
July 2001

An Introduction to MacAnova
by

Christopher Bingham
and

Gary W. Oehlert

University of Minnesota
School of Statistics

Technical Report Number 600

Revised July 2001
Current to Release 2 of Version 4.12

Copyright © 1994, 1995, 2001 Christopher Bingham and Gary W. Oehlert

Table of Contents

1. Introduction
1.1 What is MacAnova? 3
1.2 The purpose of this document 3
1.3 Differences among MacAnova versions 4
1.4 Obtaining MacAnova 4

2. Getting Started
2.1 Launching MacAnova 5
2.2 Typing and editing commands 6
2.3 Quitting . 7
2.4 Learning more about MacAnova – documentation 8

3. The Basics
3.1 MacAnova as a numerical calculator 9
3.2 MacAnova as symbolic calculator 10
3.3 MacAnova as computing language – functions and macros 11
3.4 More on Variables – REAL, LOGICAL and CHARACTER data . . . 13
3.5 Comparisons of numbers and combining LOGICAL values 15
3.6 Variables with several values – Vectors and Matrices 16
3.7 Missing values 19

i

An Introduction to MacAnova

4. Building on the Basics
4.1 Combining vectors and matrices – vector(), hconcat() and vconcat() . 20
4.2 Creating patterned vectors – run() and rep() 21
4.3 Assigning values to the elements of a vector or matrix 22
4.4 Simple summaries of data in vectors and matrices –

sum(), prod(), min(), max(), sort() and rank() 23
4.5 Simple descriptive statistics – describe() 25
4.6 Getting help – MacAnova commands help() and usage() 28

5. Using files
5.1 General . 32
5.2 Recording your MacAnova session – spool() 33
5.3 Saving your work – save() and asciisave() 34
5.4 Reading data from files – vecread() , readdata() and matread() . . . 35
5.5 Moving data from and to a spreadsheet 40

6. Visualizing numbers – drawing graphs
6.1 Basic graphic command 44
6.2 Using keywords to control the appearance of graphs 46
6.3 GRAPH variables and modifying graphs 47
6.4 Graphs in a windowed version 50
6.5 Plotting under DOS 50
6.6 Plotting under Linux/Unix 50
6.7 Incorporating a graph in word processor document 51
6.8 Writing graphs to files 51

7. Examples of statistical analyses
7.1 Introduction . 52
7.2 Histogram and pseudo-random number generation (rnorm(),

setseeds(), getseeds(), describe(), hist()) 52
7.3 Paired t analysis (stemleaf(), describe(), tint(), twotailt()) 54
7.4 Two-sample t-test and confidence interval (describe(), t2val(),

t2int(), twotailt()) 56
7.5 Simple linear regression and scatter plot (regress(), plot(),

secoefs(), betalimits()) 57
7.6 One-way Analysis of Variance and box plot (anova(), vboxplot(),

 factor(), tabs()) 59
7.7 Randomized Block (Two-way) Analysis of Variance (anova(),

factor(), tabs()) 62
7.8 Multiple Regression (regress(), anova(), secoefs(), resid(),

betalimits(), resvsrankits()) 64

ii

An Introduction to MacAnova

An Introduction to MacAnova
by Christopher Bingham and Gary Oehlert

1. Introduction

1.1 What is MacAnova?
MacAnova is an interactive computer program for statistics and data analysis. Among
its strengths are regression analysis, analysis of variance, multivariate analysis and time
series analysis. It is also good for more elementary analyses including computing
summary statistics, t-tests and confidence intervals for means and making graphical
displays such as scatter plots and histograms.

In spite of its name, MacAnova is not just a Macintosh program (and not just a
program to do Analysis of Variance). There is also a Windows version, two DOS
versions, and both Motif and non-Motif version for Linux and Unix.

Many statistical programs are primarily m e n u -driven. You select which analysis or
display to do by choosing an item on a menu. This can provide for an easy interface,
but it tends to restrict possible analyses to those specifically built into the program.

MacAnova, by contrast, is primarily command -driven, although the windowed
versions for Macintosh™, Windows™ and Motif™ make some use of menus. You
use the keyboard to type instructions into a command/output window or screen.
Because MacAnova has a very wide set of commands and functions, and a way to
combine them to make new commands, you are not limited to a predefined set of
analyses. In fact, MacAnova has been used to develop and try out innovative statistical
methods.

An attractive feature is that you can often directly translate a statistical formula to a
form that MacAnova recognizes. For example, the formula for the sample mean of
data xi is x = xi∑ /n , where xi∑ symbolizes the sum of all the data and n is the
sample size. In MacAnova, to compute a sample mean of data named x, you can type
sum(x)/nrows(x) or, if n has earlier been set to the sample size, you can type
sum(x)/n.

You can easily make high quality scatter plots and other graphs, sometimes as simply as
typing plot(x,y).

1.2 The purpose of this document
Although there is comprehensive built-in help, MacAnova takes some getting used to.
You need to have a certain minimum level of knowledge and practice before you can
make full use of it. The goal of this document is to introduce you to the most
important features of MacAnova, illustrating them with examples.

A good way to learn is to read this Introduction at the computer, trying out things as

they are introduced and using the help()1 or usage() commands (see Sec. 4.6) to get
more detailed information on each command as it is introduced.

1 The parentheses are part of the name of the command. When you use a command, you will usually have

stuff inside the parentheses, for example, help(anova).

3

An Introduction to MacAnova

Some general help topics you may find useful later, but probably not at the start, are
arithmetic, array, batch, comments, files, graphs, keywords, logic, macros,
macro_syntax, matrices, models, structures, subscripts, syntax,
transformations, variables and vectors. Yet more complete information is
available in the MacAnova Users’ Guide, the most recent version of which (dated
August 1998) is for MacAnova 4.07. It is available on the web in PDF (Adobe Portable
Document Format) computer files which you can print if you want “hard copy.” For
convenience, it is split into files containing individual chapters and appendices.

1.3 Differences among MacAnova versions

All MacAnova versions, for Windows, DOS, Macintosh or Linux/Unix have the same
basic capabilities, although the limited memory DOS version lacks the capacity for large
analyses. The principal differences are these:

• Windowed versions (Windows, Macintosh and Motif on Linux/Unix) make some
use of menus with the Macintosh making the most use; other versions do not.

• In windowed versions, what you type and MacAnova’s responses go into an editable
command/output window . On a Macintosh you can have up to nine such
windows; in Windows and Motif you can have up to eight. You can scroll a
command/output window back to see stuff that has disappeared off the top of the
screen. You can save its contents on disk for later printing or editing.

On non-windowed versions (DOS and non-Motif Linix/Unux), what scrolls off the
screen is lost, although MacAnova pauses after every screenful so that you can read
the output.

In all versions you can automatically record your input and output to disk using the
spool() command (see Sec. 5.2 below).

• Windowed versions have up to eight graph windows where the plotting com-
mands draw graphs. You can switch between them and any active command/
output window.

Non-windowed versions have a single graph window whose contents are lost as
soon as you switch back to command mode. Exception: the graph window is
preserved when running MacAnova in an xterm window on a Linux/Unix
workstation.

• In windowed versions, you can print any graph or command window. You can
transfer its contents to a word processor using the Clipboard. Exception: you can’t
copy graph windows in the Motif version.

You can also copy a graph to the Clipboard in DOS versions running under
Windows 95/98/NT.

All the examples here were done on a Macintosh. The computer output, including
high resolutions graphs, was copied into a word processor document via the Clipboard.

1.4 Obtaining MacAnova The most recent version of MacAnova is the July 2001
release of Version 4.12. It is available on the Web through the MacAnova home page

http://www.stat.umn.edu/macanova/macanova.home.html

4

An Introduction to MacAnova

You can download executable versions for Windows, DOS, Macintosh and Linux.
MacAnova is still evolving. You are strongly urged to check the web periodically for
new releases. Some of the examples use quite recently introduced features and macros.

2. Getting started
2.1 Launching Macanova

On a Macintosh, double click on the MacAnova Icon .

In Windows, the MacAnova installer installs similar icons labelled “MacAnova for
Windows” and “MacAnova for Extended Memory DOS” in a MacAnova program
group. These may both be there even if only one version was installed. You start up a
version by double clicking on its icon.

In Windows 95/98/NT, the installer places shortcuts in a folder so that they appear in
the Start menu.

For launching MacAnova in Windows 3.1, 95, 98 or NT, select the MacAnova for
Windows version. If you have only DOS, you should change directories so that
C:\MACANOVA is the current directory. Then type macanodj to start up the extended
memory version. If your machine is an AT or has no extended memory, you should
type macanobc to start up the limited memory version.

In Linux or Unix, you normally type the application name, macanova for the command
line version or macanovawx for the Motif version in a terminal window.

You can get full details on launching MacAnova from the following Appendices in the
Users’ Guide:

Appendix Version

B Macintosh

C DOS, both limited and extended memory

D Windows 3.1, 95/98/NT

E Unix/Linux command line

F Motif

You can also get information by typing help(launching). This includes command
line options for all but the Macintosh version. Help topics macintosh, dos_windows,
unix and wx also provide computer specific information, as do the readme files that are
distributed with MacAnova.

5

An Introduction to MacAnova

After launching MacAnova, you should see a start up message like the following which
is followed by the “prompt” Cmd>:

M A C A N O V A 4.12

An Interactive Program for Statistical Analysis and Matrix Algebra
For information on major features, type 'help(macanova)'

For information on linear models and GLM's, type 'help(glm)'
For latest information on changes, type 'help(news)'

For information on Macintosh version, type 'help(macintosh)'
Version of 07/25/01 (Power Macintosh [CW5])

Type 'help(copyright)' for copyright and warranty info
Copyright (C) 1994 - 2001 Gary W. Oehlert and Christopher Bingham

MacAnova home page: http://www.stat.umn.edu/macanova

help() and usage() have been renamed gethelp() and getusage().
There are new predefined macros help and usage which use gethelp()

and getusage() to scan help files named in vector HELPFILES
Type 'help(updates_411)' for a summary of changes from

first release of Version 4.11

Cmd>

2.2 Typing and editing commands
“Cmd>” is the standard prompt requesting that you type a command. In windowed
versions, you can use the mouse to put the cursor anywhere in the window and type in
whatever you want, but MacAnova obeys only what you type after the prompt
(actually 1 space after the prompt). In non-windowed versions you have no choice; you
can type only after the prompt.

You type commands as sequences of letters and symbols, using Delete or Backspace to
correct mistakes. In windowed versions, before running what you have typed, you can
use arrow keys or the mouse to move the insertion point to make corrections or
changes. The command you typed is not carried out until you press Return or Enter.

Anything that you type on a line after a “#” is considered to be a comment and is
ignored by MacAnova. This feature is used in many examples below to explain what is
being done.

A convention we try to stick to is to use italic Courier font for what you type and
non-italic Courier font for what the computer prints. Added comments that are not
part of the MacAnova session are in bold face Courier.

Example
Cmd> x <- vector(1.2, 3.5, 2.3) # entering 3 values of data<cr>

creates a variable named x with values x1 = 1.2, x2 = 3.5 and x3 = 2.3. The <cr>
indicates a Return or Enter required at the end of any command. It will not appear in
later examples.

In windowed versions, if you press Return when the “insertion point” (cursor) is not at
the very end of the command line, the line just splits, but MacAnova won’t do
anything. For example suppose you type 12 + 23 and then use the mouse or arrow
keys to put the insertion point before 23:

6

An Introduction to MacAnova

Cmd> 12 + 23 # insertion point before 23

If you press Return you get the following:

Cmd> 12 +
23 # insertion point before 23

but MacAnova does nothing.

In contrast, no matter where the insertion point is, pressing Shift Return or Shift Enter is
the same as moving the cursor to the end of the command line and then typing Return.

An alternative is to press F6. On a Macintosh, you can also press Enter or \ 2. Here
is what happens then you press Shift Return with the insertion point before 23:

Cmd> 12 + 23 # insertion point before 23
(1) 35 Shift Return was pressed

When you need to type a command that is longer than the screen or window width,
you can just keep typing and it will wrap around to the next line (Exception: In
Windows or Motif versions, the line does not wrap; the window scrolls right).
Alternatively, you can split it yourself at a convenient spot by typing a backslash “\”
followed by Return. Thus, as long as you don’t type Return at the end of the first line,

Cmd> y <– vector(113.7,91.4,89,133.3,90.6,87.4,96.8,78.4,81,
113.9,120,110,92.7,131.5,100.9,120.5,87.3,97.9,83.2,81.2)

has the same effect as

Cmd> y <- vector(113.7,91.4,89,133.3,90.6,87.4,96.8,78.4,81,\
113.9,120,110,92.7,131.5,100.9,120.5,87.3,97.9,83.2,81.2)

where Return was typed after “\”. To repeat, don’t use Return without a backslash in the

middle of a command, except inside quotes "..." or curly brackets {...}.3

In the Windows and Motif versions, lines wider than the window do not wrap, they
just extend off the window and the window scrolls horizontally as you type. You can
use the horizontal scroll bar at the bottom of the window to see the rest of any line that
is too long, but you may find it more convenient explicitly to break long lines with a
backslash at each break.

2.3 Quitting
It is just as important to know how to stop MacAnova as to how to start it.

On all versions of MacAnova you can exit by typing quit, end, stop, exit or bye.

Example
Cmd> bye # or quit or end or stop or exit

In windowed versions (Macintosh, Windows, Motif), you can leave MacAnova by
selecting Quit on the File menu or closing the command/output window when there
is only one such window.

2 \ means the combination of the Command key and the \ key.
3 In the limited memory DOS version, no more than 128 characters per line may be entered; for longer

lines you must break them using “\”.

7

An Introduction to MacAnova

When you leave MacAnova, all the data and results in MacAnova's memory (the
workspace) will disappear. The windowed versions ask if you want to save the
workspace and the output window when you quit.

In all versions you can use commands save() or asciisave() to save your workspace
before quitting (see Sec. 5.3 below). In windowed versions, when you definitely don’t
want to save anything, you can quit by typing quit(F). On a Macintosh you can
accomplish the same thing by pressing the Option key while you select Quit.

2.4 Learning more about MacAnova – documentation
Your first resources are probably commands help() and usage() (see Sec. 4.6 below).
help() provides the most up-to-date information on functions, commands and syntax,
and usage() gives a short summary without details. You can even get help on specific
subtopics. Get in the habit of using help() and usage().

Example
Cmd> help(rnorm) # full information 4

rnorm(N) generates a vector of N pseudo-random normals with mean 0
and variance 1. N must be a positive integer.

If the random number generator has not been initialized by
setseeds(), setoptions() or previous use of rbin(), rnorm(), rpoi()
or runi(), the generator's "seeds" will be initialized automatically
using the current time and date, and their values will be printed
out.

See also topics setseeds(), getseeds(), setoptions(), 'options',
rbin(), rpoi(), runi(), cumnor() and invnor().

Cmd> usage(rnorm) # no description, just usage information
rnorm(n), n a positive integer

Cmd> help(anova:"?") # get list of available sub-topics 5

Available subtopics for topic 'anova' are:
 usage
 examples_1
 weights
 omitting_model
 side_effect_variables_created
 keywords
 balanced_designs
 nonbalanced_designs
 after_regresss
 see_also

Cmd> help(anova:"weights") # get help on anova() subtopic 'weights'
Subtopic 'weights' of help on 'anova'
anova(Model,weights:Wts) does an analysis using weighted least
squares. Wts must be a REAL vector with no negative elements, with
the same length as the response vector.

The MacAnova Users’ Guide for version 4.07 in Acrobat portable document format
(PDF) is available on the web through the MacAnova home page. It is split into files

4 Help output here and elsewhere has been slightly reformatted to fit the page.
5 Subtopics are a new (December 2000) feature that was not available in earlier versions.

8

An Introduction to MacAnova

containing individual chapters and appendices.

3. The Basics

3.1 MacAnova as a numerical calculator
You can use MacAnova as a simple calculator by typing numbers and algebraic symbols.

Cmd> 3 + 5 # space between items is O.K.; simply 3+5 is O.K.too
(1) 8

Cmd> 2 + 1 0 # but not spaces between digits in a number
ERROR: problem with input near 2 + 1 0

Cmd> 4*7e3 ; 3^4 ; 14.5 %% 5 # expressions separated by ‘;’
(1) 28000 4 x 7000
(1) 81 3 to the 4th power
(1) 4.5 remainder when 14.5 is divided by 5

Cmd> sqrt(20); sq rt(20) # space in name is an error
(1) 4.4721 20 "sqrt" means square root
ERROR: problem with input near sqrt(20); sq rt

Cmd> log(3)*(5 + sqrt(6)) #combination of functions and arithmetic
(1) 8.1841 ln(3) x (5+ 6)

Cmd> (1 + 3 + 5 # incomplete expression
ERROR: missing ')' near (1 + 3 + 5

These lines illustrate several features (we’ll explain later about the “(1)” at the start of
output lines).

• When you type a number or an expression at the Cmd> prompt you get immediate
output – the value of the number of expression.

• Spaces are generally ignored, except you can’t embed them in numbers or names.

• You can use parentheses to force addition or subtraction to be done before other
operations ((3 + 4)*6 evaluates to 42; 3 + 4*6 evaluates to 27).

• You can do several things on a single line, separating them by “;”. The parts
produce output on separate lines as if they were typed after different prompts.

• You compute things like square roots by typing their names with a number in
parentheses as in sqrt(20) and log(3). Among the other available mathematical
functions are exp(), cos(), sin(), tan(), log10() and atanh(). Type

usage(transformations) for a full list 6.

• You can enter numbers using computer scientific notation: 1.3e4 means 1.3×104,

–3.231e–17 means –3.231×10–17, etc.

• Errors usually produce a message starting with ERROR. Most are self explanatory, but
you may find some to be cryptic. When they end, as they do in these examples, with
part of the line you entered, preceded by “near”, this informs you that MacAnova
first realized something was wrong at or near the last characters echoed. Users have
occasionally lost lots of time because they didn’t read the error messages.

6 Type usage("transformations") in versions earlier than December 2000

9

An Introduction to MacAnova

The full set of arithmetic operators consists of “+”, “-”, “*” (multiplication), “/”
(division), “^” (exponentiation) and “%%” (modular division: 14.5 %% 5 computes 4.5,
the remainder of 14.5 when divided by 5).

MacAnova more or less follows the normal rules of algebra in evaluating expressions.
For example, 3 + 4*3 is evaluated as 3 + 12 = 15, while (3 + 4)*3 is evaluated as
7*3 = 21. Exponentiation is a little tricky in that 2^4*3 is interpreted as 16*3 = 48,
while 2^(4*3)is evaluated as 2^12 = 4096. Also * and / are evaluated step by step from
left to right so that 3*4/5*6 is evaluated as ((3*4)/5)*6 = 14.400. Conversely, ^ is
evaluated from right to left so that 4^3^2 is evaluated as 4^(3^2) = 262,144.

Example
Cmd> 3^4 + 1 # 81 + 1
(1) 82

Cmd> 3*(4 + 1) # 3*5
(1) 15

Cmd> (4 + 1)/3 # 5/3
(1) 1.6667

Cmd> (4 + 1) %% 3 # remainder of 5 when divided by 3
(1) 2

3.2 MacAnova as symbolic calculator
Besides arithmetic such as 3+sqrt(2) which involves only numbers, you can create
named variables with numerical values and do arithmetic and other computations on
them.

Example
Cmd> x <- 10; a <- 1101.1; b <- -2 # store values in variables

Cmd> a + b * x # use variables in an expression: 1101.1 - 2*10
(1) 1081.1

Here you create variables x, a and b with specific values and then use them in an
algebraic formula or expression. The values remain available under these names until
you change them, delete them, or quit MacAnova. Expressions can be almost
arbitrarily complicated and can contain transformations as well as other MacAnova
functions.

The combined symbol “<-” (less than followed by hyphen) is the assignment operator.
The value of the number or expression to the right of <- is saved in the variable named
to its left. The use of “<-” is analogous to the use of “=” in some computer languages
such as Fortran and C or “:=” in Pascal. A common mistake made by users with
programming experience is to use “=” when they mean “<-”.

A few variables such as PI and E, are predefined although you can change their values.

Cmd> PI # ratio of circumference to diameter of circle
(1) 3.1416

Cmd> E # E is base of natural logarithms = exp(1)
(1) 2.7183

10

An Introduction to MacAnova

Variable names must start with a letter or the underscore character “_”, but subsequent
characters may also include “0” through “9”. You probably shouldn’t start names with
“_”, since such variables are “invisible” and are treated slightly differently.

Variable names are case sensitive, which means that residuals, Residuals and
RESIDUALS are all different names. It is a good idea to avoid names with all capital
letters, as MacAnova automatically deletes and creates certain variables with all capital
names (for example, RESIDUALS).

Cmd> pi # variable pi does not exist although PI does
UNDEFINED

You can get an alphabetized listing of all active variables using commands
listbrief() or list().

A variable’s name may also start with the character “@” (as in @mean). Such a variable is
called a temporary variable because it will be automatically deleted at the next “Cmd>”.

Example
Cmd> x <- vector(1.2,3.5, 7); n <- 3# vector() is explained later

Cmd> x # typing "x" prints its value
(1) 1.2 3.5 7

Cmd> @xbar <- sum(x)/n; var <- sum((x-@xbar)^2)/(n-1)

Cmd> @xbar # @xbar has been deleted automatically
UNDEFINED

Sometimes you may want to remove a variable from computer memory, perhaps
because you have gotten the warning message

ERROR: not enough memory, try deleting variables

Command delete() does the trick.

Example
Cmd> delete(x, n) # deletes variables x and n

Cmd> x # x is no longer defined
UNDEFINED

You can delete as many variables as you like in a single use of delete().

3.3 MacAnova as computing language – functions and macros
In a technical sense, MacAnova commands are functional. Transformations such as
sqrt() or log10() are particular cases of functions.

When you use a function you give it one or more inputs called arguments (in
log10(3.145), 3.145 is an argument), and it may return results (produce output) to be
printed, saved in a variable or combined with other values in an expression.

Many functions have several arguments which are separated by commas. The whole
list of arguments is between parentheses.

Example
Cmd> round(17/3, 3) # round 17/3 to three decimals
(1) 5.667

11

An Introduction to MacAnova

Cmd> hypot(3,4) # computes sqrt(3^2+4^2)
(1) 5

Some functions just do things, but don’t return any value that can be assigned to a
variable or printed. We often call such a function simply a command. For example
print() is a command you use to print several variables or expressions, perhaps with
an increased number of significant digits.

Example
Cmd> w <- sqrt(10); w # print w with default significance
(1) 3.1623

Cmd> print(nsig:12,w) # print w with 12 significant digits
w:
(1) 3.16227766017 Output from print()

The argument nsig:12 for print() is an example of a keyword phrase.

Keyword phrases always have the form name:value and are often used to control the
behavior of commands and functions.

Actually print(), as well as a number of other commands, does return a value, a so-
called NULL value, but this will seldom be relevant to you.

A few functions or commands can be used with no arguments. They still need a pair of
parenthesis, but with nothing between them.

Example
Cmd> listbrief() # list all MacAnova objects; you'll see others
boxcox DATAFILE fcolplot MACROFILES readcols resvsyhat
CLIPBOARD DATAPATHS frowplot makecols regs rowplot
colplot DEGPERRAD getdata makefactor resid twotailt
CONSOLE DELTAT getmacros model resvsindex yhat
console E MACROFILE PI resvsrankits

Commands that do not return a value usually produce what we call side effects. For
example, the side effect of print() is the printed values of its arguments. One side
effect of regress() is a printed regression analysis. Some commands like regress()
also create, as side effects, variables with standard names such as SS, DF, RESIDUALS or
COEF containing quantities related to the analysis.

In addition to functions, MacAnova has what are known as macros. You use them
exactly the same as functions – the name followed by arguments enclosed in
parentheses and separated by commas. Like functions, macros may return values or
have side effects. Macros do differ from functions in some important ways, but most of
the time you can treat them the same.

boxcox() is an example of a pre-defined macro. It requires two arguments and returns
a value the same length as the first argument.

Example
Cmd> boxcox(vector(3.03,3.01,3.32,3.65,4.42), .5)
(1) 2.7514 2.73 3.0538 3.3822 4.0949

The two arguments here are vector(3.03,3.01,3.32,3.65,4.42) and .5. The

12

An Introduction to MacAnova

result is proportional to the first argument to the 0.5 power.

Probably the most important difference between functions and macros is their
availability. A function can always be used. There is nothing you can do to delete it.
Macros, on the other hand, are more like variables – they can be predefined, deleted,
read in from a file, entered at the keyboard and printed.

Some macros like boxcox(), getmacros(), hist() and resvsrankits() are pre-
defined and immediately available. Others such as covar() must be read from a file.
Usually this happens automatically when you use them, but occasionally you have to
use getmacros() or macroread() to retrieve a macro from a file.

There are eight standard macro files containing macros for time series analysis (both
frequency and time domain), design of experiments, multivariate analysis,
mathematical computations, graphing and regression. These are automatically
searched when you use a macro that is not already in the workspace.

When you have gained some experience with using MacAnova, you can create your
own macros to extend the range of what MacAnova can do (see Sec. 9.3 of the Users’
Guide). You can get a list of all the macros already in MacAnova by command
listbrief(macros:T).

Cmd> listbrief(macros:T)
adddatapath designhelp hist redo toclip
addmacrofile enter LASTLINE regcoefs tserhelp
anovapred enterchars makecols regresshelp twotailt
arimahelp fromclip makefactor regs userfunhelp
boxcox getdata mathhelp resid vboxplot
breakif getmacros model resvsindex yhat
clipreaddata graphicshelp mulvarhelp resvsrankits
colplot haslabels readcols resvsyhat
console hasnotes readdata rowplot

You may already have spotted one of the conventions of this document – when a
MacAnova function or macro is referred to by name, it always has a pair of parentheses

attached, as in print().7 Whenever you use it, a function or a macro must be
followed by parentheses enclosing the arguments, or, when there are no arguments, by
an empty pair of parentheses ().

You can use a function or macro returning a value anywhere you can use a simple
number or variable name – in expressions and as an argument to another function or
macro. A simple example is sqrt(a + 3*boxcox(x,.5)).

3.4 More on Variables – REAL, LOGICAL and CHARACTER data
Named variables can contain several types of data. The most common are numbers
such as 2.4, –1, or 3.1478x10–8 . In MacAnova this type is called REAL.

Almost as common are variables which have only two possible values, True and False.
In MacAnova these are called LOGICAL, and True and False are typed or printed simply
as T and F.

The values of some variables are sequences of characters. In MacAnova they are called
CHARACTER variables. When typing CHARACTER data on the keyboard, the character

7 In previous editions of this Introduction macro names did not include “()”

13

An Introduction to MacAnova

sequences must be enclosed in double quotes.

Example
Cmd> sentence <- "This is CHARACTER data"

Cmd> sentence
(1) "This is CHARACTER data"

Such a sequence of characters is sometimes called a character string or simply a string.

In some MacAnova output, LOGICAL and CHARACTER are abbreviated to LOGIC and
CHAR. Some more advanced data types are STRUCTURE and GRAPH.

You can use list() to list the names of variables, together with their data types and
their dimensions; listbrief() just lists their names. If you use one of the keyword
phrases real:T, char:T or logic:T as an argument to list() or listbrief(), only
variables of the specified type are listed.

Example

Cmd> x <- 1/3; y <- T; z <- "Hi There!"

Cmd> print(x, y, z)
x:
(1) 0.33333 REAL data
y:
(1) T LOGICAL data
z:
(1) "Hi There!" CHARACTER data

Cmd> listbrief(x,y,z,PI,DATAFILE,boxcox) #output is alphabetized
boxcox DATAFILE PI x y z

Cmd> list(x,y,z,PI,DATAFILE,boxcox)
boxcox MACRO (in-line) Order is alphabetical
DATAFILE CHAR 1
PI REAL 1
x REAL 1
y LOGIC 1
z CHAR 1

Cmd> list(real:T) # just list numerical variables 8

data REAL 8 2
DEGPERRAD REAL 1
DELTAT REAL 1
E REAL 1
PI REAL 1
x REAL 1

As in this usage, LOGICAL values T and F are usually used to represent “yes” and “no”
or “allow” and “suppress” in keyword phrases specifying options. You’ll see other
examples as you go along.

You can use LOGICAL values in arithmetic expressions and as arguments to a few
functions (but not as arguments to functions like sqrt() or log()), with True being
treated as 1 and False as 0.

8 You will almost certainly get a different list of REAL variables.

14

An Introduction to MacAnova

Cmd> vector(T, F) + 3 # same as vector(1, 0) + 3
(1) 4 3

Any character is allowed inside a character string, even a Return character which,
although itself invisible, breaks the line in the middle of the sequence of characters.
One common source of trouble is forgetting to add the closing double quote to a
character string and hitting Return. You expect MacAnova to respond but it doesn’t.
Without the closing double quote, MacAnova is just waiting for you to add more
characters to the string you are typing. Type the closing double quote or nothing will
ever happen.

You may include a double quote in a character string by preceding it (escaping it) with a
backslash.

Example
Cmd> print("Hello") # quotes delimit string, but are not printed
Hello

Cmd> print("\"Hello\"") # \" is part of string and prints as "
"Hello"

3.5 Comparisons of numbers and combining LOGICAL values

One place where LOGICAL values naturally arise is when you want to compare the
value of one variable with another using the comparison operators “==”, “!=”, “<”,
“>”, “<=” and “>=”.

• “==” means “is equal to”

• “!=” means “not equal to.”

• “>” and “<” mean “greater than” and “less than”

• “>=” and “<=” mean “greater than or equal to” and “less than or equal to”

Example
Cmd> a <- 5; b <- 6; c <- 5 # assign values to a, b and c

Cmd> a < b; a > b; a == c # less than, greater than, equal to
(1) T True because a is less than b
(1) F False because a is not greater than b
(1) T True because a equals c

Cmd> vector(a >= b, a <= c, b != c) # a b, a c, b c
(1) F T T

On a Macintosh you can use “≤”, “≥” and “≠” instead of “>=”, “<=” and “!=”.

There are three logical operators, “!”, “&&” and “||”.

• “!” is the not operator, changing True to False and vice versa.

Cmd> 3 <= vector(2,3); !(3 <= vector(2,3))
(1) F T 3 2 is False, 3 3 is True
(1) T F not(3 2) is True, not(3 3) is False

• “&&” is the and operator. c && d has value True if and only if both c and d have
value True:

15

An Introduction to MacAnova

Cmd> vector(T && T, T && F, F && T, F && F)
(1) T F F F

• “||” is the or operator. c || d has value True if and only if either c or d or both
have value True:

Cmd> vector(T || T, T || F, F || T, F || F)
(1) T T T F

3.6 Variables with several values – Vectors and Matrices
In most of the examples so far, a MacAnova variable contains only one value, whether
REAL, LOGICAL, or CHARACTER. Such variables are called scalar variables or simply
scalars. Obviously, this does not get you very far in statistics. What you need \are
variables that can contain several numbers or even an entire data set. The simplest
such variable in MacAnova is a vector , a variable which contains several numbers,
several True/False values, or several character strings.

vector() is the basic function for creating a vector. It can have any number of
arguments, all of the same type. There have been a number of usages of vector()
presented without comment above. Here are some more.

Examples
Cmd> x <- vector(33.5, 27.3, 36.7, 30.5) # REAL vector

Cmd> x # REAL vector of length 4
(1) 33.5 27.3 36.7 30.5

Cmd> w <- vector(T,T,F,T,T,T,F,F,T,T) # might be success & failure

Cmd> w # LOGICAL vector of length 10
(1) T T F T T T F F
(9) T T

Cmd> dakotas <- vector("South Dakota","North Dakota")

Cmd> dakotas # CHARACTER vector of length 2
(1) "South Dakota"
(2) "North Dakota"

You extract elements of a vector using subscripts, values enclosed in square brackets
[...]. A subscript can be a positive integer scalar or vector, a negative integer scalar or
vector or a LOGICAL vector.

Examples
• A single positive integer; non-integer subscript is illegal.

Cmd> x[3]; w[7] # subscripts that are positive numbers
(1) 36.7 Element 3 of x
(1) F Element 7 of w

Cmd> x[3.5]
ERROR: noninteger subscript near
x[3.5]

• A vector of positive integers such as vector(3,4) extracts the corresponding
elements of the variable as if you had typed, say, vector(x[3],x[4]). You can
include duplicates in the subscript vector.

16

An Introduction to MacAnova

Cmd> x[vector(3,4)] # vector of positive subscripts
(1) 36.7 30.5 Elements 3 and 4 of x

Cmd> x[vector(1,1,3)] # like vector(x[1],x[1],x[3])
(1) 33.5 33.5 36.7

• A vector of negative integers extracts all the other elements. That is,
x[vector(-1, -2)] extracts all the elements of x except the first and the second.
You can’t have duplicate negative subscripts and you can’t mix them with positive
subscripts.

Cmd> x[vector(-1, -2)] # negative subscripts; all except 1 & 2
(1) 36.7 30.5 Again, elements 3 and 4 of x

Cmd> x[vector(-1,-2,-2)] # this is an error
ERROR: duplicate negative subscripts near x[vector(-1,-2,-2)]

Cmd> x[vector(-1,-2,3)] # this is an error
ERROR: can't mix positive and negative subscripts near
x[vector(-1,-2,3)]

• A LOGICAL vector extracts only the values in positions correspond to True. A
LOGICAL subscript vector must be the same length as the vector it is subscripting.

Cmd> x[vector(F,F,T,T)] # logical subscripts ; same
(1) 36.7 30.5 Yet again, elements 3 and 4 of x

Cmd> x[vector(T,T,F,F,T)] # this is an error
ERROR: length of LOGICAL subscript vector must match dimension near
x[vector(T,T,F,F,T)]

• Subscript that is a variable:

Cmd> j <- 2; dakotas[j] # subscript that is a REAL variable
(1) "North Dakota"

Cmd> J <- vector(T,F); dakotas[J]
(1) "South Dakota"

Some data sets consist of several variables. It is sometimes convenient to combine
them in a single MacAnova variable in a sort of table form, with rows corresponding to
different cases and columns corresponding to variables. Such a rectangular array is
called a matrix. In this example we create variable prob_1, a MacAnova matrix which
consists of 8 observations on bivariate data.

Example
Cmd> prob_1 <-matrix(vector(.34,.35,.39,.39,.41,.41,.49,.68,\

2.8,1.9,3.3,5.6,4.2,5.6,4.2,7.9), 8)

17

An Introduction to MacAnova

Cmd> prob_1 # print out the matrix
(1,1) 0.34 2.8
(2,1) 0.35 1.9
(3,1) 0.39 3.3
(4,1) 0.39 5.6
(5,1) 0.41 4.2
(6,1) 0.41 5.6
(7,1) 0.49 4.2
(8,1) 0.68 7.9

The numbers in parentheses are the row and column number of the first value in the
line. For example(7,1) indicates .49 is the first element in row 7 of the matrix.

Because there are both rows and columns you need two subscripts to extract a
particular value.

Examples
Cmd> prob_1[7,1] # row 7 and column 1
(1,1) 0.49

Cmd> prob_1[4,vector(1,2)] # row 4 of prob_1
(1,1) 0.39 5.6

• An empty subscript selects all the values of that subscript.

Cmd> prob_1[4,]# another way to specify row 4
(1,1) 0.39 5.6

Cmd> prob_1[,2] # all of column 2
(1,1) 2.8
(2,1) 1.9
(3,1) 3.3
(4,1) 5.6
(5,1) 4.2
(6,1) 5.6
(7,1) 4.2
(8,1) 7.9

• As with vectors, you can use negative subscripts or LOGICAL vectors as subscripts:

Cmd> prob_1[vector(F,F,F,T,F,F,F,F),] # another way to get row 4
(1,1) 0.39 5.6

Cmd> prob_1[-vector(1,2,3,5,6,7,8),] # and yet another
(1,1) 0.39 5.6

As illustrated, you can create a matrix from a vector by function matrix(). The general
form is matrix(v, nr), where v is a vector and nr is the number of rows. The values
in v are entered into the result column by column. The length of v must be divisible by
nr.

Examples
• Length of vector not divisible by number of rows

Cmd> y <- matrix(vector(1.3,2.4,5.6,1.2,2.2),2)
ERROR: number of rows must divide length of data

18

An Introduction to MacAnova

• Create vectors corresponding to the columns of prob_1

Cmd> x <- vector(prob_1[,1]); y <- vector(prob_1[,2])

Cmd> print(x,y)
x:
(1) 0.34 0.35 0.39 0.39 0.41
(6) 0.41 0.49 0.68
y:
(1) 2.8 1.9 3.3 5.6 4.2
(6) 5.6 4.2 7.9

Here vector() has changed each column to a vector with only 1 subscript. The
numbers in parentheses ((1) and (6)) are the subscripts of the first number on that
line. For example, x[6] has value 0.41.

You can use the comparison operators introduced in Sec. 3.5 to compute LOGICAL
vectors to be used as subscripts. For example, suppose you want to select only the
elements y of corresponding to values of x > .35 and x ≤ .45. You can use comparison
operators and the “&&” operator.

Example
Cmd> y[x > .35 && x <= .45] # same as y[vector(F,F,T,T,T,T,F,F)]
(1) 3.3 5.6 4.2 5.6

3.7 Missing values
Missing values are common when you work with real data. You may have measure-
ments of both the height and weight of each of 19 people, but for one reason or another,
for two other people, you have only their weights so that two heights are missing. Or,
when entering data for computer analysis, you may notice a value is impossible (for
example, a human height of 61 feet).

MacAnova has a special value, MISSING, that can be used to replace missing values.
The code you type for MISSING is a question mark, “?”, but it prints as MISSING.

Example
Cmd> a <- vector(3,?,-7,?,4); a
(1) 3 MISSING -7 MISSING 4

Many commands do something fairly sensible with values of MISSING. A few give you
a warning:

Example
Cmd> 5 + a
WARNING: arithmetic with missing value(s); operation is +
(1) 8 MISSING -2 MISSING 9

This illustrates that a value of MISSING combined arithmetically with anything else
gives a missing value.

LOGICAL values of MISSING are also possible, although the only way to create them is
by a comparison of a number with MISSING:

19

An Introduction to MacAnova

Example
Cmd> a > 0
WARNING: comparison with missing value(s) near a > 0
(1) T MISSING F MISSING T

You can use ismissing() to find which values in a REAL or LOGICAL data set are
MISSING. ismissing(x) returns a LOGICAL variable with the same size and shape
(dimensions) as x whose values are True where x is MISSING, and False where x is not
MISSING.

Example
Cmd> ismissing(vector(1,?,3))
(1) F T F

4. Building on the Basics

4.1 Combining vectors and matrices – vector(), hconcat() and vconcat()
You learned in Sec. 3.6 how to use vector() to create vectors from several individual
values. You can also use vector() to combine several vectors to make a longer vector.

Example
Cmd> a1 <- vector(1,3,5); a2 <- vector(6,7); a3 <- 10

Cmd> vector(a1,a2,a3) #make longer vector; like vector(1,3,5,6,7,10)
(1) 1 3 5 6 7
(6) 10

You can also use vector() to change a matrix to a vector, “unraveling” it column by
column.

Example
Cmd> vector(prob_1) # prob_1 is the 8 by 2 matrix used before
 (1) 0.34 0.35 0.39 0.39 0.41
 (6) 0.41 0.49 0.68 2.8 1.9
(11) 3.3 5.6 4.2 5.6 4.2
(16) 7.9

First you get all the values in column 1 of data, followed by the values in column 2.

Sometimes you will want to make a larger matrix by combining together side by side
two or more vectors or matrices. Obviously all the pieces must have the same number
of rows. For example, suppose you want to put vectors x and y back together in a
matrix, together with a column containing the case numbers.

Example
Cmd> data1 <- hconcat(vector(1,2,3,4,5,6,7,8),x,y); data1
(1,1) 1 0.34 2.8
(2,1) 2 0.35 1.9
(3,1) 3 0.39 3.3
(4,1) 4 0.39 5.6
(5,1) 5 0.41 4.2
(6,1) 6 0.41 5.6
(7,1) 7 0.49 4.2
(8,1) 8 0.68 7.9

This has produced the 8 by 3 matrix data1. The general usage of hconcat() (h is for

20

An Introduction to MacAnova

horizontal) is hconcat(a,b,c,...), where each argument is a vector or matrix, all
with the same number of rows.

If you want to combine two or more matrices all with the same number of columns by
stacking them one above the other , you can use vconcat() (v is for vertical).

Example
Cmd> vconcat(data1[vector(5,6,7,8),], data1[vector(1,2,3,4),])
(1,1) 5 0.41 4.2
(2,1) 6 0.41 5.6
(3,1) 7 0.49 4.2
(4,1) 8 0.68 7.9
(5,1) 1 0.34 2.8
(6,1) 2 0.35 1.9
(7,1) 3 0.39 3.3
(8,1) 4 0.39 5.6

This has reordered the rows of data, putting the rows 5 through 8 ahead of rows 1
through 4.

4.2 Creating patterned vectors – run() and rep()
Suppose you want a vector with values 1, 2, 3, 4 and 5. You learned in Sec. 3.6 that you
can do this by y <- vector(1,2,3,4,5). You could enter a vector with values 1, 2, 3,
..., 100 the same way but it would be tedious and easy to make a mistake. Function
run() provides a short cut. Here is the simplest usage of run().

Example
Cmd> run(8) # produce vector with values 1, 2, 3, ..., 8
(1) 1 2 3 4 5
(6) 6 7 8

Here are other, fairly self explanatory, uses of run():

Example
Cmd> run(3,11) # values from 3 to 11
(1) 3 4 5 6 7
(6) 8 9 10 11

Cmd> run(3.5,5,.5) # values from 3.5 to 5.0 stepping by 0.5
(1) 3.5 4 4.5 5

Cmd> run(5,3.5,-.5) # backwards from 5.0 to 3.5, stepping by -.5
(1) 5 4.5 4 3.5

When you want a vector consisting of all 1’s or some other value, you could use
vector(1,1,1,1,1,1,1), say, to get seven 1’s. Function rep() is easier.

Example
Cmd> rep(1,7) # vector of 7 1's
(1) 1 1 1 1 1
(6) 1 1

21

An Introduction to MacAnova

Instead of repeating a single number, you can repeat a vector:

Example
Cmd> rep(run(4),2) # like vector(run(4),run(4))
(1) 1 2 3 4 1
(6) 2 3 4

There is a more elaborate use of rep() that is sometimes useful:

Example
Cmd> rep(run(3), rep(2,3)) # same as rep(run(3), vector(2,2,2))
(1) 1 1 2 2 3
(6) 3

Each of the numbers in run(3) is repeated 2 times. The second argument of the
“outer” rep() must be the same length as the first and provides the number of
repetitions. Here is an even fancier usage:

Example
Cmd> rep(run(4),vector(2,3,0,4)) # arg 2 of length 4
(1) 1 1 2 2 2
(6) 4 4 4 4

This repeats 1 two times, 2 three times, 3 zero times and 4 four times.

4.3 Assigning values to the elements of a vector or matrix
When you want to change one or a few elements in a vector or matrix, you can assign
new values directly using subscripts. For example, suppose you learned the value in
row 8 of column 2 of the matrix prob_1 was incorrect and that the correct value should
have been .58 instead of .69. Here’s how you could make the change:

Example
Cmd> prob_1[8,1] <- .58

Cmd> prob_1
(1,1) 0.34 2.8
(2,1) 0.35 1.9
(3,1) 0.39 3.3
(4,1) 0.39 5.6
(5,1) 0.41 4.2
(6,1) 0.41 5.6
(7,1) 0.49 4.2
(8,1) 0.58 7.9

You would make the same change in vector x by

Example
Cmd> x[8] <- .58

Cmd> x
(1) 0.34 0.35 0.39 0.39 0.41
(6) 0.41 0.49 0.58

22

An Introduction to MacAnova

You can change several values at once:

Example
Cmd> w <- run(5)

Cmd> w
(1) 1 2 3 4 5

Cmd> w[run(2)] <- vector(-10, ?)# replace 1 and 2 by -10 and MISSING

Cmd> w
(1) -10 MISSING 3 4 5

Cmd> w[-run(3)] <- 17 # replace all but 1st 3 elements by 17

Cmd> w
(1) -10 MISSING 3 17 17

For future use we change back prob_1[8,1] and x[8] to their original values.

Cmd> prob_1[8,1] <- .68; x[8] <- .68

4.4 Simple summaries of data in vectors and matrices – sum(), prod(), min(), max(),
sort() and rank()

You use sum(), prod(), min() and max() to compute the sum of, the product of, the
minimum of, and the maximum of the values in a vector.

Example
Cmd> vector(sum(y), prod(y), min(y), max(y))
(1) 35.5 76723 1.9 7.9

Cmd> # check sum() and prod() by "hand" calculations

Cmd> 2.8 + 1.9 + 3.3 + 5.6 + 4.2 + 5.6 + 4.2 + 7.9
(1) 35.5

Cmd> 2.8 * 1.9 * 3.3 * 5.6 * 4.2 * 5.6 * 4.2 * 7.9
(1) 76723

You can use sum() to compute means, variances and standard deviations from the

basic formulas

y = yi

i =1

n

∑ / n and

sy

2 = yi − y ()2

i =1

n

∑

 / n − 1() , and max() and min() to

compute the range ymax − ymin :
Example

Cmd> n <- nrows(y); ybar <- sum(y)/n # mean

Cmd> yvar <- sum((y- ybar)^2)/(n-1) # variance

Cmd> range <- max(y) - min(y)

Cmd> vector(ybar, yvar, range) # mean, variance and range
(1) 4.4375 3.6027 6

Function sort() allows you to reorder the elements in a vector in increasing order:

23

An Introduction to MacAnova

Example
Cmd> y_up <- sort(y); y_down <- sort(y,down:T)

Cmd> hconcat(y_up, y_down)
(1,1) 1.9 7.9 Col. 1 is y sorted up
(2,1) 2.8 5.6 Col. 2 is y sorted down
(3,1) 3.3 5.6
(4,1) 4.2 4.2
(5,1) 4.2 4.2
(6,1) 5.6 3.3
(7,1) 5.6 2.8
(8,1) 7.9 1.9

These also give you another way to compute the minimum and the maximum:

Cmd> vector(sort(y)[1], sort(y,down:T)[1])
(1) 1.9 7.9

This last also shows that you can use subscripts directly on the values of functions.

An important way to summarize a vector of numbers is by the ranks of the elements
in the vector, with the smallest value getting rank 1, the next smallest getting rank 2,
etc. You can do this in MacAnova using function rank().

Example
Cmd> a <- vector(14.7, 13.1, 16.6, 12.9, 12.5); rank(a)
(1) 4 3 5 2 1

Since 14.7 is the 4th number in order of size (there are 4–1 = 3 numbers less than 14.7) it
gets rank 4, etc. When there are ties, the ranks of the tied values are the averages of
what would be the ranks of any tied values if they were very slightly changed so as to
break the tie.

Example
Cmd> b <- vector(14.7, 13.1, 16.6, 12.5, 12.5)

Cmd> rank(b)
(1) 4 3 5 1.5 1.5

If the second 12.5 were modified, say to 12.500001, the two last ranks would be 1 and 2
which average to 1.5.

All these functions can have matrices as arguments. In the case of sum(), prod(),
min() and max(), the result is a row vector (a matrix with only one row) which
contains the result of applying the function to each column. Both sort() and rank()
compute a new matrix, the same size as the argument, with the ordered values or ranks
of each column separately. Let’s apply these to prob_1:

Example
Cmd> sum(prob_1)
(1,1) 3.46 35.5 Sums down columns

Cmd> prod(prob_1)
(1,1) 0.0010138 76723 Products down columns

24

An Introduction to MacAnova

Cmd> min(prob_1)
(1,1) 0.34 1.9 Minima of columns

Cmd> max(prob_1)
(1,1) 0.68 7.9 Maxima of columns

Cmd> hconcat(sort(prob_1), rank(prob_1))
(1,1) 0.34 1.9 1 2
(2,1) 0.35 2.8 2 1
(3,1) 0.39 3.3 3.5 3
(4,1) 0.39 4.2 3.5 6.5
(5,1) 0.41 4.2 5.5 4.5
(6,1) 0.41 5.6 5.5 6.5
(7,1) 0.49 5.6 7 4.5
(8,1) 0.68 7.9 8 8

In the last, the first two columns are the ordered values in each column of data, and
the last two columns are the ranks of each column of data.

Other descriptive statistics that are sometimes computed from the ordered values in a
sample are the lower and upper (first and third) quartiles and the median (second
quartile). The median is the central value in order of size if n is odd, and is the average
of the two central values if n is even. A common way to define the lower and upper
quartiles is the medians of the lower and upper halves of the data, putting the middle
value in both halves if n is odd (some textbooks prefer not to put it in either half).
Here we compute the 3 quartiles of y, as well as the inter-quartile range (IQR), a
measure of the spread or dispersion of the sample. Since y has 8 values, the median is
the average of the two middle values in order of size (4th and 5th) and the quartiles are
the averages of the two middle values of the lower and upper halves.

Example
Cmd> q1 <- sum(sort(y)[vector(2,3)])/2 # lower quartile

Cmd> q2 <- sum(sort(y)[vector(4,5)])/2 # median (ave of 4th & 5th)

Cmd> q3 <- sum(sort(y)[vector(6,7)])/2 # upper quartile

Cmd> vector(q1, q2, q3)
(1) 3.05 4.2 5.6

Cmd> iqr <- q3 - q1

Cmd> iqr # Interquartile range
(1) 2.55

4.5 Simple descriptive statistics – describe()
In the previous section you learned how to compute some basic descriptive statistics
from their definitions using MacAnova functions such as sum(), max() and min(). In
fact, if you try hard enough, practically any statistical analysis that you might do using
MacAnova can be accomplished this way. This is sometimes calle “white box”
computing because you can see what is being computed. But, as promised at the outset,
for most analyses there are built-in commands and functions that do complete
analyses without your having to know computing formulas. This provides what
might be called “black box” computing. It provides answers but you don’t see how.

25

An Introduction to MacAnova

describe() enables you to compute in one line almost all the descriptive summaries
we have seen above. It is best introduced by an example:

Example
Cmd> describe(y) # y is the second column of prob_1
component: n
(1) 8 Sample size
component: min
(1) 1.9 Minimum
component: q1
(1) 3.05 Lower quartile
component: median
(1) 4.2 Median or 2nd quartile
component: q3
(1) 5.6 Upper quartile
component: max
(1) 7.9 Maximum
component: mean
(1) 4.4375 Mean (average)
component: var
(1) 3.6027 Variance with divisor of n-1

As printed output this is pretty self-explanatory (as usual, the boldface output was
not printed by MacAnova). It even looks as if it might have been printed by
describe() as a “side effect.” However, what is printed is actually the value that
describe() returns. You can even save the value in a variable.

Example
Cmd> results <- describe(y) # nothing printed

Cmd> results$mean # extract component 'mean'
(1) 4.4375 Compare with mean above

Cmd> results$var # extract component 'var'
(1) 3.6027 Compare with variance above

results is an example of a new type of variable called a structure (sometimes
abbreviated “STRUC”).

Cmd> list(results)
results STRUC 8

Structures are made up of one or more named components. Here there are eight
components, n, min, q1, median, q3, max, mean and var. Individual components can be
extracted by appending $cname to the name of the structure, where cname is the
component name. You can find all names of all the components in a structure by
function compnames()

26

An Introduction to MacAnova

Example
Cmd> compnames(results) # the names of the components of results
(1) "n"
(2) "min"
(3) "q1"
(4) "median"
(5) "q3"
(6) "max"
(7) "mean"
(8) "var"

To make describe() compute just one summary value, say the median, you can use
keyword phrase median:T as an argument. If you want both the mean and variance,
use mean:T and var:T as arguments.

Example
Cmd> describe(y,median:T) # or describe(y)$median
(1) 4.2

Cmd> describe(y,mean:T,var:T) # compute both mean and variance
component: mean
(1) 4.4375 Mean (average)
component: var
(1) 3.6027 Variance with divisor of n-1

You can use describe() with a matrix (table) argument, too.

Example
Cmd> describe(data1[,-1]) # summary statistics omitting column 1
component: n
(1) 8 8
component: min
(1) 0.34 1.9
component: q1
(1) 0.37 3.05
component: median
(1) 0.4 4.2
component: q3
(1) 0.45 5.6
component: max
(1) 0.68 7.9
component: mean
(1) 0.4325 4.4375
component: var
(1) 0.012079 3.6027

Each component is now a vector with one value for each column of the argument
matrix. For example, 0.4 and 4.2 are the medians of columns 2 and 3 of data1.

describe() can also compute other statistics, the most important of which is the
standard deviation, the square root of the variance.

Example
Cmd> describe(data1[,-1],stddev:T) # square root of variance
(1) 0.1099 1.8981

27

An Introduction to MacAnova

Type usage(describe) or help(describe:"?") for more information.

Several other MacAnova functions, including split(), coefs(), secoefs(),
cellstats() and regpred(), compute structures as their values. Type
help(structures:"?") or see Sec. 9.1.1 in the Users’ Guide for more information
about structures, including functions structure() and changestr() which allow you
to create or modify structures directly.

4.6 Getting help – MacAnova commands help() and usage()
If you need to refresh your memory about any function or command or about general
topics like syntax, you can use MacAnova’s help() command. Suppose you wanted
more detail on the function round() used in one of the examples above.

Example
Cmd> help(round)
round(x) rounds the elements of the REAL variable x to the nearest
integer, producing a vector, matrix, or array with the same shape as
x.

round(x,n) where n is an integer is equivalent to 10^(-n)*
round(x*10^n). If n > 0, this rounds to n decimal places. If n < 0,
this rounds to the nearest multiple of 10^abs(n). round(x,0) is
equivalent to round(x).

If x is a structure, so is round(x) or round(x,n). If xi is the i-th
component of x, the i-th component of round(x) or round(x,n) is
round(xi) or round(xi,n).

Example: round(3141.593,2) is 3141.59 and round(3141.593,-2) is 3100,
the nearest multiple of 100 = 10^2.

round(x, p) can also be used when x is a CHARACTER variable and p, if
present, is a quoted string or CHARACTER scalar or REAL scalar. The
result is a CHARACTER variable of the same shape as x describing the
transformation. For example, both round(vector("X1","X2"),3) and
round(vector("X1","X2"),"3") return vector("round(X1,3)",
"round(X2,3)"). Any element of x that is "" or starts with '@', '(',
'[', '{', '<', '/' or '\' is not modified. This can be useful for
creating labels for a transformed variable.

See also topics floor(), ceiling(), 'structures', 'labels'.

Typically, as here, the first line gives the most standard usage, with more complex
usages given later. Often, as in the last line, there are cross references to related topics.

This gives all the help on a topic. Sometimes you are looking for a specific piece of
information and don’t want to see everything (which can be quite long). Most help
topics have named subtopics which can be viewed individually.

28

An Introduction to MacAnova

Example
Cmd> help(round, subtopic:"?") # ask for index of subtopics
Available subtopics for topic 'round' are:
 usage
 structure_argument
 example
 character_argument
 see_also
Type help(round,subtopic:vector("subtopicA","subtopicB",...))

Cmd> help(round,subtopic:vector("usage","example"))
Subtopic 'usage' of help on 'round'
round(x) rounds the elements of the REAL variable x to the nearest
integer, producing a vector, matrix, or array with the same shape as
x.

round(x,n) where n is an integer is equivalent to 10^(-
n)*round(x*10^n). If n > 0, this rounds to n decimal places. If n <
0, this rounds to the nearest multiple of 10^abs(n). round(x,0) is
equivalent to round(x).

Subtopic 'example' of help on 'round'
Example: round(3141.593,2) is 3141.59 and round(3141.593,-2) is 3100,
the nearest multiple of 100 = 10^2.

When a topic name is no longer than 10 characters (most are), you can abbreviate this,
for example, by help(round:vector("usage","example")).

Once you understand what a command or function does, command usage() may be
more useful. You use it like help() but it gives only a very brief summary of how a
function is used with no clue as to what it does.

Example
Cmd> usage(round)
round(x [, ndec]), x REAL or a structure with REAL components, ndec
 an integer

There are hundreds of help topics. Here is how you get a list of all the topics:

Example
Cmd> help("*")
Help is available on the following topics:
abs evaluate macanova samplesize
acos exp macanova3 save
addchars factor macanova_index scalars
addhelpfile fastanova macintosh screen
addlines file_names macro secoefs
adddatapath files macro_files select
addmacrofile floor macro_syntax sethistory
. .
. .

29

An Introduction to MacAnova

Cmd> help() # with no arguments summarizes help() itself
Type 'help(foo)' for help on topic foo
Type 'help(foo,subtopics:"?")' for a list of subtopics for topic foo
Type 'help(foo,subtopic:"bar")' subtopic bar of topic foo
Type 'usage(foo)' for very brief information on topic foo
Type 'help("*")' for a list of all topics
Type 'help(help:"?")' for a list of subtopics about help().
Type 'help(key:"?")' for a list of cross reference keys to topics
Type 'help(usage)' for more information about usage().
Some general topics are
 arithmetic files launching models syntax
 assignment glm logic notes time_series
 clipboard graphs macanova NULL variables
 comments graph_files macros number vectors
 complex graph_keys macro_files options workspace
 customize graph_ticks macro_syntax quitting
 data_files keywords matrices structures
 design labels memory subscripts
 data_files keywords matrices structures
 design labels memory subscripts

In windowed versions, selecting Help from the Help menu is equivalent to typing

help(). On a Macintosh you can press H 9 or the help key.

The topics available include all the commands and functions, plus some more general
topics such as matrices, subscripts and transformations. To get help on a

particular topic, use help() with one or more topics as arguments.10 On the
Macintosh, if you use the mouse to select a topic in the command/output window,
Help from the Help menu or H or help gets help on the selected topic.

When you remember only part of the name of a topic, but not the full name, you can
use “wild card” characters “*” and “?” in a string to get a list of topics matching a
pattern. “*” matches any string of characters, including the empty one; “?” matches
any single topics. For example, "part*", "*part" and "*part*" match topic names
starting with, ending with, or containing part, and "a????" matches all 5 character
topic names starting with “a”.

Example
Cmd> help("res*") # find all topics starting with "res"
resid restore resvsindex resvsrankits resvsyhat
For help on topic foo, enter help(foo) or help("foo")

Cmd> help("*plot*") # find all topics containing "plot"
boxplot colplot plot showplot vboxplot
chplot lineplot rowplot stringplot
For help on topic foo, enter help(foo) or help("foo")

Cmd> help("a????")
anova array atanh
For help on topic foo, enter help(foo) or help("foo")

9 H means the combination of the Command key and the H key.
10 In versions earlier than December 2000, you have to quote any topic names longer than 12 characters

(for example, help("transformations")), or the names of control words (while, for, break,

breakall, if, else, elseif, next).

30

An Introduction to MacAnova

Especially when you’re new to MacAnova, you may not even know enough commands
to use the pattern matching just described. All you know is you want to compute some
descriptive statistics, or make a graph, or do some sort of residual analysis. You can
look for help topics by keys using keyword key.

Example
Cmd> help(key:"residuals") # find some topics about residuals
The following help topics concern Residuals
resid resvsindex resvsrankits resvsyhat
For help on topic foo, enter help(foo) or help("foo")

MacAnova found four topics. You could now get help on topic resid, say, by typing
help(resid). If you have no idea of what keys are available, just do this:
Example

Cmd> help(key:"?")
Type 'help(key:"heading")', where heading is in following list:
ANOVA General Plotting
Categorical Data Input Probabilities
CHARACTER Variables LOGICAL Variables Random Numbers
Combining Variables NULL Variables Regression
Comparisons Macros Residuals
Complex Arithmetic Matrix Algebra Structures
Confidence Intervals Missing Values Syntax
Control Multivariate Analysis Time Series
Descriptive Statistics Operations Transformations
Files Ordering Variables
GLM Output

When you specify a key, you need only as many letters as will make it unique. Thus
help(key:"des") is as good as help(key:"descriptive statistics") (upper and
lower case doesn’t matter here).

help() and usage() not only provide information only from the general help file,
MacAnova.hlp, but also from help files associated with files of specialized macros
distributed with Macanova. Alternatively, to get help on macros in these files, you can
use special help macros arimahelp(), designhelp(), graphicshelp(), mathhelp(),
mulvarhelp(), regresshelp() and tserhelp(). These provide help on macros in
files arima.mac, design.mac, graphics.mac, math.mac, mulvar.mac, regress.mac
and tser.mac, respectively.

These special help macros are used essentially the same way as help(), except that you
get simple usage information by including keyword phrase usage:T as an argument. If
you use them with no argument, you get a descriptive list of all topics.

Example
Cmd> mathhelp("*") # all available topics related to math.mac
Help is available on the following topics:
bfs continfrac i0 mathhelp orthopoly
binom dfp i1 math_index partitions
blockdmat economize invchebcoefs matsqrt printfactors
broyden factorial invertseries moorepenrose qrdcomp
chebcoefs factors kronecker neldermead
For help on topic foo, enter help(foo) or help("foo")

31

An Introduction to MacAnova

Cmd> help(factorial) # or mathhelp(factorial)
factorial(x) computes x! (x factorial), where x is a REAL scalar,
vector, matrix or array. The result is the same size and shape as as
x. If any element is MISSING, <= -1 or such that x! is too large to
be computed, the corresponding element of the result is MISSING.

Elements of x need not be integers. x! is computed as
exp(lgamma(x+1)), except that if x is an integer <= 20 the value
should be exact.

See also binom and lgamma().

Cmd> usage(factorial) # or mathhelp(factorial, usage:T)
factorial(x), x REAL

Cmd> help(binom:"?") # or mathhelp(binom:"?"); get subtopic list
Available subtopics for topic 'binom' are:
 usage
 examples
 see_also
Type help(binom,subtopic:vector("subtopicA","subtopicB",...))

If you learn how to use help(), it isn’t that important to have the Users’ Guide, since
most of the details of commands and macros are summarized in their help entries.

5. Using files

5.1 General
Although you can do a lot of work without using any command that has to do with
files on disk, commands that read or write files add a lot of capability to MacAnova.
You can
• record your session in a file on disk using spool() (Sec. 5.2)
• save all your variables in a file using save() and asciisave() (Sec. 5.3)
• read data from a file using readdata, vecread() or matread() (Sec. 5.4)
• write data and results to a file using print() and matwrite().

You always need to specify a file name in quotation marks.

Example
Cmd> matwrite("mydata.txt",prob_1) # write prob_1 to file mydata.txt

Things are easier in windowed versions (Windows, Macintosh, Motif), since you can
always use "" as file name (two double quotes with nothing between them). This
brings up a file navigation dialog box in which you select or specify a file.

Example
Cmd> matwrite("", prob_1) # write prob_1 to a file to be selected

Note: MacAnova has no special conventions for file names as long as they are legal for
the system on which it is running. File names used in examples below are just that –
examples. There is no need to use the same names, or end them the same way (like
.txt).

On most file writing commands except save() and asciisave(), when the file you
are writing already exists, what you write to the file is added after what is already there.
If that is not what you want, use the keyword phrase new:T as an argument.

32

An Introduction to MacAnova

Example
Cmd> matwrite("mydata",prob_1,new:T) # prob_1 to end of mydata.txt

In the windowed versions, when you save the command/output window using Save
Window or Save Window As on the File menu, it is always as if you specified new:T.

5.2 Recording your MacAnova session – spool()
When you use MacAnova you may want a record of what you do, or at least a perma-
nent copy of the answers you want to keep. This is quite easy to do using spool() – as
long as you remember to use it! spool() works on all computer systems, Windows,
DOS, Macintosh, Motif or Linux/Unix.

spool() keeps a record in a file of some or all of your MacAnova session. When you
want to start saving stuff, you need to type something like

Cmd> spool("spool.txt") # start spooling on file spool.txt

This starts recording (spooling) on file spool.txt. From now on, everything you type
and everything MacAnova replies except high resolution plots will be written in the
file. Of course, this includes any mistakes you make and your false starts. In the
windowed versions, you don’t need to type the file name but can type

Cmd> spool("") # Null file name allowed only in windowed versions

If you want to suspend spooling for a while, simply type

Cmd> spool() # with no file name
Spooling on spool.txt suspended

When you want to start recording again, type

Cmd> spool() # again with no file name
Resume spooling on spool.txt

Once you have started spooling, spool(), with no argument, toggles it off and on.

On a Macintosh, selecting entry Spool Output to File on the File menu is equivalent
to typing spool("") or spool().

When you are done with your session, you can read the spool file into almost any word
processor or text editor, edit out what you don’t want to keep and add your commen-
tary.

Here’s a useful tip: If your word processor or editor lets you choose a font, select a font
such as Courier or Monaco that has equal width characters. If you don’t, things that
lined up on the computer screen will not line up in your document and will be hard to
read.

You don’t need spool() as much in a windowed version since all your input and
MacAnova’s output remain in the command/output window. At any time you can

select Save Window (S or Ctrl+S 11) or Save Window As… on the File menu and
the entire contents of the window are written to disk for later editing. After a window
is saved, the name of the file becomes the window title and you can re-save the

11 Ctrl+S means the combination of the Control key and the S key.

33

An Introduction to MacAnova

window just by pressing S (Macintosh) or Ctrl+S (Windows and Motif). It’s a good
idea to do this frequently so as to avoid losing much work in case of a computer crash.

When you quit in windowed versions, a dialog box asks Save Changes to Window
"xxxxx" before closing? To save the command/output window on disk, just click
on the OK button (or the Don’t Save button if you don’t want to).

Important: Saving the window does not save your workspace – your data and other
variables and macros. For that you need commands save() or asciisave() (Sec. 5.3).

You can also use commands print(file:"fileName",...) and
write(file:"fileName",...) to print the values of individual variables in a file.
See the Users’ Guide or type help(print,write).

5.3 Saving your workspace – save() and asciisave()
Sometimes you may not have time to do everything you want or need to in one
session, and still have more to do when you have to quit. In such a situation you can
use save() and asciisave(). These functions save your “workspace” in a file in a
form that can be restored by restore() in a later MacAnova session. Your workspace
consists of all the current variables, macros and graphs in graph windows.

Important: save() and asciisave() do not save your commands and output. Use
spool() or Save Window on the File menu for that (Sec. 5.2).

Example
Cmd> save("savework.sav")
Workspace saved on file savework.sav

You can now quit MacAnova. Later, when you restart, you can use restore() to get
everything back to the way it was.

Example
Cmd> restore("savework.sav") # restore("") in windowed versions
Restoring workspace from file savework.sav
Workspace saved Sun Jul 8 23:35:33 2001

In windowed versions, you can use Save Workspace (K or Ctrl+K) or Save
Workspace As… on the File menu, instead of save().

On a Macintosh, the next time you want to start up MacAnova, just double click on the

icon of the saved file and MacAnova will be launched with everything restored,

including any graph windows. At the same time you save your workspace in the
windowed versions, you may also want to save the command/output window using
items Save Window (S or Ctrl+S) or Save Window As… on the File menu.

If you use MacAnova on more than one type of computer, you might occasionally start
on one computer, say a Macintosh, save your work, and then finish it later on another
type, say a Windows computer. For this you should save your workspace using
asciisave() instead of save().

34

An Introduction to MacAnova

Example
Cmd> asciisave("savework.asc")
Workspace saved on file savework.asc

This produces an ordinary text file which can be restored by MacAnova on any
computer (by restore("savefile.asc")) or even sent via E-mail.

save() can also be a life saver if your computer is unstable and prone to crashing, or if,
perish the thought, your copy of MacAnova has a bug that sometimes causes a crash. If
you save your workspace and your window from time to time, you never will lose
much if the computer or program goes down.

After you have used save("savework.sav") or asciisave("savework.sav") once,
you can update the save file simply by save() or asciisave(), without specifying a
file name. In windowed versions, select Save Workspace (K or Ctrl+K) on the File
menu.

Once you have saved your window, you can refresh the file by selecting Save Window
(S or Ctrl+S) on the File menu.

5.4 Reading data from files – vecread() , readdata() and matread()
Except when you analyze a small amount of data that you can easily type at the
keyboard, you will probably want to work with data that is in a file on disk. The data
may have been provided by someone else, entered by you using a word processor or
editor or possibly exported from a spreadsheet.

Any data file MacAnova can read must be a plain text file. It might be created in a
word processor such as Microsoft Word or a text editor such as SimpleText (Macintosh)
or Note Pad (Windows). If you use a word processor to create or edit data files, it is
essential that they be saved as Text or ASCII files. How you do it depends on the
program. If a file is not saved as a Text or ASCII file, MacAnova will not be able to read
it.

The simplest type of data file MacAnova can read contains just numbers. Here is a
listing of file rabbit.txt containing 12 determinations of the survival time in
minutes of certain rabbit nerves under anaerobic conditions:

 16.2 22.5 21.4 19.6 24.8 21.4
 19.0 14.7 13.3 23.0 16.8 20.1

Before going further, you might want to use an editor or word processor to create this
file and other example files in this section. Be sure to save them as a plain text
(sometimes called ASCII) files. Copies of the example files are available on the web.

Here’s one way to read these data from the file:

Example
Cmd> x <- vecread("rabbit.txt")# form is vecread(fileName)
Read from file "KB1:MacAnova:Datafiles:rabbit.txt"

Cmd> x # print out what you've read in
 (1) 16.2 22.5 21.4 19.6 24.8
 (6) 21.4 19 14.7 13.3 23
(11) 16.8 20.1

35

An Introduction to MacAnova

vecread() reads the numbers in the file sequentially, line by line to the end, and
returns them as a vector.

• A question mark (?) in the file is interpreted as MISSING. Also an isolated “.” , “*”
or “NA” is interpreted as MISSING.

• Any lines starting with “#” are skipped.

• If there is a “!” at any point in the file except in a line starting with “#”, vecread()
stops reading there.

Suppose rabbit1.txt looks like this:

 # Survival time in minutes of rabbit nerves
 16.2 22.5 21.4 19.6 24.8 21.4
 19.0 14.7 13.3 23.0 16.8 20.1

Example
Cmd> x <- vecread("rabbit1.txt")
Read from file "KB1:Datafiles:rabbit1.txt"

Cmd> x # same as before
 (1) 16.2 22.5 21.4 19.6 24.8
 (6) 21.4 19 14.7 13.3 23
(11) 16.8 20.1

When vecread() finds anything it can’t read, it skips it, printing a warning message
the first time something unreadable is hit.

Suppose file rabbit2.txt looks like this, with a line without numbers:

 Data on twelve rabbit nerves
 16.2 22.5 21.4 19.6 24.8 21.4
 19.0 14.7 13.3 23.0 16.8 20.1

Example
Cmd> x <- vecread("rabbit2.txt"); x
WARNING: nonnumeric character(s) in KB1:Datafiles:rabbit2.txt ignored
Read from file "KB1:Datafiles:rabbit2.txt"

Cmd> x # data are correct
 (1) 16.2 22.5 21.4 19.6 24.8
 (6) 21.4 19 14.7 13.3 23
(11) 16.8 20.1

But when another file rabbit3.txt looks like this

 Data on 12 rabbit nerves
 16.2 22.5 21.4 19.6 24.8 21.4
 19.0 14.7 13.3 23.0 16.8 20.1

you will be in trouble because the 12 is read as a number and vecread() would return
13 numbers, the value 12 followed by the actual data.

36

An Introduction to MacAnova

Example
Cmd> x <- vecread("rabbit3.txt"); x
WARNING: nonnumeric character(s) in KB1:Datafiles:rabbit3.txt ignored
Read from file "KB1:Datafiles:rabbit3.txt"
 (1) 12 16.2 22.5 21.4 19.6
 (6) 24.8 21.4 19 14.7 13.3
(11) 23 16.8 20.1

So, to be on the safe side, a file to be read by vecread() should contain only numbers
except in lines starting with “#”.

Many data files have several columns of numbers or symbols, with each column
corresponding to a variable and each line to the data for a case. A typical example
might be file crops.txt:

 # yields of wheat and potatoes by year
 1926 20.1 7.2
 1927 23.6 7.1
 1928 26.3 7.4
 1929 19.9 6.1
 1930 16.7 6.0
 1931 23.2 7.3
 1932 31.4 9.4
 1933 33.5 9.2
 1934 28.2 8.8
 1935 35.3 10.4
 1936 29.3 8.0
 1937 30.5 9.7

The number in column 1 is a year and columns 2 and 3 are the average yields of wheat
and potatoes, respectively, in each year. You can use readdata() to read crops.dat
into three MacAnova variables, year, wheat and potatoes:

Example
Cmd> readdata("crops.txt",year,wheat,potatoes)
yields of wheat and potatoes by year
Read from file "KB1:Datafiles:crops.txt"
year saved as REAL vector
wheat saved as REAL vector
potatoes saved as REAL vector

Cmd> print(year,wheat,potatoes)
year:
 (1) 1926 1927 1928 1929 1930
 (6) 1931 1932 1933 1934 1935
(11) 1936 1937
wheat:
 (1) 20.1 23.6 26.3 19.9 16.7
 (6) 23.2 31.4 33.5 28.2 35.3
(11) 29.3 30.5
potatoes:
 (1) 7.2 7.1 7.4 6.1 6
 (6) 7.3 9.4 9.2 8.8 10.4
(11) 8 9.7

readdata() uses vecread() to read the file. Consequently it recognizes “?”, “.”, “*”

37

An Introduction to MacAnova

and “NA” as MISSING, skips lines that start with “#” and stops reading when it finds
“!”.

readdata() can also read categorical data and can take the names of the variables
from a file. Suppose mont5-1.txt looks like this:

example 5-1 on page 129 of Montgomery.
specimen tiptype depth
 1 A 9.3
 2 A 9.4
 3 A 9.6
 4 A 10.0
 1 B 9.4
 2 B 9.3
 3 B 9.8
 4 B 9.9
 1 C 9.2
 2 C 9.4
 3 C 9.5
 4 C 9.7
 1 D 9.7
 2 D 9.6
 3 D 10.0
 4 D 10.2

Example
Cmd> readdata("mont5-1.txt") # Note: no variable names are supplied
example 5-1 on page 129 of Montgomery.
Read from file "KB1:Datafiles:mont5-1.txt"
specimen saved as REAL vector
tiptype saved as factor
depth saved as REAL vector

Cmd> print(specimen,tiptype,depth)
specimen:
 (1) 1 2 3 4 1
 (6) 2 3 4 1 2
(11) 3 4 1 2 3
(16) 4
tiptype:
 A A A A B
 B B B C C
 C C D D D
 D
 1 1 1 1 2
 2 2 2 3 3
 3 3 4 4 4
 4
depth:
 (1) 9.3 9.4 9.6 10 9.4
 (6) 9.3 9.8 9.9 9.2 9.4
(11) 9.5 9.7 9.7 9.6 10
(16) 10.2

tiptype looks a little different. The actual values are the numbers; the original
character factor codes (A, B, C and D) have been preserved as case labels. MacAnova

38

An Introduction to MacAnova

prints all the labels of a vector before any of the values.

Example
Cmd> describe(tiptype,min:T,max:T)
component: min
(1) 1
component: max
(1) 4

matread() is designed to read data sets from files containing many data sets. This is
something neither vecread() or readdata can easily do. However, each data set must
be in a special format. See the Users’ Guide or type help(matread_file) for details
on the actual format matread() expects.

All you need to know here is that the first line of every data set contains its name and
dimensions and may be followed by descriptive comments. To read in a particular data
set you specify the name of the file and the name of the data set. In the following
example, file crops1.txt contains several data sets including a data set named yields
which contains the same data as crops.txt.

Example
Cmd> data <- matread("crops1.txt","yields")
yields 12 3
) Col. 1: year
) Col. 2: wheat = wheat harvest
) Col. 3: potatoes = potato harvest
Read from file "KB1:Datafiles:crops1.txt"

Cmd> dim(data) # data is a matrix with 12 rows and 3 columns
(1) 12 3

Cmd> yields[vector(1,2),] # cases 1 and 2
(1,1) 1926 20.1 7.2
(2,1) 1927 23.6 7.1

The first line printed, “yields 12 3”, is the line in the file with the data set
name and dimensions . The remaining lines, all starting with “)”, are descriptive
comments in the file. “)” serves a similar purpose in files to be read by matread() as
“#” does in files read by readdata() and vecread().

To get each column in a separate variable, you can either do it “by hand” or use
makecols():

Example
Cmd> year <- data[,1]; wheat <- data[,2]; potatoes <- data[,3]

Cmd> list(year,wheat,potatoes)# you have three 12 by 1 matrices
potatoes REAL 12 1
wheat REAL 12 1
year REAL 12 1

Cmd> makecols(data,year,wheat,potatoes)

Cmd> list(year,wheat,potatoes)# now you have three length 12 vectors
potatoes REAL 12
wheat REAL 12
year REAL 12

39

An Introduction to MacAnova

5.5 Moving data from and to a spreadsheet
There are lots of reasons why you might have data in a spreadsheet and want to analyze
it in MacAnova. For one thing, it’s probably easier to enter lots of data into a spread-
sheet than directly in MacAnova using vector(). Conversely, you may want to save
results from a MacAnova analysis in a spreadsheet. Moving numbers either way is
easy to do using the Clipboard in the windowed versions of MacAnova.

The Clipboard is a place for temporarily saving information in one program so it can be
recovered in another program.

Suppose you have the data from file mont5-1 in an Excel spreadsheet, and you want to
transfer the depth data to MacAnova. All you need to do is to use the mouse to select
the data to transfer and then select Copy on the Edit menu to put it on the Clipboard..

Then switch over to MacAnova and use fromclip to create a numerical vector from
what you copied to the Clipboard.

Cmd> depth <- fromclip()

Cmd> depth
 (1) 9.3 9.4 9.6 10 9.4
 (6) 9.3 9.8 9.9 9.2 9.4
(11) 9.5 9.7 9.7 9.6 10
(16) 10.2

clipreaddata() would also do the job. It works similarly to readdata() except it
“reads” the Clipboard instead of a file.

Cmd> clipreaddata(depth)
depth saved as REAL vector

40

An Introduction to MacAnova

You can use fromclip() to move an entire 16 by 3 matrix of numbers:

Cmd> data <- fromclip(3) # 3 is the number of columns

Cmd> list(data)
data REAL 16 3

Cmd> data[run(3),] # first three cases
(1,1) 1 1 9.3
(2,1) 2 1 9.4
(3,1) 3 1 9.6

Like readdata(), clipreaddata() can also use column names as variable names and
translate character data to factors.

41

An Introduction to MacAnova

Example

Cmd> clipreaddata() # reads data on clipboard to variables
specimen saved as REAL vector
tiptype saved as factor
depth saved as REAL vector

Cmd> list(specimen,tiptype,depth)
depth REAL 16
specimen REAL 16
tiptype REAL 16 FACTOR with 4 levels

Note that the area selected in the spreadsheet includes the column headings.

Important: If any of the data in the spreadsheet is missing, you must use one of the
MacAnova codes, “?”, “.”, “*” or “NA”, for MISSING. It won’t work just to leave the
spreadsheet cell empty.

To go in the other direction, from MacAnova to the spreadsheet is just as simple.
Here’s how you would export matrix prob_1 to a spreadsheet.

Cmd> list(prob_1) # you need the dimensions
prob_1 REAL 8 2

Cmd> toclip(prob_1) # puts the matrix on the Clipboard

42

An Introduction to MacAnova

Now you need to switch the spreadsheet program, use the mouse to select a rectangle of
16 cells in 8 rows and 2 columns and then choose Paste from the Edit menu:

43

An Introduction to MacAnova

6. Visualizing numbers – drawing graphs
6.1 Basic graphing commands
It’s easy go make simple high resolution graphs in MacAnova, and not much harder to
make more complicated graphs.

Example
Cmd> x <- run(10);y <- x^.3 # y is x to the 0.3 power

Cmd> plot(x,y,lines:T,xlab:"X-axis label",ylab:"Y-axis label",\
title:"Sample plot of x^.3 vs x")

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10

Sample plot of x^.3 vs x

X-axis label

Y
-
a
x
i
s

l
a
b
e
l

This plots vector y against vector x using a default plotting symbol. Because lines:T is
an argument, the points are connected with lines. Keyword title specifies the title
above the graph, and keywords xlab and ylab specify X-axis and Y-axis labels below
and to the left of the graph. You can make some plots as simply as typing plot(x,y) if
you don’t want to specify a title or axis labels.

There are several commands for drawing graphs, all of which have similar usage.
Some come in pairs, one command to start a new plot and a similar command to add
information to an existing plot.

44

An Introduction to MacAnova

Command Description

plot(x,y) Plot each column of vector or matrix y against
vector x using standard symbols

addpoints(x,y) Add points to a previously plotted graph using
standard symbols

chplot(x,y,symbols:symb) Like plot() except you can specify plotting symbols
specified by symb

addchars(x,y,symbols:symb) Add points to a previously plotted graph using
custom symbols

lineplot(x,y) Like plot() without plotting symbols but with
connecting lines

addlines(x,y) Add lines to a previously plotted graph

stringplot(x,y,strings:s) Like plot() but drawing character strings specified
by s

addstrings(x,y,strings:s) Add character strings to previously plotted graph

showplot() Redisplay the most recent plot, possibly with new
labels and changed minima or maxima.

vboxplot(x), vboxplot(str)
boxplot(x), boxplot(str)

Make parallel vertical or horizontal boxplots of data
in columns of matrix x or components of structure
str

For the x-y plotting commands (plot() through addstrings()), x must be a REAL
vector and y must be a REAL vector or matrix (only a vector for stringplot() and
addstrings()). The values in each column of y are plotted against the values in x.

Ordinarily, x and y must have the same number of rows. For chplot() and
addchars(), symb is a CHARACTER vector or a vector of integers between 0 and 999. For
stringplot() and addstrings(), s is a CHARACTER scalar or vector.

For stringplot() and addstrings(), x and y must be vectors of the same length.
For the other x-y plotting commands, x can be a scalar or vector of length 2, regardless
of the length of y.

• When x is just one number x0, it is implicitly expanded to vector(x0, x0+1,...)
with the same number of rows as y. For example, plot(1,y) plots y against 1, 2, 3,
... and plot(100,y) plots y against 100, 101, 102,

• When x is vector(x0,inc) of length 2, it is implicitly expanded to vector(x0,
x0+inc, x0+2*inc,...) with the same number of rows as y. For example,
plot(vector(0,1/60),y) plots y against 0, 1/60, 2/60, and
lineplot(vector(1967, 1/12),y) plots y against 1967, 1967+1/12, 1967+2/12,
You might use this last when the rows of y are monthly values starting January
1967 and you want to plot y against time in years.

Help topic graphs includes a lot of information about graphing. Start out by typing
help(graphs:"?") to get a list of subtopics and then help(graphs:"name"), where

45

An Introduction to MacAnova

"name" is a subtopic name such as "basic_plotting_commands" (can be abbreviated
to just help(graphs:"basic")). You can get more details on the individual plotting
commands by typing, say, help(lineplot).

6.2 Using keywords to control the appearance of graphs

All the graphing commands recognize many of the same keywords. Here is a list of
keyword phrases that affect the appearance of graphs.

Keyword phrases Description

title:"Title for graph" Graph title (up to 75 characters)

xlab:"X-axis label" X-axis label (up to 50 characters)

ylab:"Y-axis label" Y-axis label (up to 20 characters)

xmin:xMinVal Minimum value for x-axis.

xmax:xMaxVal Maximum value for x-axis.

ymin:yMinVal Minimum value for y-axis.

ymax:yMaxVal Minimum value for y-axis.

logx:T Use log scale for x-axis

logy:T Use log scale for y-axis

xaxis:F Do not draw x axis (line y = 0).

yaxis:F Do not draw y axis (line x = 0).

impulse:T Draw lines from y = 0 line to points

lines:T Connect points with lines

linetype:n Sets the linetype to n, default is 1. n must be integer
1 ≤ n < 100

thickness:w Sets the line thickness to w times normal thickness,
if possible; w must be between 0.1 and 10 with default
1

dumb:T Use printable characters only, producing a low res-
olution plot suitable for printing on a line printer.

These are generally self-explanatory. Some are illustrated in examples in later sections.
Keywords linetype and thickness are legal only on plots on which lines are drawn,
and their effect depends on the particular Macanova version. Keyword dumb is
particularly useful on DOS or Linux/Unix where it may be difficult to get hard copy of
high resolution graphics.

The example in Sec. 6.1 illustrated the use of title, xlab and ylab to label the graph.

This list omits keyword borders (controls which sides of the frame should be drawn),
and keywords ticks, xticks, yticks, xticklabs, yticklabs, xticklen and
yticklen (control where and how tick marks should be drawn and labelled). Type
usage(graph_keys) for a list of all keywords. You can get help on an individual
keyword by help(graph_keys:"keyname") where keyname is the keyword name.

46

An Introduction to MacAnova

Example
Cmd> help(graph_keys:"borders")
Subtopic 'borders' of help on 'graph_keys'
 borders:Word Controls which sides of the graph
 borders will be drawn. Word can
 be "all", "none", "", or a
 combination of one or more of "B",
 "b", "L", "l", "T", "t", "R", "r".
 See topic 'graph_border'.

6.3 GRAPH variables and modifying graphs
Normally, whenever MacAnova draws a graph, it also creates variable LASTPLOT
which encapsulates all the information used to create the plot. LASTPLOT has the
special type GRAPH.

You can’t calculate with a GRAPH variable, but you can assign it to another variable (for
example, plot1 <- LASTPLOT) and you can print it to produce a low resolution plot
similar to that produced by the plotting commands when dumb:T is used.

More importantly, you can redisplay the graph encapsulated in a GRAPH variable,
possibly with changed labeling information and/or additional data.

Cmd> showplot()

redisplays the graph in LASTPLOT, that is, the most recent graph.

Cmd> showplot(xlab:"x", ylab:"Power of x", ymin:0)

displays it with new x- and y-axis labels, and with 0 as the y-axis minimum. It also
modifies LASTPLOT to include the new information. You can use all the keyword
phrases listed above except lines, impulse, linetype and thickness to change or
add labelling information or to set the minimum or maximum values to appear in the
graph.

Cmd> addpoints(x1, y1)

redisplays LASTPLOT, adding additional points from the data in x1 and y1. You can
similarly use addlines(), addchars(), and addstrings() to display the graph
encapsulated in LASTPLOT with additional data included in the plot.

Cmd> plot1 <- LASTPLOT # duplicate of GRAPH variable LASTPLOT

Cmd> showplot(plot1,title:"Redisplayed with a new title”)

This displays the graph encapsulated in plot1. You can use the usual keywords. It
doesn’t change plot1, but updates LASTPLOT to reflect the new graph.

Cmd> addpoints(plot1, x2, y2) # redisplays plot1 with more data

47

An Introduction to MacAnova

Here is an example in which we redo the plot in Sec. 6.1 and add more line-connected
points using several keywords, interpreted as follows:

symbols:"\1" Plot the data using a special plotting symbol; symbol "\1" is
diamond; "\6" is the default symbol; "\7" is a dot

lines:T Connect the points with lines

ymin:0 Minimum for y axis is 0

ymax:y[10]^2 Maximum for y axis is y[10]^2

title:" ... " Provides a new title replacing the original one

Example
Cmd> plot(x,y,lines:T,xlab:"X-axis label",ylab:"Y-axis label",\

title:"Sample plot of x^.3 vs x", show:F) # see below for show:F

Cmd> addchars(x,y^2,symbols:"\1",lines:T,\
title:"Plot redrawn using addchars", ymin:0,ymax:y[10]^2)

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10

Plot redrawn using addchars

X-axis label

Y
-
a
x
i
s

l
a
b
e
l

48

An Introduction to MacAnova

Cmd> showplot(dumb:T,title:"Plot redrawn using dumb:T",\
height:23,width:70)

 Plot redrawn using dumb:T
 ++-----+-----+-----+-----+-----+-----+-----+-----+------++
 4+ .o+
 | |
 | ...o. |
 3.5+ ...o.. +
 Y | ...o.. |
 - 3+ ...o.. +
 a | .o.. |
 x 2.5+ ... +
 i | ...o. |
 s 2+ .o.. ...*......*+
 | *.....*.....*.. |
 l 1.5+ .o. ...*.....*.. +
 a | *.....*.. |
 b 1+o.. +
 e | |
 l 0.5+ +
 | |
 0+..+
 ++-----+-----+-----+-----+-----+-----+-----+-----+------++
 1 2 3 4 5 6 7 8 9 10
 X-axis label

The second plot illustrates how to use showplot() with argument dumb:T to make a
low resolution plot using ordinary typographical symbols. height:23 and width:70
specify the number of rows (lines) and columns (characters per line). The default
values are 24 and 80. The smaller values were used so it would fit on this page.

A “dumb” plot like this is not as elegant as a high resolution graph, but can be printed
on any printer, and included in any word processor document. If you are using
spool() to save your input and output, any “dumb” plots are written to the spooling
file, but high resolution plots are not.

Here are two additional keywords related to modifying or redisplaying graphs:

Keyword phrases Description

keep:F Do not save plot as LASTPLOT.

show:F Do not display plot, only save.

When a graph is complicated, LASTPLOT can use a lot of room in your workspace. If
you don’t plan to modify the plot you can save memory by including keep:F as an
argument on any graphics command.

When you are building a complicated graph in stages by adding different types of
information, you may not want to see the graph until it is finished. If so, use show:F
on every plotting command except the last one. This was illustrated in producing the
plot on the preceding page.

It is an error to use both show:F and keep:F.

49

An Introduction to MacAnova

6.4 Graphs in a windowed version
In the windowed versions (Windows, Macintosh, Motif), there are eight basic graph
windows, Graph 1, Graph 2, ..., Graph 8. A new plot normally goes in the lowest
numbered available window, but keyword phrase window:n, where n is an integer
between 0 and 8 puts it in window n (window:0 puts it in the most recently used
window). When the window is in front, you can print it by selecting Print Graph on
the File menu. You can copy the graph to the Clipboard using Copy on the Edit menu
(not Motif).

On a Macintosh, but not the other versions, there are two additional windows, Panel
of Graphs 1-4 and Panel of Graphs 5-8 which display the contents of the regular
graph windows in reduced size. Copy on the Edit menu and Print Graph on the File
work with these, too. When a Panel of Graphs window is in front, clicking on any of
the panels brings the corresponding graph window to the front.

You can switch to any graph window by clicking in it, selecting it on the Windows
menu or by pressing an appropriate combination of keys.

On a Macintosh, you switch to a graph window by pressing one of 1, 2, ..., 8, or
F1, ..., or F8. Pressing G displays a Panel of Graphs window or toggles between

such windows.

In Windows, you press Ctrl+F1, Ctrl+F2, ..., or Ctrl+F8 to switch to a graph window.

In Motif, you press Ctrl+1, Ctrl+2, ..., or Ctrl+8 to switch to a graph window.

When a graph window is in front, hitting Return or Enter brings the command/output
window forward.

The size of a dumb graph is determined by the size of the command/output window,
but can be modified by keywords height and width, as illustrated in the example in
Sec. 6.3.

6.5 Plotting under DOS
When running under DOS, there is only one window. A high resolution plot replaces
its contents. Hitting Return, erases the graph and returns to command mode, refreshing
any commands and output that were on the screen before the plot.

DOS has no automatic facilities for doing anything with a graph. However, when
running a DOS version under Windows 95/98/NT you can copy the graph to the
clipboard by pressing ALT-PrintScreen.

6.6 Plotting under Linux/Unix
MacAnova on Linux or Unix (non-Motif) assumes that you are using a terminal that
can emulate a Tektronix 4014 terminal, a once popular graphical device. MacAnova
translates the information to be plotted, including plot frames, boundary ticks, labels,
lines and points into the arcane sequences of characters that a Tektronix 4014 terminal
expects.

In particular, the popular xterm pseudo VT100 window on many workstations can
emulate a Tektronix 4014, but not some more modern replacements like dtterm and

50

An Introduction to MacAnova

hpterm. If MacAnova is running in a xterm window, a Tektronix graphics window is
opened and drawn to. After a Return is hit, it then switches back to the VT100 window.
If you get just a sequence of funny characters when you try to make a high resolution
plot in Linux or Unix, it probably means Tektronix emulation is not enabled.

Since few users now use Tektronix 4014 emulators, no further details are given here.
Type help(tek,vt,options:"tekset") for some further information.

6.7 Incorporating a graph in word processor document
The only universally applicable way to do this is to write a “dumb” plot to a file and
then open the file in the word processor.

If you have started spooling your output using spool(), “dumb” plots are automat-
ically included in the spooled output. Alternatively, you can use showplot() to write
a GRAPH variable to a file as a low resolution plot. Thus

Example
Cmd> showplot(file:"myplots.txt",dumb:T)

writes the plot encapsulated in LASTPLOT to file myplots.txt as a “dumb” plot. See
Sec. 6.8 for other ways to write graphs to a file.

On a Macintosh or in Windows you can copy high resolution graphs to the Clipboard.
When a graphics window is the front window, select Copy on the Edit menu (C or
Ctrl+C). Then switch to a word processor document or a graphics editor window and
select Paste on the Edit menu (V or Ctrl+V).

In the DOS versions, under Windows 95/98/NT you can copy a high resolution graph
to the Clipboard by pressing ALT-PrintScreen while the MacAnova plot is on the screen.
Under DOS without Windows, no such direct copying of the graphics screen is possible.

6.8 Writing graphs to files
Besides a dumb plot, there are other forms in which you can write a graph to a file. The
most important way is as PostScript commands. PostScript is a powerful page
description language recognized by certain printers, including Apple LaserWriters. It
can represent any graph that MacAnova can produce.

Other forms are as a PICT file (Macintosh only), a PCX file (extended memory DOS
version only) or as a sequence of Tektronix 4014 commands (Linux and Unix only).

51

An Introduction to MacAnova

Here are keywords phrases associated with writing graphs to files:

Keyword phrases Description

file:fileName Write PostScript to file fileName without displaying the
plot.

file:fileName,dumb:T Write a low resolution plot to file fileName without
displaying the plot.

new:T Clear file fileName before writing

landscape:T
(used only with file)

PostScript plot will be rotated so as to fill a 8.5" by 11" page.

ps:F
(used only with file)

Suppresses PostScript when writing a plot to a file. On a
Macintosh a PICT file is written; on Linux and Unix,
Tektronix 4014 plotting commands are written to the file; on
other computers, a “dumb” plot is written to the file.

screendump:fileName On a Macintosh a PICT file is written; on extended memory
DOS version a PCX file is written; illegal in other versions.

epsf:T On a Macintosh, when used with file:fileName, an
encapsulated PostScript file is written

Example
Cmd> showplot(file:"myplots.ps",new:T)

This writes a PostScript description of the graph encapsulated in LASTPLOT to file
myplots.ps. On the first use of file:"myplots.ps", you should include new:T as an
argument. Subsequent writes should omit new:T or have new:F.

It is beyond the scope of this document to explain what to do with the PostScript file
when you leave MacAnova. On some Linux and Unix computers, the file can be
printed using command lpr. Macintosh program Drop•PS distributed with
MacAnova can be used to send PostScript directly to a LaserWriter. In addition, there
exist various programs for displaying postscript and for translating it into various other
graphics formats. It is possible to include PostScript directly into documents processed
by some programs, including LaTeX.

7. Examples of statistical analyses

7.1 Introduction
This section includes some examples of statistical analyses using MacAnova. There is
little discussion of the analyses or explanation of the commands illustrated. See a
statistics textbook for information about the statistical techniques illustrated and use
help() or see the Users’ Guide to get details of the general use of these commands.

7.2 Histogram and pseudo-random number generation (rnorm(), setseeds(), getseeds(),
describe(), hist)

In statistics courses we usually learn about normal or Gaussian data and especially
about the standard normal distribution with mean 0 and standard deviation 1.
Although it has been said that no real data are 100% normal, in MacAnova you can

52

An Introduction to MacAnova

generate artificial data which really come from a normal distribution. Here’s how you
might generate 5 independent standard normal random variables.

Example
Cmd> rnorm(5) # rnorm(n) generates n N(0,1) random numbers
NOTE: random number seeds set to 1025450084 and 305694887
(1) -0.45119 -1.6091 -1.8971 0.34239 -0.52302

The line after the command clues us in to an important feature of the way MacAnova
actually generates random numbers. Under the hood, as it were, there are two “seeds”,
numbers that are used to generate random numbers and which are updated every time
rnorm() is used. If they haven’t been set before the first time you use rnorm(), they are
set automatically using the time and date, as was the case here when the starting seeds
were set to 1,025,450,084 and 305,694,887. You can retrieve the current values with
getseeds():
Example

Cmd> getseeds()
Seeds are 1095363896 and 358403176

They are not the same as previously printed; after generating 5 normals, the seeds have
been updated to 1,095,363,896 and 358,403,176.

You can set the seeds yourself using setseeds():

Example
Cmd> setseeds(1025450084,305694887) # same as was previously chosen

Cmd> rnorm(5) # the same random numbers were generated.
(1) -0.45119 -1.6091 -1.8971 0.34239 -0.52302

This illustrates the principle that when you start with the same seeds, you get the same
random numbers.

We use rnorm() to generate artificial data to demonstrate how to use MacAnova to
draw histograms. First the seeds are reset to specific values so that you can exactly
reproduce the output by starting rnorm() at the same place.

Example
Cmd> setseeds(67871,32211) # reset seeds to some arbitrary values

Cmd> x <- 85 + 10 * rnorm(100) # normal mu = 85, sigma = 10

Cmd> describe(x,mean:T,stddev:T,min:T,max:T)
component: min
(1) 58.477
component: max
(1) 112.94
component: mean
(1) 84.776 Pretty close to mu = 85
component: stddev
(1) 9.8114 Pretty close to sigma = 10

53

An Introduction to MacAnova

Cmd> hist(x,run(55,115,5),xlab:"N(85,10^2)",relfreq:T,title:\
"Histogram of normal data with mean 85 and standard deviation 10")

0

0.05

0.1

0.15

0.2

60 70 80 90 100 110

Histogram of normal data with mean 85 and standard deviation 10

N(85,10^2)

R
e
l
a
t
i
v
e

f
r
e
q
u
e
n
c
y

• The first argument to hist is the variable you are making a histogram of.

• The second argument specifies the class boundaries or limits. Since run(55,115,5)
is vector(55,60,65,70,75,80,85,90,95,100,105,110,115), the limits are 55,
60, ..., 115.

You can also specify equally spaced class boundaries by vector(anchor, width),
where anchor is one of the boundaries wanted and width is the class width. In this
case vector(55,5) or even vector(0,5) gives the same boundaries, automatically
choosing the first and last boundary so as to include all the data.

• Keyword phrase relfreq:T specifies a relative frequency histogram with bar height
= count/(sample size). Instead you can use freq:T to get a frequency histogram
with bar height = count. With neither, you get a density scale histogram, with bar
height = count/(n(bar width)), bar area count/n and total area 1. This is the only
acceptable form when the class widths are not all the same.

A simpler usage is hist(x,10 ...). This tells MacAnova you want 10 bars in the
histogram, but leaves it up to MacAnova to pick the boundaries. This is good for a
quick look at the data, but you probably won’t like the boundaries MacAnova picks. For
these data, the boundaries MacAnova selects are 55.754, 61.745, 67.736, ...,115.66, equally
spaced with width 5.991.

7.3 Paired t analysis (stemleaf(), describe(), twotailt(), tint())
Table 6.3.1 of Snedecor and Cochran (7th Edition, Iowa State Press 1980) gives the
number of lesions on each of two halves of eight tobacco leaves. One half of each leaf
was exposed to one preparation of a virus extract and the other half was exposed to

54

An Introduction to MacAnova

another preparation. To study the difference, if any, in the mean number of lesions
from the two preprations, a paired analysis based on the differences between the two
halves of each leaf is appropriate.

Example
Cmd> x1 <- vector(31,20,18,17,9,8,10,7) # Data for preparation 1

Cmd> x2 <- vector(18,17,14,11,10,7,5,6) # Data for preparation 2

Cmd> d <- x1 - x2; d # differences
(1) 13 3 4 6 -1
(6) 1 5 1

Cmd> stemleaf(d) # or stemleaf(x1-x2); make stem and leaf display
 1 -0*|1
 3 +0*|11
 4 +0t|3
 4 +0f|45
 2 +0s|6
 High 13
 1*|1 represents 11 Leaf digit unit = 1

Cmd> stemleaf(d,depth:F) # omit "depth" columns
 -0*|1
 +0*|11
 +0t|3
 +0f|45
 +0s|6
 High 13
 1*|1 represents 11 Leaf digit unit = 1

Cmd> summary <- describe(d, n:T, mean:T, stddev:T); summary
component: n
(1) 8
component: mean
(1) 4
component: stddev
(1) 4.3095

Cmd> summary$mean/(summary$stddev/sqrt(summary$n)) #paired t-stat
(1) 2.6253

Instead of explicitly computing the t-statistic from summary (a “white box”
computation), you can use tval(), a function designed specifically for this problem (a
“black box” computation). No matter how you compute t, you can then use
twotailt() to compute a P-value.

Example
Cmd> tt <- tval(d-0) # (or tval(x1-x2)) t-statistic

Cmd> tt
(1) 2.6253 t-statistic same as just computed

Cmd> n <- nrows(d); twotailt(tt, summary$n - 1) # two-tail P-value
(1) 0.034145 2 tail P-value

The Student’s t-statistic computed by tval() tests the null hypothesis H0 that the

expected difference is zero. Since the P-value = 0.034144 < .05 you can reject H0 at the α

55

An Introduction to MacAnova

= .05 significance level.

tint() computes a confidence interval based on the Student’s t-distribution:

Example
Cmd> tint(d,.95) # compute 95% confidence interval
(1) 0.3972 7.6028

With confidence 95% the expected difference is between 0.3972 and 7.6028.

The P-value and confidence interval assume the differences are a normal random
sample.

7.4 Two-sample t-test and confidence interval (describe(), t2val(), t2int(), twotailt())
We analyze data on the weight gains in grams of 19 female rats, 12 on a high protein
diet and 7 on a low protein diet, from Table 6.9.1 of Snedecor & Cochran:

Example
Cmd> high <- vector(134,146,104,119,124,161,107,83,113,129,97,123)

Cmd> low <- vector(70,118,101,85,107,132,94)

Cmd> n1 <- nrows(high); n2 <- nrows(low); vector(n1,n2)
(1) 12 7 Sample sizes

Cmd> describe(makestr(high,low), n:T, mean:T, var:T)
component: n
 component: high
(1) 12 Sample size for high protein sample
 component: low
(1) 7 Sample size for low protein sample
component: mean
 component: high
(1) 120 Mean for high protein sample
 component: low
(1) 101 Mean for low protein sample
component: var
 component: high
(1) 457.45 Variance for high protein sample
 component: low
(1) 425.33 Variance for low protein sample

You could use these results to calculate a two-sample t-test or compute a confidence
interval for the difference between the means. It’s easier to use t2val():

Example
Cmd> tt <- t2val(high,low) # test statistic to test H0: µ1 = µ2

Cmd> vector(tt, twotailt(tt,n1+n2-2)) # value of t and P-value
(1) 1.8914 0.07573 Not significant at 5% level

Cmd> t2int(high,low,.95) # 95% confidence interval for µ1 - µ2
(1) -2.1937 40.194 Includes 0

t2val() and t2int() assume independent random samples with the same variance
and estimate the common variance by “pooling” variance estimates from the two
samples. Many statisticians prefer a method that doesn’t pool the two variances or
assume equal variances. You can use this method by include pooled:F as an

56

An Introduction to MacAnova

argument.

Cmd> result <- t2val(high,low, pooled:F); result
component: t
(1) 1.9107 value of t-statistic
component: df
(1) 13.082 approximate degrees of freedom

Cmd> twotailt(result$t,result$df) # P-value
(1) 0.078208

Cmd> t2int(high,low,.95,pooled:F)
(1) -2.4691 40.469 Includes 0

7.5 Simple linear regression and scatter plot (regress(), plot(), secoefs(), betalimits())

Here we analyze data from Table 9.7.1 of Snedecor and Cochran which gives the
percentage of wormy fruit (pcwormy) and the number of apples harvested, in 100’s,
(cropsize) for 12 apple trees. The goal is to predict or explain the amount of wormy
fruit in terms of the number of applies on the tree by a simple linear regression of
pcwormy on cropsize.

Cmd> cropsize <- vector(8,6,11,22,14,17,18,24,19,23,26,40)

Cmd> pcwormy <- vector(59,58,56,53,50,45,43,42,39,38,30,27)

A first step is a scatter plot of cropsize against pcwormy.
Example

Cmd> plot(pcwormy, cropsize, ymin:0,\
xlab:"Percent Wormy Apples", ylab:"Crop size",title:\
"Plot of crop size in 100's vs percent wormy for 12 apple trees")

0

5

10

15

20

25

30

35

40

30 35 40 45 50 55

Plot of crop size in 100's vs percent wormy for 12 apple trees

Percent Wormy Apples

C
r
o
p

s
i
z
e

57

An Introduction to MacAnova

There is a fairly strong negative and roughly linear relationship between pcwormy and
cropsize. Notice the use of keyword phrases with keywords title, xlab, ylab and
ymin to control the appearance of a plot. These are not really necessary, but it is always
a good idea to label your graphs informatively. Keyword phrase lines:T would
connect successive points with lines, or you could use command lineplot(). You can
select the plotting symbols used with command chplot() or by using keyword
symbols. See Sec. 6.2.

Now we do the actual regression analysis

Example
Cmd> regress("pcwormy=cropsize") # basic regression command
Model used is pcwormy=cropsize
 Coef StdErr t
CONSTANT 64.247 3.6029 17.832
cropsize -1.013 0.17215 -5.8842

N: 12, MSE: 27.384, DF: 10, R^2: 0.77590
Regression F(1,10): 34.624, Durbin-Watson: 1.6899
To see the ANOVA table type 'anova()

The row labelled CONSTANT pertains to the intercept and the row labeled cropsize
pertains to the slope. The column headed Coef contains the least squares estimates of
the intercept and slope. The column headed t contains t-statistics (Coef/StdErr)
which can be used to test the null hypotheses that the intercept or slope is 0. You can
find the P-values using twotailt().

Example
Cmd> twotailt(vector(17.832, -5.8842), 10)
(1) 6.5683e-09 0.00015431 P-values for t-stats

Both coefficients, the intercept and the slope, are significantly different from zero at the
5% significance level (P-value < .05). If you include pvals:T as an argument to
regress(), these P-values are printed automatically.

Example
Cmd> regress("pcwormy=cropsize",pval:T) # basic regression command
Model used is pcwormy=cropsize
 Coef StdErr t P-Value
CONSTANT 64.247 3.6029 17.832 6.5686e-09
cropsize -1.013 0.17215 -5.8842 0.00015431

N: 12, MSE: 27.384, DF: 10, R^2: 0.77590
Regression F(1,10): 34.624,P-value: 0.00015431, Durbin-Watson: 1.6899
To see the ANOVA table type 'anova()'

The general usage for simple linear regression is regress("y=x"), where x and y are
vectors which contain the independent and dependent variables, respectively.

After you have computed the regression, you can retrieve the coefficients and their
standard errors using function secoefs() which computes a structure. To get just the
coefficients you can use secoefs(se:F) as an argument, while to get just the standard
errors, you can use secoefs(coefs:F):

58

An Introduction to MacAnova

Example
Cmd> secoefs() # this gets both coefficients and std. errors
component: CONSTANT Intercept and its standard error
 component: coefs
(1) 64.247
 component: se
(1) 3.6029
component: cropsize Slope and its standard error
 component: coefs
(1) -1.013
 component: se
(1) 0.17215

Cmd> beta <- secoefs(se:F); ses <- secoefs(coef:F) #get separately

Cmd> # beta contains coefficients, ses contains standard Errors

Cmd> # Compute lower and upper 95% confidence limits

Cmd> n <- nrows(cropsize)# sample size

Cmd> critval <- invstu(1-.025, n-2) # Student's t critical value

Cmd> beta - critval*ses # lower confidence limits
component: CONSTANT
(1) 56.219
component: cropsize
(1) -1.3966

Cmd> beta + critval*ses # upper confidence limits
component: CONSTANT
(1) 72.275
component: cropsize
(1) -0.62941

You can also use macro betalimits() in file regress.mac.

Example
Cmd> betalimits(cropsize,.95) # find confidence limits for slope
WARNING: searching for unrecognized macro betalimits near betalimits(
(1) -1.3966 -0.62941

The warning message informs you that betalimits() was not in memory. After
MacAnova found it and read it from file regress.mac, betalimits() computed 95%
confidence limits for the slope, the coefficient of cropsize. The next time you use
betalimits() there will be no warning message.

7.6 One-way Analysis of Variance and box plot (anova(), vboxplot(), factor(), tabs())
Here is a table of yields of four varieties of wheat, each grown on several plots with
similar soils (Table 48 of Biometricheskiye Metodi of V. Yu. Urbakh, Science Press,
Moscow 1964):

Variety 1 17.0 17.2 16.1 17.0 16.8

Variety 2 15.8 17.0 16.4

Variety 3 17.4 16.6 16.2 15.6 15.5 17.2

Variety 4 15.7 16.8 15.1 15.2

59

An Introduction to MacAnova

Here is a partial analysis of these data using the tabs(), vboxplot() and anova()
commands. The response vector yield with final length 18 is entered in stages using
vector().

Example
Cmd> yield <- vector(17,17.2,16.1,17,16.8) # enter yield data,

Cmd> yield <- vector(yield,15.8,17,16.4) # making one long vector

Cmd> yield <- vector(yield,17.4,16.6,16.2,15.6,15.5,17.2)

Cmd> yield <- vector(yield,15.7,16.8,15.1,15.2)

Cmd> #Now generate variety numbers as another vector of length 18

Cmd> variety <- factor(rep(run(4), vector(5,3,6,4)))

Cmd> # 5, 3, 6 and 4 are the sample sizes

Cmd> # or variety <- vector(1,1,1,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4)

Cmd> hconcat(variety, yield) # look at them together
 (1,1) 1 17
 (2,1) 1 17.2
 (3,1) 1 16.1
 (4,1) 1 17
 (5,1) 1 16.8
 (6,1) 2 15.8
 (7,1) 2 17
 (8,1) 2 16.4
 (9,1) 3 17.4
(10,1) 3 16.6
(11,1) 3 16.2
(12,1) 3 15.6
(13,1) 3 15.5
(14,1) 3 17.2
(15,1) 4 15.7
(16,1) 4 16.8
(17,1) 4 15.1
(18,1) 4 15.2

Cmd> list(variety,yield) # variety is a factor
variety REAL 18 FACTOR with 4 levels
yield REAL 18

Cmd> tabs(yield, variety) # compute variety means and variances
component: mean
(1) 16.82 16.4 16.417 15.7
component: var
(1) 0.182 0.36 0.63367 0.60667
component: count
(1) 5 3 6 4

Although the sample sizes are rather small, a box plot shows what is going on better
than the numbers do.

60

An Introduction to MacAnova

Example
Cmd> vboxplot(split(yield,variety),xlab:"Yield",\

ylab:"Variety number", title:"Yield of wheat by variety")

15.5

16

16.5

17

1 2 3 4

Yield of wheat by variety

Yield

V
a
r
i
e
t
y

n
u
m
b
e
r

Command boxplot() does the same, except the boxplots are oriented horizontally.

There appears to be a difference among varieties. To test for its reality, you can
compute an analysis of variance.

Example
Cmd> anova("yield=variety", fstat:T) #one-way ANOVA
Model used is yield=variety
WARNING: summaries are sequential
 DF SS MS F P-value
CONSTANT 1 4821.6 4821.6 10487.75390 0
variety 3 2.8237 0.94122 2.04730 0.15348
ERROR1 14 6.4363 0.45974

For one-way ANOVA, the argument to anova() is a string of the form "response =
factor", where factor was created using function factor(). Since the P-value for
the null hypothesis that all the means are the same is .15348, you cannot reject the null
hypothesis at any significance level < .15348.

Important: If you don’t use factor() to create the vector of category levels, you will
get the wrong answer.

Without fstat:T in anova(), no F-statistics or P-values are printed. You could
compute them “by hand,” because anova() creates several “side effect” variables,
among them vectors SS and DF, containing the sums of squares and their degrees of
freedom, respectively. You can find mean squares as SS/DF.

61

An Introduction to MacAnova

Example
Cmd> hconcat(DF,SS,SS/DF) # compare with ANOVA table
 (1) (2) (3)
CONSTANT 1 4821.6 4821.6
variety 3 2.8237 0.94122
ERROR1 14 6.4363 0.45974

Cmd> MS <- SS/DF; MS # ANOVA mean squares
 CONSTANT variety ERROR1
 4821.6 0.94122 0.45974

Cmd> f <- MS[2]/MS[3] # F-statistic

Cmd> vector(f,1-cumF(f, DF[2],DF[3])) # F statistic and P-value
(1) 2.0473 0.15348

The row labels were automatically generated from the term names as part of the side
effect variables DF and SS.

7.7 Randomized Block (Two-way) Analysis of Variance (anova(), factor(), tabs())
Here are data from Table 14.2.1 of Snedecor and Cochran from an experiment in which
four seed treatments and a check (no treatment) were compared in a randomized block
design with 4 replicates. The response is the percentage of seedlings in each plot that
failed to emerge.

Block Number

Treatment 1 2 3 4 5

Check 8 10 12 13 11

Arasan 2 6 7 11 5

Spergon 4 10 9 8 10

Semasan,Jr 3 5 9 10 6

Fermate 9 7 5 5 3

First, enter the data as one long vector, treatment by treatment (row by row). Then
create factors containing the replicate numbers and treatment numbers.

Example
Cmd> failures <- vector(8,10,12,13,11, 2,6,7,11,5,\

4,10,9,8,10, 3,5,9,10,6, 9,7,5,5,3)

Cmd> reps <- factor(rep(run(5),5))#vector(1,2,3,4,5,1,2,3,4,5,...,)

Cmd> treatment<-factor(rep(run(5),rep(5,5)))#vector(1,1,1,1,1,2,..)

62

An Introduction to MacAnova

Cmd> hconcat(reps, treatment, failures) # see them all
 (1,1) 1 1 8
 (2,1) 2 1 10
 (3,1) 3 1 12
 (4,1) 4 1 13
 (5,1) 5 1 11
 (6,1) 1 2 2
 (7,1) 2 2 6
 (8,1) 3 2 7
 (9,1) 4 2 11
(10,1) 5 2 5
(11,1) 1 3 4
(12,1) 2 3 10
(13,1) 3 3 9
(14,1) 4 3 8
(15,1) 5 3 10
(16,1) 1 4 3
(17,1) 2 4 5
(18,1) 3 4 9
(19,1) 4 4 10
(20,1) 5 4 6
(21,1) 1 5 9
(22,1) 2 5 7
(23,1) 3 5 5
(24,1) 4 5 5

Cmd> tabs(failures,treatment,mean:T,count:T) # treatment means
component: mean
(1) 10.8 6.2 8.2 6.6 5.8
component: count
(1) 5 5 5 5 5

Cmd> tabs(failures, reps, mean:T,count:T) # block means
component: mean
(1) 5.2 7.6 8.4 9.4 7
component: count
(1) 5 5 5 5 5

Cmd> anova("failures = reps + treatment",fstat:T) # do ANOVA
Model used is failures = reps + treatment
 DF SS MS F P-value
CONSTANT 1 1413.8 1413.8 261.32348 2.4752e-11
reps 4 49.84 12.46 2.30314 0.1032
treatment 4 83.84 20.96 3.87431 0.021886
ERROR1 16 86.56 5.41

Cmd> # compute F-statistic and P-value “by hand”

Cmd> f <- (SS[3]/DF[3])/(SS[4]/DF[4]) # F-statistic

Cmd> vector(f,1 - cumF(f,DF[3],DF[4])) # F-statistic and P-value
(1) 3.8743 0.021886 Significant at 5% level

The general form of anova() for a randomized block command is anova("response
= blocks + treatment"), where response is the variable being analyzed, and
blocks and treatments are vectors of block number and treatment number created by
function factor(). This same method works even with incomplete blocks.

63

An Introduction to MacAnova

7.8 Multiple Regression (regress(), anova(), secoefs(), resid(), betalimits(), resvsrankits())
As an example we analyze a data set due to Hald which has been widely used to
demonstrate statistical methods. It is in matread() format (see Sec. 5.4) as data set
halddata in file MacAnova.dat distributed with MacAnova.

Example
Cmd> hald <- matread("macanova.dat","halddata")
halddata 13 5 format labels
) Hald data from A. Hald, Statistical Theory with Engineering
) Applications, Wiley, New York, 1952, p. 647
) Col. 1: X1 = percent tricalcium aluminate
) Col. 2: X2 = percent tricalcium silicate
) Col. 3: X3 = percent tetracalcium alumino ferrite
) Col. 4: X4 = percent dicalcium silicate
) Col. 5: Y = cumulative heat evolved from cement hardening after
) 180 days. (calories/gm)
Read from file "KB1:MacAnova:macanova.dat"

Cmd> makecols(hald,x1,x2,x3,x4,y); list(x1,x2,x3,x4,y)
x1 REAL 13
x2 REAL 13
x3 REAL 13
x4 REAL 13
y REAL 13

Cmd> regress("y = x1 + x2 + x3 + x4", pval:T)
Model used is y = x1 + x2 + x3 + x4
 Coef StdErr t P-Value
CONSTANT 62.405 70.071 0.8906 0.39913
x1 1.5511 0.74477 2.0827 0.070822
x2 0.51017 0.72379 0.70486 0.5009
x3 0.10191 0.75471 0.13503 0.89592
x4 -0.14406 0.70905 -0.20317 0.84407

N: 13, MSE: 5.983, DF: 8, R^2: 0.98238
Regression F(4,8): 111.48, P-value: 4.7562e-07, Durbin-Watson: 2.0526
To see the ANOVA table type 'anova()'

The estimated variance is MSE = 5.983. The unadjusted multiple R2 is R^2 = .98238.
The overall regression F on 4 and 8 degrees of freedom is F(4,8) = 111.48. It is highly
significant (P = .000000476). You can easily get a corresponding ANOVA table.

Example
Cmd> anova(,fstat:T) # also look at the sequential ANOVA table
Model used is y = x1+x2+x3+x4
WARNING: summaries are sequential
 DF SS MS F P-value
CONSTANT 1 1.1837e+05 1.1837e+05 19784.92710 0
x1 1 1450.1 1450.1 242.36792 2.8876e-07
x2 1 1207.8 1207.8 201.87053 5.8633e-07
x3 1 9.7939 9.7939 1.63696 0.2366
x4 1 0.24697 0.24697 0.04128 0.84407
ERROR1 8 47.864 5.983

Important: When you don’t provide an explicit “model” to regress() and anova(),
they use the most recent model.

64

An Introduction to MacAnova

By default, anova() computes “sequential” sums of squares. These measure the
contribution of each variable after fitting the preceding variables, but ignoring later
variables. These are sometimes called Type I sums of squares. If you want sums of
squares of each variable after fitting all the others (Type III sums of squares), use
keyword phrase marginal:T.

Example
Cmd> anova(,fstat:T, marginal:T)
Model used is y = x1+x2+x3+x4
WARNING: SS are Type III sums of squares
 DF SS MS F P-value
CONSTANT 1 4.7455 4.7455 0.79317 0.39913
x1 1 25.951 25.951 4.33747 0.070822
x2 1 2.9725 2.9725 0.49682 0.5009
x3 1 0.10909 0.10909 0.01823 0.89592
x4 1 0.24697 0.24697 0.04128 0.84407
ERROR1 8 47.864 5.983

You can recover the coefficients and their standard errors using secoefs() and
compute critical values using invstu().

Example
Cmd> beta <- secoefs(se:F); ses <- secoefs(coef:F)

Cmd> critval <- invstu(1-.05/2,DF[6]); critval
(1) 2.306 Critical value for t on 8 d.f.

Cmd> errormargins <- critval*ses

Cmd> beta - errormargins # lower limits
component: CONSTANT
(1) -99.179
component: x1
(1) -0.16634
component: x2
(1) -1.1589
component: x3
(1) -1.6385
component: x4
(1) -1.7791

Cmd> beta + errormargins # upper limits
component: CONSTANT
(1) 223.99
component: x1
(1) 3.2685
component: x2
(1) 2.1792
component: x3
(1) 1.8423
component: x4
(1) 1.491

Alternatively you can use betalimits() to find confidence limits for a coefficient.
Cmd> betalimits(x1, .95)
(1) -0.16634 3.2685

65

An Introduction to MacAnova

Cmd> betalimits(x2, .95)
(1) -1.1589 2.1792

An analysis of residuals should be part of most regression analyses. resid() computes
several quantities related to residuals for each case.
Example

Cmd> resid() # type help(resid:"description_of_output") for details
 Depvar StdResids HII Cook's D t-stats
(1) 78.5 0.0029021 0.55028 2.0612e-06 0.0027147
(2) 74.3 0.75662 0.33324 0.057225 0.73453
(3) 104.3 -1.0503 0.57694 0.30086 -1.0581
(4) 87.6 -0.84108 0.29524 0.05927 -0.82404
(5) 95.9 0.12791 0.3576 0.0018214 0.11977
(6) 109.2 1.7148 0.12416 0.083369 2.017
(7) 102.7 -0.74445 0.36708 0.064285 -0.72182
(8) 72.5 -1.6878 0.40854 0.39353 -1.9675
(9) 93.1 0.6708 0.29431 0.037532 0.6459
(10) 115.9 0.21029 0.7004 0.020677 0.19726
(11) 83.8 1.0739 0.42551 0.17084 1.0859
(12) 113.3 0.46335 0.26298 0.015322 0.43936
(13) 109.4 -1.1241 0.30372 0.11024 -1.1459

resvsrankits(), resvsyhat() and resvsindex() make plots of standardized
residuals against normal scores (rankits), predicted value and case number.

Cmd> resvsrankits(title:\
"Normal Scores (rankit) plot of residuals from Hald data")

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Normal Scores (rankit) plot of residuals from Hald data

Normal Scores

S
t
a
n
d
a
r
d
i
z
e
d

R
e
s
i
d
s

This shows no obvious signs of non-normality in the residuals. Substantial curvature
or a big “hook” at the end would be a warning that the residuals might not be normal.

66

An Introduction to MacAnova

You can plot unstandardized residuals using keyword phrase standres:F. 12

Cmd> resvsyhat(standres:F,title:\
"Non-standardized residuals from Hald data vs fitted values")

-3

-2

-1

0

1

2

3

4

75 80 85 90 95 100 105 110 115

Non-standardized residuals from Hald data vs fitted values

Fitted Values (Yhat)

R
e
s
i
d
s

Cmd> resvsindex(title:\
"Standardized residuals from Hald data vs case number")

-1.5

-1

-0.5

0

0.5

1

1.5

2 4 6 8 10 12

Standardized residuals from Hald data vs case number

Case Numbers

S
t
a
n
d
a
r
d
i
z
e
d

R
e
s
i
d
s

12 New feature, July 2001

67

	Table of Contents
	1. Introduction
	1.1 What is MacAnova?
	1.2 The purpose of this document
	1.3 Differences among MacAnova versions
	1.4 Obtaining MacAnova

	2. Getting started
	2.1 Launching Macanova
	2.2 Typing and editing commands
	2.3 Quitting
	2.4 Learning more about MacAnova – documentation

	3. The Basics
	3.1 MacAnova as a numerical calculator
	3.2 MacAnova as symbolic calculator
	3.3 MacAnova as computing language – functions and macros
	3.4 More on Variables – REAL, LOGICAL and CHARACTER data Named variables can contain several types of data. The most common
	3.5 Comparisons of numbers and combining LOGICAL values
	3.6 Variables with several values – Vectors and Matrices
	3.7 Missing values

	4. Building on the Basics
	4.1 Combining vectors and matrices – vector(), hconcat() and vconcat()
	4.2 Creating patterned vectors – run() and rep()
	4.3 Assigning values to the elements of a vector or matrix
	4.4 Simple summaries of data in vectors and matrices
	4.5 Simple descriptive statistics – describe()
	4.6 Getting help – MacAnova commands help() and usage()

	5. Using files
	5.1 General
	5.2 Recording your MacAnova session – spool()
	5.3 Saving your workspace – save() and asciisave()
	5.4 Reading data from files
	5.5 Moving data from and to a spreadsheet

	6. Visualizing numbers – drawing graphs 6.1 Basic graphing commands
	6.1 Basic graphing commands
	6.2 Using keywords to control the appearance of graphs
	6.3 GRAPH variables and modifying graphs
	6.4 Graphs in a windowed version
	6.5 Plotting under DOS
	6.6 Plotting under Linux/Unix
	6.7 Incorporating a graph in word processor document
	6.8 Writing graphs to files

	7. Examples of statistical analyses
	7.1 Introduction
	7.2 Histogram and pseudo-random number generation
	7.3 Paired t analysis
	7.4 Two-sample t-test and confidence interval
	7.5 Simple linear regression and scatter plot
	7.6 One-way Analysis of Variance and box plot
	7.7 Randomized Block (Two-way) Analysis of Variance
	7.8 Multiple Regression
	Residual analysis

