

Cmd> z <- .5*x + y

When the time interval ∆t = 1, the spectrum of an AR(p) series with coefficients [φ 1,

φ 2, ..., φ p] is S(f) =
σ 2

1 − φse
− i2πsf

s =1

p

∑
2 and the spectrum of a MA(q) series with coefficients

[θ1, θ2, ..., θq] is S(f) = σ 2 1− θ se
− i 2πsf

s=1

q

∑
2

, where in both cases σ2 is the innovation or

error variance. Since the expressions inside |...| are continuous Fourier transforms of
the sequences {1, –φ 1, –φ 2, ..., –φ p} or {1, –θ1, –θ2, ..., –θq], these spectra can be
computed at equally spaced frequencies in MacAnova.

Cmd> S <- 400

Cmd> sxx <- hreal(2^2*hprdhj(rft(autoreg(phi,padto(1,S)))))

Cmd> syy <- hreal(4^2*hprdhj(rft(movavg(theta,padto(1,S)))))

Cmd> szz <- .5^2*sxx + syy # o.k. because x and y independent

Because the series in x and y are independent, SZZ(f) = (.5)2×SXX(f) + SYY(f) and the
cross spectrum of x and z is SXZ(f) = .5×SXX(f). Hence the phase arg(SXZ(f)) of the

cross spectrum is 0 and the coherence is
.5SXX (f)

SXX (f)(.25SXX (f) + SYY (f))
 =

1 1+ 4SYY (f) / SXX (f) .

Cmd> coher <- 1/sqrt(1+4*syy/sxx)

Spectra, cross-spectra and coherence are examples of frequency functions defined in the
frequency domain measured in cycles per unit time. Frequency functions derived from

5-21

MacAnova Version 4.07

time series observed every ∆t time units are generally periodic with period 1/∆t.
However, because they generally are symmetric about zero (g(–f) = g(f)), anti-
symmetric about zero (g(–f) = –g(f)) or are complex satisfying Hermitian symmetry
(g(− f) = g(f)), they are completely specified by their values between 0 and .5/∆t cycles.
Frequency .5/∆t is known as the Nyquist frequency.

5.4.1 Plotting against time – tsplot This macro provides an interface to functions
lineplot(), plot() and chplot() for plotting time series and frequency functions.
On both of them, you can use the usual keywords title, xlab, ylab, xmin, xmax,
ymin, ymax, ... (see Sec. 8.5.1 and 8.5.2).

tsplot makes plots of the columns of its first argument against equally spaced values.

The simplest usage is simply tsplot(y), where y is a REAL vector or matrix. This plots
rows 1, 2, ..., nrows(y) against 0, ∆t, 2∆t, ..., (nrows(y)-1)×∆t, where ∆t is the value
of variable DELTAT. If DELTAT does not exist, ∆t = 1. tsplot(y,t0) does the same,
except the rows are plotted against t0, t0 + ∆t, t0 + 2∆t, ..., t0 + (nrows(y)-1)×∆t.
Finally, tsplot(y,t0,deltat) does the same except that ∆t = deltat.

In any of these usages, you can also include one or more of the following keyword
phrases

Keyword Phrase Meaning

lines:F Suppress connecting lines

impulse:T Add impulses (lines connecting data point with y = 0 line)

char:CharVar Use chplot() with CHARACTER variable CharVar as argument 3

With lines:F but without char:CharVec, tsplot uses plot(). lines:F and char:T
won’t work with versions of tsplot earlier than June 1998.

Cmd> getmacros(tsplot,quiet:T)

5-22

MacAnova Version 4.07

Cmd> tsplot(hconcat(x,z),1981,1/12,xlab:"Year",title:\
"Artificial time series, delta t = 1 month; solid=x, dashed=z")

0

10

20

30

40

50

60

1982 1984 1986 1988 1990 1992 1994 1996

Artificial time series, delta t = 1 month; solid=x, dashed=z

Year

T
i
m
e

s
e
r
i
e
s

This plots x and y as if they represented monthly data (∆t = 1/12) starting January 1981.
See Sec. 5.4.3 and 5.4.5 for other examples of the use of tsplot.

5.4.2 Plotting against frequency – ffplot ffplot(y) or ffplot(y,0) make line plots of
the columns of y against equally spaced values interpreted as frequencies, 0,
1/(S×∆t), 2/(S×∆t), ..., cycles per unit time, where ∆t is the value of DELTAT when
DELTAT is defined or 1 when it is not, and S = nrows(y). The default frequency range
is 0 ≤ f ≤ .5/∆t , that is, S/2 + 1 or (S+1)/2 different frequencies, depending on
whether S = is even or odd.

The columns of y are typically frequency functions such as periodograms (see Sec. 5.4.6),
spectra, or coherences computed at S frequencies from one or more time series
observed at intervals of ∆t time units.

ffplot(y,range), where range = vector(f1,f2), does the same except the plot is
between frequencies f1 and f2 cycles per unit time. ffplot(y,f), where f ≠ 0 is a
REAL scalar, is equivalent to ffplot(y,vector(0,f)) or ffplot(y,vector(f,0)),
depending on the sign of f1. When DELTAT is defined, ffplot(y,.5/DELTAT)
produces the same plot as ffplot(y). Values for f1 and f2 need not be restricted to
the interval (0, 1/ ∆t). If either element of range is outside this interval, the columns
of y are assumed to represent periodic frequency functions with period 1/ ∆t (one cycle
every S rows) and their values are periodically extended.

ffplot(y,range,deltat) does the same, except that the value of REAL scalar deltat
overrides the default value for ∆t.

5-23

MacAnova Version 4.07

You can use keyword phrases lines:F, impulse:T and char:T as with tsplot (Sec.
5.4.1).

Cmd> DELTAT <- 1/12 # observations every month = 1/12 year

Cmd> getmacros(ffplot,quiet:T)

Cmd> ffplot(sxx,xlab:"Cycles per year",ylab:"Spectrum",\
title:"Spectrum of AR(2) series, phi = (1.42,-.73), sigma = 2")

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6

Spectrum of AR(2) series, phi = (1.42,-.73), sigma = 2

Cycles per year

S
p
e
c
t
r
u
m

Here is an example exploiting the capability of ffplot to extend its first argument
periodically.

5-24

MacAnova Version 4.07

Cmd> ffplot(hreal(sxx),vector(-1,1)/DELTAT,xlab:"Cycles per year",\
ylab:"Frequency",title:"Two full periods of Spectrum")

0

20

40

60

80

100

120

140

160

180

-10 -5 0 5 10

Two full periods of Spectrum

Cycles per year

F
r
e
q
u
e
n
c
y

Cmd> ffplot(coher,ymin:0,xlab:"Frequency (cycles per year)",\
ylab:"Coherence",title:"Coherence between series x and z")

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6

Coherence between series x and z

Frequency (cycles per year)

C
o
h
e
r
e
n
c
e

5-25

MacAnova Version 4.07

5.4.3 Computing auto-covariances – autocov The sample autocovariance function of a
time series can be computed by macro autocov. Its usage is acf <- autocov(x,
nlags,L), where x is a REAL matrix whose columns are considered as a Real series. For
each column, autocov computes the sample autocovariance function

Cs =

1

N
(Xt − X)(X t+ s − X)

t =0

N − s −1

∑ , s = 0, 1, ..., nlags,

where N is nrows(x) and

X =

1

N
Xt

t = 0

N −1

∑ is the sample mean. The sums of lagged

products are computed using DFT's of length L, which must be at at least nlags +
nrows(x). If L is omitted and variable S is defined, the value of S is used for L. If S is
not defined, the smallest power of 2 exceeding nrows(x) + nlags is used for L. If the
second argument is omitted, nrows(x)-1 is used for nlags. Generally it is convenient
to decide on the length of the DFT’s to be used and define variable S.

Cmd> getmacros(autocov,quiet:T)

Cmd> acf <- autocov(x,60) # autocovariances up to 60 lags

Cmd> tsplot(acf,0,impulse:T,ymin:-max(acf),xlab:"Lag in Years",\
title:"Autocovariance function for AR(2)",ylab:"Auto Covariance")

-20

-10

0

10

20

0 1 2 3 4 5

Autocovariance function for AR(2)

Lag in Years

A
u
t
o

C
o
v
a
r
i
a
n
c
e

Keyword phrase impulse:T adds the vertical lines between the ACF and the ACF = 0
line. See Sec. 8.5.2.

5.4.4 Removing a polynomial trend – detrend The first step in the analysis of a time
series is often the removal of the sample mean or a trend function. If x is a matrix and
k is an integer, column j of detrend(x,k) is the jth column of y minus the best

5-26

MacAnova Version 4.07

fitting (in the least squares sense) polynomial of degree k. If k is omitted, its default
value is 1 and a linear trend is subtracted from each column.

Caution: For some older versions of detrend, the default degree was 0 rather than 1.

Cmd> getmacros(detrend,quiet:T)

Cmd> x1 <- vector(7,9,8,2,3,6,14,2,4,9) # short time series

Cmd> detrend(x1) # remove linear trend, default degree 1
(1) 0.38182 2.4303 1.4788 -4.4727 -3.4242
(6) -0.37576 7.6727 -4.2788 -2.2303 2.8182

Cmd> detrend(x1,0) # subtract mean, degree 0 polynomial
(1) 0.6 2.6 1.6 -4.4 -3.4
(6) -0.4 7.6 -4.4 -2.4 2.6

Cmd> detrend(x1,2) # remove quadratic trend; 2nd degree polynomial
(1) -0.89091 2.0061 1.6909 -3.8364 -2.5758
(6) 0.47273 8.3091 -4.0667 -2.6545 1.5455

5.4.5 Using tapers (data windows) – costaper and compza Frequency domain
estimation is based on computing Fourier transforms to attempt to extract from a time
series what is “going on” at each frequency. From Fourier transforms you can build
estimates of a spectrum or a cross spectrum. An inevitable problem is “leakage”
whereby what is “going on” at frequency f affects the Fourier transform at other
frequencies distant from f. This can introduce bias in estimated spectra and cross
spectra and can result in excessive correlation between estimates at different
frequencies.

Although some leakage is inevitable, it can be minimized by appropriate “pre-
processing” of a time series before computing a Fourier transform.

First, almost always, you should subtract an estimate of the mean µ t = E[Xt] of the
series. When you can assume the mean is constant, you can estimate µ t by the sample

mean

X =

1

N
Xt

t = 0

N −1

∑ . If not, then it is often sufficient to estimate µ t by a polynomial

fitted by least squares. More sophisticated methods of estimation may sometimes be
needed. Thus the basic input to frequency domain analysis is usually a series of
residuals Xt –

ˆ µ t , where
ˆ µ t estimates µ t. For notational simplicity, we will refer to

these residuals simply as Xt.

Secondly, it is important to “taper” the residuals by multiplying them by a tapering
function or data window. A tapering function is a sequence a0, a1, ... aN–1, where the
“tails” usually taper smoothly to 0. Define the (continuous) modif ied or tapered
Fourier transform of a series {Xt} as the CFT of the tapered series

ˆ X A(f) =
1

KA

atXte
−i 2πtf

t =0

N− 1

∑ , KA = at
2∑ .

ˆ X (f)/ N , computed from the ordinary Fourier transform, is a modified Fourier

transform with constant weights at ≡ 1 (which do not taper at all) and with KA = N . If

{at} is chosen appropriately, there will be much less leakage in
ˆ X A(f) than in

ˆ X (f). It is

5-27

MacAnova Version 4.07

the lack of any tapering in the ordinary Fourier transform
ˆ X (f) that is the root cause of

leakage in frequency domain estimates based on it.

Typically a taper has a maximum near (N –1)/2 and is symmetric in that its tails near t
= 0 and t = N –1 are mirror images of one another, that is aN–1–t = at. Often it is
constant over a large percentage of its range. One popular taper is a cosine taper defined
as

at =

1
2 (1− cos((t + 1

2) m)π) t = 0,1,..., m − 1

1 t = m,..., N − m − 1
1
2 (1− cos((N − t − 1

2) m)π) t = N − m,..., N − 1

,

where m = αN = smallest integer ≥ αN , with 0 ≤ α ≤ .5. This is said to be a 100α%
taper , tapering about 100α% of the entire series at each end. (Some sources call it a
100×2α % taper because appoximately 2αN elements are modified.) When option
angles has been set to "cycles" (Sec. 8.1), {at} might be computed in MacAnova by

Cmd> a <- vector(.5*(1-cos(.5*(run(0,m-1)+.5)/m)),rep(1,N-2*m),\
 .5*(1-cos(.5*(N-run(N-m,N-1)-.5)/m)))

Macro costaper does this computation. Specifically, costaper(n,alpha) computes a
cosine taper of length n with 100*alpha percent tapering on either end.

Cmd> getmacros(costaper,quiet:T)

Cmd> tsplot(costaper(200,.2),0,1,xlab:"Time",ylab:"Taper",\
title:"20% cosine taper")

Cmd> tsplot(costaper(200,.2)*detrend(x,0),1981,xlab:"Time (year)",\
title:"20% cosine tapered version of AR(2) series")

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

20% cosine taper

Time

T
a
p
e
r

-10

-5

0

5

10

1982 1984 1986 1988 1990 1992 1994 1996

20% cosine tapered version of AR(2) series

Time (year)

T
i
m
e

s
e
r
i
e
s

compza(x,alpha:A,degree:d,S:s) computes a modified Fourier transform ˆ X A(f) of
{ Xt − X } at frequencies f = 0, 1/S, ..., (S–1)/S, returning a structure with five
components, za (modified Fourier transform), n (nrows(x)), ka (KA), alpha and
degree, where S = s. Residuals from a d degree polynomial fitted by least squares are
tapered by a cosine taper with α = A. All the keyword phrases are optional. The default
values for A and d are 0.1 and 0, respectively. The default value for s is the value of
variable S if it defined, or 2*nrows(x) otherwise.

For example, compza(x,alpha:.1,degree:2, S:500)), computes the modified
Fourier transform at 500 frequencies with 10% cosine tapering after removing a

5-28

MacAnova Version 4.07

quadratic trend (polynomial degree 2) from the columns of x.

Cmd> getmacros(compza,quiet:T)

Cmd> compza(x1,alpha:.1,S:20)
component: za
 (1) -0.5488 0.47102 1.0048 2.9934 3.4881
 (6) -5.0421 -1.948 2.4692 -3.2995 -0.37712
(11) 3.087 3.3745 -1.1749 -1.3944 3.9707
(16) -4.2189 -4.8188 0.82104 0.65077 0.95695
component: n
(1) 10
component: ka
(1) 8.5
component: alpha
(1) 0.1
component: degree
(1) 0

Let’s check the results.

Cmd> alpha <- .1; ka <- sum(costaper(10, alpha)^2); ka
(1) 8.5

Cmd> rft(padto(costaper(10, alpha)*detrend(x1,0),20))/sqrt(ka)
 (1) -0.5488 0.47102 1.0048 2.9934 3.4881
 (6) -5.0421 -1.948 2.4692 -3.2995 -0.37712
(11) 3.087 3.3745 -1.1749 -1.3944 3.9707
(16) -4.2189 -4.8188 0.82104 0.65077 0.95695

5.4.6 Smoothing periodograms – compfa and spectrum A popular Fourier transform
based method to estimate the spectrum SXX(f) of a covariance stationary time series

{Xt} is to smooth its periodogram

IXX (f) =

1

N
ˆ X (f)

2

, computed at S equally spaced

frequencies. This is done by convolving IXX (f) with a sequence of weights {w s} where

wss∑ = 1. Usually w s ≥ 0 and w –s = w s. Usually an estimate of a mean or trend is

subtracted from Xt before computing IXX (f) . Sometimes the periodogram is defined to
be 2IXX(f). It is often a good idea to have S ≈ 2N .

Because of the poor leakage properties of the unmodified Fourier transform
ˆ X (f) it is

better to smooth a modified periodogram

IAXX (f) = ˆ X A(f)

2

 based on the modified

Fourier transform (Sec. 5.4.5).

Typically the weights satisfy w s = 0 for |s| > m , have a maximum at s = 0 and decline
monitonically for |s| = 1, ..., m . The case when the weights are equal (w –m = w –m+1

... = w 0 = ... w m = 1/(2m + 1)) is some times referred to as “boxcar” smoothing. A
variety of other smoothing weights can be obtained by convolving boxcar smoothers
with themselves. For example, convolving a boxcar of length n = 2m + 1 with itself
(the “convolution square”) produces a “triangular” smoother of length 2n – 1 = 4m +
1 with weights increasing linearly for s = –2m , –2m +1, ..., 0 and then decreasing
linearly for s = 0, 1, ..., 2m . Convolving such a boxcar with itself four times (the “4th

convolution power”) produces a bell shaped smoother of length 4n – 3 = 8m + 1

5-29

MacAnova Version 4.07

whose weights are non-zero for s = –4m , –4m +1, ..., 4m –1, 4m .

Cmd> m <- 5;boxcar <- rep(1/(2*m+1), (2*m+1)) # boxcar of length 11

Cmd> triangle <- convolve(boxcar,padto(boxcar,4*m+1)) # length 21

Cmd> bell <- convolve(triangle,padto(triangle,8*m+1)) # length 41

Cmd> plot(run(-2*m,2*m),triangle,impulse:T,ymin:0,xlab:"Index s",\
ylab:"Weights",\
title:"Convolution square of Box car of length 11")

Cmd> plot(run(-4*m,4*m),bell,impulse:T,ymin:0,xlab:"Index s",\
ylab:"Weights",\
title:"Convolution 4th power of Box car of length 11")

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-10 -5 0 5 10

Convolution square of Box car of length 11

Index s

W
e
i
g
h
t
s

0

0.01

0.02

0.03

0.04

0.05

0.06

-20 -15 -10 -5 0 5 10 15 20

Convolution 4th power of Box car of length 11

Index s

W
e
i
g
h
t
s

We need to use padto() in computing the convolutions because convolve() does
circular convolutions. See Sec. 5.2.8.

When w s = 0 for |s| > m , iaxx is a (modified) periodogram in Real or Complex (not
Hermitian) form and wts is a REAL vector of length 2m +1 with wts[1] = w –m,
wts[2] = w –m+1,..., wts[m+1] = w 0, ..., wts[2*m+1] = w m, you can smooth iaxx by
rotate(convolve(wts,iaxx),-m). The use of rotate() compensates for the fact
wts[t] = w t–1–m. Here we do not use padto() to pad with zeros because circular
convolution is exactly what is needed because the periodogram is a periodic function.

In almost any estimation situation, you should be interested in the precision of an
estimator. One measure of precision for a positive estimator is its equivalent degrees
of freedom or EDF. If W ≥ 0 is a random variable, EDF[W] ≡ 2E[W]2/V[W] . A large
value of EDF[W] means the standard deviation of W is small relative to its mean and
hence the relative precision of W as an estimate of E[W] is high.

When W is distributed as a multiple of χ2, say W = τ 2 χ d
2

d
, then E[W] = τ2 and

EDF[W] = d . A common approximation to the distribution of a random variable W

≥ 0 is to treat it as if it were τ 2 χ d
2

d
 with τ2 = E[W] and d = EDF[W], so that E[W] =

E[τ 2 χ d
2

d
] and V[W] = V[τ 2 χ d

2

d
]. This approximation is widely used in spectrum

estimation.

5-30

MacAnova Version 4.07

In the context of spectrum estimation, the more a periodogram or modified

periodogram is smoothed to compute an estimated spectrum ˆ S XX(f) , the larger is

EDF[ˆ S XX(f)]. This results in a smaller variance but usually a larger bias.

Under broad conditions, when ˆ S XX(f) is computed by smoothing a modified

periodogram computed at S equally spaced frequencies, EDF[ˆ S XX(f)] is approximately

2RAN

S ws
2∑ , where {w s} are the smoothing weights and

RA =

{ a s
2 }2∑

N a s
4∑ ≤ 1. RA = 1 when

there is no tapering. For a cosine taper, RA = (1 – 1.25m /N)2/(1 – 1.453125m /N),
where m = αN .

An important characteristic of the estimate is its bandwidth , the effective frequency
range over which appreciable smoothing occurs. The greater the bandwidth, the more
stable (larger EDF) is the resulting estimate, but the greater the potential for bias because
of the smoothing. Conversely, the smaller the bandwidth, the less the bias, at the cost
of decreased EDF in the estimate.

A common definition of the bandwidth associated with a periodogram computed at S

frequencies and smoothed by weights {w s} with

wii∑ = 1 is B =

1

S wi
2

i∑ , in units of

cycles per ∆t. When {w s} is a boxcar of length n , B = n/S ≈ .5n/N when S ≈ 2N .
For the 4th power of a boxcar of length n ,

wi

2

i∑ = (151n 7 + 70n 5 + 49*n 3 + 45n)/(315n 8) ≈ .48/n

B = (2.086n/S)(1 – .464/n 2 + O(1/n 4))

When the spectrum is sufficiently smooth, the EDF of a smoothed modified period-
ogram with bandwidth B at a frequency f between B/2 and 1/2 – B/2 cycles is approx-
imately 2RABN . At 0 and 1/2 cycles, EDF ≈ RABN .

compfa(x,edf,alpha:A,degree:d,S:s), where edf ≥ 2, computes smoothed

modified periodograms as estimates ˆ S X j X j
(f) of the spectra of time series in the columns

of REAL matrix x with N rows. Residuals from a polynomial of degree d fit by least
squares are tapered using a cosine taper tapering 100A% on each end. The modified
periodograms are smoothed with the 4th convolution power of a boxcar of the right
length so that estimated spectra have EDF ≈ edf when SXX(f) doesn’t vary much over
the width of the smoothing weights. By default, the actual EDF computed from the
formula is printed. It is usually slightly larger than the value of edf.

compfa returns a matrix with the same number of columns as x, but with S = s rows.

Column j of the result is a Real series containing the estimated spectrum ˆ S X j X j
(f) of

column j of x computed at S frequencies f = 0, 1/S, 2/S, ..., (S–1)/S.

All the keyword phrases are optional. The default values for A and d are .10 and 0,
respectively. The default value for s is the value of variable S if it exists or 2N . If N
has any prime factor > 29, S must be set appropriately so that its value doesn’t have
such factors.

5-31

MacAnova Version 4.07

Cmd> getmacros(compfa,quiet:T)

Cmd> sazz <- compfa(z,15,alpha:.1) # note explanatory comment
rep(1/9,9)^*4 smoother with 16.7 edf, S = 400

You can suppress the descriptive comment by keyword phrase quiet:T.

A value of edf with 0 < edf < .5 is also legal. It this case edf is interpreted to specify a
desired bandwidth B = edf in cycles. The actual EDF aimed for is then taken to be
2BN . edf = 0 or 2 results in no smoothing.

Cmd> ffplot(hconcat(compfa(z,5,alpha:.1,quiet:T),\
compfa(z,10,alpha:.1,quiet:T),compfa(z,15,alpha:.1,quiet:T)),\
xlab:"Frequency (cycles per year)",ylab:"Spectrum",\
title:"Smoothed modified periodograms with about 5, 10 and 15 edf")

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5

Smoothed modified periodograms with about 5, 10 and 15 edf

Frequency (cycles per year)

S
p
e
c
t
r
u
m

Macro spectrum is an alternative to compfa() which has fewer options and lacks the
capability to taper or remove a polynomial trend. There are more choices for
smoothing but they are specified differently.

spectrum(x,m,p) computes the smoothed unmodi f ied periodograms ˆ S XX (f) of each
column of REAL matrix x with N rows. The weights {w s} are computed as the pth

convolution power of a boxcar of length m. spectrum(x,m) is equivalent to
spectrum(x,m,4). No tapering is done (see Sec. 5.4.5) and only the sample mean of
each column is subtracted before computing the Fourier transforms.

When m = 1, the columns of the output are the unsmoothed periodograms IXX (f) .

spectrum returns a matrix with the same number of columns as x, but with S rows
where S is the value of variable S if it exists or 2N otherwise. If N has any prime
factor > 29, S must be set appropriately so that its value doesn’t have such factors.

Column j of the result is a Real series containing the estimated spectrum ˆ S X j X j
(f) of

5-32

MacAnova Version 4.07

column j of x computed at frequencies f = 0, 1/S, 2/S, ..., (S–1)/S. Because ˆ S XX (f) is

symmetrical about f = 0 and periodic with period 1, ˆ S XX (j/S) = ˆ S XX (–j/S) = ˆ S XX (S –
j/S), j = 1, ..., S–1.

spectrum(costaper(nrows(x),A)*detrend(x,d),m,p) does the same, working
with tapered residuals from a polynomial trend, just as does compfa.

Cmd> getmacros(spectrum,quiet:T)

Cmd> S <- 2*nrows(x) # set number of frequencies

Cmd> sxxhat <- spectrum(x,7)

Cmd> ffplot(sxxhat,ymin:0,xlab:"Frequency (cycles per year)",\
ylab:"Power Spectrum",title:\
"Smoothed Periodogram, N = 200, S = 400, (rep(1/7,7))^*4 smoother")

0

50

100

150

200

0 1 2 3 4 5 6

Smoothed Periodogram, N = 200, S = 400, (rep(1/7,7))^*4 smoother

Frequency (cycles per year)

P
o
w
e
r

S
p
e
c
t
r
u
m

5.4.7 Smoothing cross-periodograms – compfa and crsspectrum Analogously to the
spectrum, the cross spectrum of two time series {Xt} and {Yt} is sometimes estimated by

smoothing their cross-periodogram IXY(f) = N
−1 ˆ X (f) ˆ Y (f) but it is usually better to

smooth their modified cross-periodogram IAXY(f) = ˆ X A(f) ˆ Y A(f) . As before, the time
series should be detrended before tapering. Macro compfa can also be used for
estimating cross spectra by including keyword phrase cross:T as an argument.

compfa(x,edf,cross:T,alpha:A,degree:d,S:s) computes estimates of the
spectrum of each column of x and estimates of the cross spectra between any two
columns, all at frequencies f = 0, 1/S, 2/S, ..., (S–1)/S. When x is a N by q matrix,
the result is a S by q(q+1)/2 matrix, where S is as in Sec. 5.4.6. The first q columns
of the result are the same as would be produced by compfa without cross:T, namely

5-33

MacAnova Version 4.07

Real series containing the estimated spectra ˆ S X j X j
(f) of the columns of x. The

remaining columns of the result are the estimated cross spectra ˆ S X i X j
(f) , in Hermitian

form (Sec. 5.2.3), between columns 1 and 2, columns 1 and 3, ..., columns 1 and q,
columns 2 and 3, ..., columns 2 and q, ..., and columns q–1 and q.

Cmd> shat <- compfa(hconcat(x,z),10,alpha:.1,cross:T,S:400)
rep(1/6,6)^*4 smoother with 11.1 edf, S = 400

Cmd> list(shat) # Columns are sxxhat, szzhat, sxzhat
shat REAL 400 3

Cmd> ffplot(shat[,1],ymin:0,\
lab:"Frequency (cycles)",ylab:"Spectrum",\
title:"Estimated spectrum of x with 11 edf")

Cmd> ffplot(shat[,2],ymin:0,\
xlab:"Frequency (cycles)",ylab:"Spectrum",\
title:"Estimated spectrum of z with 11 edf")

0

50

100

150

200

0 1 2 3 4 5 6

Estimated spectrum of x with 11 edf

Frequency (cycles)

S
p
e
c
t
r
u
m

0

10

20

30

40

50

0 1 2 3 4 5 6

Estimated spectrum of z with 11 edf

Frequency (cycles)

S
p
e
c
t
r
u
m

Cmd> sxzhat <- shat[,3] # Hermitian form of cross spectrum

Cmd> coherhat <- hreal(hpolar(sxzhat))/sqrt(shat[,1]*shat[,2])

Cmd> phasexz <- himag(hpolar(sxzhat)) # arg(sxzhat)

Cmd> #See Sec. 5.2.4 for hreal(), himag(), and hpolar()

5-34

MacAnova Version 4.07

Cmd> ffplot(hconcat(coher,coherhat),ymin:0,ymax:1,\
xlab:"Frequency (cycles per year)",ylab:"Coherence",\
title:"Coherence and estimated coherence between x and z, edf = 11")

Cmd> ffplot(phasexz,xlab:"Frequency (cycles per year)",\
ylab:"Phase in Cycles",\
title:"Estimated phase = arg(sxzhat) between x and z, edf = 11;
arg(sxz) = 0")

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Coherence and estimated coherence between x and z, edf = 11

Frequency (cycles per year)

C
o
h
e
r
e
n
c
e

-0.2

0

0.2

0.4

0.6

0 1 2 3 4 5 6

Estimated phase = arg(sxzhat) between x and z, edf = 11; arg(sxz) = 0

Frequency (cycles per year)

P
h
a
s
e

i
n

C
y
c
l
e
s

In these last two plots, the quantities plotted are the estimated coherence

ˆ S XY (f)

ˆ S XX (f) ˆ S YY(f)

and the phase
ˆ φ XY(f) of

ˆ S XY (f) , where

ˆ S XY (f) = ˆ S XY(f) ei ˆ φ XY (f) . Also plotted are the true

coherence and phase (the true phase is 0 for all f).

The lines computing coherhat and phasexz are a little tricky. They work because
hpolar() returns its result as a pseudo Hermitian series whose real and imaginary
parts are the amplitude and phase, respectively. See Sec. 5.2.3, 5.2.4.

crsspectrum(x,m,p) computes output similar to compfa with argument cross:T
except that the smoothing weights are the pth convolution power of a boxcar of length
m. crsspectrum(x,m) is equivalent to crsspectrum(x,m,4). The sample means are
removed from the columns of x but no other detrending is done and the residuals
from the mean are not tapered. As with spectrum, you can detrend and taper by
crsspectrum(costaper(nrows(x),A)*detrend(x,d),m,p). Here is how you could
get the previous results with crsspectrum.

Cmd> getmacros(crsspectrum,quiet:T)

Cmd> S <- 400; shat1 <- crsspectrum(costaper(200,.1)*hconcat(x,z),6)

Cmd> # This does same tapering, smoothing as was done by compfa

Cmd> list(shat1) # columns are sxxhat, szzhat, sxzhat as for compfa
shat1 REAL 400 3

5.4.8 Multi-taper spectrum estimation – multitaper A fairly recent approach to
spectrum estimation averages several modified periodograms, computed with a set of
distinct tapers that (a) taper much more severely than a cosine taper, even with α = .5,
and (b) are orthogonal in the sense that their summed cross products are zero. The
tapers used are discrete prolate spheroidal sequences (DPSS) which can be computed as
eigenvectors of certain tridiagonal matrices. A particular estimate is determined by (i)

5-35

MacAnova Version 4.07

the bandwidth W associated with the taper, and the number K of orthogonal tapers to
use. Percival and Walden (1993) provide a thorough discussion of multitaper spectrum
estimation, including the computation of DPSS tapers. Macro dpss in file Tser.mac
uses function trideigen() (Sec. 6.2.2) to compute these tapers.

multitaper(x,W,K,degree:d,S:s) computes a multitaper spectrum estimate of the
time series in REAL vector x. K must be a positive integer and W is a positive REAL scalar
< .5/DELTAT specifying the taper bandwidth in cycles per unit time. The estimate is
computed from residuals (from a polynomial trend of degree d fitted by least squares) at
S = s frequencies 0, 1/S, ... (S–1)/S. The result is a Real series. All the keyword
phrases are optional. The default value for d is 0, and the default for s is the value of S
when S is defined or 2*nrows(x) otherwise. multitaper makes use of macro dpss,
attempting to read it in if it is not available.

Cmd> getmacros(dpss,multitaper,quiet:T)

Cmd> ffplot(hconcat(sxx,multitaper(x,.05/DELTAT,5)),\
xlab:"Cycles per year",ylab:"Spectrum",\
title:"Spectrum and multi-taper spectrum estimate, W=.6 cycles per
year, K = 5")

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6

Spectrum and multi-taper spectrum estimate, W=.6 cycles per year, K = 5

Cycles per year

S
p
e
c
t
r
u
m

5-36

MacAnova Version 4.07

5.4.9 Autoregressive spectrum estimation – arspectrum and burg Yet another approach
to spectrum estimation is to require the estimate to be a member of a flexible family of
spectra determined by a relatively small set of parameters. One such family are the

spectra SXX(f) = SXX(f ;φ1 ,…,φp ,σ 2) =
σ2

1− φ se
−i 2πsf

s= 1

p

∑
2 of a purely AR(p) time series (see Sec.

5.3.1), with coefficients φ 1, ..., φ p and innovation variance σ2. An estimate takes the

form ˆ S XX(f) = SXX(f ; ˆ φ 1 ,…, ˆ φ p , ˆ σ 2) , where ˆ φ 1,…, ˆ φ p and ˆ σ 2 are estimates of φ 1, ..., φ p and
σ2. MacAnova provides two macros based on this idea, implementing quite different
algorithms to estimate φ 1, ..., φ p.

arspectrum(x,p,s) solves the Yule-Walker equations rs = φkrs− k
k =1

p

∑ , s = 1, 2, ... ,p , for

φ k, where rs =
C|s|

C0

 is the sample autocorrelation function (see Sec. 5.4.3), and estimates

σ2 as ˆ σ 2 = C0 (1− ˆ φ kk
2)

k =1

p

∏ , where ˆ φ kk is the estimated k th partial autocorrelation

computed from rs, s = 1,...,k (see Sec. 5.3.4). The result is a structure with components

phi (estimates ˆ φ k), var (ˆ σ 2) and spectrum (ˆ S (f)), computed at frequencies 0, 1/S, ...,
(S–1)/S, where S = s. arspectrum(x,p) does the same, with S = 2m, where m is
the smallest integer for which 2m > 2*nrows(x).

Cmd> getmacros(arspectrum,quiet:T)

Cmd> arspect <- arspectrum(x,2,400) # use 400 frequencies

Cmd> compnames(arspect) # arspect has 3 components
(1) "phi"
(2) "var"
(3) "spectrum"

Cmd> arspect[run(2)] # first two components
component: phi
(1) 1.3658 -0.69382
component: var
(1) 4.7358

Cmd> sxx2 <- arspect$spectrum

Cmd> sxx10 <- arspectrum(x,10,400)$spectrum # now fit AR(10)

5-37

MacAnova Version 4.07

Cmd> ffplot(hconcat(sxx,sxx2,sxx10),\
xlab:"Frequency (Cycles per year)",ylab:"Spectrum",\
title:"AR(2) spectrum (solid) with and AR(2) and AR(10) estimates
(dashed)")

0

50

100

150

200

0 1 2 3 4 5 6

AR(2) spectrum (solid) with and AR(2) and AR(10) estimates (dashed)

Frequency (Cycles per year)

S
p
e
c
t
r
u
m

burg(y,p,degree:d,S:s) uses an algorithm due to Burg (Kirk, Rust, Van Winkle
1979) which estimates the partial autocorrelations φ 11,...,φ pp one by one directly from
the data, minimizing at each stage a certain sum of squares. These are used to compute
estimates of φ k and σ2. The result is a structure of the same form as returned by
arspectrum. The spectrum is estimated at S = s equally spaced frequencies from
detrend(y,d).

The keyword phrases are optional. The default value of d is 0 and the default value of
s is the value of S if it is defined or nrows(x)+p if not.

Cmd> getmacros(burg,quiet:T)

Cmd> burgspect<-burg(x,2,S:400) # use 400 frequencies

Cmd> burgspect[run(2)] # first two components
component: var
(1) 4.0165
component: phi
(1) 1.4143 -0.74251

Cmd> sxx2 <- burgspect$spectrum

Cmd> sxx10 <- burg(x,10,S:400)$spectrum # now use p = 10

5-38

MacAnova Version 4.07

Cmd> ffplot(hconcat(sxx,sxx2,sxx10),\
xlab:"Frequency (Cycles per year)",ylab:"Spectrum",\
title:"AR(2) spectrum (solid) with Burg AR(2) and AR(10) estimates
(dashed)")

0

50

100

150

0 1 2 3 4 5 6

AR(2) spectrum (solid) with Burg AR(2) and AR(10) estimates (dashed)

Frequency (Cycles per year)

S
p
e
c
t
r
u
m

5-39

	5.1 Introduction
	5.2 Operations for frequency domain analysis
	5.2.1 The DFT (Discrete Fourier Transform) Let {X
	5.2.2 Continuous Fourier transform
	5.2.3 Representing Real, Hermitian & Complex Series
	5.2.4 Manipulating complex & Hermitian series
	5.2.5 padto() and rotate()
	5.2.6 Complex elementwise products
	5.2.7 DFT functions – rft(), hft() and cft()
	5.2.8 Convolving series

	5.3 Operations for time domain time analysis
	5.3.1 Moving average and autoregressive operators
	5.3.2 movavg()
	5.3.3 autoreg()
	5.3.4 yulewalker() and partacf()
	5.3.5 toeplitz()
	5.3.6 Finding zeros of polynomials

	5.4 Macros for time series analysis
	5.4.1 Plotting against time
	5.4.2 Plotting against frequency
	5.4.3 Computing auto-covariances
	5.4.4 Removing a polynomial trend
	5.4.5 Using tapers (data windows)
	5.4.6 Smoothing periodograms
	5.4.7 Smoothing cross-periodograms
	5.4.8 Multi-taper spectrum estimation
	5.4.9 Autoregressive spectrum estimation

