
MacAnova Reference Manual
Version 5.05

Technical Report #618
School of Statistics

University of Minnesota

Christopher Bingham Gary W. Oehlert

September 1997, Revised February 1, 2006

2

Contents

1 Introduction 19

2 MacAnova Help File 21
2.1 abs() . 21
2.2 acos() . 21
2.3 addchars() . 22
2.4 addhelpfile() . 24
2.5 addlines() . 25
2.6 adddatapath() . 26
2.7 addmacrofile() . 27
2.8 addpoints() . 28
2.9 addstrings() . 30
2.10 alltrue() . 31
2.11 anova() . 32
2.12 anovapred() . 34
2.13 anymissing() . 35
2.14 anytrue() . 35
2.15 appendnotes() . 36
2.16 arginfo fun . 36
2.17 argvalue() . 37
2.18 arimahelp() . 39
2.19 arithmetic . 39
2.20 array() . 43
2.21 arrays . 44
2.22 asciisave() . 45
2.23 asin() . 46
2.24 asLong() . 47
2.25 assignment . 48
2.26 atan() . 52
2.27 atanh() . 52
2.28 attachnotes() . 53
2.29 autoreg() . 54
2.30 batch() . 56
2.31 bcprd() . 57

3

4 CONTENTS

2.32 bin() . 58
2.33 bit ops . 59
2.34 boxcox() . 61
2.35 boxplot() . 61
2.36 break . 63
2.37 breakall . 64
2.38 breakif() . 65
2.39 callback fun . 66
2.40 carapace . 66
2.41 cat() . 68
2.42 cconj() . 69
2.43 cdivc() . 69
2.44 cdivcj() . 70
2.45 ceiling() . 71
2.46 cellstats() . 71
2.47 cft() . 72
2.48 changestr() . 73
2.49 cholesky() . 75
2.50 chplot() . 76
2.51 cimag() . 79
2.52 CLIPBOARD . 79
2.53 clipreaddata . 82
2.54 clipwritedat() . 83
2.55 cluster() . 84
2.56 cmplx() . 86
2.57 coefs() . 87
2.58 colplot() . 88
2.59 comments . 89
2.60 complex . 90
2.61 compnames() . 91
2.62 console() . 91
2.63 contrast() . 92
2.64 convolve() . 95
2.65 copyright . 95
2.66 cor() . 99
2.67 cos() . 99
2.68 cosh() . 100
2.69 cpolar() . 101
2.70 cprdc() . 101
2.71 cprdcj() . 102
2.72 creal() . 103
2.73 crect() . 104
2.74 ctoh() . 104
2.75 cumbeta() . 105

CONTENTS 5

2.76 cumbin() . 106
2.77 cumchi() . 107
2.78 cumdunnett() . 108
2.79 cumF() . 110
2.80 cumgamma() . 111
2.81 cumnor() . 112
2.82 cumpoi() . 113
2.83 cumstu() . 113
2.84 cumstudrng() . 115
2.85 customize . 116
2.86 data files . 118
2.87 DATAPATHS . 119
2.88 delete() . 120
2.89 describe() . 122
2.90 descriptive() . 125
2.91 design . 125
2.92 designhelp() . 127
2.93 det() . 128
2.94 diag() . 128
2.95 digamma() . 129
2.96 dim() . 130
2.97 dmat() . 131
2.98 dos windows . 131
2.99 edit() . 133
2.100 eigen() . 135
2.101 eigenvals() . 136
2.102 else . 136
2.103 elseif . 137
2.104 enter() . 137
2.105 enterchars() . 138
2.106 equal() . 138
2.107 error() . 141
2.108 evaluate() . 141
2.109 exp() . 142
2.110 factor() . 143
2.111 fastanova() . 144
2.112 file names . 146
2.113 files . 147
2.114 findfile() . 149
2.115 floor() . 149
2.116 for . 150
2.117 fprint() . 151
2.118 formatpval() . 151
2.119 fromclip() . 152

6 CONTENTS

2.120 fwrite() . 153
2.121 getascii() . 153
2.122 getdata() . 154
2.123 getfilename() . 155
2.124 gethelp() . 157
2.125 gethistory() . 162
2.126 getkeywords() . 163
2.127 getlabels() . 164
2.128 getmacros() . 165
2.129 getnotes() . 166
2.130 getoptions() . 166
2.131 getseeds() . 168
2.132 gettime() . 168
2.133 getusage() . 169
2.134 glm . 170
2.135 glm keys . 173
2.136 glmfit() . 175
2.137 glmpred() . 178
2.138 glmtable() . 179
2.139 goodfactors() . 182
2.140 grade() . 183
2.141 graphicshelp() . 184
2.142 graphs . 185
2.143 GRAPHWINDOWS . 189
2.144 graph assign . 191
2.145 graph border . 193
2.146 graph files . 194
2.147 graph keys . 196
2.148 graph ticks . 201
2.149 halfnorm() . 203
2.150 haslabels() . 204
2.151 hasnotes() . 204
2.152 hconcat() . 205
2.153 hconj() . 205
2.154 hdivh() . 206
2.155 hdivhj() . 207
2.156 help() . 208
2.157 hft() . 210
2.158 himag() . 211
2.159 hist() . 212
2.160 hpolar() . 213
2.161 hprdh() . 214
2.162 hprdhj() . 215
2.163 hreal() . 215

CONTENTS 7

2.164 hrect() . 216
2.165 htoc() . 216
2.166 hypot() . 217
2.167 if . 218
2.168 inforead() . 219
2.169 interrupt . 221
2.170 invbeta() . 221
2.171 invchi() . 222
2.172 invdunnett() . 223
2.173 invF() . 226
2.174 invgamma() . 226
2.175 invnor() . 227
2.176 invstu() . 228
2.177 invstudrng() . 229
2.178 ipf() . 230
2.179 isarray() . 232
2.180 ischar() . 233
2.181 isdefined() . 233
2.182 isfactor() . 234
2.183 isfunction() . 234
2.184 isgraph() . 235
2.185 islocked() . 236
2.186 islogic() . 236
2.187 ismacro() . 237
2.188 ismatrix() . 237
2.189 ismissing() . 238
2.190 isname() . 239
2.191 isnull() . 240
2.192 isnumber() . 241
2.193 isreal() . 242
2.194 isscalar() . 242
2.195 isstruc() . 243
2.196 isvector() . 244
2.197 keyvalue() . 245
2.198 keywords . 248
2.199 kmeans() . 249
2.200 labels . 250
2.201 launching . 255
2.202 length() . 259
2.203 lgamma() . 260
2.204 lineplot() . 260
2.205 list() . 262
2.206 listbrief() . 264
2.207 loadUser() . 265

8 CONTENTS

2.208 locks . 265
2.209 lockvars() . 267
2.210 log() . 268
2.211 log10() . 268
2.212 log2() . 269
2.213 logic . 269
2.214 logistic() . 272
2.215 lowess() . 274
2.216 macintosh . 277
2.217 mac classic . 278
2.218 macro() . 283
2.219 macro files . 285
2.220 macro syntax . 288
2.221 macroread() . 294
2.222 macros . 297
2.223 macrousage() . 299
2.224 macrowrite() . 299
2.225 makecols() . 301
2.226 makefactor() . 303
2.227 makestr() . 304
2.228 makesymbols() . 305
2.229 manova() . 306
2.230 match() . 308
2.231 mathhelp() . 310
2.232 matprint() . 311
2.233 matread() . 314
2.234 matread file . 317
2.235 matrices . 324
2.236 matrix() . 327
2.237 matwrite() . 329
2.238 max() . 330
2.239 memory . 332
2.240 memoryinfo() . 333
2.241 min() . 334
2.242 modelinfo() . 336
2.243 models . 340
2.244 modelvars() . 344
2.245 more() . 347
2.246 Mouse() . 347
2.247 movavg() . 351
2.248 mulvarhelp() . 353
2.249 nameof() . 354
2.250 nbits() . 354
2.251 ncols() . 355

CONTENTS 9

2.252 ncomps() . 356
2.253 ndims() . 356
2.254 next . 357
2.255 notes . 358
2.256 nrows() . 360
2.257 NULL . 360
2.258 number . 361
2.259 options . 364
2.260 outer() . 374
2.261 padto() . 375
2.262 partacf() . 376
2.263 paste() . 376
2.264 plot() . 379
2.265 poisson() . 381
2.266 polygamma() . 383
2.267 polyroot() . 384
2.268 popmodel() . 385
2.269 power() . 386
2.270 power2() . 387
2.271 precedence . 388
2.272 predtable() . 391
2.273 primefactors() . 394
2.274 print() . 395
2.275 printoptions() . 399
2.276 probit() . 400
2.277 prod() . 402
2.278 propinterval() . 404
2.279 proptest() . 405
2.280 pushmodel() . 405
2.281 putascii() . 407
2.282 qr() . 408
2.283 quitting . 409
2.284 rank() . 409
2.285 rankits() . 411
2.286 rational() . 412
2.287 rbin() . 413
2.288 read() . 414
2.289 readcols() . 415
2.290 readdata() . 416
2.291 redo() . 418
2.292 regcoefs() . 419
2.293 regpred() . 420
2.294 regress() . 421
2.295 regresshelp() . 423

10 CONTENTS

2.296 releigen() . 424
2.297 releigenvals() . 425
2.298 rename() . 425
2.299 rep() . 426
2.300 replacestr() . 427
2.301 restore() . 428
2.302 restorenames() . 430
2.303 return . 431
2.304 reverse() . 432
2.305 rft() . 433
2.306 rnorm() . 433
2.307 robust() . 434
2.308 rotate() . 436
2.309 rotation() . 437
2.310 round() . 438
2.311 rowplot() . 439
2.312 rpoi() . 439
2.313 rsample() . 440
2.314 rsolve() . 441
2.315 run() . 441
2.316 runi() . 442
2.317 samplesize() . 443
2.318 save() . 444
2.319 scalars . 447
2.320 screen() . 448
2.321 secoefs() . 451
2.322 select() . 453
2.323 sethistory() . 454
2.324 setlabels() . 455
2.325 setodometer() . 455
2.326 setoptions() . 458
2.327 setseeds() . 460
2.328 shapeof() . 460
2.329 shell() . 461
2.330 showplot() . 463
2.331 sin() . 464
2.332 sinh() . 465
2.333 solve() . 465
2.334 sort() . 466
2.335 split() . 467
2.336 spool() . 469
2.337 sqrt() . 470
2.338 stemleaf() . 470
2.339 strconcat() . 471

CONTENTS 11

2.340 stringplot() . 472
2.341 structure() . 474
2.342 structures . 476
2.343 subscripts . 479
2.344 sum() . 482
2.345 svd() . 484
2.346 swp() . 486
2.347 syntax . 487
2.348 t() . 495
2.349 t2int() . 496
2.350 t2val() . 497
2.351 tabs() . 498
2.352 tan() . 500
2.353 tanh() . 501
2.354 tek() . 501
2.355 tekx() . 502
2.356 time series . 502
2.357 tint() . 505
2.358 toclip() . 505
2.359 toeplitz() . 506
2.360 trace() . 507
2.361 transformations . 507
2.362 transpose() . 509
2.363 trideigen() . 510
2.364 trilower() . 511
2.365 triunpack() . 512
2.366 triupper() . 513
2.367 tserhelp() . 514
2.368 tinterval() . 515
2.369 ttest() . 515
2.370 tval() . 515
2.371 twotailt() . 516
2.372 typeof() . 516
2.373 unique() . 517
2.374 unix . 519
2.375 unlockvars() . 521
2.376 unwind() . 522
2.377 usage() . 522
2.378 userfunhelp() . 523
2.379 user fun . 524
2.380 variables . 525
2.381 varnames() . 527
2.382 vboxplot() . 528
2.383 vconcat() . 529

12 CONTENTS

2.384 vecread() . 530
2.385 vecread file . 536
2.386 vecread keys . 538
2.387 vector() . 542
2.388 vectors . 544
2.389 vt() . 545
2.390 vtx() . 545
2.391 while . 545
2.392 workspace . 547
2.393 write() . 548
2.394 writedata() . 548
2.395 wtanova() . 550
2.396 wtmanova() . 550
2.397 wtregress() . 550
2.398 xrows() . 551
2.399 xvariables() . 552
2.400 yates() . 553
2.401 yulewalker() . 554
2.402 zinterval() . 555
2.403 ztest() . 555

3 Arima Macros Help File 557
3.1 acfarma() . 557
3.2 arima() . 558
3.3 arimahelp() . 563
3.4 arimares() . 564
3.5 ARSIGN . 565
3.6 detarma() . 565
3.7 hannriss() . 566
3.8 innovations() . 567
3.9 innovest() . 569
3.10 MASIGN . 570
3.11 moveoutroots() . 572
3.12 neg2logLarma() . 573
3.13 rhatcovar() . 575
3.14 rhatvar() . 575
3.15 specarma() . 576

4 Design Macros Help File 579
4.1 aberration2() . 579
4.2 aliases2() . 579
4.3 aliases3() . 580
4.4 all3anova() . 582
4.5 all4anova() . 583

CONTENTS 13

4.6 allaliases2() . 584
4.7 boxcoxvec() . 584
4.8 buildfactor() . 586
4.9 choosedef2() . 587
4.10 choosegen2() . 587
4.11 confound2() . 589
4.12 confound3() . 590
4.13 doconfound2() . 591
4.14 doff2() . 592
4.15 ems() . 592
4.16 ffdesign2() . 597
4.17 findncp() . 597
4.18 findpower() . 598
4.19 findsampsize() . 599
4.20 interactplot() . 600
4.21 interblock() . 602
4.22 mixed() . 603
4.23 pairwise() . 605
4.24 quadmax() . 607
4.25 randsign() . 608
4.26 randt2() . 609
4.27 randt() . 610
4.28 reml() . 611
4.29 rscanon() . 613
4.30 sidebyside() . 614
4.31 stdordlabels() . 615
4.32 typeIIIss() . 615
4.33 varcomp() . 615
4.34 yatesplot() . 617

5 Graphics Macros Help File 619
5.1 bargraph() . 619
5.2 boxplot5num() . 620
5.3 colplot() . 621
5.4 contour() . 621
5.5 contourplot() . 623
5.6 ellipse() . 624
5.7 findcontour() . 625
5.8 graphicshelp() . 627
5.9 hist() . 627
5.10 news . 629
5.11 panelhist() . 629
5.12 panelplot() . 631
5.13 panel graphs . 632

14 CONTENTS

5.14 piechart() . 633

5.15 plotmatrix() . 635

5.16 plotpanes() . 637

5.17 plotresids() . 639

5.18 rowplot() . 639

5.19 sampcdf() . 640

5.20 vboxplot() . 641

6 Mathematical Macros Help File 643

6.1 bfs() . 643

6.2 binom() . 644

6.3 blockdmat() . 644

6.4 broyden() . 645

6.5 cdiag() . 645

6.6 ceigen() . 646

6.7 chebcoefs() . 647

6.8 cjtranspose() . 647

6.9 cmatmultc() . 648

6.10 continfrac() . 648

6.11 csolve() . 649

6.12 csubscr() . 650

6.13 ctrace() . 651

6.14 ctranspose() . 651

6.15 dfp() . 652

6.16 economize() . 652

6.17 factorial() . 653

6.18 factors() . 653

6.19 i0() . 654

6.20 i1() . 655

6.21 invchebcoefs() . 655

6.22 invertseries() . 655

6.23 kronecker() . 656

6.24 mathhelp() . 657

6.25 matsqrt() . 657

6.26 minimizer() . 658

6.27 moorepenrose() . 660

6.28 levmar() . 661

6.29 neldermead() . 666

6.30 orthopoly() . 668

6.31 partitions() . 669

6.32 printfactors() . 670

6.33 qrdcomp() . 671

CONTENTS 15

7 Multivariate Macros Help File 673
7.1 backstep() . 673
7.2 chiqqplot() . 674
7.3 compf() . 675
7.4 covar() . 676
7.5 daentervar() . 677
7.6 daremovevar() . 678
7.7 dasteplook() . 679
7.8 dastepsetup() . 680
7.9 DASTEPSTATE . 681
7.10 dastepstatus() . 683
7.11 discrim() . 684
7.12 discrimquad() . 685
7.13 distcomp() . 686
7.14 facanal() . 687
7.15 forstep() . 690
7.16 glscrit() . 692
7.17 glsfactor() . 692
7.18 glsresids() . 694
7.19 goodfit() . 695
7.20 groupcovar() . 695
7.21 hotellval() . 696
7.22 hotell2val() . 697
7.23 mlcrit() . 697
7.24 jackknife() . 698
7.25 mulvarhelp() . 699
7.26 mvngen() . 700
7.27 probsquad() . 700
7.28 rmvnorm() . 701
7.29 standardize() . 701
7.30 stepgls() . 702
7.31 stepml() . 703
7.32 stepuls() . 705
7.33 ulscrit() . 706
7.34 ulsfactor() . 707
7.35 ulsresids() . 709

8 Regression Macros Help File 711
8.1 anovapred() . 711
8.2 betalimits() . 712
8.3 entervar() . 713
8.4 estimlimits() . 714
8.5 nlreg() . 716
8.6 predlimits() . 721

16 CONTENTS

8.7 regcoefs() . 722
8.8 regresshelp() . 723
8.9 regs() . 723
8.10 removevar() . 724
8.11 resid() . 725
8.12 resvsindex() . 726
8.13 resvsrankits() . 728
8.14 resvsyhat() . 729
8.15 steplook() . 731
8.16 stepsetup() . 731
8.17 stepstatus() . 732
8.18 testbeta() . 733
8.19 testestim() . 734
8.20 yhat() . 734

9 Time Series Macros Help File 737
9.1 arspectrum() . 737
9.2 autocor() . 738
9.3 autocov() . 739
9.4 bandwidth . 741
9.5 burg() . 743
9.6 compfa() . 744
9.7 complex data . 746
9.8 complex fun . 747
9.9 compza() . 751
9.10 costaper() . 753
9.11 crosscor() . 754
9.12 crosscov() . 755
9.13 crsspectrum() . 757
9.14 detrend() . 758
9.15 dpss() . 759
9.16 evalpoly() . 760
9.17 ffplot() . 761
9.18 fourier . 762
9.19 gettsmacros() . 764
9.20 hermitian . 765
9.21 multitaper() . 766
9.22 spectrum() . 767
9.23 testnfreq() . 768
9.24 tsplot() . 769

10 Graphical User Interface Help File 773
10.1 alert() . 773
10.2 doguihelp() . 773

CONTENTS 17

10.3 getdirname() . 773
10.4 getmenubar() . 774
10.5 guiabout() . 774
10.6 guianova() . 774
10.7 guiboxplot() . 774
10.8 guifilepath() . 776
10.9 guihelp() . 776
10.10 guihist() . 777
10.11 guilistxml() . 778
10.12 guilistctrl() . 778
10.13 guilistdlg() . 778
10.14 guintrctplt() . 780
10.15 guipatterned() . 781
10.16 guiplotresid() . 782
10.17 guirandom() . 783
10.18 guireadfile() . 783
10.19 guirsample() . 784
10.20 guitypein() . 784
10.21 setmenubar() . 784

11 User Function Help File 789
11.1 arginfo fun . 789
11.2 c macros . 793
11.3 callback fun . 800
11.4 compile dos . 805
11.5 compile mac . 806
11.6 compile unix . 810
11.7 compile win . 810
11.8 loadUser . 811
11.9 type codes . 812
11.10 User . 813
11.11 userfunhelp() . 817
11.12 user fun . 817

12 Search Key Tables 823

18 CONTENTS

Chapter 1

Introduction

This document is provided as a detailed reference to the commands and functions dis-
tributed with MacAnova. The sections here are slightly reformatted versions of the mate-
rial that is available on-line in MacAnova using the help() command. Thus, for exam-
ple, help(anova) in MacAnova prints the same material that is given here.

The MacAnova distribution includes five help files (MacAnova.hlp.txt, Design.hlp.txt,
Tser.hlp.txt, Userfun.hlp.txt, and Gui.hlp.txt) and the help sections of five macro files
(Arima.mac.txt, Graphics.mac.txt, Math.mac.txt, Mulvar.mac.txt, and Regress.mac.txt).
Help topics from these files are arranged in ten sections below. Some topics in MacAnova.hlp.txt
have not been included here as they are primarily concerned with news about changes in
MacAnova; these sections are: macanova , macanova3 , news, old , and updates . The
index topics in other files have also been deleted here.

All MacAnova help files can contain search keys for finding commands. For example,
“plotting” is a search key that can be used to find help topics related to plotting via the
command help(key:"plotting") . Chapter 12 contains tables for each help file that
list the help topics related to each search key.

This document is not an introduction to or explanation of how MacAnova itself works.
For that, consult the MacAnova User’s Guide by Oehlert and Bingham.

19

20 CHAPTER 1. INTRODUCTION

Chapter 2

MacAnova Help File

This Chapter contains MacAnova help topics that are in the standard MacAnova help file.
The material here is a reformatting of that help file.

2.1 abs()

Usage:
abs(x), x REAL or a structure with REAL components

Keywords: transformations

Usage
abs(x) returns the absolute values of the elements of x, when x is a
REAL scalar, vector, matrix or array. The result has the same shape as
x.

When any element of x is MISSING, so is the corresponding elem ent of
abs(x) and a warning message is printed.

Structure argument
When x is a structure, all of whose non-structure components are REAL,
abs(x) is a structure of the same shape and with the same compo nent
names as x, with each non-structure component transformed b y abs().

Cross reference
See topic ’transformations’ for more information on abs().

2.2 acos()

Usage:
acos(x [, degrees:T or radians:T or cycles:T]), x REAL or a st ructure

with REAL components value in radians (default), cycles, or degrees as
specified by option "angles" or the optional keyword

Keywords: transformations

21

22 CHAPTER 2. MACANOVA HELP FILE

Usage
acos(x) computes the inverse cosines of the elements of x, wh ere x is a
REAL scalar, vector, matrix or array. The result has the same shape as
x. cos(acos(x)) should be the same as x except for rounding er ror.

The units of the result are radians, degrees or cycles as dete rmined by
the value of option ’angles’. The default is radians. See sub topic
’options:"angles"’.

acos(x, radians:T), acos(x, degrees:T), acos(x, cycles:T) return results
in the indicated units, regardless of the value of option ’an gles’.

When any element of x is MISSING or is above 1 or below -1, the
corresponding element of the result is MISSING and a warning message is
printed.

Structure argument
When x is a structure, all of whose non-structure components are REAL,
acos(x [,UNITS:T]), where UNITS is one of ’radians’, ’degre es’ or
’cycles’, is a structure of the same shape and with the same co mponent
names as x with each non-structure component transformed by acos().

Example
Cmd> vector(acos(.5),acos(.5,degrees:T),acos(.5,cycl es:T))
(1) 1.0472 60 0.16667

Cross reference
See topic ’transformations’ for more information on acos() , including
its use with a CHARACTER argument.

2.3 addchars()

Usage:
addchars([Graph,] x,y [,symbols:c] [,lines:T,impulse:T]\

[, graphics keyword phrases])
addchars([Graph] [,x,y [,symbols:c]], keys:str), str a st ructure whose

components names match graphics keywords.

Keywords: plotting

Usage
addchars(x,y,symbols:c) is equivalent to chplot(x,y,sym bols:c,add:T).
It adds character labeled points to the plot in LASTPLOT, dis plays the
plot, and updates LASTPLOT with the new information. For com patibility
with past versions, the use of keyword ’symbols’ is optional .

Arguments x, y, and c are as for chplot() and the points are lab eled the
same way as is done by chplot(). When ’symbols:c’ is omitted, the same
default is used as for chplot(). It is not an error when x or y is
NULL; a warning message is printed and no plotting occurs.

2.3. ADDCHARS() 23

It is an error if LASTPLOT does not exist.

Whenever LASTPLOT is updated, the appropriate component of GRAPHWINDOWS
is made identical to LASTPLOT. See topic ’GRAPHWINDOWS’.

Graph Variable Argument
addchars(Graph,x,y,symbols:c) or chplot(Graph,x,y,sym bols.c,add:T)
displays GRAPH variable Graph with the addition of characte r labeled
points, saving the modified plot in LASTPLOT. Graph is not ch anged
(unless it is LASTPLOT).

Keywords ’keep’ and ’show’
addchars(x,y,symbols:c,keep:F) suppresses any change to LASTPLOT. The
appropriate element of GRAPHWINDOWS is set to NULL.

addchars(x,y,symbols:c,show:F) suppresses immediate di splay of the
modified graph or change to GRAPHWINDOWS but updates LASTPL OT. This is
useful when you are building a complex graph in stages using a ddchars(),
addlines(), addstrings(), or addpoints(). When you are don e, simply
type showplot(). You can’t use both show:F and keep:F.

Keywords
Keywords ’dumb’, ’lines’, ’linetype’, ’thickness’, ’impu lse’, ’xmin’,
’xmax’, ’ymin’, ’ymax’, ’logx’, ’logy’, ’xlab’, ’ylab’, ’t itle’,
’xaxis’, ’yaxis’, ’borders’, ’ticks’, ’xticks’, ’yticks’ , ’xticklen’,
’yticklen’, ’xticklabs’, ’yticklabs’, ’height’, ’width’ , ’pause’,
’silent’ and ’notes’ may be used as for other plotting comman ds. See
topics ’graph_keys’, ’graph_border’ and ’graph_keys’

Keyword ’keys’
addchars([Graph,] keys:structure(x:x,y:y,symbols:c [o ther keyword
phrases)) is equivalent to addchars([Graph,] x,y,symbols :c [other
keyword phrases]). See topic ’graph_keys’ for details.

When option ’dumbplot’ has been set False (see subtopic
’options:"dumbplot"’), the plot will be a low resolution pl ot unless
’dumb:F’ is an argument.

Missing value for ’xmin’, ’xmax’, ’ymin’ and ’ymax’
A value of MISSING for any of xmin, xmax, ymin or ymax (for exam ple,
xmin:?) forces determination of an extreme value from the cu rrent data
and data already in the graph.

Keyword Use
New labels and title may be set only by keywords ’xlab’, ’ylab ’ and
’title’. That is addchars(newx:x, newy:y,symbols:c) has n o effect on
the axis labels of the graph being modified.

addchars(x,y,symbols:c,add:F, ...) is equivalent to chpl ot(x,y,
symbols:c, ...) except that LASTPLOT must be defined.

Cross references
See topic ’graph_assign’ for information on another way to a dd data and

24 CHAPTER 2. MACANOVA HELP FILE

other information to a plot.

See topic ’graphs’ for general information on plots and on va riable
LASTPLOT. See topic ’graph_keys’ for information on keywor ds. See
topic ’graph_files’ for information on writing a graph to a f ile.

2.4 addhelpfile()

Usage:
addhelpfile(names [,T]), names a CHARACTER scalar or vecto r of length 2

Keywords: general, files

Usage
addhelpfile(fileName) adds fileName at the beginning of CH ARACTER vector
HELPFILES which contains the names of files to be searched fo r help.
fileName must be a quoted string or CHARACTER scalar. Becaus e fileName
is added at the beginning of HELPFILES, the file will usually be the
first one searched. In addition, the name "index" is added at the start
of CHARACTER vector HELPINDICES.

addhelpfile(fileName,T) does the same except the file name is added at
the end of HELPFILES so the file will be searched last. "index " is
added at the end of HELPINDICES.

addhelpfile(vector(fileName,indexName) [,T]) does the s ame, except
that CHARACTER scalar indexName is added at the start or end o f
HELPINDICES instead of "index".

When HELPFILES does not already exist, addhelpfile() creat es it.

Directories searched
When fileName is a simple file name containing no directory o r folder
information (for example, "survival.hlp" but not "./survi val.hlp" or
":survival.hlp"), the file is first assumed to be in the defa ult
directory. If not found there, MacAnova looks for it in the fo lders or
directories listed in variable DATAPATHS. See topics ’DATA PATHS’,
adddatapath(), ’file_names’, ’files’.

Windowed versions
On Windowed versions of MacAnova, you may combine addhelpfi le() with
getfilename() to choose the file interactively; for exampl e,
addhelpfile(getfilename() [,T]) This will include the com plete
path name (file name with directory information) of the sele cted
file in HELPFILES.

Examples
Example:

Cmd> addhelpfile(vector("survival.hlp","survival_ind ex"))
Cmd> addhelpfile("C:/mvmacros/survival.hlp",T) # for DO S/Windows

2.5. ADDLINES() 25

Cmd> addhelpfile("MyDisk:MVMacros:Survival.hlp",T) # o n a Mac
Cmd> addhelpfile("") # file added to be selected in dialog bo x

Cross references
See also topics help(), gethelp().

2.5 addlines()

Usage:
addlines([Graph,] x,y [,linetype:PosInt,thickness:Pos Real] [,impulse:T]\

[,other graphics keyword phrases])
addlines([Graph] [,x,y], keys:str), str a structure whose

components names match graphics keywords.

Keywords: plotting

Usage
addlines(x,y) is equivalent to lineplot(x,y,add:T). It di splays the
plot in LASTPLOT, adding lines such as are produced by linepl ot(), and
updates LASTPLOT with the new information.

Arguments x, and y are as for lineplot(). They can be replaced by a
structure with at least two REAL components. Any components beyond the
first two are ignored. It is not an error when x or y is NULL; no
plotting occurs.

It is an error if LASTPLOT does not exist.

When ’dumbplot’ has been set False (see subtopic ’options:" dumbplot"’),
the plot will be a low resolution plot unless ’dumb:F’ is an ar gument.

Graph variable as argument
addlines(Graph,x,y) or lineplot(Graph,x,y,add:T) displ ays GRAPH variable
Graph with the addition of lines connecting points specifie d by x and
y, saving the modified plot in LASTPLOT. Graph is not changed (unless
it is LASTPLOT).

Keep and show keywords
addlines(x,y,keep:F) (or lineplot(x,y,keep:F,add:T)) s uppresses any
change to LASTPLOT.

addlines(x,y,show:F) (or lineplot(x,y,show:F,add:T)) s uppresses
immediate display of the modified graph but updates LASTPLO T. This is
useful when you are building a complex graph in stages using a ddlines(),
addchars(), addstrings(), or addpoints(). When you are don e, simply
type showplot(). You can’t use both show:F and keep:F.

Keywords
You can use keywords ’linetype’ and ’thickness’ to control t he type of
lines used (solid, dashed, etc.). See topic ’graph_keys’.

26 CHAPTER 2. MACANOVA HELP FILE

Keywords ’dumb’, ’lines’, ’impulse’, ’xmin’, ’xmax’, ’ymi n’, ’ymax’,
’logx’, ’logy’, ’xlab’, ’ylab’, ’title’, ’xaxis’, ’yaxis’ , ’borders’,
’ticks’, ’xticks’, ’yticks’, ’xticklen’, ’yticklen’, ’xt icklabs’,
’yticklabs’, ’height’, ’width’, ’pause’, ’silent’ and ’no tes’ may be
used as for other plotting commands. See topics ’graph_keys ’,
’graph_border’ and ’graph_ticks’

Keyword ’keys’
addlines([Graph,] keys:structure(x:x,y:y [other keywor d phrases)) is
equivalent to addlines([Graph,] x:x,y:y [other keyword ph rases]). See
topic ’graph_keys’ for details.

A value of MISSING for any of xmin, xmax, ymin or ymax (for exam ple,
xmin:?) forces determination of a value from the current dat a and data
already in the graph.

New labels and title may be set only by keywords ’xlab’, ’ylab ’ and
’title’.

addlines(x,y,add:F, ...) is equivalent to lineplot(x,y, . ..).

Cross references
See topic ’graph_assign’ for information on another way to a dd data and
other information to a plot.

See topic ’graphs’ for general information on plots and on va riable
LASTPLOT. See topic ’graph_keys’ for information on keywor ds. See
topic ’graph_files’ for information on writing a graph to a f ile.

2.6 adddatapath()

Usage:
adddatapath(dirName [,T]), dirName a quoted string or CHAR ACTER vector

specifying one or more additional directory or folder names to search
when attempting to read a file

Keywords: input, files

Usage
adddatapath(DirName) adds DirName at the beginning of CHAR ACTER vector
DATAPATHS. DirName must be a quoted string or CHARACTER scal ar
specifying the name of a directory or folder. See topic ’DATA PATHS’.

When commands such as read(), matread(), macroread() and ve cread() don’t
find a wanted file in the default directory (see ’files’), th ey search
for it in the folders or directories whose names are in DATAPA THS.
Because DirName is added at the start of DATAPATHS, the folde r or
directory will be searched before any other locations in DAT APATHS.

adddatapath(DirName,T) does the same except DirName is add ed at the end

2.7. ADDMACROFILE() 27

of DATAPATHS so the directory or folder will be searched last .

For both usages, DirName can also be a CHARACTER vector, each element of
which specifies a directory or folder to be searched.

When DATAPATHS does not already exist, adddatapath(DirNam e) creates it.

Example
Example:

Cmd> adddatapath("MyDisk:Survey Folder:") # on Mac OS 9

Cmd> adddatapath("D:/SURVEY.DIR/") # on DOS/Windows

Cmd> adddatapath("˜/survey.dir") # on Linux/Unix

Cmd> adddatapath(getfilename(pathonly:T)) # Windowed ve rsions only

The last example adds to DATAPATHS the folder or directory co ntaining
the file selected in a file navigation dialog box.

Cross references
See also topics matread(), read(), vecread(), macroread() , inforead(),
getfilename(), ’files’.

2.7 addmacrofile()

Usage:
addmacrofile(fileName [,T]), fileName a quoted string or C HARACTER

vector specifying one or more additional files to be searche d by
getmacros().

Keywords: macros, files

Usage
addmacrofile(fileName) adds fileName at the start of CHARA CTER vector
MACROFILES which contains the names of files to be searched f or macros.
fileName must be a quoted string or CHARACTER scalar. Becaus e fileName
is added at the startof MACROFILES, the file will be the first one
searched for a macro.

addmacrofile(fileName,T) does the same except the file nam e is added at
the end of MACROFILES so the file will be searched last.

When fileName is a simple file name containing no directory o r folder
information (for example, "mydata.dat" but not "./mydata. dat" or
":mydata.dat"), the file is first assumed to be in the defaul t
directory. If not found there, MacAnova looks for it in the fo lders or
directories listed in variable DATAPATHS. See topics ’DATA PATHS’,
adddatapath(), ’file_names’, ’files’, ’macro_files’.

For both usages, fileName can also be a CHARACTER vector, eac h element

28 CHAPTER 2. MACANOVA HELP FILE

of which specifies a file to be searched.

When MACROFILES does not already exist, addmacrofile(file Name) creates
it.

Windowed versions
addmacrofile("" [,T] does the same, except you pick the file
interactively using a file navigation dialog box. The compl ete path
name (file name with directory information) of the selected file will be
added to MACROFILES. This works only in windowed versions. A n
equivalent usage is addmacrofile(getfilename(type:"tex t") [,T]).
See getfilename().

If the first argument is a CHARACTER vector, on windowed vers ions, any
of its elements can be "".

Examples
Example:

Cmd> addmacrofile("survival.mac")

Cmd> addmacrofile("C:/mvmacros/survival.mac",T) # for D OS/Windows

Cmd> addmacrofile("MyDisk:MVMacros:Survival.mac",T) # on a Mac

Cmd> addmacrofile("˜/mvmacros/survival.mac",T) # on Lin ux/Unix

Cmd> addmacrofile("") # file added to be selected in dialog b ox

Cross references
See also topics getfilename(), getmacros(), ’macros’.

2.8 addpoints()

Usage:
addpoints([Graph,] x,y [,lines:T,impulse:T][, graphics keyword phrases])
addpoints([Graph] [,x,y], keys:str), str a structure whos e components

names match graphics keywords.

Keywords: plotting

Usage
addpoints(x,y) is equivalent to plot(x,y,add:T). It displ ays the plot
in LASTPLOT, adding points such as are produced by plot(), an d updates
LASTPLOT with the new information. It is an error if LASTPLOT does not
exist.

Arguments x and y are as in plot(). They can be replaced by a str ucture
with at least two components. Any components beyond the firs t two are
ignored. It is not an error when x or y is NULL; a warning messag e is
printed and no plotting occurs.

2.8. ADDPOINTS() 29

Graph variable as argument
addpoints(Graph,x,y) displays GRAPH variable Graph with t he addition of
points such as are produced by plot(), and saves the plot in LA STPLOT.
Graph is not changed (unless it is LASTPLOT).

Keywords ’keep’ and ’show’
addpoints(x,y,keep:F) suppresses any change to LASTPLOT.

addpoints(x,y,show:F) suppresses immediate display of th e modified graph
but updates LASTPLOT. This is useful when you are building a c omplex
graph in stages using addlines(), addchars(), addstrings(), or
addpoints(). When you are done, simply type showplot(). You can’t use
both show:F and keep:F.

Keywords
Keywords ’dumb’, ’lines’, ’linetype’, ’thickness’, ’impu lse’, ’xmin’,
’xmax’, ’ymin’, ’ymax’, ’logx’, ’logy’, ’xlab’, ’ylab’, ’t itle’,
’xaxis’, ’yaxis’, ’borders’, ’ticks’, ’xticks’, ’yticks’ , ’xticklen’,
’yticklen’, ’xticklabs’, ’yticklabs’, ’height’, ’width’ , ’pause’,
’silent’ and ’notes’ may be used as for other plotting comman ds. See
topics ’graph_keys’, ’graph_border’ and ’graph_ticks’

Keyword ’keys’
addpoints([Graph,] keys:structure(x:x,y:y [other keywo rd phrases)) is
equivalent to addpoints([Graph,] x:x,y:y [other keyword p hrases]). See
topic ’graph_keys’ for details.

Determination of extremes
A value of MISSING for any of xmin, xmax, ymin or ymax (for exam ple,
xmin:?) forces determination of a value from the current dat a and data
already in the graph.

Keyword use
New labels and title may be set only by keywords ’xlab’, ’ylab ’ and
’title’.

addpoints(x,y,add:F, ...) is equivalent to plot(x,y, ...) .

Cross references
See topic ’graph_assign’ for information on another way to a dd data and
other information to a plot.

See topic ’graphs’ for general information on plots and on va riable
LASTPLOT. See topic ’graph_keys’ for information on keywor ds. See
topic ’graph_files’ for information on writing a graph to a f ile.

30 CHAPTER 2. MACANOVA HELP FILE

2.9 addstrings()

Usage:
addstrings([Graph,] x,y, strings:charVec,[, graphics ke yword phrases])
addstrings([Graph,] [x,y, strings:charVec],keys:str), str a structure

whose component names are graphics keywords

Keywords: plotting

Usage
addstrings(x,y,strings:charVec) displays the plot in LAS TPLOT and then
writes the i-th element of CHARACTER vector charVec at posit ion (x[i],
y[i]), updating LASTPLOT to include the new information. It is
completely equivalent to stringplot(x,y,strings:charVe c,add:T).

It is not an error when x or y is NULL; a warning message is print ed and
no plotting occurs.

For backward compatibility with earlier versions, keyword ’strings’ can
be omitted (addstrings(x,y,charVec)).

When option ’dumbplot’ has been set False (see subtopic
’options:"dumbplot"’), the plot will be a low resolution pl ot unless
’dumb:F’ is an argument.

Graph variable as argument
addstrings(Graph,x,y,strings:charVec), displays GRAPH variable Graph,
adding the string or strings in charVec, and saves the modifi ed plot in
LASTPLOT. Graph is not changed (unless it is LASTPLOT).

Limitations on x and y
In contrast with other plotting commands, non-NULL x and y mu st both be
vectors of the same length. The most usual use is when both x an d y are
REAL scalars and charVec is a quoted string or CHARACTER scal ar to be
written at coordinates (x,y). A typical usage would be

Cmd> addstrings(110,20,strings:"Frequency 1 cycle/week ")).

Keyword ’justify’
By default, each string is written centered at (x[i], y[i]). However,
if ’justify:"l"’ or ’justify:"r"’ is an argument following charVec, each
string will be left or right justified.

Keywords ’keep’ and ’show’
addstrings(x,y,strings:charVec,keep:F) suppresses any change to
LASTPLOT.

addstrings(x,y,strings:charVec,show:F) suppresses imm ediate display of
the modified graph but updates LASTPLOT. This is useful when you are
building a complex graph in stages using addlines(), addcha rs(),
addpoints(), or addstrings(). When you are done, simply typ e
showplot(). You can’t use both show:F and keep:F.

Keywords
Keywords ’dumb’, ’xmin’, ’xmax’, ’ymin’, ’ymax’, ’logx’, ’ logy’, ’xlab’,

2.10. ALLTRUE() 31

’ylab’, ’title’, ’xaxis’, ’yaxis’, ’borders’, ’ticks’, ’x ticks’,
’yticks’, ’xticklen’, ’yticklen’, ’xticklabs’, ’ytickla bs’, ’height’,
’width’, ’pause’, ’silent’ and ’notes’ may be used as for oth er plotting
commands. See topics ’graph_keys’, ’graph_border’ and ’gr aph_keys’.
Keywords ’impulse’ and ’lines’ are ignored.

Keyword ’keys’
addstrings([Graph,] keys:structure(x:x,y:y,strings:c harVec [other
keyword phrases)) is equivalent to addstrings([Graph,] x: x,y:y,
strings:charVec [other keyword phrases]). See topic ’grap h_keys’ for
details.

Determining extremes
A value of MISSING for any of xmin, xmax, ymin or ymax (for exam ple,
xmin:?) forces determination of a value from the current dat a and data
already in the graph.

Keyword use
New labels and title may be set only by keywords ’xlab’, ’ylab ’ and
’title’.

addstrings(x,y,strings:s,add:F, ...) is equivalent to st ringplot(x,y,
strings:s, ...).

Cross references
See topic ’graphs’ for general information on plots and on va riable
LASTPLOT. See topic ’graph_keys’ for information on keywor ds. See
topic ’graph_files’ for information on writing a graph to a f ile.

2.10 alltrue()

Usage:
alltrue(arg1,arg2,...,argm), all arguments LOGICAL scal ars

Keywords: logical variables, syntax

Usage
alltrue(a1,a2,...,aM) is equivalent to a1 && a2 && ... && aM, except
that no arguments are evaluated unnecessarily, that is, it e valuates no
arguments after the first false one. All arguments must be LO GICAL
scalars.

Example
Example:

if(!alltrue(isscalar(x,real:T),x > 0, x == floor(x))){
error("x is not positive integer")

}

The apparently more natural way to do the same thing
if(!(isscalar(x,real:T) && x > 0 && x == floor(x))){

32 CHAPTER 2. MACANOVA HELP FILE

error("x is not positive integer")
}

would not do what you want for a non-REAL x since an attempt wou ld be
made to evaluate floor(x), which is illegal for non-REALs.

Cross references
See also topics ’logic’, anytrue().

2.11 anova()

Usage:
anova([Model] [,print:F or silent:T,fstats:T,pvals:T,c oefs:F,\

unbalanced:T, marginal:T])

Keywords: glm, anova

Usage
anova(Model) computes and prints an ANOVA table for the line ar model in
the CHARACTER variable Model.

Examples
Examples (y a REAL vector, a and b factors, x a variate):

anova("y = a") One-way ANOVA of y
anova("y = a+b") Two-way ANOVA of y with no

interaction
anova("y = x+a+b+a.b") Two-way analysis of covariance of

y with interaction and covariate x
anova("{log10(y)} = {sqrt(x)}+a") One-way analysis of cov ariance of

log10(y) with covariate sqrt(x)

All variables referred to in Model must be REAL vectors or fac tors and
have the same lengths.

See topic ’models’ for more information on how to specify Mod el.

Weights
anova(Model,weights:Wts) does an analysis using weighted least squares.
Wts must be a REAL vector with no negative elements, with the s ame
length as the response vector. You can abbreviate ’weights: Wts’ to
’wts:Wts’.

Omitting model
When you omit Model (anova() or anova(,...)), the model used by the most
recent GLM command such as anova(), regress() or poisson() i s used.

When the previous GLM command was regress(), no new computat ions are
done. The ANOVA table is based on what was previously compute d.

When there haven’t been previous GLM commands, but CHARACTE R variable
STRMODEL exists, anova() uses STRMODEL as Model.

2.11. ANOVA() 33

Side effect variables created
Side effect variables created are RESIDUALS, HII, DF, SS, DE PVNAME,
TERMNAMES, and STRMODEL.

When weights are specified, RESIDUALS = Response - Fitted an d
WTDRESIDUALS = sqrt(Wts) * RESIDUALS is an additional side effect vector.
You should use WTDRESIDUALS rather than RESIDUALS in residu al plots or
other diagnostic procedures.

Keywords
Other keyword phrases that can be used with anova() are ’unba lanced:T’,
’print:T’, ’silent:T’, ’fstats:T’, ’pvals:T’, ’coefs:F’ and marginal:T’.
See topic ’glm_keys’ for details. See ’options’ for informa tion on
changing the default values of ’fstats’ and ’pvals’.

Balanced designs
No design with MISSING values, weights or non-factor variab les is ever
considered to be balanced. This is true, even when all the wei ghts are
1 and the non-MISSING values make up a balanced design.

Otherwise MacAnova recognizes balance in only two cases:
(1) The design is completely balanced, that is, all cells hav e the
same number of cases.
(2) The design is a balanced main effect design such as a Latin
square.

In these cases, computations are done by a fast method which u ses
marginal totals, quite analogous to the usual hand computat ions for a
balanced analysis of variance. Otherwise, the analysis is d one by
explicitly constructing the design matrix and doing modifi ed Gram-
Schmidt orthogonalization.

You can force an unbalanced computation for balanced data by
’unbalanced:T’.

Nonbalanced designs
For non-balanced designs or with ’unbalanced:T’, unless ’m arginal:T’ is
an argument, sums of squares are computed sequentially and a n advisory
message to that effect is printed.

This means that, in an unbalanced ANOVA, to get all the sums of squares
useful for testing hypotheses, you may need to run anova() se veral
times, with the terms in the model in different orders. For ex ample,
the A main effect sum of squares in a two way unbalanced ANOVA i s the
sum of squares for ’a’ from anova("y=b+a") and the B main effe ct sum of
squares is the sum of squares for ’b’ from anova("y=a+b").

In many cases, use of ’marginal:T’ can simplify things. For e xample the
A and B sums of squares produced by anova("y=a+b",marginal: T) are the A
sums of squares from anova("y=b+a") and the B sums of squares from
anova("y=a+b").

After regress()

34 CHAPTER 2. MACANOVA HELP FILE

When the previous GLM command was regress() the behavior of a nova() with
Model missing is slightly modified -- it uses the results fro m the
previous computation instead of computing things afresh, e ven if the
variables in the previous model have been changed or deleted .
Specifically, any factors in the model are treated as variat es (with 1
degree of freedom) and, if the previous GLM command was regre ss() with
weights specified by keyword ’weights’ or ’wts’, the entrie s in the
ANOVA table pertain to the weighted regression.

For example, even when a, b, and c are factors, the commands

Cmd> regress("y=a+b+c",weights:w); anova()

print a summary of the weighted multiple regression, follow ed by an
weighted regression ANOVA table with 1 degree of freedom for each of a,
b and c. This is different from anova("y=a+b+c") which compu tes an
unweighted factorial ANOVA with no interactions.

Cross references
See also coefs(), cellstats(), contrast(), factor(), fast anova(),
modelinfo(), predtable(), regress(), secoefs(), xvariab les().

2.12 anovapred()

Usage:
anovapred(a,b,...), a, b, ... all the factors in STRMODEL

Keywords: glm, anova

Usage
anovapred(a,b,...), where a, b, ... are all the factors in th e most
recent GLM model, computes the fitted (predicted) value, th e standard
error of estimation, and the standard error of prediction fo r each
cell. The result is a structure with components ’estimate’, ’SEest’ and
’SEpred’, each of which is a vector, matrix, or array with dim ensions
derived from the number of levels of a, b, It uses side eff ect
variables DEPVNAME, RESIDUALS, and HII.

When the most recent GLM model was manova() with a p-dimensio nal
dependent variable, each component will have an extra dimen sion of size
p.

When the most recent GLM model included variates (non-facto rs), or when
you do not include all factors in the argument list, the resul ts will
probably be wrong, although no warning message will be print ed.

anovapred() is implemented as a pre-defined macro.

Cross references
See also predtable(), regpred(), ’glm’.

2.13. ANYMISSING() 35

2.13 anymissing()

Usage:
anymissing(x), x REAL, LOGICAL, or CHARACTER, returns True or False

Keywords: missing values, null variables

Usage
anymissing(x) returns the value True if x contains any missi ng values
and the value False otherwise. x must be a vector, matrix, or a rray.
When x is CHAR, anymissing(x) is True if and only if any string in x is
empty ("").

When x is a NULL variable, anymissing(x) returns the value Fa lse.

anymissing(Str), where Str is a structure, returns a struct ure whose
non-structure components parallel those of Str, but are LOG ICAL scalars,
indicating whether the corresponding component of Str cont ains any
missing values. To test whether any component of a structure Str
contains any missing values, use if(sum(vector(anymissin g(Str))) !=
0){...}.

Examples
Examples:

Cmd> vector(anymissing(vector(1,5,?)),anymissing(vec tor("A","B","")))
(1) T T

Cmd> vector(anymissing(vector(1,5,7)),anymissing(vec tor("A","B","C")))
(1) F F

Cmd> anymissing(structure(a1:vector(1,5,?),a2:vector ("A","B","C")))
component: a1
(1) T
component: a2
(1) F

Cross references
See also topics ismissing(), ’NULL’.

2.14 anytrue()

Usage:
anytrue(arg1,arg2,...,argM), all arguments LOGICAL scal ars

Keywords: logical variables, syntax

Usage
anytrue(a1,a2,...,aM) is equivalent to a1 || a2 || ... || aM, except
that no arguments are evaluated unnecessarily, that is, it e valuates no
arguments after the first true one. All arguments must be LOG ICAL

36 CHAPTER 2. MACANOVA HELP FILE

scalars.

Example
Example:

if(anytrue(!isscalar(x,real:T),x <= 0, x != floor(x))){
error("x is not positive integer")

}

The apparently more natural way to do the same thing
if(!isscalar(x,real:T) || x <= 0 || x != floor(x)){

error("x is not positive integer")
}

would not do what you want for a non-REAL x since an attempt wou ld be
made to evaluate floor(x), which is illegal for non-REALs.

Cross references
See also topics ’logic’, alltrue()

2.15 appendnotes()

Usage:
appendnotes(x,Notes), Notes a CHARACTER scalar or vector

Keywords: general, macros, variables

Usage
appendnotes(x, Notes) appends Notes to the notes "attached " to variable
x. When x has notes, appendnotes(x, Notes) is equivalent to
attachnotes(x, vector(getnotes(x),Notes)). When x does n ot have notes,
appendnotes(x, Notes) is equivalent to attachnotes(x,Not es).

x must be an existing variable of any type, including a struct ure, a
macro or a GRAPH variable.

Notes must be a CHARACTER scalar or vector, usually containi ng
descriptive or usage information about variable x. When Not es is NULL,
any notes attached to x are not changed.

You can retrieve notes using getnotes(). You can test whethe r a
variable has notes attached using hasnotes().

Cross references
See also topics ’notes’, attachnotes(), getnotes(), hasno tes().

2.16 arginfo fun

Keywords: general, control

2.17. ARGVALUE() 37

This topic is now in file userfun.hlp. Type
userfunhelp(arginfo_fun)

It provides a brief introduction to the form of an arginfo fun ction,
that is, an externally compiled function to be called by MacA nova to
obtain information about the arguments expected by a user fu nction.

Some other useful entries in userfun.hlp are arginfo_fun an d
callback_fun. Type

userfunhelp()
for a complete list of entries.

2.17 argvalue()

Usage:
argvalue(var, argName, [, Properties]), var any variable, argName

CHARACTER scalar, Properties CHARACTER scalar or vector wh ose elements
are one or more of "array", "character", "count", "graph", " integer",
"logic", "macro", "matrix", "nonmissing", "nonnegative" , "notnull",
"number", "positive", "real", "scalar", "square", "strin g",
"structure", "TF" and "vector"

Keywords: syntax, macros

Usage
argvalue(Var, argName, Properties), where argName is a quo ted string or
CHARACTER scalar and Properties is a CHARACTER scalar or vec tor, checks
Var to see if satisfies the restrictions specified by Proper ties. When
Var does satisfy the restrictions, the value of Var is return ed and
argName is ignored. Otherwise, it is an error and the resulti ng error
message incorporates argName.

Var can be any defined variable but cannot be a built-in funct ion.

Properties is usually a quoted string or CHARACTER scalar su ch as
"nonmissing real", made up of one or more words separated by s paces or
tabs. Alternatively, Properties can be a CHARACTER vector l ike
vector("nonmissing", "real"), each element of which conta ins one or more
words.

Properties
Properties recognized are "array", "character", "count", "graph",
"integer", "logic", "macro", "matrix", "nonmissing", "no nnegative",
"notnull", "number", "positive", "real", "scalar", "squa re", "string",
"structure", "TF" and "vector".

Not all combinations or words are permitted. See keyvalue() for
details.

The following properties are abbreviations for combinatio ns of other

38 CHAPTER 2. MACANOVA HELP FILE

properties specifying types of scalars:
"number" means "nonmissing real scalar"
"count" means "nonnegative integer scalar"
"TF" means "nonmissing logical scalar"
"string" means "character scalar"

Any 3 character or longer initial segment of a property will m atch it,
except that "nonnegative", "nonmissing", "string" and "st ructure"
require 4. For example, "vec", "vect", "vecto", ... all matc h "vector".

y <- argvalue(var, argName), with no Properties argument, i s
essentially equivalent to y <- var except that argName is use d in an
error message if var is not defined.

Example
argvalue() is designed to be used in writing macros. It allow s easy
checking of non-keyword macro arguments with automatic pri nting of
informative error messages. As a typical example of its use, here is
the text of macro gamma() that uses lgamma() to compute the ga mma
function of a REAL array of positive elements:

if ($v != 1 || $k > 0){error("usage is gamma(x)")}
@x <- argvalue($1,"$1","positive array")
exp(lgamma(@x))

Instead of "$1" as argument 2 to argvalue(), you might use "ar gument 1".
Either choice is likely to yield an informative error messag e.

When gamma() executed, $1 is replaced by argument 1 to gamma(), $v and
$k are replaced by the number of keyword and non-keyword argu ments,
respectively, and $S is replaced by the name of the macro, her e ’gamma’.
See topics ’macros’, ’macro_syntax’ and macro() for detail s.

Cmd> gamma(run(4))
(1) 1 1 2 6

Cmd> gamma(run(0,2))
ERROR: run(0,2) is not an array of positive REALs

The second line of the macro was expanded to
@x <- argvalue(run(0,2),"run(0,2)","positive array")

Cross references
See also keyvalue(), nameof(), getkeywords(), isscalar() , isvector(),
ismatrix(), isarray(), isreal(), ischar(), islogic(), is macro(),
isstruc(), isnumber(), isgraph(), isdefined(), ’macros’ .

2.18. ARIMAHELP() 39

2.18 arimahelp()

Usage:
arimahelp(topic1 [, topic2 ...] [,usage:T] [,scrollback: T])
arimahelp(topic, subtopic:Subtopics), CHARACTER scalar or vector

Subtopics
arimahelp(topic1:Subtopics1 [,topic2:Subtopics2 ...])
arimahelp(key:Key), CHARACTER scalar Key
arimahelp(index:T [,scrollback:T])

Keywords: general, time series

Usage
arimahelp(Topic1 [, Topic2, ...]) prints help on topics Top ic1, Topic2,
... related to macros in file arima.mac. The help is taken fro m file
arima.mac.

arimahelp(Topic1 [, Topic2, ...] , usage:T) prints usage in formation
related to these macros.

arimahelp(index:T) or simply arimahelp() prints an index o f the topics
available using arimahelp(). Alternatively, help(index: "arima")
does the same thing.

arimahelp(Topic, subtopic:Subtopic), where Subtopic is a CHARACTER
scalar or vector, prints subtopics of topic Topic. With subt opic:"?", a
list of subtopics is printed.

arimahelp(Topic1:Subtopics1 [,Topic2:Subtopics2], ...), where Suptopics1
and Subtopics2 are CHARACTER scalars or vectors, prints the specified
subtopics. You can’t use any other keywords with this usage.

In all the first 4 of these usages, you can also include help() keyword
phrase ’scrollback:T’ as an argument to arimahelp(). In win dowed
versions, this directs the output/command window will be au tomatically
scrolled back to the start of the help output.

arimahelp(key:key) where key is a quoted string or CHARACTE R scalar
lists all topics cross referenced under Key. arimahelp(key :"?") prints
a list of available cross reference keys for topics in the fil e.

arimahelp() is implemented as a predefined macro.

Cross references
See help() for information on direct use of help() to retriev e
information from arima.mac.

2.19 arithmetic

Usage:
a + b, a - b, a * b, a / b, a %% b, aˆb, -a, +a
a <-+ b, a <-- b, a <- * b, a <-/ b, a <-%% b, a <-ˆ b

40 CHAPTER 2. MACANOVA HELP FILE

Keywords: syntax, operations, missing values

Operators
There are 8 operators for doing arithmetic with MacAnova var iables.

Operators Precedence Meaning
a + b 9 Addition (sum of a and b)
a - b 9 Subtraction (difference of a and b)
a * b 10 Multiplication (product of a and b)
a / b 10 Division (a divided by b)
a %% b 10 Modular division (see below)

-a 12 Unary minus ((-1) * a)
+a 12 Unary plus ((+1) * a))

a ˆ b or a ** b 13 Exponentiation (a to the b-th power)

(Level 11 is the precedence level of matrix multiplication; see
topic ’matrices’.)

Same sized operands
The arithmatic operators are all element-wise operations: When a and b
are vectors, matrices, or arrays with identical dimensions , then c <- a
OP b, computes a result of the same size and shape such that c[i ,j,...]
is a[i,j,...] OP b[i,j,...], where OP is one of these operato rs.
Similarly (-a)[i,j,...] is -(a[i,j,...]).

Cmd> vector(1,3,2,0) + vector(8,-1,2,9)
(1) 9 2 4 9

Cmd> -vector(1,3,2,0)
(1) -1 -3 -2 0

See below for how they work when a and b do not have identical
dimensions.

Modular division
Modular division x %% y computes the non-integral part of x / y or zero
if y exactly divides x. It is implemented as x %% y = x - y * floor(x/y).
In particular, 17 %% 4 is 1, -17 %% 4 is 3, and -17 %% -4 is -1. a %% 0
is always MISSING.

Dividing by zero
When a is not zero, a / 0 yields has value MISSING. However, 0 / 0 has
value 0. This can be a useful convention when a and b have the sa me
pattern of zero elements.

Non integer power
When p is not an integer, aˆp (or a ** p) is defined to be
sign(a) * abs(a)ˆp and a warning message is printed when a < 0. 0ˆp is
zero when p > 0 or MISSING when p < 0. aˆ0 is always 1, even when a =
0.

Logical variables

2.19. ARITHMETIC 41

LOGICAL variables and constants may be used in arithmetic ex pressions
and comparisons. Values True and False are translated as 1 an d 0,
respectively. In particular 1 * w converts a LOGICAL vector, matrix, or
array w to a numerical vector, matrix or array of 0’s and 1’s..

Missing values
When any elements of a and/or b are MISSING, so is the correspo nding
element of a OP b and a warning message is printed.

Too large result
When any element of the result is too large a number to be repre sented
in the computer (for example, 1e300/1e-300), the result is s et to
MISSING and a warning message printed.

Cross references
See subtopic ’options:"warnings"’ for information on opti on ’warnings’
which you can set to suppress warning messages.

Effect of precedence level
The precedence level in the list of operators affects the ord er of
evaluation when there is more than one operator in an express ion. An
operator with higher precedence is evaluated before one wit h lower
precedence. For example, 3 + 2 * 4 is interpreted as 3 + (2 * 4) = 11
because ’ * ’ has higher precedence than ’+’. See topic ’precedence’ for
complete information on the order of evaluation.

Behavior of arithmetic, logical, and bit operations
when operands differ in size.

Scalar operand
Scalar operand:

A scalar operand (single number, all dimensions 1) is combin ed or
compared with all the elements of the other operand. For exam ple, x -
2 subtracts 2 from each element of x and x == 2 compares every el ement
with 2. The result has the same dimensions and labels as the ot her
operand.

When both operands are scalars, the result is unlabeled unle ss both
operands have the same number of dimensions and the same labe ls. If
the number of dimensions is different, the result has the lar ger
number of dimensions.

Column vector op matrix
Column vector operand and matrix operand:

When a column vector of length m (m by 1 matrix or vector of leng th m)
is combined or compared with a m by n matrix, it is combined or
compared with each column of the matrix to yield a m by n matrix . For
example, when a is 3 by 6, run(3) + a adds 1 to row 1, 2 to row 2, and
3 to row 3, and a != vector(1,1,2) compares elements in rows 1 a nd 2
with 1 and elements in row 3 with 2.

Row vector op matrix
Row vector operand and matrix operand:

42 CHAPTER 2. MACANOVA HELP FILE

When a 1 by n matrix (a row vector) is combined or compared with a m
by n matrix, the row vector is combined or compared with each r ow of
the matrix. For example, if x is a matrix

Cmd> xbar <- sum(x)/nrows(x); resids <- x - xbar

subtracts the average of the rows of x from every row, since su m(x)
computes a row vector with the same number of columns as x. Thi s
would not work if xbar were computed as xbar <- describe(x,me an:T)
because describe() computes it as a vector, not a row vector.
However, in this case, resids <- x - xbar’ would work.

Row vector op column vector
Row vector operand and column vector operand:

When a column vector of length m is combined or compared with a row
vector of length n, the result is the m by n matrix obtained by
combining each element of the column vector with each elemen t of the
row vector, what might be called an outer product, outer sum, etc.
Examples

Cmd> run(2)/run(3)’
(1,1) 1 0.5 0.33333 [1/1 1/2 1/3]
(2,1) 2 1 0.66667 [2/1 2/2 2/3]

Cmd> run(2) <= run(3)’
(1,1) T T T [1<=1 1<=2 1<=3]
(2,1) F T T [2<=1 2<=2 2<=3]

Structure operands
Structure operand(s)

When one of the operands is a structure, each of its component s is
combined with the other argument, following the same rules o f
compatibility just described, producing a structure with t he same
shape as the structure argument. When both arguments are str uctures,
they must have the same number of components at every level an d the
corresponding components are combined. NULL components ar e permitted
as long as they appear in both operands in the same places.
Example:

Cmd> structure(x:run(2),y:run(4),z:NULL)/structure(r un(3)’,4,NULL)
component: x
(1,1) 1 0.5 0.33333
(2,1) 2 1 0.66667
component: y
(1) 0.25 0.5 0.75 1
component: z
(NULL)

Arithmetic assignment operators
Operators ’<-+’, ’<--’, ’<- * ’, ’<-/’, ’<-ˆ’, ’<- ** ’, and ’<-%%’ are
useful for modifying a variable. They are best illustrated b y example.

a <-+ 3 is equivalent to a <- a + 3
a <-%% b is equivalent to a <- a %% b
a <-ˆ -1 is equivalent to a <- aˆ(-1)

2.20. ARRAY() 43

To avoid ambiguity, ’<-+’ and ’<--’ must be followed by at lea st one
space so that, for example ’a <-- 3’ means ’a <- a - 3’ instead of ’a <-
-3’.

You can’t modify parts of a vector, matrix or array using assi gnment
operators. For example, a[1,2] <-/ 3 is illegal. Use a[1,2] < -
a[1,2]/3.

See topic ’precedence’ for information on what happens when more than
one of these operators is used in an expression.

Cross references
See also topics ’logic’, ’structures’, ’syntax’, ’bit_ops ’.

2.20 array()

Usage:
array(x,n1,n2,...[,KeyPhrases]) or array(x,dimVec [,Ke yPhrases]), x

REAL, LOGICAL or CHARACTER, n1, n2, ... positive integers or dimVec a
vector of positive integers

KeyPhrases can be labels:structure(lab1,lab2,...), note s:Notes and
silent:T, where lab1, lab2, ... and Notes are CHARACTER scal ars or
vectors.

Keywords: variables, combining variables, character variables

Usage
array(x,dimVec) makes an array whose dimensions are the ele ments of
dimVec, a vector of positive integers. The data are taken fro m REAL,
LOGICAL or CHARACTER variable x. The dimensions of x are igno red, that
is, array(x,dimVec) is equivalent to array(vector(x),dim Vec). For
example, array(run(24),vector(4,3,2)) creates a 4 by 2 by 2 array.

Except when x is a scalar, there must be exactly N elements in x , where
N = product of dimensions. array() duplicates a scalar N time s so, for
example, array(0,2,3,4) is the same as array(rep(0,24),2, 3,4).

The data from x are entered with the leftmost dimensions vary ing fastest
and the rightmost varying slowest. For example, array(run(20),
vector(5,4)) is equivalent to matrix(run(20),5).

array(x,n1,n2,...) is equivalent to array(x,vector(n1,n 2,...)), when n1,
n2, ... are REAL scalars or vectors. Most usually n1, n2, ... a re
scalars, as in array(run(24),4,3,2) which creates a 4 by 3 by 2 array.

When x is a scalar, vector, matrix or array, array(x), with no
dimensions, is equivalent to array(x,dim(x)), that is, it r eturns a
variable identical to x, possibly with the addition of coord inate labels
or notes. See below.

44 CHAPTER 2. MACANOVA HELP FILE

Keywords ’labels’ and ’notes’
You can specify coordinate labels for the output using keywo rd phrase
’labels:Labels’. See topic ’labels’ for details.

You can attach a CHARACTER vector Notes of descriptive notes to the
result using keyword phrase ’notes:Notes’. See topic ’note s’ for
details.

When no dimensions are specified or the new dimensions exact ly match the
dimensions of x, any coordinate labels or descriptive notes of x are
transferred to the result unless ’labels’ or ’notes’ provid e new labels
or notes or are NULL.

Cross references
See also topics matrix(), ’matrices’, ’subscripts’, ’vari ables’.

2.21 arrays

Usage:
Create an array by a <- array(data,dim1,...,dimk)
Extract elements by b <- a[j1,...,jk]
Determine the number of dimensions ndims(a)
Determine the dimensions dim(a)
Determine the number of elements length(a)
Reorder subscripts by b <- a’ or b <- t(a,J), permutation

vector J

Keywords: variables

Description
Any REAL, LOGICAL or CHARACTER variable is an array with some number of
dimensions, say M. To extract or change any single element of an array
you need M subscripts, j_1, j_2, ..., j_M. See topic ’subscri pts’.

The "dimensions" of an array are the maximum permitted value s for each
of the M subscripts. If the dimensions are N_1, N_2, ..., N_M, we
sometimes say the array is N_1 by N_2 by ... by N_M.

When extracting or changing elements of an array using subsc ripts, it is
an error if any subscript j_k > N_k.

You can create an array A by
Cmd> A <- array(a,N_1,N_2,...,N_M).

where a is a vector or array with exactly N_1 * N_2* ... * N_M elements.

A one dimensional array is called a vector and a two dimension al array
is called a matrix. See topic ’vectors’ and ’matrices’.

Order of elements
Elements of an array are stored with the first subscript chan ging most
rapidly, the second changing second most rapidly, and so on, with the

2.22. ASCIISAVE() 45

last subscript changing least rapidly. Thus for a 2 by 2 by 2 ar ray,
the elements are in the order

a[1,1,1], a[2,1,1], a[1,2,1], a[2,2,1], a[1,1,2], a[2,1, 2],
a[1,2,2],a[2,2,2]

Functions of arrays
There are several functions that are helpful in working with arrays. In
the following, A is an array.

length(A) The number of elements in A
ndims(A) The number of dimensions M of A
dim(A) The sizes vector(N1,...,NM) of all the dimensions of A
a’ or t(a) The same elements of a, with dimensions reversed, s o

that a’[j1,j2,...,jk] is a[jk,...,j2,j1]
t(a,J) The same elements of a with dimensions permuted by

elements of vector J so that t(a,J)[K[1],K[2],...,K[k]]
is a[K[J[1]],K[J[2]],...,K[J[k]]]

vector(a) The elements of a in a vector retaining the order.

max(a), min(a), sum(a) and prod(a) operate along the first d imension of
a, returning an array with the same number of dimensions with the first
dimension 1.

Transformations of an array a such as cos(a) and sqrt(a) retu rn arrays
with the same dimensions as a.

Cross references
See also ’variables’, ’scalars’, ’vectors’, ’matrices’, l ength(),
ndims(), dim(), t(), vector(), matrix(), array().

2.22 asciisave()

Usage:
asciisave(FileName [,all:T, v335:T, v406:T, nulls:F, opt ions:F,\

history:T])
asciisave() repeats previous save() or asciisave() with sa me options

Keywords: files, general, output

Usage
asciisave(FileName) saves the MacAnova "workspace", that is, all the
current variables and option values, in a file with name give n in the
quoted string or CHARACTER variable FileName. On versions w ith windows,
FileName can be "", in which case you will be prompted for the f ile
name. The file written is an ASCII coded text file which shoul d be
readable by restore() on any computer on which MacAnova runs .

asciisave(FileName,ascii:F) is equivalent to save(FileN ame), that is,
the file written will be a binary file instead of an ASCII text file.
This option can be used together with others described below .

asciisave(FileName, var1, var2, [,ascii:F]) saves on ly variables or

46 CHAPTER 2. MACANOVA HELP FILE

macros var1, var2, ... on the file. When any of the variables s aved is
specified in keyword form, the keyword is used for the name. T he items
saved can be restored without deleting everything by
restore(FileName,delete:F).

File name omitted
When FileName is omitted and a previous asciisave() or save() was
executed, the same file will be used as before. Moreover, whe n the
previous save() specified an obsolete file format (see save () for
details), the same option will be used, unless explicitly ch anged. When
there was no previous save() or asciisave(), omitting the fi le name is
an error.

Keywords
See save() for information on keywords ’all’, ’null’, ’opti ons’,
’graphwind’ and ’history’ which control whether informati on on GLM
computations, option values, graph windows and previous co mmands
should be saved with the workspace.

Difference from save()
asciisave() differs from save() in that asciisave() saves t he
information in the form of a "text" file that can be transferr ed between
different types of computers. Files created by asciisave() are often
bigger than the corresponding file created by save(). On a Ma cintosh,
the actual type is ’Sasc’ rather than ’TEXT’.

The file produced by asciisave() consists of many short line s. All the
characters written are printable ASCII characters (CR and s pace through
˜), with any other characters in escaped octal format (’\t’ f or TAB).
The file can be printed, viewed in an editor, or sent by E-mail . It
cannot be edited safely without specialized knowledge of th e actual
format used.

Cross references
See also topics restore(), ’files’

2.23 asin()

Usage:
asin(x [, degrees:T or radians:T or cycles:T]), x REAL or a st ructure

with REAL components value in radians (default), cycles, or degrees as
specified by option "angles" or the optional keyword

Keywords: transformations

Usage
asin(x) computes the inverse sine of the elements of x, where x is a
REAL scalar, vector, matrix or array. The result has the same shape as
x. sin(asin(x)) is the same as x except for rounding error.

The units of the result are radians, degrees or cycles as dete rmined by

2.24. ASLONG() 47

the value of option ’angles’. The default is radians. See sub topic
’options:"angles"’.

asin(x, radians:T), asin(x, degrees:T), asin(x, cycles:T) return results
in the indicated units, regardless of the value of option ’an gles’.

When any element of x is MISSING or is above 1 or below -1, the
corresponding element of the result is MISSING and a warning message is
printed.

Structure argument
When x is a structure, all of whose non-structure components are REAL,
asin(x [,UNITS:T]), where UNITS is one of ’radians’, ’degre es’ or
’cycles’, is a structure of the same shape and with the same co mponent
names as x with each non-structure component transformed by asin().

Examples
Cmd> vector(asin(.5),asin(.5,degrees:T),asin(.5,cycl es:T))
(1) 0.5236 30 0.083333

Cross references
See topic ’transformations’ for information on asin().

2.24 asLong()

Usage:
asLong(x), x REAL with no MISSING values and with integer val ues between

-2147483647 and 2147483647 = 2ˆ31-1.

Keywords: transformations, variables

Usage
asLong(x), where x is REAL returns a LONG variable the same si ze and
shape as x, but with all of its elements represented as intege rs instead
of floating point values. All the elements of REAL scalar, ve ctor,
matrix or array x must be exact integers with values between - 2147483647
and 2147483647 = 2ˆ31-1.

The only use at present for asLong() is to create a long intege r
argument to a user function called by User(). When the argume nt is
returned it is "coerced" to an equivalent REAL variable. For example,
User("foo", result:asLong(20)) will return a REAL integer scalar value.

asLong(x) is also legal as an argument to print() and write() . For
example, print(asLong(vector(1,3,5,2))) produces the sa me output as
print(vector(1,3,5,2)).

When assigned (y <- asLong(x)), a LONG variable is "coerced" to a
ordinary REAL variable. For example, a <- asLong(vector(1, 3,5,2))
has the same effect as a <- vector(1,3,5,2).

48 CHAPTER 2. MACANOVA HELP FILE

Cross references
See also topics ’variables’ and, in file userfun.hlp, User() (type
userfunhelp(User).

2.25 assignment

Usage:
a <- x assigns value of x to a.
a[J1] <- x, a[J1,J2] <- x, ..., where the J’s are valid subscri pts,

replaces the designated elements to corresponding element s of x.
a[J] <- x, when a is a structure, replaces the designated comp onents

of a by x, J a valid subscript
a <-+ x assigns a + x to a and similarly for a <-- x, a <- * x, a <-/ x,

a <-%% x and a <-ˆ x.
When Str is a structure"

Str$a <- x, Str$a$b <- x, ..., Str[[i]] <- x, Str[[i]][[j]] <- x, ...
replaces the indicated component of Str by x

Keywords: syntax

Introduction
This topic describes the use of the assignment operator ’<-’ and
arithmetic assignment operators ’<-+’, ’<--’, ’<- * ’, ’<-/’ and ’<-%%’.
It has sections on ordinary assignment, assignment to subsc ripts,
assignment to structure components and arithmetic assignm ent operators.

Ordinary assignment
You can assign values to a variable using the left pointing ar row ’<-’
made up of the two characters "less than" and "minus". For exa mple,
’foo <- 5’ assigns the value 5 to the variable foo. When foo doe s not
already exist, it is created; otherwise, its previous value is discarded
and foo is re-defined.

An expression of the form ’y <-3’, say, is always interpreted as ’y <-
3’ rather than as ’y < -3’. When you want the latter, be sure to p ut a
space before ’-3’.

The value of such an assignment is the value of the variable af ter the
assignment. For example, ’y <- exp(x <- 4)’ sets variables x a nd y to 4
and exp(4), respectively, and ’y <- x <- 4’ assigns 4 to both x a nd y.

This value is normally not printed unless the assignment is t he last
command in a compound command {command_1;...;command_k}.

For example, ’{y <- 3}’ not only assigns the value 3 to y put als o
prints the number 3, although ’y <- 3’ by itself prints nothin g. For
this reason, it is a often a good idea to terminate compound co mmands
with ’;;’, as in ’{y <- 3;;}’. Of course, this is a bad idea if yo u
want the final value to be printed or if you are assigning the v alue of
the entire compound statement to a variable.

2.25. ASSIGNMENT 49

Some "special" variables such as CLIPBOARD can be assigned t o. What
actually happens depends on the particular variable. You ca nnot assign
to special structure variable GRAPHWINDOWS although you ca n assign to
its components. See topics ’CLIPBOARD’, ’GRAPHWINDOWS’ an d
’graph_assign’.

Assignment to subscripts
You can modify parts of an existing vector, matrix or array y b y
y[J1] <- x, y[J1,J2] <- x, y[J1,J2,J3] <- x, ... as long as the
subscripts are appropriate. You can use positive, negative and LOGICAL
vector subscripts or a single matrix subscript, but not an ar ray
subscript with more than two dimensions.

x must be the same type variable as y, REAL, CHARACTER or LOGIC AL. When
x is a scalar (number, T or F or quoted string), it replaces all the
elements of y selected by the subscripts. When x is not a scala r, then
length(x) must match the number of elements of y selected, bu t x can be
of any shape and is treated as if it were vector(x).

The value of an assignment to subscripts is a vector, matrix o r array
containing the new elements and having the same shape as the e lements of
y that were replaced.

It is legal for the subscripts to select the same element of x m ore than
once (for instance, y[vector(1,1,2)] <- vector(3,5,7)). I n this case
the eventual value for an element selected more than once is t he last
element in x assigned to that element (in the example, y[1] is set to
5).

See below for using subscripts to change components of an exi sting
structure.

NULL or non-selecting subscripts
y[J1] <- NULL, y[J1,J2] <- NULL, ... are legal provided at lea st one of
the subscripts is NULL or is non-selecting (is all False or is a
complete set of negative subscripts). y is not changed and th e value of
the assignment is NULL. For example, even if all the elements of u are
positive, y[u < 0] <- x[u < 0] is legal and does not change y.

Similarly, when x is a scalar of the appropriate type , y[J1] < - x,
y[J1,J2] <- x, ... is legal even one or more subscripts are NUL L or
non-selecting. y is not changed and the value of the assignme nt is NULL.
For example, y[vector(y) > 10] <- 10 is legal even when there a re no
elements of y greater than 10.

It is an error to assign a non-NULL non-scalar variable to sub scripts
when there is a NULL or non-selecting subscript.

Vector subscript for matrix or array
Suppose y is a matrix or array and J is a vector such that vector (y)[J]
is legal, and x is a scalar or a vector with the same length as
vector(y)[J]. Then y[J] <- x is legal and assigns the element s of x to
the positions that would be specified by J if y were a vector. T he

50 CHAPTER 2. MACANOVA HELP FILE

dimensions of y are retained. For example,
Cmd> y[vector(abs(y)) > 3] <- ?

replaces all elements of y that exceed 3 in absolute value by M ISSING,
without disturbing the dimensioning of y.

Similarly, when x is a scalar or is a vector, matrix or array wi th
length(x) = length(y), y[] <- x replaces all the values of y by values
from x without changing the dimensions of y.

When y is not a structure, y[[J]] <- x is illegal except when J = 1 in
which case it is equivalent to y <- x.

See below (assignment:"assignment_to_structure_compon ents") for
assignment to components of a structure.

Examples
Examples assuming x is a vector of length 5 and y is a 3 by 2 matri x.

Cmd> y <- x[-run(2)] <- 17
sets all the elements of except x[1] and x[2] to 17 and sets y to
vector(17,17,17).

Cmd> y <- x[vector(1,4)] <- vector(17,19)
sets x[1] and x[4] to 17 and 19 and y to vector(17,19)

Cmd> y <- x[vector(1,3,1)] <- vector(17,19,21)
sets x[1] and x[3] to 21 and 19 and y to vector(17,19,21).

Cmd> y[vector(1,4)] <- run(3)
is illegal because there are 3 elements in run(3), but only 2 e lements
are selected in y.

Cmd> y <- x[-1,] <- run(4) # change all but row 1 of x
changes x[2,1], x[3,1], x[2,2] and x[3,2] to 1, 2, 3 and 4,
respectively, and sets y to the 2 by 2 matrix matrix(run(4),2).

Cmd> y <- x[hconcat(run(2),run(2))] <- 4 #matrix subscript
sets x[1,1] and x[2,2] to 4 and y to vector(4,4).

Cmd> y <- x[x>max(x)] <- 3
doesn’t change x and sets y to NULL because x > max(x) has value
vector(F,F,F,F,F).

Assignment to structure components
You can assign to structure components by name or by number. I n the
following Str is assumed to be an existing structure variabl e, not the
result of an operation like describe(x).

When a component of Str has name Name, Str$Name <- x replaces t hat
component by the value of x without changing it’s name. The va lue of
the assignment expression is x. If more than one component is named
Name, assignment is to the first such component. It is an erro r if Str
has no such component.

2.25. ASSIGNMENT 51

Str$Name1$Name2 <- x, Str$Name1$Name2$Name3 <- x, ... are a lso legal,
provided the indicated component exists.

Str[J] <- x and Str[[J]] <- x are identical and work similarly to a[J]
<- x, when a is a vector, matrix or array, except that entire co mponents
are replaced. The names of components in Str are never change d.

There are four cases depending on x and K = number of component s
selected in Str by J, counting any duplicated subscripts mor e than once.

1. When K = 1, the selected component is always replaced by a co py of
x, whether x is a structure or a non-structure.

2. When K > 1 and x is a structure with ncomps(x) = K, the selecte d
components in Str are replaced by copies of the correspondin g components
of x and the value is identical to x. When a component of Str is
selected more than once, its new value is the highest numbere d component
of the x that was assigned to it. The value of the assignment is a copy
of x.

3. When K > 1 and x is not a structure or is a structure with ncomp s(x)
!= K, each selected component of Str is replaced by a copy of x. The
value is structure(x,x,...,x), where there are K copies of x .

4. When K = 0, that is, no component of Str is selected as in
Str[rep(F,3)], x is ignored, Str is not changed and the value is NULL.

In addition, you can specify by number components of compone nts to be
changed. For example, Str[[3]][[2]] <- x replaces componen t 2 of the
third compoent of Str by x and Str[[3]][[-1]] <- x replaces al l but the
first component of the third component of Str by x. If x is a str ucture
with the right number of components, each component of Str[[3]][[-1]] is
replaced by the correspoding component of x. Otherwise, eac h component
of Str[[3]][[-1]] is replaced by x.

You can nest component specificiation, mixing names and [[. ..]]
subscripts up to 31 deep. All subscripts except possibly the final one
must be integer scalars. With nested components, no [...] su bscripts
are allowed, that is, Str[[1]][3] <- x is illegal; use Str[[1]][[3]] <-
x.

Arithmetic assignment operators
There are several arithmetic assignment operators: <-+, <- -, <- * , <-/,
<-%% and <-ˆ. For example, a <- * b is equivalent to a <- a * b and a <-ˆ
b is equivalent to a <- aˆb. ’<--’ and ’<-+’ require a followin g space.

The variable being modified cannot be subscripted or be a str ucture
component. For example, x[3] <-+ 1 and Str$x <-- 1 are illegal . See
topic ’arithmetic’ for more information.

52 CHAPTER 2. MACANOVA HELP FILE

2.26 atan()

Usage:
atan(x [, degrees:T or radians:T or cycles:T]), x REAL or a

structure with REAL components; value in radians (default) , cycles, or
degrees as specified by option ’angles’ or the optional keyw ord

atan(x,y [, degrees:T or radians:T or cycles:T]), y REAL or a structure
with real components the same size and shape as x

Keywords: transformations

Usage
atan(x) transforms the elements of REAL vector, matrix, or a rray x to
inverse tangents (arctangents). When x is a structure with c omponents
x1,...,xm, atan(x) is a structure with components atan(x1) ,...,atan(xm).

When any element of x is MISSING, the corresponding element o f atan(x)
is MISSING.

atan(x,y) computes theta = arctan(x/y), with the result in t he
appropriate quadrant, where x and y must be REAL vectors, mat rices, or
arrays with the same dimensions. Specifically, theta is cho sen so that
sin(theta) has the same sign as x, cos(theta) has the same sig n as y and
tan(theta) = x/y.

atan(x,y) is also defined when x and y are both structures wit h the same
number of components, say x is structure(x1,...,xm) and y is
structure(y1,..., ym) . The result is what would be produced by
structure(atan(x1,y1),...,atan(xm,ym)).

Units
The units of the result of atan(x) and atan(x,y) are radians, degrees or
cycles as determined by the value of option ’angles’. The def ault is
radians. See subtopic ’options:"angles"’.

Keywords
atan(x, radians:T), atan(x, degrees:T), atan(x, cycles:T), atan(x, y,
radians:T), atan(x, y, degrees:T) and atan(x, y, cycles:T) return values
in the specified units, overriding option ’angles’.

Cross references
See topic ’transformations’ for more information about ata n(), including
its use with a CHARACTER argument.

See also topics ’structures’, ’labels’.

2.27 atanh()

Usage:
atanh(x), x REAL or a structure with REAL components

2.28. ATTACHNOTES() 53

Keywords: transformations

Usage
atanh(x) returns the inverse hyperbolic tangent of the elem ents of x,
when x is a REAL scalar, vector, matrix or array. The result ha s the
same shape as x. In terms of other functions, atanh(x) =
.5 * log((1+x)/(1-x)).

This transform is sometimes called the Fisher z-transform. When r is a
sample Pearson correlation from a bivariate normal sample o f size N and
population correlation rho, atanh(r) is approximately nor mal with mean
rho and variance 1/(N-2).

When any element of x is MISSING, so is the corresponding elem ent of
atanh(x). When any element of x >= 1 or <= -1, the correspondin g
element of atanh(x) is MISSING. In both cases a warning messa ge is
printed.

Structure argument
When x is a structure, all of whose non-structure components are REAL,
atanh(x) is a structure of the same shape and with the same com ponent
names as x, with each non-structure component transformed b y atanh().

Cross references
See topic ’transformations’ for more information on atanh().

2.28 attachnotes()

Usage:
attachnotes(x,Notes), Notes a CHARACTER scalar or vector o r NULL

Keywords: general, macros, variables

Usage
attachnotes(x, Notes) "attaches" Notes to variable x as des criptive
"notes".

When Notes is NULL, any existing notes are removed from x. Oth erwise,
Notes must be a CHARACTER scalar or vector, usually containi ng
descriptive information about variable or macro x.

x must be an existing variable of any type, including a struct ure, a
macro or a GRAPH variable. You can’t attach notes to certain s pecial
variables like CLIPBOARD and GRAPHWINDOWS.

You can retrieve notes using getnotes() and append notes to p reviously
attached notes using appendnotes(). You can test whether a v ariable has
notes attached using hasnotes().

Cross references
See also topics ’notes’, appendnotes(), getnotes(), hasno tes().

54 CHAPTER 2. MACANOVA HELP FILE

2.29 autoreg()

Usage:
autoreg(Phi,A [,reverse:T, limits:vector(i1 [,i2]), sta rt:startVals,\

seasonal:L]), REAL vector or NULL Phi, REAL vector or matrix A, REAL
startVals the same size and shape as A, positive integer L

Keywords: time series

Introduction
autoreg() is designed to implement an autoregressive opera tor as the
term is used in ARIMA time series analysis. It can also be used to
compute partial sums of a series or, together with movavg(), to find the
power series coefficients of rational functions.

Usage
autoreg(Phi,A) applies the autoregressive operators spec ified by the
columns of the REAL matrix Phi to the columns of the REAL matri x A.
When ncols(Phi) = 1, Phi is applied to every column of A and if n cols(A)
= 1, each column of Phi is applied to A. The result is a matrix wi th
nrows(A) rows and max(ncols(Phi), ncols(A)) columns. When both Phi and
A have more than one column, they must both have the same numbe r of
columns.

Specifically, assuming for simplicity that both Phi and A ar e vectors so
that the result x is a vector,

x[i] = A[i] + sum(Phi[k] * x[i-k],1<=k<=nrows(Phi)),
with x[l] taken to be 0 for l < 1.

When Phi is a vector, movavg(Phi,A) can be expressed in matri x terms as
solve(Phi1, A), where Phi1 is a nrows(A) by nrows(A) matrix. For
example, when nrows(Phi) = 2,

[1 0 0 0 ... 0 0 0]
[-Phi[1] 1 0 0 ... 0 0 0]

Phi1 = [-Phi[2] -Phi[1] 1 0 ... 0 0 0]
[0 -Phi[2] -Phi[1] 1 ... 0 0 0]
[..]
[0 0 0 0 ... -Phi[2] -Phi[1] 1]

See also solve().

NOTE: The sign assumed for Phi is not affected by variable ARS IGN which
is recognized by several macros in file Arima.mac. Type
arimahelp(MASIGN) for details.

When Phi is NULL, the result is the same as A, stripped of label s or
notes, if any. Also, the result is a true vector or matrix (ndi ms = 1
or 2).

Inverse difference operator
A common usage is autoreg(1,x), where x is a vector or matrix. This

2.29. AUTOREG() 55

computes the partial sums x[1,], x[1,]+x[2,], ..., sum(x). A useful
macro might be defined by

partialsum <- matrix("autoreg(1,$1)")

Keyword reverse
autoreg(Phi,A,reverse:T) applies the autoregressive ope rator in reverse:

x[i] = A[i] + sum(Phi[k] * x[i+k],1<=k<=nrows(Phi)),
with x[l] = 0 for l > nrows(A).

Keyword seasonal
autoreg(Phi,A,seasonal:L [,reverse:T) does the same, exc ept that the
computations are of the forms

x[i] = A[i] + sum(Phi[k] * x[i-k * L],1<=k<=nrows(Phi)).
or

x[i] = A[i] + sum(Phi[k] * x[i+k * L],1<=k<=nrows(Phi)) (reverse:T)

Start and limits
autoreg(Phi,A,limits:vector(i1,i2),start:StartVals [,reverse:T,
seasonal:L]) is the same except that x[i] is computed as desc ribed only
for i1 <= i <= i2, with the remaining values copied before the
computation from rows 1 to i1-1 and rows i2+1 to nrows(A) of ma trix
StartVals. The values in rows 1 through i1-1 of StartVals ser ve as
"starting values" for the autoregressive operator. When re verse:T is an
argument, rows nrows(A) through i2+1 serve as starting valu es. This
feature is useful for generating out of sample forecasts or " backcasts".

The value for limits can also be a scalar j between 1 and nrows(A). In
this case, with reverse:T, i1 = 1, i2 = j, and without reverse: T, i1 =
j, i2 = nrows(A).

StartVals must have the same number of columns as A and usuall y has the
same number of rows. When nrows(StartVCals) != nrows(A), wi thout
reverse:T, i2 must be nrows(A) and with reverse:T, i1 must be 1. In
this case, the elements of StartVals, which are used as start ing values,
are copied to the rows not included between i1 and i2 and hence
nrows(start) must match nrows(A) - (i2 - i1 + 1). This feature allows
you to compute autoregressive predictions up to 20 time unit s ahead,
say, by

Cmd> autoreg(phi,rep(0,length(x) + 20),limits:length(x)+1,start:x)

autoreg() is the inverse of movavg() and vice versa, in that
autoreg(phi,movavg(phi,x)) and movavg(phi,autoreg(phi ,x))

both reproduce x, except for rounding error.

Examples
Examples:

Cmd> autoreg(phi,rnorm(400))[-run(100)]
generates an autoregressive series with normal innovation s,
discarding the first 100 values to avoid transients.

Cmd> autoreg(phi,matrix(rnorm(4000),400)[-run(100),]
generates 10 independent autoregressive series at once.

Cmd> autoreg(hconcat(phi1,phi2),rnorm(400))[-run(100)]
generates 2 autoregressive series with different coeffici ents but

56 CHAPTER 2. MACANOVA HELP FILE

the same innovations
Cmd> autoreg(.3, autoreg(-.1,rnorm(230),seasonal:4))[-run(30)]

generates a (1,0,0)x(1,0,0)-4 seasonal ARMA time series
Cmd> autoreg(vector(1,1),padto(1,20))

computes the first 20 Fibonacci numbers F(j) satisfying F(j) =
F(j-1) + F(j-2) with F(1) = 1, F(0) = 0

Cross references
See also movavg().

2.30 batch()

Usage:
batch(fileName [,echo:T or F, prompt:string]), CHARACTER scalars

fileName and string

Keywords: syntax, control, files

Usage
batch(FileName) executes the commands in the file with name given in the
quoted string or CHARACTER variable FileName. It must be the last
command in a line or a compound command surrounded by ’{’ and ’ }’ and
must not be in a loop.

In windowed version, if FileName is "" you will be prompted to enter
the file name in a dialog box.

Lines of the file are read sequentially and executed as if the y were
typed at the keyboard. Normally, each line is printed with th e file
name as prompt before it is executed. You can suppress this by using
keyword phrase echo:F (see below), or by previously executi ng
setoptions(batchecho:F) (see topics setoptions() and ’op tions’).

The batch file can contain any sequence of MacAnova commands . This
includes additional batch() commands that do not read from a batch file
currently in use.

Example
Here is an example of a short batch file designed to do cubic re gression
of variable y on variable x and do a plot of residuals against x (see
also regress() and plot()):

xsq <- x * x
xcub <- x * xsq
regress("y=x + xsq + xcub")
plot(x, RESIDUALS, title:"Cubic regression residuals vs x ")

Treatment of errors
When an error occurs, the default behavior is to terminate al l current
batch() commands. You can use setoptions(errors:N), where N is a
positive integer to increase the number of errors tolerated before

2.31. BCPRD() 57

termination. See topic ’options"errors"’ for details.

Keywords
batch(FileName,echo:F) works the same as batch(FileName) except the
prompts and lines read from the file are not printed. This sta tus is
inherited by batch files invoked from within a batch file. Yo u can use
setoptions(batchecho:F) to set the default behavior of bat ch() so that
lines will not be echoed.

batch(FileName,echo:T) forces the printing of prompts and commands, even
if option ’batchecho’ has been set False (see subtopic
’options:"batchecho’).

NOTE: If you want to suppress printing of both prompts and out put, put
setoptions(quiet:T)

at the start of the file and
setoptions(quiet:F)

at the end of the file. See subtopic ’options:"quiet"’.

batch(FileName,prompt:Prompt), where Prompt is a quoted s tring or
CHARACTER scalar, forces echoing, with command lines start ing with
Prompt instead of the file name. When the batch file contains a
setoptions(prompt:newPrompt) command, newPrompt overri des Prompt. A
subsequent setoptions(default:T) in the file, restores Pr ompt. See
topics setoptions(), ’options’.

Cross references
See also topic ’launching’.

2.31 bcprd()

Usage:
bcprd(x), REAL matrix x
bcprd(x1, x2, ...), x1, x2, ... REAL matrices with the same nu mber of

rows.

Keywords: matrix algebra, glm

Usage
bcprd(x) where x is a matrix computes a "bordered" cross prod uct matrix
containing the means of the columns of x and mean-corrected s ums of
squares and products of the columns of x.

bcprd(x1,x2,...,xm) yields the same result as bcprd(hconc at(x1,x2,...,
xm)) when x1, x2, ... are all REAL matrices with the same numbe r of
rows.

Specifically, when x is an n by p matrix, bcp <- bcprd(x) sets b cp to
a p+1 by p+1 matrix, where

bcp[1,1] = 1/n
bcp[-1,1] = a column vector containing the sample mean xbar

58 CHAPTER 2. MACANOVA HELP FILE

bcp[1,-1] = a row vector containing -xbar’
bcp[-1,-1] = the p by p matrix of mean-corrected sums of squar es and

products of the columns of x

Relationship with swp()
bcprd(x) is mathematically equivalent to

{@TMP <- hconcat(rep(1,nrows(x)),x); swp(@TMP %c% @TMP,1)}.
However, the use of bcrpd() is preferred to the illustrated u se of swp()
since it uses a numerically stable algorithm to compute the c orrected
sums of squares and products.

Labels
When all the arguments of bcprd() have labels, so will the res ult of
bcprd() with both row and column labels taken from the column labels of
the arguments.

Cross references
See also swp().

2.32 bin()

Usage:
bin(x,Bnds [,silent:T,leftendin:T]), x a REAL matrix, Bnd s REAL vector,

Bnds[k] < Bnds[k+1]
bin(x,vector(anchor,width) [,leftendin:T]), anchor and width > 0 REAL

scalars
bin(x,nbins, [leftendin:T]), nbins positive integer.
bin(x [,leftendin:T])

Keywords: categorical data, summary statistics

Usage
bin(x,Edges) counts the number of values v in each column of R EAL vector
or matrix x in class intervals defined by the elements of REAL vector
Edges with length(Edges) > 2. Edges must satisfy Edges[k] < E dges[k+1],
k = 1, ..., nclasses = length(Edges) - 1. When x is a matrix, cou nts
are computed for each column of x.

The value of bin(x,Edges) is structure(boundaries:edges, counts:M) where
edges is a vector of length nclasses + 1 containing the class l imits and
M contains counts. In this usage, edges is identical to Edges . When x
is a vector, M[k] = (number of values of x in class k). When x is a
matrix, M is a matrix with nclasses rows and ncols(x) columns with
M[k,j] = (number of values in column j of x in class k).

The count for class k is the number of values v with Edges[k] < v <=
Edges[k+1], k = 1, ..., nclasses, that is any value equal to th e right
end of an interval is counted in that interval.

When any element of x is <= Edges[1] or > Edges[nbins+1], it is not
included in the count and a warning message is printed.

2.33. BIT OPS 59

Keyword ’leftendin’
bin(x,Edges,leftendin:T) does the same except a value v is c ounted in
class k if Edges[k] <= v < Edges[k+1], that is, a value equal to the
left end of a class is counted as being in the class. v is not cou nted
when v < Edges[1] or v >= Edges[nbins+1]. ’leftendin:T’ can b e used
with all variants of bin() arguments

Keyword ’silent’
bin(x,Edges,silent:T) does the same except any warning mes sages are
suppressed. ’silent:T’ can be used with all variants of bin()
arguments.

Equal width classes
bin(x,vector(anchor, width)), where anchor and width are s calars, does
the same, except that the class boundaries are of the form anc hor +
k* width, where k is an integer, with the minimum and maximum val ues of k
selected so as to include all the data in x. For example, bin(x ,
vector(.5,1)) would use class intervals of width 1 centered at integers.

bin(x,nbins) does the same, except that boundaries for nbin s classes are
computed so that the classes have equal widths and include al l the data.
The class boundaries will normally not be "neat".

bin(x) is equivalent to bin(x, ceiling(log(nrows(x))/log (2))+1), that is
the number of bins is approximately log2(nrows(x)).

You can use bin() to find counts needed to draw a histogram or t o
compute a chi-squared test of goodness of fit of a sample to a
theoretical distribution.

2.33 bit ops

Usage:
a %| b, a %ˆ b, a %& b and %! a, where a and b are REAL or structures

with REAL components with integer elements >= 0 and <= 429496 7295 =
2ˆ32-1 nbits(x)

Keywords: operations, glm, missing values

There are 4 operators for working with integers considered a s the sets
of 32 bits specified by their binary representations.

Bit operations
Bit Operation Precedence Meaning

a %| b 1 Bitwise Or (OR)
a %ˆ b 2 Bitwise Exclusive Or (XOR)
a %& b 3 Bitwise And (AND)

%!a 4 Bitwise Complement (COMPL)

When an operand x is not an integer or x < 0 or x > 4294967295 = 2ˆ3 2-1,

60 CHAPTER 2. MACANOVA HELP FILE

the result of any of these operators is MISSING.

For ’%&’, a bit of the result is 1 if and only if the correspondi ng bits
in the operands are both 1.

Example: 25 %& 19 is 17 because 11001b AND 10011b is 10001b

For ’%|’, a bit of the result is 1 if and only if at least 1 of the
corresponding bits in the operands is 1.

Example: 25 %| 19 is 27 because 11001b OR 10011b is 11011b

For ’%ˆ’, a bit of the result is 1 if and only if exactly 1 of the
corresponding bits in the operands are 1, that is, if the corr esponding
bits differ.

Example: 25 %ˆ 19 is 10 because 11001b XOR 10011b is 01010b

Operator ’%!’ operates on the immediately following variab le considered
as a collection of 32 bits, changing 1’s to 0’s and 0’s to 1’s.

Examples:
%! 25 is 4294967270 since COMPL(000000000000000000000000 0011001b)

is 11111111111111111111111111100110b
%! 0 is 4294967295 since COMPL(0000000000000000000000000 000000b)

is 11111111111111111111111111111111b

When an operand is LOGICAL, it is treated as having value 0 (F) or 1
(T). The result is always REAL.

When any operand is MISSING, so is the result.

Use with modelinfo()
Bit operators were introduced to be useful with the output of
modelinfo(bitmodel:T). For example, 2ˆ(i-1) %& modelinfo (bitmodel:T)[j]
is non-zero if and only if the j-th term of the model contains t he i-th
factor or variate (assuming i <= 32).

The operators were listed above in increasing order of prece dence.
Moreover, they have lower precedence that all arithmetic, c omparison, or
logical operators which means they are evaluated after all s uch
operators.

Examples
Examples:

Expression Interpretation Value
17 %| 29 %ˆ 91 %& 11 17 %| (29 %ˆ (91 %& 11)) 23
%!21 %| 97 %& %! 33 (%!21) %| (97 %& (%!33)) 4294967274
1 %& 3 + 4 1 %& (3+4) 1
3 %ˆ 5 != 6 3 %ˆ (5 != 6) 2
1 %| 2 == 3 1 %| (2 == 3) 1
%!0 == 4294967295 %!(0 == 4294967295) 4294967295

To understand the last three examples, note that 5 != 6 is True and is
interpreted as 1, and that 2 == 3 and 0 == 4294967295 are both Fa lse and
are interpreted as 0. See topics ’arithmetic’ and ’logic’.

2.34. BOXCOX() 61

Cross references
See topic ’arithmetic’ for a description of the "shape" of th e result
when operands are not scalars.

See also modelinfo(), nbits().

2.34 boxcox()

Usage:
boxcox(x,power), x a REAL vector or matrix, power a REAL scal ar

Keywords: transformations

Usage
boxcox(var,Pow) computes the Box-Cox transformation of th e data in
vector or matrix var. When var is a matrix, the transformatio n is
applied to each column separately. If GM is the geometric mea n of the
values in a vector, boxcox(y,Pow) computes (yˆPow-1)/(Pow * (GM)ˆ(Pow-1))
when Pow != 0, and GM * log(y) when Pow == 0. Boxcox is implemented as a
macro.

Cross references
See also topics ’macros’ and ’transformations’.

2.35 boxplot()

Usage:
boxplot(x1,x2,...,xk [,vs:indv, boxsize:W] [,vertical: T, excludeM:T,

boxtype:m, symbols:outlierSyms, graphics keyword phrase s]), x1,...,xk
REAL vectors, indv REAL length k vector with no MISSING value s, m > 0
integer, W REAL non-negative vector or scalar, outlierSyms CHARACTER
scalar or vector of length 2

boxplot(Struc, [,vs:indv, boxsize:W] [,vertical:T, excl udeM:T,
boxtype:m, symbols:outlierSyms, graphics keyword phrase s]), Struc a
structure with k REAL vector components

Keywords: plotting, descriptive statistics

Usage
boxplot(x1, x2, ... , xk) produces horizontal parallel Tuke y boxplots
for the vectors x1 through xk and plotting positions 1, 2, ... , k on the
y axis.

boxplot(x1, x2, ... , xk,vertical:T) and boxplot(Struc,ve rtical:T) do
the same except the boxplots are aligned vertically at plott ing
positions 1, 2, ..., k on the x axis. Pre-defined macro vboxpl ot()
which is used identically to boxplot(), makes use of the feat ure to make
vertical boxplots.

62 CHAPTER 2. MACANOVA HELP FILE

boxplot(x1, x2, ..., xk, vs:Predictor [,vertical:T] ...) d oes the same
except the boxes are aligned with Predictor[1], Predictor[2], ...,
Predictor[k] on the y or x axis. Predictor must be a REAL vecto r with
no MISSING values with length(Predictor) = k.

boxplot(x1, x2, ..., xk, boxsize:W, ...) does the same excep t the
thickness of the boxes is determined by non-negative REAL sc alar or
vector W. See below for details.

boxplot(x1, x2, ..., xk, boxtype:m, ...) does the same excep t the style
of the boxplot is determined by integer m > 0. The default type
corresponds to m = 1. Whiskers extend to the most extreme valu es inside
the inner "fences", and values beyond the inner and outer fen ces are
individually plotted with special symbols.

With boxtype:2, the box plot is a 5 number summary box plot, wi th
whiskers with cross bars at the end extending from the ends of the box
to the extremes. No outliers are indicated. At present, boxt ype:m with
m > 2 yields as boxtype:1.

boxplot(Struc,) produces parallel box plots for the co mponents of
structure Struc, all of which must be REAL vectors. You can us e any
boxplot() or graphical keywords.

Keyword ’symbols’
Keyword ’symbols’ has a different meaning from other plotti ng commands.
You use it to specify symbols for moderate outliers (beyond i nner fences
and inside outer fences) and extreme outliers (beyond outer fences).
The value of ’symbols’ must be a CHARACTER scalar or vector of length 2.

Cmd> boxplot(x1, x2, x3, symbols:vector("\3", "\5"))

uses "\3" (square) as a symbol for moderate outliers and "\5" (triangle)
as a symbol for extreme outliers. When the value of ’symbols’ is a
scalar, the default symbol is used for extreme outliers.

Use with split()
boxplot(split(y,a) [,vertical:T] ...) draws parallel box plots of the
data in vector y classified according to levels of factor a. S ee
split().

boxplot(split(y) [,vertical:T], ...) draws parallel box p lots of the
data in each column of matrix y.

These work because split() returns a structure and each comp onent of a
structure gets its own box.

Size of boxes
You can use keyword phrase boxsize:W, where W is a non-negati ve scalar
or vector to specify the "thickness" of the boxes (height for horizontal
boxes, width for vertical boxes). When W is not a scalar, leng th(W)
must match the number of boxes. When W is a vector and W[j] = 0, b ox j

2.36. BREAK 63

is omitted.

When you don’t use keyword ’boxsize’, the default thickness is such that
about 2/3 of the space between the first and last box is made of up
boxes and 1/3 of interbox space.

Keywords
When keyword phrase ’excludeM:T’ is an argument, and the num ber of
non-MISSING values in a sample is odd, the median is omitted i n
calculating the quartiles as the medians of the upper and low er halves.

You may use keywords ’dumb’, ’xmin’, ’xmax’, ’ymin’, ’ymax’ , ’logx’,
’logy’, ’xlab’, ’ylab’, ’title’, ’xaxis’, ’yaxis’, ’borde rs’, ’ticks’,
’xticks’, ’yticks’, ’xticklen’, ’yticklen’, ’xticklabs’ , ’yticklabs’,
’height’, ’width’, ’pause’, ’silent’ and ’notes’ as for oth er plotting
commands. See topics ’graph_keys’, ’graph_border’ and ’gr aph_ticks’

When option ’dumbplot’ has been set False (see subtopic
’options:"dumbplot"’), the plot will be a low resolution pl ot unless
’dumb:F’ is an argument.

Note: Using ’logx:T’ and/or ’logy:T’ affects only the scali ng used in
plotting, not the determination of outliers. With logy:T wi thout
vertical:T or logx:T with vertical:T‘q, the thickness of th e boxes will
be affected since the edges are equally distant from the midd le in
arithmetic units but not in logarithmic units

Cross references
See topic ’graph_files’ for information on how to save a boxp lot in a
file using keywords ’file’, ’new, ’ps’, ’screendump’, and ’ epsf’.

See also topics showplot(), ’structures’, ’graph_keys’.

2.36 break

Usage:
for(i,run(n)){if(x[i] < 0){break} }
for(i,run(n)){for(j,run(m)){if(x[i,j] < 0){break 2} }}

Keywords: control, syntax

Usage
’break’ and ’break n’ are used to exit prematurely from one or more
enclosing loop, perhaps because an error has been found.

’break’, in a ’for’ or ’while’ loop, exits the loop, skipping any
remaining commands in the loop and resuming execution immed iately after
the ’}’ terminating the loop. When more than one loop "enclos es"
’break’, only the innermost one is exited.

’break n’, where n is a positive integer, exits from n enclosi ng ’for’

64 CHAPTER 2. MACANOVA HELP FILE

or ’while’ loops. For example, ’break 1’ is equivalent to ’br eak’ and
will exit the current loop; ’break 2’ will exit the current lo op and the
loop enclosing it; and so on. n must be a literal integer (’1’, ’2’,
...) and not a variable with integer value.

It is an error to use ’break’ outside of a loop or to use ’break n ’ when
not enclosed in at least n loops.

In macro or evaluated string
In an evaluated string or out-of-line macro, ’break’ and ’br eak n’ can
be used only to exit from a loop that started in the macro or eva luated
string. It is an error to try to exit from a loop that started ou tside
the macro or evaluated string. See evaluate() and ’macros’.

Using ’break’ in an in-line macro to exit from a loop that star ted
outside the macro will work, but is a bad programming practic e.

Inside a macro, break n with the appropriate value of n should always be
used instead of breakall.

Examples
Examples:

for(i,run(100)){... compute x ...;if(x<0){print("x < 0") ;break;};...;}
If x ever becomes negative, the ’for’ loop is terminated.

for(i,run(10)){for(j,run(5)){...;if(x<0){break 2}}}
If x ever becomes negative, both ’for’ loops are terminated.

Cross references
See also topics ’if’, ’for’, ’while’, ’breakall’, ’next’, b atch().

2.37 breakall

Usage:
for(i,run(n)){if(x[i] < 0){breakall} }
for(i,run(n)){for(j,run(m)){if(x[i,j] < 0){breakall}} }

Keywords: control, syntax

’breakall’ is used in ’while’ and ’for’ loops to exit prematu rely from
any and all "enclosing" ’while’ or ’for’ loops. Execution re sumes
immediately after the ’}’ terminating the most inclusive ’w hile’ or
’for’ loop currently in effect.

’breakall’ should normally not be used inside a macro, since if such a
macro were invoked in a loop at the prompt level, ’breakall’ w ould exit
from that loop as well as any loops in the macro. This would sel dom be
what you want. Instead, use ’break n’, where n is a positive in teger
specifying the number of loops to exit. See ’break’.

It is an error to use ’breakall’ outside of a loop.

2.38. BREAKIF() 65

In an evaluated string or out-of-line macro, ’breakall’ wil l exit the
outermost loop that started inside the evaluated string or m acro. It is
an error if there is no such enclosing loop. See evaluate() an d
’macros’.

In an in-line macro (the default), ’breakall’ will exit not o nly loops
which start in the macro, but also any loops which enclose the macro.
If this is not what is wanted (and it usually wouldn’t be), use ’break
n’, where n is the number of loops enclosing ’break’ in the mac ro.
Use ’return’ to exit from a macro prematurely.

Example
Example:

Cmd> for(i,run(m)){
for(j,run(n)){... compute x ...;if(x<0){breakall};}}

If x ever becomes negative, both ’for’ loops are immediately terminated.
Using ’break’ instead of breakall would mean that only the in ner loop
(for(j,run(n)){...}) would be terminated.

Cross references
See also topics ’if’, ’for’, ’while’, ’break’, ’next’, ’ret urn’.

2.38 breakif()

Usage:
for(i,run(n)){breakif(x[i] < 0) }
for(i,run(n)){for(j,run(m)){breakif(x[i,j] < 0, 2) ...} }

Keywords: control, syntax

Usage
breakif(Logical) is equivalent to if(Logical){break;} .
breakif(Logical,n) is equivalent to if(Logical){break n; } .

It is implemented as a pre-defined in-line macro. It can be us ed only
inside a loop and n must not exceed the number of containing lo ops.

Example
Example:

Cmd> for(i,run(length(x))){breakif(abs(x[i]) > 3)}
computes the index i of the first element on vector x to exceed 3 in
absolute value.

Cross references
See also topics ’break’, ’breakall’, ’next’.

66 CHAPTER 2. MACANOVA HELP FILE

2.39 callback fun

Keywords: general, control

This topic is in file userfun.hlp. Type
userfunhelp(callback_fun)

It provides a brief introduction to the form of a user functio n that
makes "call backs" (executes functions internal to MacAnov a).

Some other useful entries in userfun.hlp are arginfo_fun an d user_fun.
Type

userfunhelp()
for a complete list of entries.

2.40 carapace

Usage:
Type help(carapace) for information about windowed versio ns of MacAnova

Keywords: general

Windowed forms of MacAnova from version 5.00 onwards use the Carapace
and wxWidgets libraries to provide graphical user interfac es. This
help topic describes features common to those versions.

There are several other related help topics that you may wish to
explore. Topic ’nongui’ describes non-windowed MacAnova. Topics
’dos_windows’, ’macintosh’, and ’unix’ describe specific s for those
platforms. Topics ’launching’ and ’customize’ describe th e use of
command line options, MacAnova options, and initializatio n files.

Windowed forms of MacAnova allow multiple command/output a nd high
resolution graphics windows and also use menus, dialogs, th e mouse,
and so forth in the standard way. A command window has two pane s,
a lower pane, into which commands are typed, and an upper pane ,
into which results are printed. Output and graphics windows can be
printed and/or saved to files.

When you type into the command window, any unmatched quotes, braces,
brackets, or parentheses will be highlighted. If you specif y a
filename as "", then a dialog box will be opened to allow you to
select the file interactively.

The Clipboard
Text in a command window can be copied to the clipboard. Conte nt of
a graphics window can be copied to the clipboard as a bitmap. T he
MacAnova variable CLIPBOARD is connected to text on the clip board in
the sense that accessing CLIPBOARD returns a MacAnova strin g containing
the text content of the clipboard, and assigning to CLIPBOAR D writes

2.40. CARAPACE 67

text to the clipboard.

Command Window Menus
File Menu Items

Open Open a text file in a new command window.
Save Save the output pane of this window to a file.
Save Window As Save, but allow a name change.
Page Setup Set up for printing.
Print Window Print the output pane of this command window.
Interrupt Stop processing the current MacAnova command.
Restore Restore a MacAnova workspace from a file.
Save Workspace Save your workspace to a file.
Save Workspace As Save your workspace to a file, changing the name.
Quit Quit MacAnova

PLEASE NOTE: saving the window saves your output but not your data.
Saving the workspace saves your data but not your output. You may
wish to do both.

Edit Menu Items
Undo/Redo Undo or redo last change in output pane.
Cut Cut text.
Copy Copy text.
Paste Paste text.
Copy to Command Copy the selection to the command pane
Execute Copy the selection to the command pane and execute
Back History Move back through command history
Forward History Move forward through command history

Windows Menu Items
Hide Hide this window.
Close Close this window.
New Open a new command window.
Output Windows A submenu allowing you to access command wind ows.
Graph Windows A submenu allowing you to access graphics wind ows.
Set Font Change the font in this command window.
Scroll to Top Scroll to the top of the output pane.
Scroll to Bottom Scroll to the bottom of the output pane.
Move to Command Move keyboard and pointer focus to the lower p ane.

Help Menu Items
Help General help on MacAnova, or help on the selection.
About Information about MacAnova.

Keyboard equivalents.
There are keyboard equivalents for many of the menu commands . For
example, up and down arrows in the command pane do backward an d
forward in the command history.

Button equivalents.
Each command window has six buttons across the bottom. Five o f
these implement the undo, execute, back history, forward hi story,
and interrupt menu items. The sixth is Clear, which clears th e text

68 CHAPTER 2. MACANOVA HELP FILE

in the command pane.

On the same row with the buttons are two status displays. The f irst
indicates when MacAnova is processing a command by displayi ng the text
"Running". The second tells you how far back you are in the com mand
history at any given point.

Graphics Window Menus
File Menu Items

Save Graph As Save the graph as jpeg, tiff, png, or PostScript .
Page Setup Set up for printing.
Print Window Print the graph.
Interrupt Stop processing the current MacAnova command.
Quit Quit MacAnova

Edit Menu Items
Copy Copy the graph to the clipboard as a bitmap.

Windows Menu Items
Hide Hide this window.
Close Close this window.
Zoom in Zoom in on the graph
Zoom out Zoom out on the graph
Fit Redraw the graph to fit the window exactly.
Fit keep aspect Redraw the graph but maintain the aspect rati o.
Set aspect ratio Set the aspect ratio for the graph.
Output Windows A submenu allowing you to access command wind ows.
Graph Windows A submenu allowing you to access graphics wind ows.

2.41 cat()

Usage:
cat(x1,x2,...,xk [,KeyPhrases]) where x1, x2, ... all have the same

type, REAL, LOGICAL, or CHARACTER, or are structures with co mponents
all of the same type

KeyPhrases can be labels:lab and/or silent:T, where lab is a CHARACTER
scalar or vector.

Keywords: variables, combining variables, character variables,
null variables

cat() is identical to vector(). See vector() for informatio n on its
use. See topic ’vectors’ for general information on vectors .

The use of cat() is deprecated -- that is, it will continue to b e
available for the immediate future, but at some point may be d isabled.
Use vector() instead.

2.42. CCONJ() 69

2.42 cconj()

Usage:
cconj(cx), cx a REAL matrix representing complex data

Keywords: time series, complex arithmetic

Usage
cconj(cx) returns the complex conjugates of successive pai rs of columns
of the matrix cx, considered as the real and imaginary parts o f complex
series. The real and imaginary parts of the results are in alt ernating
columns.

When cx has an odd number, say 2 * m-1, of columns, the last column is
interpreted as the real part of a complex series with zero ima ginary
part. In the result, an extra column of zeros is added, so the r esult
has 2 * m columns representing m complex series with both real and
imaginary parts.

Cross references
See also hconj(), hreal(), himag(), creal(), cimag().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.43 cdivc()

Usage:
cdivc(cx1 [, cx2]), cx1 and cx2 REAL matrices representing c omplex data

Keywords: time series, complex arithmetic

Usage
cdivc(cx1, cx2) computes the element wise complex ratio of f ully complex
(pairs of columns constitute real and imaginary parts) matr ices cx1 and
cx2. When either of cx1 or cx2 has an odd number of columns, it i s
augmented with a column of zeros before division.

Any ratio of the form (0 + 0i)/(0 + 0i) is returned as 0 + 0i. The r atio
of a non-zero element of cx1 and 0 + 0i is MISSING + MISSING * i.

cdivc(cx) is equivalent to cdivc(cx,cx), returning a resul t all of whose
elements are 1 + 0i, except for (0 + 0i)/(0 + 0i) ratios which ar e 0 +
0i.

When nrows(cx1) > 1 and nrows(cx2) > 1, nrows(cx1) = nrows(cx 2) is
required. Otherwise, the single row in the short argument is implicitly
duplicated to match the number of rows in the other argument.

70 CHAPTER 2. MACANOVA HELP FILE

When cx1 represents a single complex series (ncols(cx1) <= 2), that
series is divided by all the series in cx2. Similarly when nco ls(cx2)
<= 2, all the series in cx1 are divided by cx2.

Examples
Examples:

When ncols(cx1) = 2 and ncols(cx2) = 5, cdivc(cx1,cx2) is eqi valent to
cdivc(hconcat(cx1,cx1,cx1),hconcat(cx2,rep(0,nrows(cx2)))).

cdivc(1,cx) computes the complex reciprocal of cx.

Cross references
See also cdivcj(), hdivh(), hdivhj(), cprdc(), cprdcj(), h prdh(),
hprdhj(), hconcat(), rep(), nrows(), ncols().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.44 cdivcj()

Usage:
cdivcj(cx1 [, cx2]), cx1 and cx2 REAL matrices representing complex data

Keywords: time series, complex arithmetic

Usage
cdivcj(cx1, cx2) computes the element wise complex ratio of fully
complex (pairs of columns constitute real and imaginary par ts) matrices
cx1 and cconj(cx2). When either cx1 or cx2 has an odd number of
columns, it is augmented with a column of zeros before divisi on.

Any ratio of the form (0 + 0i)/(0 + 0i) is returned as 0 + 0i. The r atio
of a non-zero element of cx1 and 0 + 0i is MISSING + MISSING * i.

cdivcj(cx) is equivalent to cdivcj(cx,cx).

When nrows(cx1) > 1 and nrows(cx2) > 1, nrows(cx1) = nrows(cx 2) is
required. Otherwise, the single row in the short argument is implicitly
duplicated to match the number of rows in the other argument.

When cx1 represents a single complex series (ncols(cx1) <= 2), that
series is divided by the complex conjugates of all the series in cx2.
Similarly when ncols(cx2) <= 2, all the series in cx1 are divi ded by
cconj(cx2).

Examples
Examples:

2.45. CEILING() 71

When ncols(cx1) = 2 and ncols(cx2) = 5, cdivcj(cx1,cx2) is eq ivalent
to cdivcj(hconcat(cx1,cx1,cx1),hconcat(cx2,rep(0,nro ws(cx2)))).

cdivcj(1,cx) computes the complex reciprocal of cconj(cx) .

Cross references
See also cdivc(), hdivh(), hdivhj(), cprdc(), cprdcj(), hp rdh(),
hprdhj(), cconj(), hconcat(), rep(), nrows(), ncols().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.45 ceiling()

Usage:
ceiling(x), x REAL or a structure with REAL components

Keywords: transformations

Usage
ceiling (x) rounds the elements of the REAL variable x to the n ext
integer in the positive direction, producing a vector, matr ix, or array
with the same shape as x.

Example
Example:

Cmd> ceiling(vector(3.1416, -3.1416, 12))
(1) 4 -3 12

Argument too large
When x > 4503599627370495 or x < -4503599627370495, ceiling (x) is set to
MISSING because of the impossibility of exact representati on of integers
beyond these limits. These limits may be different on some co mputers.

Structure argument
When x is a structure consisting of REAL components, so is cei ling(x).
If the i-th component of x is xi, the i-th component of ceiling (x) is
ceiling(xi).

Cross references
See also topics floor(), round(), ’structures’.

2.46 cellstats()

Usage:
cellstats(Term), Term a CHARACTER scalar of form "A.B. ..." , where A, B,

... are factors in current GLM model.

72 CHAPTER 2. MACANOVA HELP FILE

Keywords: descriptive statistics, anova

Usage
cellstats(Term) computes statistics for each cell of the mu ltiway layout
indicated by the term in the CHARACTER variable Term. The ter m must be
made of factors in the model used by the most recent GLM (gener alized
linear or linear model) command such as regress(), anova(), or
poisson(). It omits all cases for which there is any MISSING d ata in
either the left or right hand sides of the model.

Difference from tabs()
cellstats() and tabs() do almost the same thing and generall y tabs() is
to be preferred. When Term is, say, "a.b.c" where a, b, and c ar e
factors in the most recent GLM, and y is the response variable in the
model, cellstats(Term) is almost equivalent to tabs(y, a, b , c).

cellstats() and tabs() will differ only when (a) the respons e variable y
is multivariate (has more than 1 column) and (b) there are MIS SING data
in y. cellstats() omits completely any row of y that contains any
MISSING data; tabs() uses all non-MISSING data available an d thus the
cell count can differ among the columns of y. Except in this ca se, you
should probably use tabs() in preference to cellstats() sin ce tabs() has
additional options and can be used independently of any GLM c ommand.
Even in this case, tabs() is preferable if you want cell stati stics that
use all the data.

Of course, both cellstats() and tabs() omit all cases for whi ch any of
the factors are MISSING (how could they determine the cell?) .

Example
Example:

Cmd> anova("y=a+b+c+b.c") ; cellstats("b.c") # or tabs(y, b,c)
gives cell statistics for the b.c term.

Cross references
See also topics ’glm’, tabs().

2.47 cft()

Usage:
cft(cx [,divbyT:T]), cx a REAL matrix representing complex data

Keywords: time series, complex arithmetic

Usage
cft(cx) where cx is a REAL vector or matrix, computes the full y complex
form of the discrete Fourier transforms of successive pairs of columns
of cx, considered as the real and imaginary parts of complex s eries.
The real and imaginary parts of the results are in alternatin g columns.

2.48. CHANGESTR() 73

Any MISSING values in cx are replaced by 0 in computing the res ult and a
warning message is printed.

cft(cx,divbyt:T) does the same except the transform is divi ded by the
number of rows of cx.

Inverse transform
cconj(cft(cconj(cx),divbyt:T)) is the inverse of cft() in the sense that
cx and cconj(cft(cconj(cft(cx)),divbyt:T)) are equal exc ept for rounding
error.

Limitation on length
The largest prime factor of nrows(cx) must not exceed 29. You can use
primefactors() to find the maximum factor of nrows(cx) and g oodfactors()
to find a length >= nrows(cx) which has no prime factors > 29. I n
addition, the product of all the "unpaired" prime factors ca n’t be too
large. For example N = 3 * 5* 7* 11* 13* 17* Mˆ2 = 255255 * Mˆ2, where M is an
integer, breaks the algorithm and hence is not allowed.

Cross references
See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See also hft(), rft(), cconj(), primefactors(), goodfacto rs().

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.48 changestr()

Usage:
changestr(Struc,name,x), Struc a structure, name a CHARAC TER scalar, x

a defined variable
changestr(Struct,n,x), integer n, 1 <= n <= ncomps(Struct) + 1
changestr(Struct,name:x)
changestr(Struc, -n), n a positive integer

Keywords: structures

Change component by name
changestr(Str,Name,x) makes a copy of structure Str except that the
value of component Name is changed to x. Name must be a quoted s tring
or CHARACTER scalar of no more than 12 characters. It is an err or if
Name contains a space, ’$’ or any "control character" (ASCII code <= 31
or 127). If there is no component with name Name, x will be adde d as a
new component. It will have name Name unless x is a keyword phr ase

changestr(Str,Name,newname:x) does the same, except the c hanged or added
component has name ’newname’.

changestr(Str,compname:x) is the same as changestr(Str," compname", x).

74 CHAPTER 2. MACANOVA HELP FILE

compname must have no more than 10 characters.

If you want to change a named component of a structure, say com ponent
var of structure stats, it is better to use ’stats$var <- x’ th an
stats <- changestr(stats,"var", x).

Change component by number
changestr(Str,CompNumber,x), where CompNumber is a posit ive integer,
does the same, except the component to be changed is specifie d by number
rather than by name. When CompNumber = ncomps(Str) + 1, a new c omponent
with value x is added. It is an error if CompNumber > ncomps(St r)+1.

changestr(Str,CompNumber,newname:x) does the same excep t the changed or
added component will have name ’newname’.

To change a component of a structure by number, it is preferab le to us
Str[CompNumber] <- x rather than Str <- changestr(Str,Comp Number,x).

Moreover, you can change more than one component at a time by a ssigning
to subscripts:

Cmd> Str[run(2)] <- vector(Pi,PIˆ2)
changes components and and 2 of Str without changing there na mes.

Deleting component
changestr(Str,-CompNumber) produces a new structure omit ting component
CompNumber. It is illegal to delete the only component of a st ructure.

Preferable to this usage is Str[-CompNumber]. Moreover, yo u can omit
several components by, say, Str[-run(2)].

Modificication using assignment
When Str is a structure with a component Name, Str$Name <- x ch anges
component Name, without making a temporary copy of Str.

When J is a positive integer <= ncomps(Str), Str[J] <- x chang es
component J, without making a temporary component of Str. Yo u can
change more than component of Str when J is a vector of subscri pts. See
topic ’assignment’.

Examples
Examples: In each of the following groupings, all the comman ds return
the same structure:

Cmd> changestr(structure(a:run(10),b:"Hello"),"a",PI)
Cmd> changestr(structure(a:run(10),b:"Hello"),1,PI)
Cmd> structure(a:PI,b:"Hello")

Cmd> changestr(structure(a:run(10),b:"Hello"),"a",pi :PI)
Cmd> changestr(structure(a:run(10),b:"Hello"),1,pi:P I)
Cmd> structure(pi:PI,b:"Hello")

Cmd> changestr(structure(a:run(10),b:"Hello"),3,c:"D olly")
Cmd> changestr(structure(a:run(10),b:"Hello"),c:"Dol ly")
Cmd> structure(a:run(10),b:"Hello",c:"Dolly")

2.49. CHOLESKY() 75

Cmd> changestr(structure(a:run(10),b:"Hello"),-1)
Cmd> structure(b:"Hello").

Cross references
See also topics ’structures’, ’keywords’, structure(), st rconcat().

2.49 cholesky()

Usage:
cholesky(x [,pivot:T or force:T , nonposok:T]), x a positiv e definite

square REAL matrix with no MISSING values

Keywords: matrix algebra

Usage
cholesky(A) returns the Cholesky decomposition of the posi tive definite
REAL symmetric matrix A. Its value is the REAL upper triangul ar matrix
r of the same size as A such that r’ % * % r = A. It is an error if A is
not positive definite.

Keyword ’nonposok’
cholesky(A, nonposok:T) does the same, except that a non pos itive
definite A is not considered to be an error, but results a valu e of NULL
being returned. This makes it possible for a macro to take cor rective
action when a matrix is not positive definite. See topics ’ma cros’ and
’NULL’.

Keyword ’pivot’
cholesky(A,pivot:T [,nonposok:T]) reorders the rows and c olumns as the
computation proceeds so as to obtain the most stable computa tion. It
returns a structure with components ’r’, a REAL upper triang ular matrix,
and ’pivot’, a REAL vector of integers describing the reorde ring. After
result <- cholesky(A,pivot:T), result$r’ % * % result$r should equal
A[result$pivot, result$pivot] except for rounding error.

Keyword ’force’
cholesky(A,force:Vec [,nonposok:T]), where Vec is a REAL v ector whose
length is nrows(A), enables pivoting, but allows some contr ol on
reordering. The elements of Vec should be 1, -1, or 0, since on ly the
signs are used. Before factoring, rows and columns of A, if an y, with
index j such that Vec[j] > 0 are moved to rows and columns 1, 2, . ..,
(initial columns) but are not further moved. All rows and col umns with
Vec[j] < 0 are moved to rows and columns nrows(A), nrows(A) - 1 , ...,
(final columns) but are not further moved. Rows and columns, if any,
with Vec[j] == 0 (pivoted columns), are free to be reordered, but will
follow the initial columns and precede the final columns. Ag ain the
result is a structure with components ’r’ and ’pivot’.

Cross references
See also qr().

76 CHAPTER 2. MACANOVA HELP FILE

2.50 chplot()

Usage:
chplot(x,y [, symbols:c] [, add:T, lines:T, impulse:T] [,g raphics

keyword phrases]), where x is a REAL vector or scalar, y is a RE AL
vector or matrix and c is a integer or CHARACTER scalar, vecto r, or
matrix

chplot([Graph,] [x,y, symbols:c], keys:str), str a struct ure whose
component names are graphics keywords such as ’add’, ’lines ’ and
’impulse’

Keywords: plotting

Usage
chplot(x,y,symbols:c) makes a scatter plot of REAL vector o r matrix y
versus REAL vector x using plotting symbols as specified by C HARACTER or
REAL vector c.

It is not an error when x or y is NULL; a warning message is print ed and
no plotting occurs.

For backward compatibility with earlier versions, you can o mit keyword
’symbols’, as in chplot(x,y,c).

chplot(Struc,symbols:c), where Struc is a structure with a t least two
REAL components, is equivalent to chplot(Struc[1], Struc[2], symbols:c).
For example, chplot(x,y,symbols:c) and chplot(structure (x,y),symbols:c)
are equivalent. Any components beyond the first two are igno red.

Graph variable argument
chplot(graph,x,y,symbols:c) or chplot(graph,Struc,sym bols:c), where
graph is a GRAPH variable, draws the plot encapsulated in gra ph, adding
to it the new information. See topic ’graph’ for details on ad ding
information to a plot.

Symbols used
When c is REAL, each element c[i] must be an integer with 0 <= c[i] <=
999 and the plotting symbol will be the number centered at the plotting
point.

When c is a CHARACTER scalar with value "###", the characters plotted
are the same as when symbols:c is omitted; see below.

When c is CHARACTER other than the scalar "###", up to 3 charac ters from
each c[i] will be drawn centered at the plotting point.

Default symbols
Argument symbols:c may be omitted. In this case the default p lotting
characters are as follows:

y a vector: The row number of an element y

2.50. CHPLOT() 77

y a matrix with ncols(y) > 1: The column number of an element

Keyword ’add’
chplot(x,y [,symbols:c], add:T, ...) does the same as chplo t(LASTPLOT,
x, y [,symbols:c), that is, plotted points are combined with the data
already in LASTPLOT.

’lines’, ’impulse’ and ’dumb’ keywords
chplot([graph,] x,y, lines:T [,symbols:c]) makes a charac ter plot,
connecting the points by lines similarly to lineplot().

chplot([graph,] x,y, impulse:T [,symbols:c] [,lines:T]) does the same
except that vertical lines will be drawn to the points from th e x = 0
line.

When option ’dumbplot’ has been set False (see subtopic
’options:"dumbplot"’), the plot will be a low resolution pl ot unless
’dumb:F’ is an argument.

Symbol variable shape
When c has more than 1 column then you must have ncols(c) = ncol s(y) and
the elements in c[,j] will be used to plot y[,j], reusing the r ows of c
cyclically if nrows(c) < nrows(y).

When c is a vector of length ncols(y), c[j] will be used to plot all
elements of the column y[,j]

Otherwise, if c is a vector with length(c) != ncols(y), c[i] w ill be
used to plot all elements in the row y[i,], reusing the rows of c
cyclically if nrows(c) < nrows(y).

Drawn plotting symbols
Drawn plotting symbols

When the first character of an element of a CHARACTER c has ASC II code V
between 1 and 31, it designates a specially drawn character. There are
8 basic shapes in three sizes, diamond (V=1, 9, 17), plus sign (V=2, 10,
18), square (V=3, 11, 19), cross (V=4, 12, 20), triangle (V=5 , 13, 21),
star (V=6, 14, 22), dot (V=7, 15, 23) and circle (V=8, 16, 24). Codes
1 - 8 are the standard sizes; codes 9 - 16 are about 2/3 standard size
and 17 - 24 are about 1/2 standard size. There is only one size d ot.
Codes 25 - 31 "wrap around" to 1 - 7.

You can specify these special ASCII codes using quoted strin gs "\1",
"\2", "\3", "\4", "\5", "\6", "\7", "\10", "\11", ... ,"\17" , "\20",
..., "\27", "\30", ..., "\37". The digit or digits are the oct al
representations of the codes. For example, "\3" represents an ASCII 3
and specifies a standard size square, "\10" represents an AS CII 8 and
specifies a standard size circle, and "\27" represents 22, t he smallest
size star. They can also be specified using escaped hexadeci mal codes
"\x01", "\x01", "\x02", ..., "\x09", "\x0a", ..., "\x1f".

You can also specify these codes by name, using makesymbols(). For
example, chplot(x,y,symbols:makesymbols("diamond",me dium:T)) makes the

78 CHAPTER 2. MACANOVA HELP FILE

same plot as chplot(x,y,symbols:"\11"). See makesymbols() for details.

See topic ’graphs’ for the use of a scalar or length 2 vector fo r x.

Keyword ’add’
Use keyword phrase ’add:T’ or commands addchars(), addline s(),
addpoints() and addstrings() to add information to a plot.

Keywords
Keywords ’dumb’, ’lines’, ’linetype’, ’thickness’, ’impu lse’, ’xmin’,
’xmax’, ’ymin’, ’ymax’, ’logx’, ’logy’, ’xlab’, ’ylab’, ’t itle’,
’xaxis’, ’yaxis’, ’borders’, ’ticks’, ’xticks’, ’yticks’ , ’xticklen’,
’yticklen’, ’xticklabs’, ’yticklabs’, ’height’, ’width’ , ’pause’,
’silent’ and ’notes’ may be used as for other plotting comman ds. See
topics ’graph_keys’, ’graph_border’ and ’graph_ticks’

Cross references
See topic ’graph_assign’ for information on another way to m ake plots.

Keyword ’keys’
chplot([Graph,] keys:structure(x:x,y:y,symbols:c [oth er keyword
phrases)) is equivalent to chplot([Graph,] x:x,y:y, symbo ls:c [other
keyword phrases]). See topic ’graph_keys’ for details.

File keywords
See topic ’graph_files’ for information on how to save a plot in a file
using keywords ’file’, ’new, ’ps’, ’screendump’, and ’epsf ’.

Examples
Examples:

Cmd> chplot(x,y,symbols:" * ")
makes a plot of y vs x with " * " as plotting symbol.

Suppose x[,1] contains integers 1, 2, or 3. Then

Cmd> chplot(X2:x[,2],X3:x[,3], symbols:vector("A","B" ,"C")[x[,1]],\
title:"X3 vs X2")

makes a plot of column 3 of x against column 2, using plotting s ymbols
"A", "B", or "C", according as the value in column 1 of x is 1, 2 o r 3.
Axes are labeled ’X2’ and ’X3’ and a title is printed.

Cmd> chplot(X:1,run(20)ˆ(.2 * run(5)’),\
symbols:vector(".2",".4",".6",".8","1.")’, ylab:"Pow ers of X",\
title:"Xˆ.2, Xˆ.4, Xˆ.6, Xˆ.8, and X",lines:T)

draws line connected plots of xˆ.2, , xˆ.4, xˆ.6, xˆ.8 and x vs x, using
plotting symbols ".1", ".4", ...,"1.0" for each line. X:1 is equivalent
to X:run(20). See subtopic graphs:"specification_of_dat a" for details.

Cross references
See also topics ’graphs’, plot(), lineplot(), showplot(), addchars(),
addlines(), addpoints(), colplot(), rowplot(), tek(), vt ().

2.51. CIMAG() 79

2.51 cimag()

Usage:
cimag(cx), cx a REAL matrix representing complex data

Keywords: time series, complex arithmetic

Usage
cimag(cx) computes the imaginary part of the fully complex m atrix cx.
For example, cimag(matrix(run(10),5)) is vector(6,7,8,9 ,10).

Cross references
See also hconj(), cconj(), hreal(), himag(), creal().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.52 CLIPBOARD

Usage:
CLIPBOARD <- x or x <- CLIPBOARD or vecread(string:CLIPBOAR D)
x <- fromclip([ncols]), integer ncols > 0
toclip(x), x REAL scalar, vector, matrix or array
SELECTION <- x or x <- SELECTION (GTK only)
Type help(CLIPBOARD) for more information.

Keywords: syntax, character variables, input, output

Special variable CLIPBOARD
A special CHARACTER variable CLIPBOARD is always defined. W hen used in
an expression or as an argument to a function, CLIPBOARD beha ves just
like any other variable. It can be printed, written to a file, or
assigned to a regular variable.

In windowed versions, CLIPBOARD allows direct access to the system
Clipboard.

Assignment to CLIPBOARD
CLIPBOARD <- x assigns a CHARACTER representation of x to CLI PBOARD. x
must be a CHARACTER, REAL or LOGICAL variable.

CLIPBOARD[1] <- x and CLIPBOARD[T] <- x do the same, provided x is a
scalar variable. It is an error if x is not a scalar.

CLIPBOARD[rep(1,k)] <- x is permissible, in which case x mus t be a

80 CHAPTER 2. MACANOVA HELP FILE

vector of length k and CLIPBOARD will contain a CHARACTER rep resentation
of x[k].

In the windowed versions, CLIPBOARD <- x and CLIPBOARD[1] <- x copy
the new value of CLIPBOARD to the system Clipboard. And when a ny text
is copied to the system Clipboard using the Edit Menu in MacAn ova or
any other program, that text becomes the value of CLIPBOARD.

In non-windowed versions, CLIPBOARD <- x and CLIPBOARD[1] < - x do
nothing beyond setting CLIPBOARD to CHARACTER representat ion of
x (to x when x is CHARACTER).

Details of the CHARACTER representation
After CLIPBOARD <- x, the contents of variable CLIPBOARD (an d of the
system Clipboard in the Windowed versions) are as follows:

When x is a CHARACTER scalar, CLIPBOARD will contain that sca lar.
This is also the case after CLIPBOARD[1] <- x.

When x is a REAL or LOGICAL scalar, CLIPBOARD will contain a ch aracter
representation of x. This is also the case after CLIPBOARD[1] <- x.
For example CLIPBOARD is "3.1415926535897931" after eithe r CLIPBOARD
<- PI or CLIPBOARD[1] <- PI and is "T" after CLIPBOARD <- PI > 3 o r
CLIPBOARD[1] <- PI > 3.

When x is a vector of length N, CLIPBOARD will contain N lines
separated by "\n", with line i containing a x[i], when x is CHA RACTER,
or a CHARACTER representation of x[i] otherwise.

When x is a matrix, CLIPBOARD will contain nrows(x) lines, wi th line i
containing CHARACTER representations of x[i,j], j=1,...n cols(x),
with the elements of each row separated by the tab character " \t".

When x is an array with 3 or more dimensions greater than 1, it i s
treated as if it were a matrix with nrows(x) = first dimension > 1.

Stated more technically, the value of CLIPBOARD after CLIPB OARD <- x is
what would be produced by

Cmd> CLIPBOARD <- paste(x,multiline:T,missing:"?",sep: "\t",\
linesep:"\n", format:"0.17g")

See topic paste() for more information on paste(x,multilin e:T,...).

Since MISSING is coded as ’?’, after CLIPBOARD <- x, where x is REAL
vecread(string:CLIPBOARD), should produce vector(x), in cluding MISSING
values.

Two pre-defined macros, toclip() and fromclip(), are usefu l when working
with CLIPBOARD. In particular, toclip() allows for differe nt coding of
MISSING and user specified field separators. See topics fro mclip() and
toclip().

Value of CLIPBOARD

2.52. CLIPBOARD 81

In the windowed versions, because the value of CLIPBOARD is w hatever
text the system Clipboard currently contains, CLIPBOARD ma y not be the
same as what was most recently assigned to it. This can happen because
of subsequent use of Edit menu items in MacAnova or another pr ogram.
This feature allows easy importing of data from other progra ms,
especially from spreadsheets. See topic fromclip().

Similarly, in the windowed versions you can easily export da ta from
MacAnova to another application like a spreadsheet by assig ning the
value of a variable to CLIPBOARD. See toclip().

You can free up the memory used by the contents of CLIPBOARD by
delete(CLIPBOARD). This has no effect on any system Clipboa rd.

You probably should not use CLIPBOARD as a name for a structur e
component or as a keyword on a computer with an actual Clipboa rd, as
every mention of CLIPBOARD, even in contexts like str$CLIPB OARD or
CLIPBOARD:T, refreshes special variable CLIPBOARD with st uff from the
Clipboard.

Variable SELECTION in GTK
In GTK, selecting text with the mouse provides another metho d of
communicating between programs. Briefly, if you select tex t and then
click in a window using the middle button on the mouse, what wa s
selected is inserted there. The GTK version of MacAnova has a special
CHARACTER variable SELECTION which is connected to the curr ent selection
in the same way CLIPBOARD is connected to the Clipboard. Imme diately
after

Cmd> SELECTION <- x
if you click in a window with the middle button, a character
representation of x is "pasted" into the window. SELECTION[1] <- x is
permissible if x is a scalar.

Similarly, if you select text in a window,
Cmd> charx <- SELECTION

creates a CHARACTER variable charx containing the text; if t he text is
numerical data,

Cmd> x <- vecread(string:SELECTION)
creates a REAL vector x. Use of this feature is somewhat trick y, since
clicking in a window can change the selection. When you assig n
something to SELECTION, you should retrieve it with a middle button
click before doing anything else. And if you want to assign fr om or
read from SELECTION, you should type the command without a te rminating
Enter, then select what you want to copy, click on the frame of the
MacAnova window, and then press Ctrl+E followed by Return to execute the
command.

Cross references
See also topics vecread(), read(), matread(), macroread() .

82 CHAPTER 2. MACANOVA HELP FILE

2.53 clipreaddata

Usage:
clipreaddata(name1,...,namek [,factors:T] [,keyword ph rases]),

name1,... names, quoted or unquoted variable names
clipreaddata(vector("name1",...,"namek") [,factors:F][,keyword phrases])
clipreaddata([factors:F] [,keyword phrases])

Keywords: input

Introduction
Macro clipreaddata() creates data vectors from informatio n on the
clipboard. It uses macro readdata() to "read" the clipboard and its
usage is identical, except that you don’t specify a file name . Like
readdata(), it can handle data sets in which some data column s are
non-numerical and can get variable names from the first line of the
clipboard.

Any line on the clipboard that starts with skip character ’#’ is
automatically skipped and is echoed to output by default.

clipreaddata() is particularly useful for importing data f rom a spread
sheet program, particularly if the first line contains vari able names.
In the spread sheet program, you select a rectangular set of c ells
containing numbers and copy them to the Clipboard by selecti ng Copy on
the Edit menu. After switching to MacAnova, you then use clip readdata()
to create MacAnova variables from the data in each column you selected.
For instance, if the selection contains 10 rows and 5 columns of data,
clipreaddata() will make 5 length 10 vectors. Caution: Befo re copying
to the clipboard, fill any empty cells with one of "?", " * ", "." or
"NA". clipreaddata() will read these as MISSING values.

Usage
clipreaddata(name1,name2,...,namek) uses vecread() to r ead one or more
columns of data from variable CLIPBOARD, creating variable s. name1,
name2, ..., namek. The variable names can be either quoted (" weight")
or unquoted (weight).

Text on the clipboard should consist of k columns of "words" s eparated
by spaces, commas or tabs. A column consisting entirely of nu mbers,
possibly with MISSING values (indicated by ’?’, ’.’, ’ * ’ or ’NA’) is
read as a REAL vector. A word is any set of consecutive charact ers not
including a comma, space or tab.

Non numerical data
When the first data item in a column is not a number or a code for
MISSING, the entire column is normally read as a factor, with a level
for each distinct word in the column. The factor has the origi nal words
in the file as row labels.

clipreaddata(name1,...,factors:F) does the same except a variable
starting with a non-numerical word is read as a CHARACTER vec tor rather
than translated into a factor.

2.54. CLIPWRITEDAT() 83

Names from first line
clipreaddata([,factors:T]) does the same except the names for the
variables are assumed to be in the first non-skipped line of t he
clipboard with the data starting in the second non-skipped l ine.

For all usages, the number of variable names, whether given a s arguments
or taken from the first line of the clipboard, must divide the total
number of data values. And of course the names must be legal Ma cAnova
variable names.

By default, for each variable, clipreaddata() prints a line containing
the variable name and information on its type, REAL, factor o r
CHARACTER. You can suppress this by including ’quiet:T’ as a n argument.

Keywords
You can use most vecread() keywords ’quiet’, ’silent’, ’sto p’, ’skip’,
’skipthru’, ’go’, ’quiet’, ’echo’, and ’n’, but not ’bypass ’, ’bywords’,
’bylines’, ’bychars’, ’byfields’ and ’realorchar’. See to pic
’vecread_keys’.

Cross references
See also fromclip(), toclip(), readcols(), vecread(), ’ve cread_files’.

2.54 clipwritedat()

Usage:
clipwritedat(x1,x2,... [,missing:M] [, putNames:F] \

[,fieldwidth:w or format:fmt]), vectors x1, x2, ..., all wi th same
length, CHARACTER scalars M, fmt, integer w > 0

Keywords: output

Introduction
clipwritedat() is a macro designed to copy to the clipboard v ectors of
arbitrary in columnar form. By default, the columns are head ed by the
variable names.

Usage
clipwritedat(x1,x2,...) transforms data vectors x1, x2, . .. to character
form and then puts them side by side as columns in special vari able
CLIPBOARD. In windowed systems this also copies them to the s ystem
clipboard. Effectively, it sets CLIPBOARD to an "image" of t he file
that would be written by writedata(fileName, x1, x2,...).

x1, x2, ... can be of any type. If any vector is a factor and has r ow
labels consistent with the factor levels, the row labels are written
instead of the factor levels.

REAL data are formatted using the current default format as r eturned
by getoptions(format:T), except that integer values are wr itten as
integers with no decimal point.

84 CHAPTER 2. MACANOVA HELP FILE

CHARACTER data is written right justified in a field whose wi dth is
taken from the default format.

LOGICAL data are written as "T" or "F" and then written like CH ARACTER
data.

MISSING values are written as "?".

If any data vector is specified by a keyword phrase (x1:X[,1] , for
example), the keyword is used as the vector name. For this usa ge, the
keyword may not be ’keep’, ’new’, ’fieldwidth’ or ’missing’ .

Keywords
The keywords for clipwritedat() are the same as those for wri tedata(),
except that ’new’ is ignored. See writedata() for details.

Cross references
See also clipreaddata(), fromclip(), toclip(), ’clipboar d’.

2.55 cluster()

Usage:
cluster(x [, nclust:n, standard:F, method:name, keep:cha rVec, print:T,\

tree:T or F, classes:T or F, reorder:T]), x a REAL matrix, nam e a
character scalar (one of "single", "complete", "average", "ward",
"mcquitty", "centroid", or "median"), charVec a CHARACTER vector
with elements "all", "classes", "criterion", or "distance s"

cluster(dissim:d [, ...]), d a square REAL matrix
cluster(similar:s [, ...]), s a square REAL matrix

Keywords: multivariate analysis

Usage
cluster(x) performs a hierarchical cluster analysis of cas es (rows) of
the data matrix x. The default method is average linkage and t he
default maximum number of clusters described in the output i s 9. It
produces a table of cluster membership with one line per case and a
dendrogram, with the join points labeled with the value of th e criterion
used. There must be at least 2 rows in x.

Distances between cases in x are computed as squared Euclide an distance
after standardization by dividing by standard deviations.
Standardization can be suppressed by including ’standard: F’ as an
argument. NOTE: This is a change in behavior of cluster() fro m version
3.1 to version 3.3.

Keywords ’dissim’ and ’similar’
cluster(dissim:d) uses the upper triangle of the square mat rix d as
dissimilarity or distance measure. Matrix d must have at lea st 2 rows
and is treated algorithmically as if it were unsquared Eucli dean

2.55. CLUSTER() 85

distance.

cluster(similar:s) uses the upper triangle of the square ma trix s as a
similarity matrix. Matrix sqrt(2 * (max(vector(s))-s)) is used as a
distance matrix. Matrix s must have at least 2 rows.

Other Keywords
Keyword phrase Default Meaning

Keyword ’method’
method:Name "average" The clustering method used. Legal va lues are

"ward", "single", "complete", "average",
"mcquitty", "median" and "centroid".
Name must be a quoted string or CHARACTER
variable.

Keyword ’nclust’
nclust:m 9 The number (>= 2) of clusters to be

described in the output. When m > 25, the
class membership table requires more than 80
columns for printing, and if m > 22 the
dendrogram requires more than 80. m > 50 is
illegal when either the class membership table
or the dendrogram is to be printed.

Keyword ’standard’
standard:F T suppresses the standardization of the data

matrix to unit standard deviations before
computing distances. Not legal with ’dissim’
or ’similar’.

Keyword ’distance’
distance:Dname "euclid" Specifies the distance measure us ed to label

the dendrogram. Legal values are "euclid" and
"euclidsq". It has no effect on the clustering
produced. Dname must be a CHARACTER variable
or quoted string. Not legal with keywords
’dissim’ or ’similar’.

Keyword ’keep’
keep:charVec none Specifies which, if any, results should b e

returned as the value of cluster(). charVec
must be a quoted string or a CHARACTER vector
or scalar. Legal values for elements of
charVec are "distances" (the computed distances
are returned), "classes" (the computed n by
nclust-1 class membership matrix is returned),
"crit" (the criterion values at each of the
final nclust - 1 merges are saved), and "all"
(all three are returned). When only one item
is to be returned, it is returned as a matrix
or vector. Otherwise, items are components in
a structure with names ’distances’, ’classes’,
and ’criterion’. The use of ’keep’ suppresses

86 CHAPTER 2. MACANOVA HELP FILE

printing the table of class membership and the
dendrogram, unless print:T, tree:T, or
classes:T are arguments. When ’keep’ is not
used, cluster() has a NULL value.

Keyword ’print’
print:T Forces printing output, even when ’keep’ is

used. Default is F when ’keep’ is used;
otherwise the default is T.

Keyword ’tree’
tree:T Forces printing of dendrogram.
tree:F Suppresses printing of dendrogram.

Default is F when ’keep’ is used; otherwise T.
Must come later than ’keep’ in argument list.

Keyword ’classes’
classes:T Forces printing of table of class membership.
classes:F Suppresses printing of table of class

membership. Default is F when ’keep’ is used;
otherwise T. Must come later than ’keep’ in
argument list.

Keyword ’reorder’
reorder:T F Directs that the rows of the printed table of

class membership be reordered so that cases in
the same clusters are adjacent. It does not
affect the returned value if keep:"classes"
appears. The reordering is the same as that
implied in the dendrogram. A warning message
is printed if you use reorder:T together with
classes:F.

Example
Example:

Cmd> results <- cluster(x,nclust:15,keep:vector("class es","crit"),\
method:"median",classes:T, reorder:T)

computes the last 15 stages of clustering, using the so calle d median
method, returns the class membership table and the criterio n in a
structure, and prints the reordered class membership table .

2.56 cmplx()

Usage:
cmplx(Re,Im), Re and Im REAL matrices with same size and shap e.
cmplx(Re)

Keywords: time series, complex arithmetic

Usage
cmplx(re,im) combines matrices re and im considered as the r eal and

2.57. COEFS() 87

imaginary parts of a complex matrix. The j-th columns of re an d im
become the 2j-1-th and 2j-th columns of the result. Re and im m ust have
the same size and shape and the output has the same number of ro ws and
twice the columns. For example, if re and im are both 5 by 2,
cmplx(re,im) is equivalent to hconcat(re[,1],im[,1],re[,2],im[,2]).

cmplx(re) is equivalent to cmplx(re,0 * re), that is, it produces a
complex matrix with 0 imaginary part.

Cross references
See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.57 coefs()

Usage:
coefs([Term] [, errorTerm:ErrorTerm, se:T, coefs:F, byte rm:F,

silent:T]), Term a CHARACTER scalar, a positive integer, or a factor
or variate in the current GLM model, ErrorTerm a CHARACTER sc alar or
positive integer. Use byterm:F only when Term and coefs:F om itted,
and se:T included

Keywords: glm, anova, regression

Usage
coefs(Term) returns the model effects or regression coeffi cients for
term Term in the current GLM model. These are determined from
information computed by the most recent GLM (generalized li near or
linear model) command such as regress(), anova(), or poisso n().

Term is usually a quoted string or CHARACTER variable such as "a.b"
which exactly matches a term in the most recent model, that is , "a.b" is
not the same as "b.a". An interaction term produces a matrix o r array
with the leftmost subscript corresponding to the leftmost f actor in
Term. When a model term contains {expr} where expr is a MacAno va
expression, ’{’ and ’}’ are part of the term name and must be in cluded.

For a term which consists of a single factor or variate, Term c an be its
unquoted name.

Alternatively, Term can be a integer between 1 and the number of terms,
excluding the final error term. For example, unless the mode l contained
"-1", coefs(1) gets the estimated intercept or grand mean.

coefs() (no Term specified) computes coefficients for all t erms in the
model as a structure with one component for each term. The com ponent
names are taken from the term names, truncated if necessary t o 12
characters. When any truncation is necessary, the complete term names
are attached to the result as labels. See topic ’labels’.

88 CHAPTER 2. MACANOVA HELP FILE

Keyword ’silent’
coefs(Term, silent:T) and coefs(silent:T) do the same, but certain
warning and advisory messages are suppressed. ’silent:T’ c an be used
with any other keywords. This feature is useful in a macro whe n warning
messages might confuse the user, or in a simulation. The defa ult value
of ’silent’ is False unless the value of option’ ’warnings’ i s False.

Keyword ’se’
coefs(Term,se:T) and coefs(se:T) also compute standard er rors and are
equivalent to secoefs(Term) and secoefs(), respectively. You can also
use keywords ’error’ and ’byterm’ in this case. See secoefs().

Caution: After anova(), manova() and regress(), standard e rrors are
computed using the final error mean square in the model. This may not
be appropriate with mixed models, including split plot desi gns.

Multivariate use
coefs(Term,Varno) or coefs(,Varno) computes coefficient s only for
variable number Varno in the case of a multivariate dependen t variable.
When present, Varno must be the second argument and any keywo rds must
follow it.

Limitations
coefs() does not work after screen() or after a GLM command wi th
’coefs:F’ as an argument.

Example
Example: After anova("y= a + b + a.b")

coefs(a), coefs("a"), or coefs(2) will compute the main eff ect
coefficients for factor a

coefs("a.b") or coefs(4) will produce a matrix of the a by b
interaction coefficients.

coefs() will produce all coefficients, including the const ant.

Cross references
See also secoefs(), contrast(), modelinfo(), popmodel(), pushmodel()

2.58 colplot()

Usage:
colplot(x [, graphics keyword phrases]), x a REAL matrix

Keywords: plotting

Usage
colplot(x) makes an "interaction" plot of the data in the REA L matrix x.
The plotting positions are the row numbers and the values in x . Points
within each column are joined by lines. Any keywords useable in
chplot() may follow x. colplot() is implemented as a pre-def ined macro.

2.59. COMMENTS 89

When option ’dumbplot’ has been set False (see subtopic
’options:"dumbplot"’), the plot will be a low resolution pl ot unless
’dumb:F’ is an argument.

See topic ’graph_keys’, ’graph_border’ and ’graph_ticks’ for information
on other keywords that can be used with colplot().

Example
Example:

Cmd> colplot(run(20)ˆ(.2 * run(5)’),xlab:"X",\
title:"Xˆ.2, Xˆ.4, Xˆ.6, Xˆ.8, X")

Cross references
See also topic rowplot().

2.59 comments

Usage:
[command1; command2 ...] # comment which will be ignored

Keywords: syntax

Usage
Anything following a ’#’ on a line is ignored unless it is part of a
string quoted with ’"’. You can use this feature to add commen ts to
spooled output or usage information to macros. The ’#’ and ev erything
following up to the end of the line or a terminating ’\’ are ski pped.

You can use macrousage() to print any comment lines (lines st arting with
"#") in a macro. It is good practice to include comment lines
describing the usage. They should not be confused with heade r lines
starting with ’)’ in a file which may also give usage informat ion. See
topics macrousage(), ’macros’, ’files’.

Example
Example:

Cmd> xbar <- sum(x)/nrows(x) # compute mean as a row vector
is just the same as

Cmd> xbar <- sum(x)/nrows(x)

Cross references
See also spool().

90 CHAPTER 2. MACANOVA HELP FILE

2.60 complex

Usage:
cmplx(re,im), hprdhj(hx1,hx2), hprdh(hx1,hx2), hdivhj(hx1,hx2),
hdivh(hx1,hx2), cprdc(cx1,cx2), cprdcj(cx1,cx2), cdivc (cx1,cx2),
cdivcj(cx1,cx2), cmatmultc(cx1,cx2), csolve(cx), ceige n(), cdiag(cx),
ctrace(), ctranspose(), hpolar(hx), cpolar(cx), hrect(h x), crect(cx),
hreal(hx), himag(hx), creal(cx), cimag(cx), csubscr()

Keywords: time series, complex arithmetic

Introduction
MacAnova stores complex matrices in two forms, fully comple x and packed
Hermitian.

Fully complex
The fully complex form has alternating columns R1, C1, R2, C2 , ...,
containing the real and imaginary parts of the columns of the complex
matrix represented. When such a matrix has an odd number of co lumns,
there is an implied additional column of zeros. Thus columns 1, 3, 5,
... are the real parts of complex series and columns 2, 4, 6, .. . are
the corresponding imaginary parts.

Packed hermitian
The packed Hermitian form is meaningful only for matrices wh ose columns
represent periodic complex frequency functions with Hermi tian symmetry
sampled at frequencies 0,1/n,2/m,...,(n-1)/n cycles, whe re n is the
number of rows. Hermitian symmetry for such a function g(f) m eans g(-f)
= g(1-f) = conj(g(f)). This implies that g(0) and g(.5) are re al and
g((n-k)/n) = conj(g(k/n)), and hence only n real numbers are required to
represent such series.

The n numbers are stored in the following order, the packed He rmitian
form:

z[0],Re(z[1]),...,Re(z[floor((n-1)/2)]),{z[n/2]},Im (floor(z[(n-1)/2])),
...,Im(z[1]),

where z[k] = g(k/n). z[n/2] is omitted when n is odd.

Functions for complex data
You can create a fully complex matrix from its real and imagin ary parts
Re and Im using cmplx(Re,Im). cmplx(Re) is equivalent to
cmplx(Re,0 * Re), returning a complex matrix with 0 imaginary part.

You can extract the real and imaginary parts and compute the c omplex
conjugate of a fully complex matrix cx by creal(cx), cimag(c x), and
cconj(cx).

You can do the same for a packed Hermitian matrix hx by hreal(h x),
himag(hx), and hconj(hx).

You can switch between the two representations of a periodic Hermitian
series by htoc(hx) and ctoh(cx).

You can transform both types of complex matrices to and from p olar form

2.61. COMPNAMES() 91

(with the modulus being stored as the real part and the argume nt or
phase as the imaginary part of fully complex or packed hermit ian
matrices) by cpolar(cx), crect(cx), hpolar(hx), and hrect (hx).

You can multiply them element by element by cprdc(cx1,cx2), cprdcj(cx1,
cx2), hprdh(hx1,hx2), and hprdhj(hx1,hx2).

You can divide them element by element by cdivc(cx1,cx2), cd ivcj(cx1,
cx2), hdivh(hx1,hx2), and hdivhj(hx1,hx2).

Macros for complex matrices
There are macros for working with complex matrices A and B rep resented
as real matrices a and b in fully complex form. These are cmatm ultc()
(A %* % B, A %c% B, A %C% B), ctrace() (trace(A)), cdiag() (diag(A)) ,
csolve() (inverse of A), ctranspose() (A’), cjtranspose() (conj(A)’),
ceigen() (eigenvalues and eigenvectors of a square Hermiti an A) and
csubstr() (extract elements as if by subscripts).

Cross references
See also subtopic ’matrices:"complex_matrices"’, polyro ot(), rft(),
hft(), cft().

2.61 compnames()

Usage:
compnames(S), S a structure

Keywords: structures, character variables

Usage
compnames(struc) returns a CHARACTER vector containing th e names of the
components of STRUCTURE struc.

Example
Cmd>compnames(structure(a:1,b:2,c:17)) # returns vecto r("a","b","c").
(1) "a"
(2) "b"
(3) "c"

Cross references
See also topics structure(), strconcat(), changestr(), ’s tructures’,
nameof(), varnames()

2.62 console()

Usage:
y <- console()

92 CHAPTER 2. MACANOVA HELP FILE

Keywords: files, input

Usage
y <- console() uses a pre-defined macro to read a vector using variable
CONSOLE as the filename. This results in a request to type the data in,
terminating it with ’!’. This has the advantage over y <- vect or(1.3,
4.5, 6.7, 2.5, ...), say, in that the commas do not need to be ty ped.
Variable CONSOLE can be used with any operation that reads or writes a
file. Its value is ignored.

Command vecread() is used by console() so you can use ’?’ to sp ecify
missing data.

On a windowed versions, you enter data into a dialog box. Pres sing
Return or clicking on the OK button ends a line. The Done butto n
terminates the data.

Keyword ’echo’
y <- console(echo:F) suppresses any echoing of lines read. S uch echoing
is the default behavior on windowed versions, or when using c onsole() in
a batch file on any system.

Cross references
See vecread().

2.63 contrast()

Usage:
contrast(Term,Coefs [,Byvar] [,errorTerm:ErrorTerm] [, silent:T]), Term a

factor in the most recent GLM model or a character SCALAR or po sitive
integer specifying a term and ErrorTerm a CHARACTER scalar o r positive
integer, Coefs REAL, Byvar a factor in the most recent GLM or a
CHARACTER scalar specifying such a factor

Keywords: glm, anova, comparisons

Usage
contrast(Term,Coefs) computes the estimated value, sum of squares, and
standard error for the contrast in the levels of the term spec ified by
Term. The term specified must be made up exclusively of facto r
variables in the model used by the most recent GLM (generaliz ed linear
or linear model) command such as anova() or poisson().

Term is usually a CHARACTER scalar or quoted string such as "a " or
"b.c". When the term contains just one factor, you can use jus t the
unquoted factor name. Instead of a name, Term can be an intege r between
1 and the number of terms in the model, counting CONSTANT if it is in
the model. For example, after anova("a+b+a.b"), contrast(b,Coefs),
contrast("b",Coefs) and contrast(3,Coefs) are equivalen t.

2.63. CONTRAST() 93

When any of the variables in the model are of the form {expr}, w here
expr is a MacAnova expression, you must specify the variable in Term in
the same way or by number. See topic ’models’.

Result
The result is a structure with components ’estimate’, ’ss’, and ’se’.
For example, when factor a in a model has 5 levels, contrast(" a",
vector(2,2,2,-3,-3)/6) compares the average effect of the first 3 levels
of factor a with the average effect of the last 2.

Multi factor case
When Term contains more than one factor (for example "a.b"), Coefs must
be an array with dimensions matching the number of levels in t he factors
of Term. The contrast coefficients must sum to zero, but MacA nova does
not check to see if the contrast lies in any particular subspa ce.

You can use outer() to create multidimensional contrast coe fficients
that are products of one dimensional contrasts. For example , if factors
a and b have 2 and 3 levels, respectively, after anova("y = a * b"),

Example
Cmd> contrast("a.b", outer(vector(1,-1), vector(2,-1,- 1)))

compute results for a product contrast that forms part of the a.b sum
of squares. See outer().

By variables
contrast(Term,Coefs,Byvar) computes the contrast, sum of squares, and
standard error separately for each level of the factor varia ble (the
"byvariable") given in the CHARACTER or quoted string varia ble Byvar.

For example, after anova("y=a * b"), where a has three levels,
contrast("a",vector(-1,0,1),b) computes the indicated c ontrast for each
level of b. Byvar can be specified by a quoted name but not by a
positive integer.

Keyword ’errorterm’
contrast(Term, Coefs [,Byvar], errorterm:ErrTerm) does t he same except
the mean square error used in computing standard errors come s from the
term specified by ErrTerm. ErrTerm can either be a positive i nteger
specifying a term number, or a CHARACTER scalar or quoted str ing
containing the name of a term in the model ("a.b.c", for examp le).

Keyword ’silent’
contrast(Term, Coefs, [,Byvar] [, errorterm:ErrTerm], si lent:T) does the
same, except that certain warning or advisory messages are s uppressed.
The default value of ’silent’ is False unless the value of opt ion’
’warnings’ is False.

Limitations
contrast() does not work after screen() or after any GLM comm and with
’coefs:F’ as an argument.

94 CHAPTER 2. MACANOVA HELP FILE

Unbalanced models
For unbalanced models, contrasts are computed as follows.

No byvariable:
When Term corresponds to a term in the current anova model, th e sum of
squares is that for removal of the contrast degree of freedom from the
complete model. It is actually computed as a linear combinat ion of
the non-aliased coefficients associated with the term.

When Term is not present in the model, the sum of squares is the
incremental sum of squares obtained when adding the contras t df to the
complete model, that is, the contrast is adjusted for all ter ms in the
model.

Byvariable specified:
The contrast is unadjusted for any other terms in the model, t hat is,
it is computed as if the contrast degree of freedom at that lev el of
the byvariable is the only degree of freedom in the model).

In all three cases, the MSE used in computing the standard err or is the
error mean square (or other mean square as specified by ’erro rterm’)
from the most recent GLM command.

After nonlinear GLM
After logistic(), probit(), poisson(), and other GLMs fit i teratively by
glmfit() (but not robust()), contrast() computes the estim ated value and
the deviance associated with the contrast based on full mode l weights.
Key word ’byvar’ may not be used, but deviances are otherwise computed
as after anova(). Standard errors are computed using a scale parameter
of 1, or the value specified by keyword ’scale’ on the GLM comm and.
Instead of ’ss’, the second component of the result has name ’ deviance’.

After robust(), the contrast value is computed based on coef ficients
from the full model. The "ss" computed is the square of the rat io of
the estimated contrast to its estimated standard error mult iplied by the
error mean square. Keyword ’byvar’ cannot be used.

Contrast() does not work following fastanova(), ipf(), or s creen() or
after a GLM command with coefs:F.

Examples
Example:

Cmd> anova("y=a+b+a.b")
Cmd> contrast("b",vector(-1,1,0)) # assumes b has 3 levels
Cmd> contrast("b",vector(-1,1,0),"a") # a is byvariable
Cmd> contrast("a.b",matrix(vector(-1,1,0,0,1,-1),2)) # assumes 2 by 3

Cross references
See also coefs(), secoefs(), modelinfo(), popmodel(), pus hmodel()

2.64. CONVOLVE() 95

2.64 convolve()

Usage:
convolve(wts, x [, reverse:T, decimate:M]), wts a REAL vect or, x a REAL

vector or matrix, M a positive integer

Keywords: time series

Usage
convolve(a,x) performs a circular convolution of the value s in vector a
with each of the columns of vector or matrix x. If we index rows
starting with 0, so that a contains elements a[0], a[1], ..., a[p-1],
and a column of x contains x[0], x[1], ..., x[n-1], the corres ponding
column of the result is computed as follows:

d[k] = sum(a[j] * x[k-j],j=0,min(k,p-1)) + sum(a[j] * x[k-j+n],j=k+1,p-1),

where the second sum is omitted when k >= p - 1.

Keyword ’reverse’
convolve(a,x,reverse:T) computes sums of circularly lagg ed products of
the elements of a and each column of x. Explicitly, with the sa me
indexing,

d[k] = sum(a[j] * x[j-k+n],j=0,min(k-1,p-1)) + sum(a[j] * x[j-k],j=k,p-1)

where the first sum is omitted when k = 0 and the second sum is
omitted when k >= p.

Keyword ’decimate’
convolve(a,x,decimate:M) and convolve(a,x,reverse:T,d ecimate:M) "thin"
the result by a factor of about 1/M. M must be a positive intege r.

Specifically, if d is the result of an unthinned convolution , the value
returned is a K by ncols(x) matrix where K = floor((nrows(x)- 1)/M) + 1
with d[1 + (j-1) * M,] in row j. This option is useful if a is the
impulse response function of a smoothing filter.

Cross references
See also autoreg(), movavg().

2.65 copyright

Keywords: general

Authors
MacAnova is conceived and programmed by Gary W. Oehlert and C hristopher
Bingham, School of Statistics, University of Minnesota, an d is Copyright
(C) 1994 - 2001 by them. Their e-mail addresses are kb@stat.u mn.edu and
gary@stat.umn.edu.

96 CHAPTER 2. MACANOVA HELP FILE

GNU public license
MacAnova is distributed under the terms of the GNU Public Lic ense,
Version 2 (see file COPYING distributed with MacAnova).

There is no warranty of any kind for MacAnova, either express ed or
implied. MacAnova is distributed "as is". See file Copyint. txt for a
more complete statement.

Home page
The MacAnova WWW home page is

http://www.stat.umn.edu/macanova
Executable versions of MacAnova are available there, along with source
and PDF versions of the User’s Guide and other documentation . An
up-to-date mirror of these files is maintained by statlib at

http://lib.stat.cmu.edu/

Reports of bugs should be emailed to kb@stat.umn.edu.

Software used
The Carapace versions of MacAnova (Windows, Mac OS X, GTK Lin ux)
make use of the wxWidgets cross-platform library available at
http://www.wxwidgets.org. The wxWidgets license is very s imilar to
the LGPL. Carapace is using wxWidgets versions 2.4.2 (Windo ws and
GTK) and 2.5.3 (Mac OS X); we plan to move to 2.6 when is becomes
available.

The extended memory MSDOS version (DJ) is compiled using a ve rsion of
Gnu gcc developed and copyrighted by D. J. Delorie (DJGPP) an d
distributed under the terms of the GNU Public License. Sourc e and
executable for DJGPP can be found at http://www.delorie.co m/djgpp

The Mac OS 9 (classic) version uses TransSkel 3.12, a transpo rtable
Macintosh application skeleton placed in the public domain by Paul
Dubois (dubois@primate.wisc.edu).

Plotting is done using a modification of GNUplot, Copyright (C) 1986,
1987 Thomas Williams, Colin Kelley.

The Unix/Linux version and the extended memory DOS version (DJGPP) allow
command line editing and history maintenance using the GNU R eadline
Library, Copyright (C) 1988, 1991 Free Software Foundation , Inc.,
distributed under the terms of the GNU public license. A comp ressed tar
archive of version 2.0 (used in the Unix/Linux version) is av ailable
through the MacAnova home page. The version used in the DOS DJ GPP
version was included with the source for gdb4.12 found on
ftp://oak.oakland.edu/ which has been reorganized since w e retrieved it.

Fortran programs used
Included in MacAnova’s distribution are modified translat ions from
Fortran to C of the following programs written by others.

Program screen and related subroutines for computing regre ssions by
leaps and bounds by G.M.Furnival and R.W.Wilson supplied by Sanford

2.65. COPYRIGHT 97

Weisberg. See their paper, Regression by Leaps and Bounds, T echno-
metrics 16 (1974) 499-511.

Subroutines rebak, reduc, rsg, tql2, tqlrat, tred1, tred2, svd,
tridib, and tinvit from the Eispack library.

Subroutines dchdc, dgeco, dgedi, dgefa, dgesl, and dqrdc fr om the
Linpack library.

Subroutines for computing mixed radix fast Fourier transfo rms written
by Gordon Sande at the University of Chicago circa 1968.

Program hc and related subroutines for computing hierarchi cal cluster
analysis by F. Murtagh, retrieved from statlib.

Subroutines for making stem and leaf displays from the book A BCs of
EDA by David Hoaglin and Paul Velleman, Duxbury 1981.

Subroutines to compute the roots of real polynomials from Al gorithm
493 published in TOMS retrieved from netlib.

Code to compute the cumulative normal adapted from W. J. Kenn edy and
J. E. Gentle, Statistical Computing, Marcel Dekker, 1980, p p 90-92,
which is based on W. J. Cody, Rational Chebyshev approximati ons for
the error function, Math. Comp 23 (1969) 631-637.

Code to compute the inverse of a normal distribution from Alg orithm AS
111 by J.D. Beasley and S. G. Springer, Appl. Statist. 26 (197 7),
118-121 retrieved from statlib.

Code to compute the inverse Student’s t-distribution from C ACM
Algorithm 396, by G. W. Hill retrieved from netlib.

Code to compute the (central) Beta distribution from a subro utine of
W. Fullerton, Los Alamos, based on Bosten and Battiste, Rema rk on
Algorithm 179, CACM 17 (1974) p. 153

Code to compute the inverse Beta distribution from Algorith m AS 109 by
G. W. Cran, K. J. Martin and G. E. Thomas, Appl. Statist. 26 (19 77),
111-114 retrieved from statlib.

Code to compute the non-central Beta distribution from Algo rithm AS
226 by R. V. Lenth, Appl. Statist. 36 (1987) 241-244, incorpo rating
changes by H. Frick, Appl. Statist. 39 (1990) 311-12, retrie ved from
statlib

Code to compute the gamma and chi-squared cumulative distri butions
from Algorithm AS 91 by D. J. Best and D. E. Roberts,
Appl. Statist. 24 (1975), 385-388, incorporating revision s by
B. L. Shea, Appl. Statist. 40 (1991), 233-235), retrieved fr om
statlib.

Code to compute the non-central chi-squared cumulative dis tribution

98 CHAPTER 2. MACANOVA HELP FILE

from Algorithm AS 275 by Cherng G. Ding, Appl. Statist. 24 (19 92),
478-482, retrieved from statlib.

Code to compute the non-central Student’s t cumulative dist ribution
from Algorithm AS 243 by Russell V. Lenth, Appl. Statist. 38 (1989),
185-189, retrieved from statlib.

Code to compute the cumulative distribution function and it s inverse
for the Studentized range from Algorithm AS 190 by R. E. Lund a nd
J. R. Lund, Appl. Statist. 32 (1983) 204-210, incorporating
corrections by Lund and Lund, Appl. Statist. 34 (1985) 104 an d
I. D. Hill, Appl. Statist. 36 (1987) 119, retrieved from stat lib.

Code for a combined uniform pseudo-random number generator for 32 bit
machines in P. L’Ecuyer 1988 Comm. ACM, retrieved from netli b.

Code implementing the Singleton quicksort algorithm (Comm . ACM
Algorithm 347) adapted from ssort.f in cmlib.

Code computing the cumulative distribution for Dunnett’s t was adapted
from Algorithm AS 251 by C. W. Dunnett, Appl. Statist. 38 (198 9)
564-579 incorporating a correction by C. W. Dunnett, Appl. S tatist. 42
(1993) p. 709, and subroutine mvstud, also by Dunnett, that i s part of
the AS 251 distribution from statlib.

Code generating a pseudo-random Poisson variable adapted f rom a
Fortran program in C. D. Kemp and W. A. Kemp, Poisson random
variate generation, Appl. Statist. 40 (1991) 143-158.

Code generating a pseudo-random binomial variable adapted from
Algorithm 678, Transactions on Math. Software 15, 394-397 b y Voratas
Kachitvichyanukul and Bruce Schmeiser.

Code implementing varimax rotation from subroutine varmx s upplied by
Douglas Hawkins (doug@stat.umn.edu).

Code implementing k-means clustering from subroutine trwc la supplied
by Douglas Hawkins (doug@stat.umn.edu).

Code used to compute inverses to cumulative distributions f rom
subroutine fsolve supplied by Douglas Hawkins (doug@stat. umn.edu). It
is used by invchi() to compute the inverse of non-central chi -squared
and by invdunnett() to compute probability points of Dunnet t’s t.

Macros from fortran
Certain macros are also based on Fortran code:

Macro levmar() in file Arima.mac is based on a Fortran progra m of Ken
Brown. See Brown,K.,M. and Dennis,J.,E., Derivative free a nalogues of
the Levenberg-Marquardt and Gauss algorithms for nonlinea r least
squares approximation. Numerische Mathematik, Vol. 18, pp . 289-297
(1972)

Macro neldermead() in file Math.mac is based on Fortran subr outine

2.66. COR() 99

MINIM by D. E. Shaw, CSIRO, Division of Mathematics & Statist ics, with
amendments by R. W. M. Wedderburn, Rothamsted Experimental Station,
and Alan Miller, CSIRO, Division of Mathematics & Statistic s. See
also Nelder & Mead, The Computer Journal 7 (1965), 308-313. M INIM was
retrieved from statlib.

Macro contourplot() and associated macros contour(), _Fol low() and
findcontour() are based on Fortran routines by Dan LaLibert e,
implementing methods in Crane, C.M.(1972), Contour plotti ng algorithm,
’The Computer Journal’, Vol. 15, pp. 382-384 and Cottafava, G., Andle
Moli, G. (1969). Automatic Contour Map, ’Comm. ACM’, Vol. 12 ,
pp. 386-391.

2.66 cor()

Usage:
cor(x1 [,x2,...]), x1, x2, ... REAL vectors or matrices all w ith the

same number of rows

Keywords: descriptive statistics

Usage
cor(x) computes a correlation matrix for data in REAL matrix x. Any row
of x that contains missing data is entirely omitted. It is an e rror to
have missing data in all rows.

cor(a,b,c,...), where a, b, c, ... are vectors or matrices wi th the
same number of rows, is equivalent to cor(hconcat(a,b,c,.. .)) . See
hconcat().

When any column in the input is constant (all values the same) , the
entire corresponding row and column of the output is set MISS ING,
including the diagonal, and a warning message is printed. In particular
this occurs when the number of rows in the input is 1.

Non-MISSING elements of the diagonal are exactly 1.

2.67 cos()

Usage:
cos(x [, degrees:T or radians:T or cycles:T]), x REAL or a str ucture

with REAL components x in radians (default), cycles, or degr ees as set
by option "angles" or the optional keyword

Keywords: transformations

Usage
cos(x) computes the cosine of the values of the elements of x,
where x is a REAL scalar, vector, matrix or array. The result h as the

100 CHAPTER 2. MACANOVA HELP FILE

same shape as x.

Units
The argument is considered to be in units of radians, degrees or cycles
as determined by the value of option ’angles’. The default is radians.
See topic ’options’.

cos(x, radians:T), cos(x, degrees:T), cos(x, cycles:T) in terpret x as in
the indicated units, regardless of the value of option ’angl es’.

Missing or too large argument
When any element of x is MISSING or is too large (> 5000000 * PI radians
in absolute value), the corresponding element of the result is MISSING
and a warning message is printed.

Structure argument
When x is a structure, all of whose non-structure components are REAL,
cos(x [,UNITS:T]), where UNITS is one of ’radians’, ’degree s’ or
’cycles’, is a structure of the same shape and with the same co mponent
names as x with each non-structure component transformed by cos().

Cross references
See topic ’transformations’ for more information on cos(), including its
use with a CHARACTER argument.

2.68 cosh()

Usage:
cosh(x) returns the hyperbolic cosine of the elements of x, w hen x is a
REAL scalar, vector, matrix or array. The result has the same shape as
x. In terms of other functions, cosh(x) = (exp(x) + exp(-x))/ 2.

When any element of x is MISSING or > 710.4758600739439 in abs olute
value, the corresponding element of cosh(x) is MISSING and a warning
message is printed.

When x is a structure, all of whose non-structure components are REAL,
cosh(x) is a structure of the same shape and with the same comp onent
names as x, with each non-structure component transformed b y cosh().

See topic ’transformations’ for more information on cosh() .

Keywords: transformations

See topic ’transformations’ for information on cosh().

2.69. CPOLAR() 101

2.69 cpolar()

Usage:
cpolar(hx [,unwind:F or crit:val]), hx a REAL matrix repres enting

complex data, val a REAL scalar, 0.5 < val <= 1

Keywords: time series, complex arithmetic

Usage
cpolar(cx) computes the polar form of the fully complex matr ix cx,
storing it in pseudo fully complex form, with the amplitude o r absolute
value as the real part and the phase as imaginary part. Thus
creal(cpolar(cx)) and cimag(cpolar(cx)) return REAL matr ices whose
columns are the amplitudes and phases of the complex series r epresented
by pairs of columns of cx.

Angle units
The value of the computed phase is in radians, degrees or cycl es
depending on the value of option ’angles’. See subtopic
’options:"angles"’. By default the phase is "unwound" so as to minimize
discontinuities arising from wrap-around.

Keywords ’crit’ and ’unwind’
cpolar(cx,crit:Val), where .5 <= Val < 1 changes the criteri on
controlling "unwinding". The default is .75. See unwind() f or details.

cpolar(cx,unwind:F) suppresses the unwinding.

Cross references
See also hpolar(), crect(), hrect().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.70 cprdc()

Usage:
cprdc(cx1 [, cx2]), cx1 and cx2 REAL matrices representing c omplex data

Keywords: time series, complex arithmetic

Usage
cprdc(cx1, cx2) computes the element wise complex multipli cation of
fully complex (pairs of columns constitute real and imagina ry parts)
matrices cx1 and cx2. When cx1 or cx2 has an odd number of colum ns, it
is augmented with a column of zeros before multiplication.

cprdc(cx) is equivalent to cprdc(cx,cx).

102 CHAPTER 2. MACANOVA HELP FILE

When cx1 or cx2 represents a complex scalar (nrows(cx1) = 1 an d
ncols(cx1) <= 2 or nrows(cx2) = 1 and ncols(cx2) <= 2), cprdc()
multiplies every element of the other argument by that scala r. For
example,

Cmd> i_times_cx <- cprdc(vector(0,1)’,cx)

multiplies cx by i = sqrt(-1).

When nrows(cx1) = 1 or nrows(cx2) = 1, cprdc() multiplies eac h row in
the other argument by that single row.

When cx1 or cx2 represents a single complex series (ncols(cx 1) <= 2 or
ncols(cx2) <= 2), cprdc() multiplies each series in the othe r argument
by that series.

It is an error when both nrows(cx1) > 1 and nrows(cx2) > 1 and
nrows(cx1) != nrows(cx2), or when both ncols(cx1) > 2 and nco ls(cx2) > 2
and ceiling(ncols(cx1)/2) != ceiling(ncols(cx2)/2) (the number of
complex series represented differs).

Examples
Examples:

When ncols(cx1) = 2 and ncols(cx2) = 5, cprdc(cx1,cx2) is equ ivalent to
cprdc(hconcat(cx1,cx1,cx1),hconcat(cx2,rep(0,nrows(cx2))))

When a and b are REAL scalars, cprdc(cmplx(a,b),cx) compute s the
complex scalar product of a + b * i and cx.

Cross references
See also cprdcj(), hprdh(), hprdhj(), cdivc(), cdivcj(), h divh(),
hdivhj(), hconcat(), rep(), nrows(), ncols().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.71 cprdcj()

Usage:
cprdcj(cx1 [, cx2]), cx1 and cx2 REAL matrices representing complex data

Keywords: time series, complex arithmetic

Usage
cprdcj(cx1, cx2) computes the element wise complex multipl ication of
fully complex (pairs of columns constitute real and imagina ry parts)
matrices cx1 and cconj(cx2). When cx1 or cx2 has an odd number of

2.72. CREAL() 103

columns, it is augmented with a column of zeros before multip lication.

cprdcj(cx) is equivalent to cprdcj(cx,cx) and returns as ou tput a matrix
with the squared moduli of the elements of cx, considered as c omplex
numbers, in the odd columns (real part) of the result, with ze ro’s in
the even columns (imaginary part).

When cx1 or cx2 represents a complex scalar (nrows(cx1) = 1 an d
ncols(cx1) <= 2 or nrows(cx2) = 1 and ncols(cx2) <= 2), cprdcj ()
multiplies every element of the other argument by that scala r. For
example,

Cmd> i_times_cx <- cprdcj(vector(0,1)’,cx)

multiplies cconj(cx) by i = sqrt(-1).

When nrows(cx1) = 1 or nrows(cx2) = 1, cprdcj() multiplies ea ch row in
the other argument by that single row.

When cx1 or cx2 represents a single complex series (ncols(cx 1) <= 2 or
ncols(cx2) <= 2), cprdcj() multiplies each series in the oth er argument
by that series.

It is an error when both nrows(cx1) > 1 and nrows(cx2) > 1 and
nrows(cx1) != nrows(cx2), or when both ncols(cx1) > 2 and nco ls(cx2) > 2
and ceiling(ncols(cx1)/2) != ceiling(ncols(cx2)/2) (the number of
complex series represented differs).

Examples
Examples:

When ncols(cx1) = 2 and ncols(cx2) = 5, cprdcj(cx1,cx2) is eq uivalent
to cprdcj(hconcat(cx1,cx1,cx1),hconcat(cx2,rep(0,nro ws(cx2))))

When a and b are scalars, cprdcj(cmplx(a,b),cx) computes th e complex
scalar product of a + b * i and cconj(cx).

Cross references
See also cprdc(), hprdh(), hprdhj(), cdivc(), cdivcj(), hd ivh(),
hdivhj(), cconj(), hconcat(), rep(), nrows(), ncols().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.72 creal()

Usage:
creal(cx), cx a REAL matrix representing complex data

104 CHAPTER 2. MACANOVA HELP FILE

Keywords: complex arithmetic, time series

Usage
creal(cx) computes the real part of the fully complex matrix cx. For
example, creal(matrix(run(10),5)) is vector(1,2,3,4,5) .

When cx has an odd number, say 2 * m-1, of columns, the last column is
interpreted as the real part of a complex series with zero ima ginary
part and the result has m columns.

Cross references
See also hconj(), cconj(), hreal(), himag(), cimag().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.73 crect()

Usage:
crect(cx), cx a REAL matrix representing complex data

Keywords: time series, complex arithmetic

Usage
crect(cx) is the inverse operation to cpolar(). Matrix cx is assumed to
represent the polar form of a fully complex series, with ampl itudes or
absolute values in the real part and phases in the imaginary p art. The
result contains the real and imaginary parts of that series i n fully
complex form. See topic ’complex’ for discussion of complex matrices in
MacAnova.

Angle units
The phases are assumed to be in units of radians, degrees or cy cles
depending on the value of option ’angles’. See subtopic
’options:"angles"’.

Cross references
See also cpolar(), hpolar(), hrect().

2.74 ctoh()

Usage:
ctoh(cx), cx a REAL matrix representing complex data

Keywords: time series, complex arithmetic

2.75. CUMBETA() 105

Usage
ctoh(cx) returns the packed Hermitian symmetrized form of t he REAL
matrix cx, considering its columns in pairs as representing unrestricted
Complex series. When cx is m by 2 * n-1, or m by 2 * n, ctoh(cx) is m by n,
with column i containing the Hermitian symmetrized form of c olumns 2 * i-1
and 2 * i. When ncols(cx) is odd, the final complex series is assumed to
have imaginary part zero.

When cx actually has Hermitian symmetry, ctoh(cx) represen ts the same
matrix in packed form. When cx does not have such symmetry, ct oh(cx)
represents the symmetrized matrix obtained by averaging el ements that
should be equal and discarding the imaginary parts of elemen ts that
should be real.

Cross references
See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See also htoc(), cconj(), hconj(), hreal(), himag(), creal (), cimag().

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.75 cumbeta()

Usage:
cumbeta (x,alpha,beta[,lam] [,upper:T or lower:F]), x, al pha, beta, and

lam REAL, elements of alpha, beta > 0, lam >= 0

Keywords: probabilities

Usage
cumbeta(Val,a,b) computes the probabilities that a beta ra ndom variable
with parameters a and b would be <= the elements of the vector,
matrix, or array Val.

cumbeta(Val,a,b,lam) computes similar probabilities for non-central beta
with noncentrality parameter lam.

Any of Val, a, b, or lam that are not scalars (single numbers) m ust be
vectors, matrices, or arrays with the same size and shape whi ch will
also be the size and shape of the result.

cumbeta(Val,a,b [,lam] ,upper:T) and cumbeta(Val,a,b [,l am] ,lower:F) do
the same, except P(beta >= Val) is computed.

The elements of a, b and lam must be positive REAL numbers.

Example
Example:

Cmd> cumbeta(.173,1.5,2.5,upper:T) # upper tail prob,a = 1 .5,b = 2.5
(1) 0.79252

106 CHAPTER 2. MACANOVA HELP FILE

Cmd> 1 - cumbeta(.173,1.5,2.5) # same
(1) 0.79252

Cross references
See also cumF(), invF(), invbeta().

2.76 cumbin()

Usage:
cumbin(x,N,P [,upper:T or lower:F]), x, N and P REAL, elemen ts of N

integers > 0, elements of P between 0 and 1

Keywords: probabilities

Usage
cumbin(Val,N,P) computes the probabilities that a binomia l random
variable with N trials at probability P would be <= elements o f the
vector, matrix or array Val. When Val is not integral, the res ult is
the same as cumbin(floor(Val),N,P).

Any of Val, N, and P that are not scalars (single numbers) must be
vectors, matrices, or arrays with the same size and shape whi ch will
also be the size and shape of the result.

The elements of N must be positive integers less than 100,000 and the
elements of P must be between zero and one.

cumbin(Val,N,P,upper:T) and cumbin(Val,N,P,lower:F) co mpute the
probability that the binomial random variable is >= element s of Val.
This is mathematically the same as 1 - cumbin(ceiling(Val - 1),N,P), not
1 - cumbin(Val,N,P)

Note that when Val is an integer, P(x = Val) is included in both
cumbin(Val,N,P) and cumbin(Val,N,P,upper:T).

Computing P values
If x_obs is an observed number of successes in a sequence of n
independent trials with constant p = P(success), you can use cumbin() to
compute P-values for a test of H_0: p = p_0 as follows:

H_a P-value
p > p_0 cumbin(x_obs,n,p_0,upper:T)
p < p_0 cumbin(x_obs,n,p_0)
p != p_0 2 * min(cumbin(x_obs,n,p_0),cumbin(x_obs,n,p_0,upper:T))

Example
Example:

Cmd> 1 - cumbin(7,13,.25) # P(x > 7) with n = 13, p = .25
(1) 0.0056493

Cmd> cumbin(8,13,.25,upper:T) # or cumbin(8,13,.25,lowe r:F), same

2.77. CUMCHI() 107

(1) 0.0056493

Cross references
See also cumpoi(). See invbeta:"binomical_confidence_in terval" for
information on computing a confidence interval for p based o n a binomial
random variable

2.77 cumchi()

Usage:
cumchi(x,df [,upper:T or lower:F]), x and df REAL, elements of df > 0
cumchi(x,df,lam [,upper:T or lower:F]), same x, df, lam REA L with 0 <=

lam[i] < 1419.56542578676

Keywords: probabilities

Usage
cumchi(Val,df) computes P(x <= Val) where x is a chi-square r andom
variable with df degrees of freedom. When Val is a vector, mat rix or
array, the probabilities are computed for each element. Whe n Val and df
are both not scalars, they must be the same size and shape whic h will
also be the size and shape of the result.

The elements of df must be positive (fractional degrees of fr eedom are
allowed).

cumchi(Val, df, upper:T) and cumchi(Val, df, lower:F) do th e same except
the upper tail probability P(x >= Val) is computed. It is
mathematically the same as 1 - cumchi(Val, df), although a mo re accurate
value may be computed.

Example
Cmd> 1 - cumchi(sum((obs-e)ˆ2/e), nrows(obs) - 1) # P value

Cmd> cumchi(sum((obs-e)ˆ2/e), nrows(obs) - 1, upper:T) # s ame

Non central chi squared
cumchi(Val,df,lam) computes P(x <= Val) where x is a non-cen tral
chi-square random variable with df degrees of freedom and no n-centrality
parameter lam. Both cumchi(Val,df,lam,upper:T) and cumch i(Val,df,lam,
lower:F) compute P(X >= Val). All non-scalar arguments must be the same
size and shape which will also be the size and shape of the resu lt. The
elements of Val must be non-negative and less than 1419.5654 2578676.

Example
Power of 5% Chi-squared test of test of H_0: p[1] = p0[1], ..., p[k] =
p0[k] when p[j] = p1[j], j = 1,...,k based on a multinomial sam ple of
size n:

Cmd> cumchi(invchi(.05,k-1,upper:T),k-1,n * sum((p1-p0)ˆ2/p0),upper:T)

Cross references

108 CHAPTER 2. MACANOVA HELP FILE

See also cumgamma(), invchi(), invgamma().

2.78 cumdunnett()

Usage:
cumdunnett(x, ngroup, errorDf [,groupSizes][,onesided: T][,epsilon:eps]

[,upper:T or lower:F]) x REAL, elements of ngroup integers > = 2,
elements of errorDf >= 1, elements of groupsizes >= 0, eps > 0,
default = .00001.

Keywords: probabilities, comparisons

Usage
cumdunnett(x, K, Df) computes the probability that Tmax <= x , Tmax =
max(abs(t21), abs(t31), ..., abs(tK1)), where t21, t31, .. ., tK1 are K-1
t-statistics of the form tI1 = (xbarI-xbar1)/ stderr(xbarI -xbar1), I =
2,...,K. xbar1, xbar2, ..., xbarK are the means of independe nt normal
random samples of the same size with identical population me ans and
variances, and the standard errors are computed using an ind ependent
estimate of error variance with Df degrees of freedom. The va lue is 0
for any x <= 0. For x >= 0, when K = 2 the value is the same as
2* cumstu(x,Df) - 1. See cumstu().

cumdunnett(x, K, Df, upper:T) and cumdunnett(x, K, Df, lowe r:F) do the
same, except they compute the upper tail probability P(Tmax >= x).

Keyword ’onesided’
cumdunnett(x, K, Df, onesided:T) computes the probability that Tmax<=x,
where Tmax is now the maximum of t21, t31, ..., tK1, not of thei r
absolute values. When K = 2 the value is the same as cumstu(x,D f).
With ’upper:T’ or ’lower:F’ it computes the upper tail proba bility
P(Tmax >= x).

See below for computing probabilities when the sample sizes differ.

x, K and Df must be REAL. The elements of K must be integers >= 2, and
the elements of Df must be >= 1, not necessarily integers.

Any of the arguments x, K or Df that are not scalars must all be
vectors, matrices or arrays of the same size and shape; the va lue has
the same size and shape.

Keyword ’epsilon’
cumdunnett(x, K, Df [, onesided:T] [, upper:T or lower:F], e psilon:eps),
where eps is a small positive number (default .00001) which c ontrols the
accuracy to which the probability is computed; the computed probability
should be no farther than eps from the true probability.

Multiple comparisons
cumdunnett() is primarily used to compute P values for a mult iple
comparisons procedure due to C. W. Dunnett wherein a control group

2.78. CUMDUNNETT() 109

(group 1) is compared to K-1 other treatment groups using K-1 t-tests.

For a completely randomized design with k treatment groups o f size n,
the P value is computed as cumdunnett(maxt, k, k * n - k, upper:T
[,onesided:T]). See invdunnett() for computing critical v alues of the
Dunnett test.

Caution: cumdunnett() is very computation intensive and ma y be
unacceptably slow on an older computer. On one Macintosh 680 00 computer
with no math coprocessor, a single value took about 7 minutes to
compute.

Example
Cmd> cumdunnett(3.27, 5, 5 * 8 - 5, upper:T) # P(Tmax >= 3.27)
(1) 0.00866

computes P(Tmax > 3.27) for a completely randomized design w ith 5
groups, all with sample size 8.

Differing sample sizes
cumdunnett(x, K, Df, groupSizes [,onesided:T, epsilon:ep s, upper:T or
lower:F]) computes probabilities for Tmax, with REAL argum ent groupSizes
specifying the sample sizes.

In the simplest usage, groupSizes is a vector (ndims(groupS izes) = 1),
with elements >= 0. When groupSizes is a matrix or array
(ndims(groupSizes) > 1), it is treated as if it were a vector, matrix or
array, with one less dimension, each of whose elements is a ve ctor with
length = last dimension of groupSizes.

The first ndims(groupSizes) - 1 dimensions of groupSizes mu st match the
dimensions of any of x, K, or DF which is not a scalar. In partic ular,
a m by 1 matrix, which is treated as a vector of length m by most
MacAnova functions, is interpreted by cumdunnett() as a set of m vectors
of length 1.

In computing an element of the result based on a vector of grou p sizes
(either all of groupSizes when it is a vector, or a row or "slic e" of
groupSizes when ndims(groupSizes) > 1), cumdunnett() uses up to k of the
non-zero leading values in the vector, where k is the corresp onding
element of K. When there are fewer than k non-zero values, the last one
is replicated as many times as needed. It is an error to have a z ero
value followed by a nonzero value or to have all values zero.

When there is only 1 non-zero value in a row or "slice" of group Size,
the replication of this element means the group sizes are ass umed to be
equal. In particular, this is the interpretation when group Sizes is a
scalar or a m by 1 matrix.

Examples
Cmd> cumdunnett(3.27, 4, 12 - 4, vector(6,2,2,2), upper:T)
(1) 0.03070

110 CHAPTER 2. MACANOVA HELP FILE

computes P(Tmax >= 3.27) for a completely randomized design with 4
groups and sample sizes 6, 2, 2 and 2.

Cmd> cumdunnett(3.27, vector(3,4), vector(12 - 3, 12 - 4),\
matrix(vector(6,3,3,0, 6,2,2,2),4)’, upper:T)

(1) 0.01825 0.03070

computes P(Tmax >= 3.27) for two completely randomized desi gns, one with
3 groups and sample sizes 6, 3, and 3, the other with 4 groups wi th
sample sizes 6, 2, 2, and 2. Because trailing values in the row s of
groupSizes are replicated, matrix(vector(6,3, 6,2),2)’ w ould be an
equivalent way to specify the group sizes.

Cmd> cumdunnett(3.27, 4, 12 - 4, 3)
(1) 0.97182

computes the same result as cumdunnett(3.27, 4, 12 - 4), beca use
groupSizes is a scalar.

Ratios of samples sizes used
Only the ratios of non-zero elements of groupSizes are relev ant.

For example, for 5 groups (K=5), the following groupSizes ar e
equivalent: vector(1,2,3,3,3), vector(1,2,3), vector(1 ,2,3,0,0),
vector(2,4,6).

vector(1,2,3,0,3) and vector(1,2,3,0,0,1) would be error s because a
non-zero value follows a zero.

Caution: cumdunnett() is somewhat computation intensive. On a slow
computer you may have to wait several seconds for a result. Us ing a
somewhat larger value for epsilon, for example, epsilon:.0 001, may speed
up the calculation at the cost of loss of accuracy.

Cross references
See also invdunnett(), cumstudrng().

2.79 cumF()

Usage:
cumF(x,df1,df2 [,lam] [,upper:T or lower:F]), x, df1, df2 a nd lam REAL,

elements of df1 and df2 >i 0 and lam >= 0

Keywords: probabilities

Usage
cumF(Val,df1,df2) computes the probabilities that an F ran dom variable
with df1 and df2 degrees of freedom would be less than the elem ents of
the vector, matrix, or array Val.

cumF(Val,df1,df2,upper:T) and cumF(Val,df1,df2,lower: F) compute upper

2.80. CUMGAMMA() 111

tail probabilities. For large Val, the result may preserve s ignificant
digits that are lost when computing the upper tail probabili ty by 1 -
cumF(Val,df1,df2).

Non central F
cumF(Val,df1,df2,lam [,upper:T or lower:F]) computes sim ilar
probabilities for non-central F with noncentrality parame ter lam.

Any of Val, df1, df2, or lam that are not scalars (single numbe rs) must
be vectors, matrices, or arrays with the same size and shape w hich will
also be the size and shape of the result.

The degrees of freedom must be positive REAL numbers (not nec essarily
integers). Upper tail areas of F can be computed as 1 - cumF().

Example
Examples:
Compute P-value for F-statistic following anova():

Cmd> cumF((SS[2]/DF[2])/(SS[5]/DF[5]), DF[2], DF[5], up per:T)

Compute 2-tail P-value for test of sigma_1 = sigma_2 based on sample
standard deviations s1 and s2 from independent normal sampl es.

Cmd> 2* min(cumF(s1ˆ2/s2ˆ2, n1-1, n2-1), \
cumF(s1ˆ2/s2ˆ2, n1-1, n2-1, upper:T)) # two tail P-value

Cross references
See also invF(), cumbeta(), invbeta().

2.80 cumgamma()

Usage:
cumgamma(x,alpha [,upper:T or lower:F]), x and alpha REAL, elements of

alpha > 0

Keywords: probabilities

Usage
cumgamma(Val,alpha) computes the probabilities that a gam ma random
variable with shape parameter alpha would be less than the el ements of
the vector, matrix, or array Val.

When Val and alpha are both not scalars, they must be vectors, matrices,
or arrays with the same size and shape which will also be the si ze and
shape of the result.

The elements of alpha must be positive.

cumgamma(Val,alpha,upper:T) and cumgamma(Val,alpha,lo wer:F) compute
upper tail probabilities. For large Val, this may provide mo re
significant digits than the mathematically equivalent 1 -

112 CHAPTER 2. MACANOVA HELP FILE

cumgamma(Val,alpha).

cumchi(x,df [,upper:T or lower:F]) is equivalent to cumgam ma(x/2,df/2
[,upper:T or lower:F]).

Example
Example:

Cmd> 1 - cumgamma(13.27, 15.5) # P(x >= 13.27)
(1) 0.69507

Cmd> cumgamma(13.27, 15.5, upper:T) # the same
(1) 0.69507

Cross references
See also invgamma(), cumchi(), invchi().

2.81 cumnor()

Usage:
cumnor(x [,upper:T or lower:F]), x REAL

Keywords: probabilities

Usage
cumnor(Z) computes the probabilities that a standard norma l (mean 0,
variance 1) random variable would be less than the elements o f the
vector, matrix, or array Z. The size and shape of the result is the
same as that of Z.

cumnor(Z, upper:T) and cumnor(Z, lower:F) compute upper ta il
probabilities. For large positive Z, these may preserve sig nificant
digits lost by the mathematically equivalent 1 - cumnor(Z).

Two-tailed P values associated with an observed value of z, m ay be
computed as 2 * cumnor(abs(z),upper:T) or 2 * (1 - cumnor(abs(z))).

Example
Example:
Two-tail normal P-value for z_obs = 1.841

Cmd> 2* cumnor(1.841,upper:T) # or 2 * (1 - cumnor(1.841))
(1) 0.06562

Cross references
See also invnor().

2.82. CUMPOI() 113

2.82 cumpoi()

Usage:
cumpoi(x,mu [,upper:T or lower:F]), x and mu REAL, elements of mu > 0

Keywords: probabilities

Usage
cumpoi(Val,mu) computes the probability that a Poisson ran dom variable
with mean mu is <= the elements of the vector, matrix or array V al.
When Val is not integral, the result is the same as cumpoi(flo or(Val),
mu).

When Val and mu are both not scalars, they must be the same size and
shape which will also be the size and shape of the result.

All elements of mu must be non-negative

cumpoi(Val,mu,upper:T) and cumpoi(Val,mu,lower:F) comp ute the
probability that the Poisson random variable is >= elements of Val.
This is mathematically the same as 1-cumpoi(ceiling(Val-1),mu), not
1-cumpoi(Val,mu).

Note that when Val is an integer, P(x = Val) is included in both
cumpoi(Val,mu) and cumpoi(Val,mu,upper:T).

Computing P values
If x_obs is an observed value of a Poisson random variable wit h mean mu,
you can use cumpoi() to compute P-values for a test of H_0: mu = mu_0 as
follows:

H_a P-value
mu > mu_0 cumpoi(x_obs,mu_0,upper:T)
mu < mu_0 cumpoi(x_obs,mu_0)
mu != mu_0 2* min(cumpoi(x_obs,mu_0),cumpoi(x_obs,mu_0,upper:T))

Example
Example:

Cmd> 1 - cumpoi(13,9.5) # P(x > 13) = 1 - P(x <= 13), mu = 9.5
(1) 0.10186

Cmd> cumpoi(14,9.5, upper:T) # same
(1) 0.10186

See also cumbin(). See invgamma:"poisson_confidence_int erval" for
information on computing a confidence interval for a Poisso n mean.

2.83 cumstu()

Usage:
cumstu(x,df [,upper:T or lower:F]), x and df REAL, elements of df > 0
cumstu(x,df,delta [,upper:T or lower:F]), x, df > 0, delta R EAL

114 CHAPTER 2. MACANOVA HELP FILE

Keywords: probabilities

Usage
cumstu(Val,df) computes P(t <= Val) where t is a Student’s t r andom
variable with df degrees of freedom. Val and df can be scalars ,
vectors, matrices or arrays, but must have the same size and s hape if
neither is a scalar. When both are scalars, the result is a sca lar; if
there is a non-scalar argument, the result has the same size a nd shape
as that argument.

The degrees of freedom must be positive, but not necessarily integral.

cumstu(Val,df,upper:T) and cumstu(Val,df,lower:F) comp ute upper tail
probabilities P(t >= Val). The result is mathematically equ ivalent to 1
- cumstu(Val,df) but may be more accurate for large Val.

Two tailed P values for an observed t statistic Val can be comp uted with
the macro twotailt(Val,df) or as 2 * cumstu(abs(Val),df,upper:T)).

Example
Compute two-tail P-value of H_0: mu = 10 using sample mean xba r and
standard deviation s from sample of size n:

Cmd> 2* cumstu(abs(sqrt(n) * (xbar-10)/s), n-1, upper:T) #2-tail P-value

Non central t
cumstu(Val,df,delta) computes P(t <= Val) where t is a non-c entral
Student’s t random variable with df degrees of freedom and no ncentrality
parameter delta. All three arguments can be scalars, vector s, matrices
or arrays, but any non-scalar arguments must have the same si ze and
shape which will be the size and shape of the result.

cumstu(Val,df,delta,upper:T) computes the upper tail pro bability
P(t >= Val).

When Val = (xbar - mu_0)/(s/sqrt(n)) is computed from a rando m sample of
size n from N(mu_a, sigmaˆ2), delta = sqrt(n) * (mu_a - mu_0)/sigma.

Example
Compute the power of a one-tail 5% t-test of H_0: mu = 10 vs H_a: mu >
10 when mu = 15:

Cmd> cumstu(invstu(.05,n-1,upper:T),n-1,sqrt(n) * (15-10)/sigma,upper:T)

Cross references
See also twotailt(), invstu(), subtopic cumF:"non_centra l_F", power()
and power2().

2.84. CUMSTUDRNG() 115

2.84 cumstudrng()

Usage:
cumstudrng(x, ngroup, errorDf [,epsilon:eps] [,upper:T o r lower:F])

where x is REAL, elements of ngroup integers >= 2, elements of errorDf
>= 1, eps > 0 small

Keywords: probabilities, comparisons

Usage
cumstudrng(x, K, Df) computes the probability that Q <= x, wh ere Q is a
Studentized range based on K normal variates and an independ ent estimate
of variance with Df degrees of freedom. All three arguments m ust be
REAL. K must consist of integers >= 2, and the elements of Df mu st be
>= 1, not necessarily integers. The value is 0 for any x <= 0. Fo r any
element of Df > 1000, the asymptotic value (Df = infinity) is u sed.

Any of the arguments x, K or Df that are not scalars must be vect ors,
matrices or arrays all of the same size and shape.

cumstudrng(x,2,Df) should be the same as 2 * cumstu(x/sqrt(2),Df) - 1
except for computational error.

cumstudrng(x, K, Df, upper:T) and cumstudrng(x, K, Df, lowe r:F) compute
the upper tail probability P(Q >= x). The result is equivalen t to 1 -
cumstudrng(x,K,Df).

Test of ANOVA hypothesis
When you have K independent normal samples of size n, all with the same
variance, you can test the null hypothesis that all means are equal by
the studentized range statistic computed as Q <- (max(xbars) -
min(xbars))/sqrt(Ssq/n). This is an alternative to the ANO VA
F-statistic.

You can compute the P-value based on Q as cumstudrng(Q,K,K * (n-1),
upper:T). Here xbars is a vector containing the K sample mean s and Ssq
is the pooled estimate of variance. See invstudrng() for com puting
critical values for Q.

Keyword ’epsilon’
cumstudrng(x, K, Df, epsilon:eps [,upper:T or lower:F]), w here eps is a
small positive scalar, does the same computation with accur acy
influenced by eps. The smaller the value of eps, the more accu rate the
result should be, but the longer it will take to compute it. Th e
default value of eps is 0.0000001.

Cross references
See also invstudrng(), cumstu().

116 CHAPTER 2. MACANOVA HELP FILE

2.85 customize

Keywords: control, general

Introduction
You can alter how MacAnova works either by using command line options
when launching MacAnova or by setting options once MacAnova has started.
You can automate these approaches by setting an environment al variable
MACANOVA and/or by preparing a startup file MacAnova.ini.t xt.

One common reason doing this is to add additional search path s for
macros, help, and files. Also, on Unix/Linux, it may be neces sary to
set the directory where MacAnova lives by using the -appdir o ption.

Environmental variable MACANOVA
MacAnova looks for an environmental variable MACANOVA. Its value should
be a list of command line options such as ’-l 26 -w 75 -q’ (see to pic
’launching’ for details on command line options). These are , in effect,
prepended to any command line options that you use and thus ar e can be
overridden by options on the command line. Some care may be ne eded
when quoting arguments with embedded spaces. Also, it may be necessary
to double any backslashes used in directory paths.

DOS/Windows example: add another search directory and set d umb plots to
be 26 lines and 75 columns. On Windows NT/2000/XP, right clic k on
"My Computer", then select "Properties", then select "Envi ronment" (you
may need to select "Advanced" on some systems). Then add a new variable
MACANOVA with value -l 26 -w 75 -path c:\macanova\macros
On earlier systems you can add a line like the following in you r
AUTOEXEC.BAT file.

SET MACANOVA=-l 26 -w 75 -path c:\macanova\macros

Unix/Linux example: set the application directory and add a directory to
the search path. The method for setting environment variabl es depends
on the shell that you use. For csh or a variant such as tcsh, add a line
similar to the following to the .chsrc file in your home direc tory:

setenv MACANOVA ’-path ˜/mymacros -appdir /usr/local/mac anova’
For sh, bash, or ksh, add a line similar to the following to the .profile
file in your home directory:

MACANOVA=’-path ˜/mymacros -appdir /usr/local/macanova ’;export MACANOVA

Another use for MACANOVA is to make sure some standard macros are read
in or variables created by including ’-e Command’ in the envi ronmental
variable (see ’launching’). For example, in Unix/Linux, on e of

setenv MACANOVA "-e getmacros(ffplot,tsplot,spectrum,q uiet:T)" [csh]
or

MACANOVA="-e getmacros(tsplot,ffplot,quiet:T)";expor t MACANOVA [sh]
ensures macros tsplot() and ffplot() will always be availab le. Warning:
The command cannot contain any spaces or tabs.

Customizing by using a startup file
When MacAnova is launched, it searches for a "startup" file w ith a
special name: MacAnova.ini.txt MacAnova searches in the de fault
directory and any directories listed in character vector DA TAPATHS.

2.85. CUSTOMIZE 117

If it is found, MacAnova assumes the initialization file con tains
MacAnova commands and executes it silently as a batch file be fore the
first prompt (see batch(), launching).

See topic ’launching’ for information on how to specify an al ternative
startup file using command line flag -f. See topic ’DATAPATH S’ for a
description of setting the search path.

The use of a startup file is completely optional. If you have o ne, you
can put commands in it to set options such as the default outpu t
formatting, file names to replace the default values of vari ables
DATAFILE, MACROFILES, DATAPATHS (see topic ’DATAPATHS’), and HOME (see
topic ’file_names’) and the units (radians, degrees, or cyc les) to be
used by trigonometric functions (see topic ’options’). You can also
include commands to create macros or read in macros that will thus
always be available whenever you launch MacAnova.

Note: setoptions(prompt:newprompt) has no effect in a star tup file. See
topics setoptions(), ’options’.

The version of the startup file distributed with MacAnova do es nothing
as it stands, since every action in it is in an if(F){...} clau se. You
can activate actions in the file by editing it to change some o r all of
the if(F){...} to if(T){...} using any text editor. If you us e a word
processor, the file must be saved as a text or ASCII file.

Tektronix emulation
If you run a Unix/Linux version of MacAnova through a termina l emulating
program that can switch into and out of Tektronix 4014 emulat ion mode,
you may want to use a startup file that sets option ’tektest’ t o specify
the character strings that control such switches. See subto pic
’options:"tektest"’. This is not necessary when you are run ning in an
xterm window.

Example startup file
Here is a simple example of a possible MacAnova startup file (the line
numbers are for reference but are not part of the file)

Line #
1 setoptions(nsig:6,angles:"cycles",pvals:T,fstats:T ,restoredel:F)
2 DATAFILE <- "timeser.dat"
3 addmacrofile("mytser.mac")
4 adddatapath("C:\\Time Series\\Data") #Windows form
5 ls <- macro("listbrief($0)")
6 if(isdefined(DEGPERRAD)){delete(DEGPERRAD,lockedok :T)}

If this were your startup file, it would have the following ef fects:
Line 1:

Output will be printed with 6 significant digits (option ’ns ig’)
Trigonometric functions will assume that angles are measur ed in cycles

with 1 equivalent to 2 * pi (option ’angles’)
Output from GLM functions such as anova(), regress(), and gl mfit()

will include P values, and where appropriate, F-statistics (options

118 CHAPTER 2. MACANOVA HELP FILE

’pvals’ and ’fstats’)
Command restore() will not delete existing variables unles s they are

overwritten or unless keyword phrase ’delete:T’ is used on r estore()
(option ’restoredel’)

Line 2:
Pre-defined CHARACTER variable DATAFILE will be redefined to be

"timeser.dat". This will result in getdata() retrieving da ta
from file "timeser.dat".

Line 3:
Prepend "mytser.mac" to pre-defined CHARACTER vector MACR OFILES,

ensuring that getmacros() will search file mytser.mac befo re the
standard macro files.

Line 4:
Prepend "C:\\Time Series\\Data" to predefined CHARACTER v ariable

DATAPATHS making it the first search directory. On Unix/Lin ux
might be something like "˜/TimeSeries/Data", and on Mac OS 9
it might be "MyDisk:Time Series:Data". See topic ’DATAPATH S’.

Line 5:
Macro ls will be an "alias" for command listbrief()

Line 6:
Pre-defined REAL constant DEGPERRAD with value 180/pi will be deleted.
’lockedok:T’ is required since DEGPERRAD is a locked variab le.

2.86 data files

Keywords: variables, files, input, output

Introduction
Any data file that can be read by MacAnova must be a plain text o r ascii
file. If you create it in a word processor, be sure to save it as a
text or ascii file.

All versions of MacAnova correctly read text files in DOS and Windows
format (lines separated by carriage return and linefeed cod e), in
Macintosh format (lines separated only by carriage return c ode), and in
Unix/Linux format (lines separated only by linefeed code).

Option ’maxlinelen;
The only known limitation is that no more than a fixed number o f
characters will be scanned in any single line. This number is
determined by option ’maxlinelen’ whose default in most ver sions is
2000. If by some chance, you need to read a file containing lin es
longer than this, you can increase it by, say

Cmd> setoptions(maxlinelen:5000)

Cross references
See topic ’vecread_file’ for information on files containi ng a single
unstructured REAL or CHARACTER data set that can be read by ve cread()
and readcols().

2.87. DATAPATHS 119

See topic ’matread_file’ for information on files of named R EAL,
LOGICAL, or CHARACTER data sets or structures that can be rea d by
matread() and read(). Data sets may contain coordinate labe ls and have
descriptive notes. No single line can have more than 50 data i tems.

See topic ’macro_files’ for information on files that can be read by
macroread() and read().

See topic ’files’ for technical information on file names, d efault
directories or folders, and abbreviated file names of the fo rm
"˜/filename".

See topic ’DATAPATHS’ for information on where MacAnova sea rches for
files.

See also matread(), read(), vecread(), readcols(), and mac roread().

2.87 DATAPATHS

Keywords: files, input, output

Description
This topic describes how variable DATAPATHS determines whe re MacAnova
searches for files when you use a command such as read(), matr ead(),
vecread() or macroread() to read a file. For all such command s, the
first argument is a CHARACTER scalar or quoted string specif ying a file
name. See topic ’file_names’.

DATAPATHS must be a CHARACTER scalar or vector. Each element must be
the name (path) of a directory, ending with a separator chara cter
(you may use ’/’ on all platforms, ’\’ in Windows or MSDOS, and ’:’ on
Mac OS 9). See topic ’file_names’ for information on path nam es.

Search behavior
MacAnova first looks for the file in the default directory or folder
(see topic ’files’).

If the file is not found in the default directory, MacAnova se arches
for it in the directory or folder whose name is in DATAPATHS[1], then in
DATAPATHS[2] and so on. If the file is not found in any of these , you
are informed that the file could not be opened.

Macro adddatapath()
You can use macro adddatapath() to add directories or folder s to the
start or end of DATAPATHS. See adddatapath().

Pre defined value
On windowed versions of MacAnova, DATAPATHS is initialized to have two
elements. The first element is a standard place for MacAnova files in
the user’s directory. This is the MyMacAnovaFiles director y in the
user’s home directory. (The home directory is well defined o n Mac OS X

120 CHAPTER 2. MACANOVA HELP FILE

and Unix/Linux systems; various versions of Windows have ho me
directories for users, often in the Documents and Settings d irectory.)
The second element is a standard directory in the MacAnova in stallation.
(See the option -appdir under topic ’launching’.)

Changing the value
You can change the defaults by setting DATAPATHS in a start up file, or
by setting environmental variable MACANOVA, or by command l ine options.
See topics ’customize’ and ’launching’.

For compatibility with earlier versions of MacAnova, if var iable
DATAPATHS does not exist, variable DATAPATH is substituted , if it
exists.

Examples
Windows/DOS example

Windows and DOS:
When DATAPATHS is vector("A:/SURVEY/", "C:/MACANOVA/"),
read("mydata.dat") first tries to read MYDATA.DAT in the de fault
directory or folder and then, if not successful, tries to rea d
A:\SURVEY\MYDATA.DAT and C:\MACANOVA\MYDATA.DAT.

Unix/Linux and Mac OS X example
Unix/Linux:

When DATAPATHS is vector("/users/joe/survey/", "/usr/li b/macanova/"),
read("mydata.dat") first tries to read mydata.dat in the cu rrent
default directory, and then, if not successful, it tries to r ead file
/users/joe/survey/mydata.dat and /usr/lib/macanova/my data.dat.

2.88 delete()

Usage:
delete(var1[,var2, ...] [,all:T, real:T or F,char:T or F,\

logical:T or F, structure:T or F,macro:T or F, graph:T or F,\
lockedok:T, silent:T]), F’s used only with all:T

delete(var, return:T [,invisible:T])

Keywords: variables, character variables

Usage
delete(var1,var2,...,vark) deletes the variables given a s arguments and
frees the memory they use for other purposes. The variables c an be of
any type including MACRO or GRAPH. It is an error if any argume nts are
’locked’. See subtopic ’variables:"locked_variables"’ a nd topics
lockvars() and unlockvars().

delete(var1,var2,...,vark, lockedok:T) does the same, ev en if one or
more of the variables are locked.

Deleting by attributes
You can use keywords ’real’, ’char’, ’logical’, ’structure ’, ’macro’,

2.88. DELETE() 121

’graph’ and ’all’ with LOGICAL values to delete classes of va riables.

For example, delete(real:T, logical:T [,lockedok:T]) del etes all REAL
and all LOGICAL variables and delete(all:T, macros:F [,loc kedok:T])
deletes everything except macros. It is illegal to have both keyword
phrases specifying attributes and variables as arguments.

Keywords ’return’ and ’invisible’
delete(var, return:T) deletes variable var but returns a co py as value.
This usage is most common as the last command in a macro when th e value
the macro is supposed to be var, as in the following

Cmd> mymacro <- macro("@tmp <- ($1)+($2)
print(describe(@tmp))
delete(@tmp,return:T)", dollars:T)

mymacro(x,y) prints descriptive statistics for x+y and ret urns x+y as
value, automatically deleting the temporary variable. See also macro(),
’macro_syntax’ and ’macros’.

delete(var, return:T, invisible:T) does the same except th e value is
returned as an "invisible" variable (see ’variables’). The value can be
assigned to a variable but will not automatically print when it is not
assigned. ’invisible:T’ is illegal without ’return:T’. Se e topic
’variables:"invisible"’.

delete(var, return:F) is also legal and has the same effect a s
delete(var).

Keyword ’silent’
delete(..., silent:T) suppresses all warning messages. ’s ilent:T’ must
be last argument.

Deleting special variables
delete(CLIPBOARD) does not actually delete special variab le CLIPBOARD
but clears its contents without affecting the system clipbo ard in any
way. In the GTK version, delete(SELECTION) behaves the same . See
topic ’CLIPBOARD’.

delete(GRAPHWINDOWS) does not actually delete special str ucture
GRAPHWINDOWS, but sets all its components to NULL, changing their names.
It does not affect what is displayed in the corresponding gra phics
windows. See topic ’GRAPHWINDOWS’.

Cross references
See also topics list(), listbrief().

122 CHAPTER 2. MACANOVA HELP FILE

2.89 describe()

Usage:
describe(data [, silent:T, excludeM:T, all:T, fivenum:T, n:T|F, min:T|F,

max:T|F, q1:T|F, q2:T|F, median:T|F, mean:T|F, var:T|F, s tddev:T|F,
m3:T|F, m4:T|F, g1:T|F, g2:T|F, iqr:T|F, range:T|F]), whe re data is
REAL or a structure with REAL components; F’s should be used o nly with
all:T or fivenum:T.

Keywords: descriptive statistics

Usage
describe(Data) computes statistics describing the data in the REAL
vector or array Data.

The value of describe(Data) is a structure with following co mponents:
n sample size, excluding MISSING values
min minimum
q1 Q1 = lower quartile
median M = median
q3 Q3 = upper quartile
max maximum
mean average
var variance (with divisor of n-1)

By default Q1 and Q3 are computed as the medians of the lower an d upper
halves of the data, * including * the median in both halves when n is odd.
Keyword phrase excludeM:T (see below) changes this definit ion so that Q1
and Q3 are computed as medians of the lower and upper halves * excluding *
the median.

describe(Data, silent:T) does the same, but any warning mes sages about
MISSING values or overflows are suppressed.

describe() can compute additional statistics including th e standard
deviation and the interquartile range. See below.

Computing specific statistics
You can specify particular statistics to compute using keyw ord phrases.
For example, describe(Data, mean:T) has the same result as
describe(x)$mean, except that no unwanted statistics are c omputed, and
describe(Data, mean:T,var:T) returns a structure with com ponents ’mean’
and ’var’ without computing other statistics.

When only one statistic is requested, the result is a REAL var iable and
not a structure.

You can use ’m1’ instead of ’mean’ and ’q2’ instead of ’median ’ when
specifying what to compute; however, when other statistics are also
computed, the components still have names ’mean’ and ’media n’. For
example, describe(x,m1:T,q2:T) is equivalent to describe (x,mean:T,
median:T).

Keyword ’fivenum’

2.89. DESCRIBE() 123

describe(x, fivenum:T) is equivalent to describe(x,min:T ,q1:T,median:T,
q3:T,max:T), that is, it computes the five number summary co nsisting of
the extremes and quartiles.

If you want additional statistics, say, the mean, use descri be(x,
fivenum:T,mean:T).

If you want to suppress one or more of the five numbers, say the
extremes, use describe(fivenum:T,max:F,min:F).

Additional statistics
There are other statistics that can be computed only by using keyword
phrases.

stddev standard deviation = sqrt(var)
m2 sum((x-xbar)ˆ2)/n = s2/n = (n-1) * var/n
m3 sum((x-xbar)ˆ3)/n = s3/n
m4 sum((x-xbar)ˆ4)/n = s4/n
g1 coefficient of skewness (see below)
g2 coefficient of kurtosis (see below)
range maximum - minimum
iqr IQR = Q3 - Q1 = interquartile range

Some text books give m2 = s2/n as the definition of sample vari ance
instead of the value of var = s2/(n-1).

Example:
Cmd> describe(x, g1:T, g2:T)

returns a structure containing the skewness and kurtosis of x in
components g1 and g2. See below for their exact definitions.

Keyword ’all’
describe(Data, all:T) returns a structure with the 8 standa rd components
plus components stdev, m2, m3, m4, g1, g2, range and iqr. You c an
suppress any component by, for example, median:F.

Example:
Cmd> describe(Data, all:T, q1:F, median:F, q3:F, silent:T)

returns a structure containing all statistics except the me dian and
quartiles. Because ’silent:T’ is an argument, no warning is printed if
Data contains MISSING values.

Keyword ’excludeM’
describe(Data, excludeM:T ...) is a variant, except that Q1 and Q3 are
computed as medians of the lower and upper half of the data, * excluding *
the median when n is odd, and the IQR is computed from these mod ified
quartiles. This corresponds with the definition of quartil es in some
statistical texts, including David S. Moore, The Basic Prac tice of
Statistics.

’excludeM:T’ modifies results only when the number n of non- MISSING
values is odd and one or more of Q1, Q3 or IQR is computed.

124 CHAPTER 2. MACANOVA HELP FILE

Case of keyword names
The case, upper or lower, of letters is ignored in describe() keyword
names. For example, Q1:T and q1:T are equivalent. This curre ntly
differs from the behavior of most other functions. The names of
components are all lower case.

Multidimensional argument
When Data is multidimensional (a matrix or array) with dimen sions n1,
n2, ..., nk, each component of the result (or the result itsel f when
only one statistic is requested) is an array with dimensions n2, n3,
..., nk, that is, it has one fewer dimensions than Data. Each s tatistic
describes all values with the last k-1 subscripts fixed (a co lumn when
Data is a matrix). In particular, when Data is a true matrix (e xactly 2
dimensions), the component is a vector. For example, when Da ta is a
true matrix, describe(Data, mean:T) is a vector, but
sum(Data)/nrows(Data) is a row vector (matrix with 1 row).

When Data is a vector or matrix, you can also use tabs(Data [,k eywords])
to compute some of the statistics computed by describe() (no t q1,
median, q3, m2, m3, m4, g1, g2, range or iqr). See tabs().

Structure argument
When Data itself is a structure, each component of the result (or the
result itself when only one statistic is requested) is itsel f a
structure with the same shape as Data, whose components cont ain summary
values for the corresponding component of Data.

Examples
Examples:

Cmd> xbar <- describe(x, mean:T); sx <- describe(x, stddev: T)
compute the mean and standard deviation of x.

Cmd> medians <- describe(split(y,a), median:T) # or MEDIAN :T
and

Cmd> medians <- describe(split(y,a))$median # not $MEDIAN
both compute a structure, each of whose elements is the media n of the
values of y corresponding to a level of factor a. The first doe s less
computing of results you aren’t saving.

Cmd> describe(x, mean:T, var:T) # or Mean:T, VAR:T
and

Cmd> describe(x)[vector(7,8)]

are equivalent, except the latter does much unnecessary com puting
because it computes and then discards the extremes, the quar tiles and
the median.

Skewness and kurtosis
Skewness g1 = k3/k2ˆ1.5 and kurtosis g2 = k4/k2ˆ2 are compute d from
Fisher’s k-statistics k2, k3 and k4 defined as

k2 = var = s2/(n - 1)

2.90. DESCRIPTIVE() 125

k3 = n * s3/((n - 1) * (n - 2)), and
k4 = (n * (n + 1) * s4 - 3 * (n - 1) * s2ˆ2)/((n - 1) * (n - 2) * (n - 3))

g1 and g2 similar to, but not identical to, sqrt(beta1) = m3/m 2ˆ1.5 and
beta2 = m4/m2ˆ2 - 3 which are also used to measure skewness and
kurtosis.

Expressed in terms of sqrt(beta1) and beta2:

g1 = (sqrt(n * (n - 1))/(n - 2)) * sqrt(beta1)
g2 = ((nˆ2 - 1)/((n - 2) * (n - 3))) * (beta2 + 6/(n + 1))

When n <= 2, g1 is computed to be 0. When n <= 3, g2 is computed to b e
0.

g1 and g2 are sometimes used to test the null hypothesis that a sample
comes from a normal population. If the data are a random sampl e from a
normal distribution, then g1 and g2 have mean 0 and

V[g1] = 6 * n* (n - 1)/((n - 2) * (n + 1) * (n + 3))
V[g2] = 24 * n* (n - 1)ˆ2/((n - 3) * (n - 2) * (n + 2) * (n + 5))

Cross references
See also topics ’structures’, ’keywords’.

2.90 descriptive()

Usage:
descriptive(data [options to describe()] [structure:T|F])

Keywords: descriptive statistics

Usage
descriptive() is a temporary front end to describe(), addin g
the single options structure:T|F. If structure:T is chosen ,
the output is just as if you had given the arguments to
describe(). If structure:F is chosen, then the result is
formed as a labelled vector or matrix rather than as a
structure.

descriptive() will only analyze one variable at a time.

See also describe().

2.91 design

Keywords: anova, glm, regression

126 CHAPTER 2. MACANOVA HELP FILE

Functions for sample size and power computations:
power(), power2(), samplesize(), cumF(), cumstu(), cumch i()

Type, for example, ’usage(power)’ or ’help(power)’, to get a thumbnail
sketch or a complete description of power().

Contents of macro file Design.mac
File design.mac, distributed with MacAnova, contains the f ollowing
macros:

Macros Useful in Designing Experiments
aliases2 Gets aliases in fractioned 2 series
aliases3 Gets aliases in fractioned 3 series
allaliases2 Complete aliases structure in fractioned 2 ser ies

factorial
choosegen2 Chooses generators for a 2 series fractional fac torial
choosedef2 Chooses defining contrasts for a blocked 2 serie s

factorial
confound2 Confounds a 2 series factorial into blocks
confound3 Confounds a 3 series factorial into blocks
ems Computes the expected mean squares for the terms in the

ANOVA of a model some of whose terms are random
ffdesign2 Determines factor/level combinations to use for

fractioned 2 series

Macros for Statistical Analysis
all3anova Fits all hierarchical models in a three factor ano va and

sorts them by Cp
all4anova Fits all hierarchical models in a four factor anov a and

sorts them by Cp
boxcoxvec Gets the error SS for several boxcox transformati ons
interactplot Make interaction plots of marginal means in a f actorial
interblock Recover interblock information in an incomplet e block

design
mixed Computes an "ANOVA" table for a model some of whose

factors are random
pairwise Does paired comparisons and generates an "underli ne"

diagram
quadmax Finds the location of the maximum of a quadratic

function, with optional linear equality and inequality
constraints on the solution

randsign Does a permutation paired t-test
randt Does a permutation two-sample t-test
randt2 Carry out a permutation two sample t-test combining

values from two fectors (uses randt)
rscanon Does canonical analysis of 2nd order response surfa ce

design
reml Perform restricted maximum likelihood analysis of a mo del

with fixed and random terms
sidebyside Make a side-by-side plot of effects
varcomp Computes the "ANOVA" estimates of random effects

variances in mixed effects analysis of variance

Auxiliary macros used by other macros

2.92. DESIGNHELP() 127

colproduct Computes all element-wise products of the colum ns of two
matrices (used by ems)

makemat Computes various basis matrices (used by ems)
quadmaxlin Finds the maximum of x’Ax + b’x subject to Cx = y (us ed

by quadmax)

These can be retrieved by, for example, getmacros(boxcoxve c) or
boxcoxvec <- macroread("design.mac","boxcoxvec"). In a s tandard
installation of macanova, they are available simply by usin g them.

You can get information on these macros by help() or usage() o r, for
example, by designhelp(makemat, varcomp) or designhelp(m akemat, varcomp,
usage:T). See topic designhelp() for details.

Cross references
See help() for information on direct use of help() to retriev e help
information from design.hlp.

See also topics ’macros’, macroread(), getmacros(), help(), usage(),
macrousage().

2.92 designhelp()

Usage:
designhelp(topic1 [, topic2 ...] [,usage:T] [,scrollback :T])
designhelp(topic, subtopic:Subtopics), CHARACTER scala r or vector

Subtopics
designhelp(topic1:Subtopics1 [,topic2:Subtopics2 ...])
designhelp(key:Key), CHARACTER scalar Key
designhelp(index:T [,scrollback:T])

Keywords: general, anova, glm, regression

Usage
designhelp(Topic1 [, Topic2, ...]) prints help on topics To pic1, Topic2,
... related to macros in file design.mac. The help is taken fr om file
design.hlp.

designhelp(Topic1 [, Topic2, ...] , usage:T) prints usage i nformation
related to these macros.

designhelp(index:T) or simply designhelp() prints an inde x of the topics
available using designhelp(). Alternatively, help(index :"design") does
the same

designhelp(Topic, subtopic:Subtopic), where Subtopic is a CHARACTER
scalar or vector, prints subtopics of topic Topic. With subt opic:"?", a
list of subtopics is printed.

designhelp(Topic1:Subtopics1 [,Topic2:Subtopics2], .. .), where
Suptopics1 and Subtopics2 are CHARACTER scalars or vectors , prints the

128 CHAPTER 2. MACANOVA HELP FILE

specified subtopics. You can’t use any other keywords with t his usage.

In all the first 4 of these usages, you can also include help() keyword
phrase ’scrollback:T’ as an argument to designhelp(). In wi ndowed
versions, this directs the output/command window will be au tomatically
scrolled back to the start of the help output.

Keyword ’key’
designhelp(key:key) where key is a quoted string or CHARACT ER scalar
lists all topics cross referenced under Key. designhelp(ke y:"?") prints
a list of available cross reference keys for topics in the fil e.

designhelp() is implemented as a predefined macro.

Cross references
See help() for information on direct use of help() to retriev e
information from design.hlp.

2.93 det()

Usage:
det(x [, mantexp:T, quiet:T]), where x is a REAL square matri x with no

MISSING values.

Keywords: matrix algebra

Usage
det(x) computes the determinant of the square REAL matrix x. MISSING
values are not allowed in x. When x is singular within roundin g error,
det(x) is 0 and a warning message is printed.

det(x,mantexp:T) does the same, but returns the result in ba se 10
mantissa and exponent form. For instance, when det(x) = -5.6 7832e+123,
det(x,mantexp:T) returns vector(-5.67832, 123). This all ows you to find
a determinant whose value is either too large or too close to 0 to be
represented.

det(x [,manexp:T], quiet:T) does the same, but suppresses t he warning
message when x is singular.

Cross references
See also topics ’matrices’, trace().

2.94 diag()

Usage:
diag(A), A a matrix.

2.95. DIGAMMA() 129

Keywords: matrix algebra, variables

Usage
diag(a) creates a vector consisting of the diagonal element s a[1,1],
a[2,2], ... of matrix a, which does not need to be square. The l ength
of the result is min(nrows(a),ncols(a)). Matrix a may be REA L (most
common), LOGICAL or CHARACTER.

diag(a) is defined for an array with more than 2 dimensions, a s long as
there are only two dimensions with size > 1, interpreted as th e number
of rows and columns. For example, after manova(model) comma nd,
diag(SS[3,,]) is the diagonal of the sums of squares and cros s-products
matrix associated with term 3 in the model.

Cross references
See also dmat(), trace(), ’matrices’.

2.95 digamma()

Usage:
digamma(x), x REAL with positive elements or a structure wit h REAL

components with positive elements.

Keywords: transformations

Usage
digamma(x) returns the digamma function (first derivative of
log(gamma(x))) of the elements of x, when x is a REAL scalar, v ector,
matrix or array with positive elements. The result has the sa me shape
as x.

digamma(x) is equivalent to polygamma(x,0).

Structure argument
When x is a structure, all of whose non-structure components are REAL
with positive elements, digamma(x) returns a structure of t he same shape
and with the same component names as x with each non-structur e component
transformed by digamma().

Character argument
digamma(x) can also be used when x is a CHARACTER variable. Th e result
is a CHARACTER variable of the same shape as x describing the
transformation. See the example below.

Any element of x that is "" or starts with ’@’, ’(’, ’[’, ’{’, ’< ’, ’/’
or ’\’ is not modified. This can be useful for creating labels for a
transformed variable.

Examples
Examples:

Cmd> digamma(run(10)) # or polygamma(run(10),0) or polyga mma(run(10))

130 CHAPTER 2. MACANOVA HELP FILE

(1) -0.57722 0.42278 0.92278 1.2561 1.5061
(6) 1.7061 1.8728 2.0156 2.1406 2.2518

Cmd> digamma(vector("x","y")) # CHARACTER argument
(1) "digamma(x)"
(2) "digamma(y)"

Cross references
See also polygamma(), lgamma(), ’transformations’

2.96 dim()

Usage:
dim(x), x a scalar, vector, matrix, array, structure, macro or GRAPH

variable.

Keywords: variables, null variables

Usage
dim(x) returns a vector containing the dimensions of x. For e xample,
when x is a vector of length 10, dim(x) has value 10. When x is a 5 by
7 matrix, dim(x) has value vector(5,7) and dim(x)[1] and dim (x)[2] are 5
and 7, respectively. When x is an array with k dimensions, dim (x) is a
vector of length k.

When x is a macro or GRAPH variable, dim(x) is 1.

When x is a NULL variable, dim(x) is 0. This is a change from ver sion
4.07 and earlier when dim(NULL) was NULL.

Structure argument
When x is a structure, dim(x) is a structure, each of whose com ponents
is a structure with the same shape as x. Suppose N is the larges t
number of dimensions of any component of x or is 1 if all non-st ructure
components of x are NULL. Then dim(x) has N components named ’ dim1’,
’dim2’, When xcomp is a non-NULL and non-structure comp onent of x,
the corresponding component of dim(x)[j], that is, x$dimj, is
dim(xcomp)[j] when ndims(xcomp) <= j or 0 when ndims(xcomp) < j. When
xcomp is NULL, the corresponding component of dim(x)[j] is 0 .

Examples
Examples:

dim(4) is 1
dim(run(6)) is 6
dim(matrix(run(20),5)) is vector(5,4)
dim(array(run(24),2,3,4)) is vector(2,3,4)
dim(structure(run(6),structure(matrix(run(6),3),NUL L)) is

structure(dim1:structure(6,structure(3,0)),
dim2:structure(0,structure(2,0)))

Cross references

2.97. DMAT() 131

See also topics length(), ndims(), ’structures’, ’NULL’.

2.97 dmat()

Usage:
dmat(n,val), n > 0 integer, val a REAL, CHARACTER or LOGICAL s calar
dmat(vec), vec a REAL, CHARACTER or LOGICAL vector.

Keywords: matrix algebra, variables

Usage
dmat(n,val), where n is a positive integer and val is a scalar
(length(val) = 1), produces an n by n diagonal matrix with val down the
diagonal.

dmat(a) where a is a vector of length n, a n by 1 matrix, or a 1 by n
matrix, produces a n by n diagonal matrix with the elements of a down
the diagonal.

Note: This is a sort of inverse to diag() which extracts the di agonal
elements of a matrix.

Example
Example:

Cmd> iden5 <- dmat(5,1); iden5 # or dmat(rep(1,5))
(1,1) 1 0 0 0 0
(2,1) 0 1 0 0 0
(3,1) 0 0 1 0 0
(4,1) 0 0 0 1 0
(5,1) 0 0 0 0 1

This is the 5 by 5 identity matrix

Cross references
See also diag().

2.98 dos windows

Keywords: general

Introduction
There are two released versions of MacAnova for Windows. The first runs
under Windows 98/NT/XP and includes the familiar multi-win dow features,
menus, dialogs, etc. The second runs in a "command prompt" wi ndow (MS-DOS
window) and does not use any Windows features. Both have the f ull range
of MacAnova commands.

This help topic first describes features or limitations spe cific to each
version and then describes things they have in common that ar e specific

132 CHAPTER 2. MACANOVA HELP FILE

to Windows systems.

Windows version (CP)
This version is compiled using the Carapace library which in turn uses
the WxWidgets library. It requires a Win32 system such as Win dows
98/NT/XP. It allows multiple command/output and high resol ution graphics
windows and uses menus, dialogs, the mouse, and so forth in th e usual
way. Commands are typed into the lower pane of a command windo w, and
output appears in the upper pane. Output and graphics window s can be
printed and/or saved to files.

Text in a command window can be copied to the clipboard. Conte nt of
a graphics window can be copied to the clipboard as a bitmap. T he
MacAnova variable CLIPBOARD is connected to text on the clip board in
the sense that accessing CLIPBOARD returns a MacAnova strin g containing
the text content of the clipboard, and assigning to CLIPBOAR D writes
text to the clipboard.

See topic ’carapace’ for details about MacAnova for Windows .

The executable file is usually named MACANOCP.EXE.

shell(command,interact:F) and shell(command,keep:T) do not work under
Windows 3.1 and Windows 95. It is possible that they work unde r Windows
NT, but that has not been tested. shell(command,interact:T) and lines
prefixed with ’!’ appear to behave somewhat differently, de pending on
the operating system. Problems remain to be worked out. See s hell().

DOS version (DJ)
The DOS version is compiled using the DJGPP development suit e and
requires a 80386 or better processor. Although it runs under DOS, it
can access all available memory and has no limits on variable sizes.

The executable file is usually named MACANODJ.EXE.

The extended memory version works with a variety of graphic d isplays,
including VGA. Keyword phrase screendump:fileName on plot ting commands
allows you to create PCX files which can be edited under Windo ws and
included in word processor documents.

It has command editing implemented using the arrow keys and e ditor
commands based on either the Emacs or Vi editor commands (Ema cs and Vi
are Unix/Linux editors). See topic ’unix’ for details. The o nly
difference from the Unix/Linux version is that the special f ile for
customizing keymaps must be "INPUTRC" (not ".inputrc") in t he same
directory as MACANODJ.EXE.

You can execute DOS commands by prefixing the line with ’!’ in the first
position after the prompt or by using the command shell().
shell(cmd,keep:T) returns output from the program execute d. You must
use shell(cmd,interact:T) if the program executed require s any input.
When in doubt, use interact:T. This feature appears to work s omewhat
differently under Windows 95.

2.99. EDIT() 133

Macro edit() (see topic edit()) is predefined to allow easy e diting of
macros and data without exiting Macanova. By default it uses the DOS
program Edit but this can be changed by setting CHARACTER var iable
EDITOR to the path name of a different editor.

Features common to all Windows and DOS versions
MacAnova recognizes ’/’ in file names (for instance, c:/mv/ macanova.dat
instead of c:\mv\macanova.dat). This is desirable, since t o use ’\’ in
a quoted string it must be doubled ("c:\\mv\\macanova.dat"). See
topic ’syntax’.

Various command line arguments are recognized, allowing au tomatic
restoring of a workspace, suppressing the banner, changing default file
names, etc. On the Windows version, they allow initializing the
command/output window with the contents of a file. See topic
’launching’.

MacAnova uses any default options or file or path names in env ironmental
variable MACANOVA. See topic ’customize’.

The startup file is MacAnova.ini.txt in you MyMacAnovaFile s directory.
See topic ’customize’.

Unless you use command line option -home (see ’launching’) o r include
-home in environmental variable MACANOVA (see ’customize’), MacAnova
pre-defines CHARACTER variable HOME to be your home directo ry (for
example, c:\Documents and Settings\username on Win XP). HO ME is used to
expand file names of the form "˜/path" or "˜\\path" by substi tuting the
value of HOME for ’˜’. This allows you to refer to files such as
MacAnova.txt.ini as "˜/MyMacAnovaFiles/Macanova.ini.t xt", even if you
have changed directories. If you redefine HOME, it changes t he
expansion of "˜/" and "˜\\". See topic ’files’.

Pre-defined variable DATAPATHS is initialized with two pat h names. The
first is effectively "˜/MyMacAnovaFiles" and the second is
"foo/SharedSupport", where "foo" is the full path to the dir ectory that
includes the MacAnova program file. If you use command line a rgument
"-appdir goo", then the "foo" in the second element of DATAPA THS is
replaced by "goo". You may prepend a search path to DATAPATHS at the
command line by using the option "-path pathName". See topic s
’DATAPATHS’ and ’customize’.

2.99 edit()

Usage:
edit(obj [, T] [,stripdol:F]), obj a macro or a REAL variable
edit(0)
edit([stripdol:T])

Keywords: general

134 CHAPTER 2. MACANOVA HELP FILE

Usage
edit(obj) where obj is a REAL vector, matrix, array, or a macr o, writes
a temporary file and invokes an editor to edit that file. When editing
is done, edit() returns as value the edited contents of the fi le. For
example, ’mymacro <- edit(mymacro)’ allows you to change or correct
macro mymacro(). edit() is implemented as a macro which is pr e-defined
only in some non-windowed versions of MacAnova.

When you change the dimensions of a vector, matrix, or array, you must
edit the header line to reflect the change before quitting th e editor.

edit(obj,T) is equivalent to ’obj <- edit(obj)’.

Keyword ’stripdol’
By default, when editing a macro, trailing ’$$’ on temporary variables
are stripped off for editing and then restored before return ing. To
suppress this, used edit(mymacro [,T], stripdol:F)

Creating new macro
mynewmacro <- edit([stripdol:F]) (with no non-keyword arg uments) invokes
an editor on a temporary file with a header specifying a macro with a
single blank line. You can enter and edit a macro, being sure t o change
the number on line 1 to reflect the actual number of lines in th e macro.
Unless stripdol:F is an argument, ’$$’ will be appended to an y names
starting with ’@’.

Creating new vector
x <- edit(0) invokes an editor on an empty temporary file and t hen
performs vecread() on that file, under the assumption that t he user has
edited in data that may be read in this manner. This allows you to use
an editor to enter data.

Changing default editor
You can specify the editor to be used by creating a CHARACTER v ariable
with name ’EDITOR’ by, for example, EDITOR <- "emacs". When E DITOR has
not been set, the default editor is "vi" on Unix/Linux and "ed it" for
DOS.

Macro edit() is pre-defined only in the Unix/Linux versions and in the
extended memory DOS version of MacAnova. Two forms of edit() , one for
Unix/Linux and one for DOS, are included with names editunix () and
editpc(), in file MacAnova.mac.txt distributed with MacAn ova.

Editing in windowed versions
To edit a macro, say mymacro(), in a windowed version, first o pen a new
command/output window using Open on the File menu. Then prin t the
macro in the new window in a form you can edit by:

macrowrite(CONSOLE, mymacro, stripdol:T)

Then edit the macro, copy to the clipboard the entire macro in cluding
the header line (mymacro MACRO DOLLARS) and trailer line (%m ymacro%),
and then do the following:

2.100. EIGEN() 135

mymacro <- macroread(string:CLIPBOARD)

Then switch back to your original window to test it and use it. It’s
not necessary to open the extra window, but it makes it easier since you
can separate your editing from the use of the macro.

Cross references
See also topics macrowrite(), macroread(), ’CLIPBOARD’.

2.100 eigen()

Usage:
eigen(x [,maxit:N, nonconvok:T]), x a REAL symmetric matri x with no

MISSING values, integer N > 0

Keywords: matrix algebra

Usage
eigen(x) computes an eigenvector/eigenvalue decompositi on of the
REAL symmetric matrix x. The result is a structure with two RE AL
components, ’values’ and ’vectors’. It an error if x contain s any
MISSING values.

Vector eigen(x)$values contains the eigenvalues in decrea sing order
(eigen$values[i] >= eigen$values[i+1]). If all you need ar e the eigen-
values, use eigenvals(x).

The columns of square matrix eigen(x)$vectors are the eigen vectors of x
with eigen$vectors[,j] corresponding to eigen$values[j] . The eigen-
vectors are orthonormal, even when there are repeated eigen values.

Properties
From the properties of the eigenvalue/eigenvector decompo sition of a
matrix,

eigen(x)$vectors % * % dmat(eigen(x)$values) % * % eigen(x)$vectors’
should be the same as x, except for rounding error.

Non-convergence
It is possible for the algorithm used by eigen() not to conver ge,
although it rarely happens. When it happens, the message

ERROR: algorithm to compute eigenvalues in eigen() did not c onverge
is printed. Keywords ’maxit’ and ’nonconvok’ may be helpful in this
situation.

Keywords ’maxit’ and ’nonconvok’
eigen(x maxit:N), where N > 0 is an integer, computes the eige nvalues
and eigenvectors, but sets the maximum number of iterations in the
algorithm to N. The default value is 30. By using N > 30, this ma y
allow you to compute eigenvalues and vectors you can’t other wise

136 CHAPTER 2. MACANOVA HELP FILE

eigen(x [,maxit:N] ,nonconvok:T) does the same, except fai lure to
converge is not an error. When convergence does not occur, no message
printed and NULL is returned. You can use this in a macro to mak e it
possible to recover from failure to converge, perhaps by inv oking
eigen() again using ’maxit’ to increase the number of iterat ions.

Keyword phrases ’maxit:T’ and ’nonconvok:T’ may also be use d on
eigenvals(), releigen() and releigenvals().

Cross references
See also eigenvals(), trideigen(), releigen(), and releig envals().

2.101 eigenvals()

Usage:
eigenvals(x [,maxit:N, nonconvok:T]), x a REAL symmetric m atrix with no

MISSING values, integer N > 0

Keywords: matrix algebra

Usage
eigenvals(x) computes a REAL vector containing the eigenva lues of REAL
symmetric matrix x in decreasing order. These are identical to
eigen(x)$values. If you need eigenvectors, use eigen().

See eigen() for information on keyword phrases ’maxit:N’ an d
’nonconvok:T’.

Cross references
See also det(), trideigen(), releigen(), and releigenvals ().

2.102 else

Usage:
if (Logical1){command1;command2;...} [elseif (Logical2){...}] else{...}

Keywords: syntax, control

Usage
’else’ is a syntax element used in conjuction with ’if’ and op tionally
with ’elseif’.

A typical usage would be
Cmd> if(x > 1){y <- 1}elseif(x < 0){y <- -1}else{y <- 0}

The immediately following ’{’ must be on the same line as ’els e’.

Type help("if") for complete information.

2.103. ELSEIF 137

2.103 elseif

Usage:
if (Logical1){command1;command2;...} elseif (Logical2) {...}[else{...}]

Keywords: syntax, control

Usage
’elseif’ is a syntax element used in conjuction with ’if’ and optionally
with ’else’.

A typical usage would be
Cmd> if(x > 1){y <- 1}elseif(x < 0){y <- -1}else{y <- 0}

The condition tested (x < 0 in the example) must be a scalar LOG ICAL
variable or expression. The immediately following ’{’ must be on the
same line as elseif.

Type help("if") for complete information.

2.104 enter()

Usage:
x <- enter(val1 val2 val3 ...) , valI a number or ?, no separati ng

commas

Keywords: input

Usage
x <- enter(val1 val2 ...) is equivalent to x <- vector(val1, v al2, ...)
allowing easy entry of data without the need to type commas. v al1,
val2, ... should be numbers or ?, not expressions or function values.

Example
Example:

Cmd> wts <- enter(145.2 162.1 133.5 121.9 99.8 188.9)
or

Cmd> wts <- enter(1452 1621 1335 1219 998 1889)/10
These are equivalent, but the second avoids the need to type d ecimal
points.

enter() is implemented as a pre-defined macro using vecread ().

Cross references
See also topics vecread(), enterchars().

138 CHAPTER 2. MACANOVA HELP FILE

2.105 enterchars()

Usage:
x <- enterchars(str1 str2 str3 ...) , strI a non-quoted seque nce of

visible characters, separated by spaces.

Keywords: input

Usage
x <- enterchars(Str1 Str2 ...) is equivalent to x <- vector(" Str1",
"Str2", ...) allowing easy entry of CHARACTER data without t he need to
type quotes (") or commas (,). Str1, Str2, ... must consist of visible
characters which are not commas or ’#’ and be separated by spa ces, tabs
or commas.

You cannot use enterchars() to enter CHARACTER elements whi ch contain
commas or any kind of invisible characters such as spaces or t abs.

Example
Example:

Cmd> names <- enterchars(Henry Susan Bill Rene)

enterchars() is implemented as a pre-defined macro using ve cread().

Cross references
See also topics vecread(), enter().

2.106 equal()

Usage:
equal(a, b [,chknames:F,chklabels:T,chknotes:T,fuzz:e ps,relative:T,\

explain:T), a and b any two defined variables except GRAPH va riables,
eps > 0 a small REAL scalar

Keywords: general, variables

Introduction
You can use equal() to test for exact or approximate equality of two
defined variables of any type except GRAPH.

Usage
equal(arg1, arg2) returns True or False depending on whethe r or not arg1
and arg2 are exactly equal. arg1 and arg2 can be any defined va riables
except GRAPH variables, including macros, NULL variables, and
structures.

See below for keywords ’fuzz’ and ’relative’ which allow for approximate
equality and for keywords ’chknames’, ’chklabels’ and ’chk notes’ that
control what non-data items are checked for equality.

2.106. EQUAL() 139

If x is defined, equal(x,x) always returns True, even when x i s a GRAPH
variable.

Two NULL variables are always treated as equal.

When arg1 and arg2 are structures, the are considered equal o nly if
every component or subcomponent is equal and component name s are the same.

equal(arg1, arg2, explain:T) makes the same comparison but returns
structure(equal:T or F, why:Explanation), where Explanat ion is a
CHARACTER scalar that is either "Arguments are equal" or an e xplanation
of the inequality such as "Argument values differ" or "Compo nent
dimensions differ". In case of inequality, the first applic able reason
is given. If arg1 and arg2 are unequal structures, the number of the
component or subcomponent where inequality was detected is part of the
explanation.

Keywords ’fuzz’ and ’relative’
When you are comparing numerical results of computation, ex act equality
may not be appropriate because real numbers are not perfectl y
represented in the computer. You can specify that REAL varia bles and
components are to be considered equal if the differences bet ween their
elements are small enough, either in an absolute or relative sense.

equal(arg1, arg2, fuzz:epsilon), where epsilon > 0 is small , returns
True if all differences d = x1 - x2 of elements of REAL variable s or
structure components satisfy abs(d) <= epsilon.

equal(arg1, arg2, fuzz:epsilon, relative:T) returns True if all
differences d = x1 - x2 satisfiy abs(d) <= epsilon * (abs(x1)+abs(x2)).

Keywords ’chkxxxx’
By default, equal() compares structure component names for equality but
ignores coordinate labels or attached notes. You can change this
behavior by including any of ’chknames:F’, ’chklabels:T’ a nd
’chknotes:T’ as arguments.

Examples
Examples:

Cmd> x1 <- .001 * run(3); x2 <- x1 + 1e-10

Cmd> equal(x1,x2) # exact equality test
(1) F

Cmd> equal(x1,x2,fuzz:1e-9) # absolute differences small enough
(1) T

Cmd> equal(x1,x2,fuzz:1e-9,relative:T) # relative diffe rence too big
(1) F

Cmd> equal(asLong(run(3)), asLong(run(2,4)))
(1) F

140 CHAPTER 2. MACANOVA HELP FILE

Cmd> a <- run(3); b <- run(4); c <- vector(a,label:"A")

Cmd> equal(a,b) # different shapes
(1) F

Cmd> equal(a,b,explain:T)
component: equal
(1) F
component: reason
(1) "Argument dimensions differ"

Cmd> equal(a,c) # labels are ignorded by default
(1) T

Cmd> equal(a,c,chklabels:T,explain:T) # check labels for equality
component: equal
(1) F
component: why
(1) "Argument labels differ"

Cmd> equal(structure(a,b),structure(c,b),explain:T)
component: equal
(1) F
component: why
(1) "Structure component [1] names differ"

Cmd> equal(structure(a,b),structure(c,b),chknames:F) #ignore comp names
(1) T

Cmd> A <- structure(PI,structure(a)) # nested structures

Cmd> B <- structure(PI,structure(b)) # nested structures

Cmd> equal(A, B, explain:T) # compare nested structures
component: equal
(1) F
component: why
(1) "Structure component [2][1] dimensions differ"

In the last example, the explanation identifies the inequal ity as being
in structure component 1 of structure component 2 (A[2][1] d iffers from
B[2][1]).

Cross references
See also topics ’variables’, ’arithmetic’, ’logic’, ’note s’, ’labels’,
structure(), ’structures’.

2.107. ERROR() 141

2.107 error()

Usage:
error(a, b, ...[,format:Fmt or nsig:m, header:F, labels:F ,

missing:missStr, zero:zeroStr, macroname:F]), CHARACTE R scalars Fmt,
missStr and zeroStr, integer m > 0

Keywords: output

Usage
error() is almost identical to print(). It differs in ways wh ich make
it useful for reporting errors recognized in a macro.

(i) Use of error() immediately terminates execution of the c urrent line
or macro.

(ii) error("Oops!") will print "ERROR: Oops!", where "Oops !" is a single
quoted string or CHARACTER scalar that does not start with "E RROR:" or
"WARNING:". When the message starts with "ERROR:" or "WARNI NG:" error()
prints it unchanged.

(iii) In macro mymacro(), say, error("Oops!") prints
"ERROR: Oops! in macro mymacro".

Keyword ’macroname’
To avoid appending the macro name when using error() in a macr o, use
keyword phrase ’macroname:F’. This is helpful when the erro r message
itself contains the macro name is in

error("argument 2 to mymacro >= 1",macroname:F)

Example
Example:

Cmd> for(i,run(nrows(x))){if(x[i] >= 0){y[i] <- sqrt(x[i]);;}else{
error("attempt to take square root of number < 0")}}

This will terminate the loop on the first x[i] < 0. The message printed
will actually be "ERROR: attempt to take square root of numbe r < 0".

Cross references
See also topics print(), write(), paste(), ’macros’, ’macr o_syntax’,
’for’, ’if’.

2.108 evaluate()

Usage:
evaluate(cmds), cmds a quoted string or CHARACTER scalar.

Keywords: general, syntax, macros, control

Usage
evaluate(Cmds), where Cmds is a quoted string or CHARACTER s calar

142 CHAPTER 2. MACANOVA HELP FILE

consisting of one or more MacAnova commands, executes the co mmands and
returns the value of the last one. Unlike macro expansion, sy mbols
starting with ’$’ in Cmds have no special significance.

As an argument to evaluate(), Cmds is called an "evaluated st ring".

Example
Cmd> b <- evaluate("a <- PI;sqrt(a)");print(a,b)
a:
(1) 3.1416
b:
(1) 1.7725

In most situations, including the example just given, <<Cmd s>> is
equivalent to evaluate(Cmds). See topic ’syntax’.

Limitations
An evaluated string can contain any MacAnova commands excep t batch() and
quit() (and its synonyms; see topic ’quitting’). There are a lso
restrictions on the use of ’break’, ’breakall’, ’next’ and ’ return’,

’break’ and ’next’ can be used only to exit or skip to the end of a
loop that was started in the evaluated string.

’return’ can be used only to exit a macro that was invoked in th e
evaluation string. ’return’ cannot be used to exit from the
evaluated string.

’breakall’ exits the outermost loop that started in the eval uated
string.

Recursive use
You can use evaluate() recursively, in the sense that evalua te() can be
one of the commands in the evaluated string. The depth D of suc h a
recursion must satisfy D <= 49 - M, where M is the number of out- of-line
macros currently being evaluated. For example, because the re are no
out-of-line macros in use (M = 0), the last value of i printed b y

Cmd> i <- 0; cmd <- "i <- i+1;print(i);evaluate(cmd)";evalu ate(cmd)

will be 49, followed by an error message.

Cross references
See also topic ’macros’.

2.109 exp()

Usage:
exp(x), x REAL or a structure with REAL components

2.110. FACTOR() 143

Keywords: transformations

Usage
exp(x) returns the exponential function (eˆx) of the elemen ts of x, when
x is a REAL scalar, vector, matrix or array. The result has the same
shape as x.

Missing or too large argument
If any element of x is MISSING or > 709.782712893, the corresp onding
element of exp(x) is MISSING and a warning message is printed .

Structure argument
When x is a structure, all of whose non-structure components are REAL,
exp(x) is a structure of the same shape and with the same compo nent
names as x, with each non-structure component transformed b y exp().

Cross references
See topic ’transformations’ for more information on exp().

2.110 factor()

Usage:
factor(n1 [, n2, ...]) where n1, n2, ... are REAL scalars or ve ctors,

all of whose elements are positive integers.

Keywords: glm, anova

Usage
factor(A), where A is a vector of positive integers or MISSIN G, creates
a vector with contents identical to A except that the new vect or is
marked as a "factor" with number of factor levels = max(A).

The non-MISSING elements of A must be positive integers <= 32 767.

Since the number of factor levels is the largest integer in A, both
factor(vector(1,2,4)) and factor(vector(1,2,3,4)) prod uce factors marked
as having four levels, although only three of the levels are p resent in
factor(vector(1,2,4)).

Argument A can also be a matrix or array when isvector(A) is Tr ue, that
is, when all dimensions beyond the first must be 1. In that cas e the
result has the same dimensions as A.

factor(a1, a2, ... ak) is equivalent to factor(vector(a1, a 2, ... ak))
where a1, ..., ak are all scalars or vectors.

Logical argument
When A is a LOGICAL vector, factor(A) is equivalent to factor (A+1), that
is, False and True are translated to levels 1 and 2, respectiv ely. The
result is always marked as having 2 factor levels, even if eve ry element
of A is False.

144 CHAPTER 2. MACANOVA HELP FILE

Purpose
The purpose of marking a variable as a factor is to ensure that , when it
is a variable in a model for a non-regression GLM (generalize d linear or
linear model) command such as anova() or poisson(), its valu es are
interpreted as specifying levels of a categorical (non-qua ntitative)
variable, that is, classes or categories.

A vector in a model that has not been marked as a factor using fa ctor()
is called a "variate" and its values are taken to specify quan tities,
even if they are all positive integers. In regress(), and scr een()
factors are treated the same as variates -- that is the levels are
viewed as quantitative.

In a model which includes both factors and variates, the vari ates are
often referred to as "covariates".

Common mistake
A common mistake in using GLM commands is to forget to use fact or() to
turn vectors of factor levels into factors. This error resul ts in their
being treated as variates with single degrees of freedom.

Subscripted factor
When A is a factor with k levels and J is an appropriate subscri pt for A
(for example, J might be A != 3, vector(1,run(3,length(A))) or -2), A[J]
is also marked as a factor with k levels, even if max(A[J]) < k.

Assignment to subscripted factor
When A is a factor with k levels, A[j] <- newvalue is legal only if
newvalue is an integer between 1 and k. The number of levels as sociated
with A will not change even if max(A) < k after the replacement .

Maximum level less than nominal
In both these last two situations, subscripting a factor or a ssigning to
a subscripted factor, it is possible to create a factor whose actual
maximum level is less than k. However, the actual maximum fac tor level
will be used in any analysis.

Cross references
See also topics makefactor(), ’models’.

2.111 fastanova()

Usage:
fastanova([Model] [,print:F or silent:T,fstats:T,pvals :T])

Keywords: glm, anova

Usage
fastanova(Model) computes the analysis of variance table f or the model

2.111. FASTANOVA() 145

given in the CHARACTER variable Model. No variates (only fac tors) can
be in the model. It uses an iterative algorithm rather than th e
modified Gram-Schmidt used by anova().

Caution: If there are empty cells in the design, the degrees o f freedom
and hence the mean squares may be in error.

fastanova(), with no Model specified, uses the model from th e most
recent GLM command such as anova() or poisson() or the model i n
STRMODEL.

Keywords
fastanova(Model,maxiter:N,epsilon:eps) where N is a posi tive integer and
eps is a small REAL scalar, iterates no more than N times (defa ult is
25) on each fit and uses the value of eps (default is 1e-6) to de termine
when convergence has occurred. Either keyword can appear wi thout the
other.

Other keyword phrases that can be used with fastanova() are ’ print:T’,
’silent:T’, ’fstats:T’ and ’pvals:T’. See topic ’glm_keys ’ for details.
See topic ’options’ for information on changing the default values of
’fstats’ and ’pvals’.

Keyword phrases ’coefs:F’ and ’marginal:T’ cannot be used w ith
fastanova().

Cross references
See topic ’models’ for information on specifying Model.

Caveats
Coefficients may be retrieved by coefs(); standard errors a re not
available.

contrast() does not work properly after fastanova(). coefs () may or may
not give the correct answers; fastanova() will warn you when coefs()
will fail. cellstats() results include the estimated value s for any
missing data.

Method used
The iterative fitting method used by fastanova() is faster t han Gram-
Schmidt for large unbalanced data sets. The time used is roug hly
proportional to length(y) * nterms, where y is the response variable, and
nterms is the number of terms in the model (the not the model de grees of
freedom). Thus, fastanova() gives greatest speed improvem ents for
models with relatively few terms, each with relatively many degrees of
freedom. fastanova() is least effective for models with man y terms,
each with few degrees of freedom. In fact, it may be slower tha n
anova() for such models.

146 CHAPTER 2. MACANOVA HELP FILE

2.112 file names

Keywords: files, input, output

Introduction
This topic summarizes information about the names of files r ecognized by
MacAnova, absolute and relative path names, and the use of ’˜ ’ and
variable HOME in abbreviating file names.

See topic ’files’ for information on the default directory o r folder.

See topic ’DATAPATHS’ for information on CHARACTER vector D ATAPATHS and
how it specifies where MacAnova searches for files.

File names
You specify a file name by a quoted string or CHARACTER scalar (see
topic ’scalars’) such as "macanova.dat". It must be a legal f ile name
for your system. When MacAnova decides it is not a legal name i t prints
the message

ERROR: improper file name xxxxxxx.

On some systems, the checks exclude some technically legal f ile names.
For example, in Unix/Linux, MacAnova objects to names start ing with ’-’
such as "-savefile" and on a Macintosh, it objects to file nam es
starting with ’.’ such as ".savefile", because their use oft en leads to
difficulties.

The DOS version does not recognize long file names.

Use of "" as a file name
In versions with windows, you can always use the ’empty strin g’ "" as
a file name. This brings up a dialog box in which you can select a
folder and a file. It also may change the default directory or folder.
See topic ’files’.

Path names
If your file name includes directory or folder information, it is a
’path name’ and can be relative or absolute. In the next parag raphs,
for a Macintosh or Windows 95/98/NT, ’directory’ should be t aken to mean
’folder’. This information is fairly technical.

Relative paths
Under DOS/Windows, Unix/Linux, and Mac OS X a file name that s pecifies
a relative path might be "../data.dir/mydata" or
"tseries.dir/tseries.dat" (under Windows or DOS you could replace ’/’
by ’\\’).

On Mac OS 9, a relative path starts with ":". Examples would be
"::data.dir:mydata" and ":tseries.dir:tseries.dat".

These examples specify a file ’mydata’ in a directory ’data. dir’ in
the "parent" directory of the default directory, and a file
’tseries.dat’ in a sub-directory ’tseries.dir’ in the defa ult
directory.

2.113. FILES 147

Absolute paths
On Unix/Linux and Mac OS X, "/usr/lib/macanova/survey.dat " is a
typical absolute path name. It must start with ’/’.

On Windows and DOS an absolute path name starts with ’/’ or ’X: /’
where ’X’ is a designator such as ’A’ or ’C’ of a disk drive. For
example, if the current DOS default drive is drive ’C’, both
"C:/data.dir/survey.dat" and "/data.dir/survey.dat" sp ecify the same
file.

On Mac OS 9, an absolute path name starts with a disk name and
contains at least one ":". Example: "MyFloppy:data.dir:su rvey.dat".

Use of ’˜’ in file names and variable HOME
You may be able to use an abbreviated file name like "˜/Name" o r
"˜:Name" (Mac OS 9), where "Name" is the name of a file. For thi s to
work, a CHARACTER scalar HOME must exist and contain the comp lete name
(absolute path) of a directory. For example, in Windows if HO ME is
"C:/SURVEY", the "˜/mydata.dat" becomes "C:/SURVEY/myda ta.dat". On
Mac OS 9, when HOME is "MyFloppy:Survey", "˜:mydata.dat" be comes
"MyFloppy:Survey:mydata.dat".

On Unix/Linux, Mac OS X, and most versions of Windows, HOME is
predefined to be the user’s home directory (for example, /ho m/gary
or /Users/gary or c:/Documents and Settings/gary). On DOS, HOME
is pre-defined to be the full name of the directory where the
executable MacAnova program is located. You can override th e default
for HOME using command line option -home. See topics ’launch ing’
and ’customize’.

On Unix/Linux computers, a file name of the form ˜name/filen ame, where
name is the log in name of another user, ˜name is translated to the name
of that user’s home directory, following a convention used i n the csh
shell.

2.113 files

Keywords: files, input, output, missing values

Introduction
This topic describes some aspects of the use of files. Much of it is
fairly technical and not of great interest to the casual user . It has
sections on default directories or folders and a little info rmation on
file format. See topics ’file_names’, ’data_files’, matre ad_file’,
’vecread_file’ and ’macro_files’ for information on file n ames and
descriptions of formats for data files and macro files. See t opic
’file_names’ for information on specifying file names.

Default directories or folders
Generally MacAnova first looks for the named file in the defa ult

148 CHAPTER 2. MACANOVA HELP FILE

directory or folder, unless the supplied file name is a "path " name,
specifying a directory or folder and a file. If MacAnova does not find
the file in the current directory, it then looks in the direct ories or
folders in CHARACTER vector DATAPATHS. See topic ’DATAPATH S’.

If you start MacAnova from the command line, then the initial default
directory is the current directory at the command line (on DO S, this might
be different if MacAnova is started by a * .BAT file that includes a CD
command).

Changing the default directory
On command line versions of MacAnova, you cannot change the d efault
directory after startup.

In the windowed versions of MacAnova, the default directory is changed
whenever you use the file navigation dialog box to select a fi le in a
different folder or directory. Thus the first time you read a file from
a given folder, you should use "" as file name. If you want, you can
then read other files in the same folder by specifying their n ames.

File formats
On all systems, data, macro, batch, and window files must be p lain text
(ASCII) files. These files often have a .txt extension. If yo u create
them using a word processor, be sure to specify plain text for mat when
you save them. On any system, MacAnova can correctly read tex t files
from all other systems (i.e., with Windows/DOS, Macintosh o r Unix/Linux
line separating codes). See topic ’data_files’.

See topics ’vecread_file’ and ’matread_file’ for informat ion on how data
should be organized in files to be read by vecread() and read() or
matread(), respectively.

See topic ’macro_files’ for information on the format of fil es to be
read by macroread().

See batch() for information on the format of batch files.

Files written by asciisave() are ASCII files but are not mean t to be
read or edited by humans, and their format is arcane and subje ct to
change. The asciisave() format is the same across computer t ypes, so
that, for example, a DOS machine can read a Macintosh asciisa ve() file
and vice versa. asciisave() files can also be emailed as is, w ithout
encoding.

Files written by save() are binary files with formats that ma y differ
among computer types, but most can be read on all systems.

Help files
The default help file, usually "Macanova.hlp.txt" in the Sh aredSupport
directory below the MacAnova application, is a text file in a special
format. The format is described near the start of the file. If you
develop a file of macros, you could use this information to wr ite a
special help file. Or a macro file can be its own help file if yo u put

2.114. FINDFILE() 149

the properly formatted help after a line starting
_E_N_D_O_F_M_A_C_R_O_S_. See topic ’macro_files’.

The help command will automatically search all the files who se names are
in pre-defined CHARACTER vector HELPFILES. You can use addh elpfile() to
add a file name to HELPFILES.

Internally, help uses gethelp() and keywords ’file’, ’orig ’ and ’alt’
to switch among files.

See help(), gethelp(), arimahelp(), designhelp(), graphi cshelp(),
mathhelp(), mulvarhelp(), regresshelp(), tserhelp() and addhelpfile().

2.114 findfile()

Usage:
findfile(filename), filename a CHARACTER scalar

Keywords: files

findfile(filename) returns a path to the requested file, or NULL if the
file cannot be found. Searching is done based on the paths in
DATAPATHS. First, findfile() looks for ./filename (the cur rent
directory), then DATAPATHS[1]/filename, DATAPATHS[2]/f ilename, and
so on. findfile() returns a path to the first matching file. P aths
may be relative or absolute depending on DATAPATHS.

2.115 floor()

Usage:
floor(x), x REAL or a structure with REAL components

Keywords: transformations

Usage
floor(x) rounds the elements of the REAL variable x to the nex t integer
in the negative direction, producing a vector, matrix, or ar ray with the
same shape as x.

Example:
Cmd> floor(vector(3.1416, -3.1416, 12))
(1) 3 -4 12

Too large arguments
When x > 4503599627370495 or x < -4503599627370495, floor(x) is set to
MISSING because of the impossibility of exact representati on of integers

150 CHAPTER 2. MACANOVA HELP FILE

beyond these limits. These limits may be different on some co mputers.

Structure argument
If x is a structure, so is floor(x). If xi is the i-th component of x,
the i-th component of floor(x) is floor(xi).

Cross references
See also topics ceiling(), round(), ’structures’.

2.116 for

Usage:
for(i,vec)){command1;command2; ...}, vec a REAL vector
for(i,start,end [, incr]){command1;command2;...}, star t, end and incr

REAL scalars
for(i,NULL){...}

Keywords: syntax, control

Usage
for(Index,Range){statement1;statement2;... } where Ran ge is a REAL
vector of length N repeats the statements in {...} N times wit h Index
successively taking the values Range[1], Range[2], ..., Ra nge[N].

Unless the last statement in {...} is NULL (’;;’) its value ma y be
printed on each loop. The most common form for Range is ’run(n)’ which
results in the statements in {...} being repeated n times, wi th variable
Index taking values 1, 2, ..., n.

for(Index,NULL){...} skips the compound statement {...} e ntirely. An
example might be

Cmd> for(i, run(length(x))[x>10]){print(paste("x[",i, "] > 10"))}
when max(x) < 10. In this case run(length(x))[x>10] is NULL. See
topics ’subscripts’ and ’NULL’.

for(Index,i1,i2){...} is equivalent to for(Index,run(i1 ,i2)){...}.

for(Index,i1,i2,incr){...} is equivalent to for(Index,
run(i1,i2,incr)){...}.

Value
A ’for’ statement does not have a value. Hence such construct s as

yyy <- for(i,run(3)){i+2} or 4 + for(i,run(3)){i+2}
are illegal.

Early termination
You can terminate a "for loop" prematurely using syntax elem ents ’break’
and ’breakall’ or pre-defined macro breakif().

You can skip to the end of a "for loop" using syntax element ’ne xt’.

2.117. FPRINT() 151

Examples
Example:

Cmd> @n <- length(a);@s <- 0;for(i,run(@n)){@s <- @s+(a[i] -1)ˆ2;;}; @s
is essentially equivalent to sum((vector(a)-1)ˆ2). ’for(i,run(@n))’
could be replaced by ’for(i,1,@n)’ or ’for(i,1,@n,1)’.

The following might be better:
Cmd> @s <- 0; for(@ai,vector(a)){@s <- @s + (@ai - 1)ˆ2;;}; @s

The opening ’{’ after ’for(...)’ must be on the same line as ’f or’.

Cross references
See also topics ’while’, ’break’, ’breakall’, breakif(), ’ next’.

2.117 fprint()

Usage:
fprint(fileName, a, b, ...[,format:Fmt or nsig:m, header: F, labels:F,\

missing:missStr, height:h, width:w]), Fmt, missStr, file Name CHARACTER
scalars, m > 0, h >= 12 integer, w >= 30 integer

Keywords: output, files

Usage
fprint(name,a,b,...) is equivalent to print(a, b, ...,fil e:name). The
use of fprint() is discouraged. Use print(a, b, ..., file:na me)
instead.

See print() and write() for details on keyword use.

Cross references
See also write(), matprint(), matwrite(), macrowrite().

2.118 formatpval()

Usage:
result <- formatpval(pvals [,minpval:minp] [,format:fmt]), non-negative

REAL vector or scalar, nonnegative REAL scalar minp <= .001, CHARACTER
scalar fmt

Keywords: output

Usage
formatpval() is designed to be used in a macro to format print ed
P-values similarly to the way the built-in GLM functions suc h as
regress(), anova() and logistic() do.

result <- formatpval(pvals), where pvals is a REAL scalar or vector with
min(pvals) >= 0, computes the CHARACTER scalar or vector res ult the same

152 CHAPTER 2. MACANOVA HELP FILE

length as pvals.

If pvals[i] < minP, where minP is the value of option ’minpval ’, then
result[i] has the form, for example, "< 1e-8", when minP = 1e- 8. If
pvals[i] >= minP, result[i] is simply paste(pvals[i]).

result <- formatpval(pvals, minpval:minP), where 0 <= minP <= .001 does
the same, except the supplied value of minP is used.

result <- formatpval(pvals, format:fmt [, minpval:minP]) , where fmt is a
CHARACTER scalar specifying a legal output format (see subt opic
options:"format"), does the same, except fmt is used to form at result,
instead of the default format.

Example
Cmd> tstats <- vector(4.585, 5.536, 6.576, 7.611, 8.826)

Cmd> formatpval(twotailt(tstats,23),minpval:1e-7,for mat:".3g")
(1) "0.000131"
(2) "1.25e-05"
(3) "1.04e-06"
(4) "< 1e-07"
(5) "< 1e-07"

Cross references
See also print(), write(), options:"minpval", options:"f ormat",
twotailt().

2.119 fromclip()

Usage:
fromclip([ncol]), ncol > 0 an integer

Keywords: character variables, input

Usage
y <- fromclip() does a vecread() from CLIPBOARD, creating a R EAL vector
y.

y <- fromclip(ncol) is equivalent to matrix(fromclip(),nc ol)’, where
ncol is an integer. This creates a REAL matrix with ncol colum ns and
makes most sense if the contents of CLIPBOARD are arranged in ncol
columns as they would be after CLIPBOARD <- x, where x is a matr ix with
ncol columns.

Importing data in windowed versions
In windowed versions, fromclip() allows easy importing of d ata from
other applications such as a spreadsheet. For example, if yo u have
Copied to the Clipboard a 10 by 5 rectangle of spreadsheet cel ls
containing numbers, or 10 lines of a 5 column numerical table in a word

2.120. FWRITE() 153

processor or editor,
x <- fromclip(5)

will create a 10 by 5 REAL matrix consisting of the data copied .

fromclip() is implemented as a pre-defined macro.

Cross references
See also topic clipreaddata().

2.120 fwrite()

Usage:
fwrite(fileName, a, b, ...[,format:Fmt or nsig:m, header: F, labels:F,\

missing:missStr, width:w, height:h]), Fmt, missStr, file Name CHARACTER
scalars, m > 0, w >= 30, h >= 12 integers

Keywords: output, files

Usage
fwrite(name,a,b,...) is equivalent to write(a, b, ..., fil e:name). The
use of fwrite() is discouraged. Use write() instead.

See write() and print() for details on keyword use.

Cross references
See also matprint(), macroprint().

2.121 getascii()

Usage:
getascii(charVec1 [, charVec2 ...]), all arguments CHARAC TER vectors

Keywords: character variables

Usage
getascii(c), where c is a CHARACTER scalar or quoted string, returns a
REAL vector with integer elements between 1 and 255 inclusiv e which are
the ASCII codes corresponding to the characters in c. If c is t he null
string "", getascii(c) returns NULL (see ’NULL’).

getascii(c1, c2 [, c3 ...]), where all the arguments are CHAR ACTER
vectors, is equivalent to getascii(paste(c1,c2,..., sep: "")), collapsing
all the elements of all the arguments into one CHARACTER scal ar before
decoding. See paste().

getascii(c) is almost an inverse function to putascii(x,ke ep:T) in the
sense that getascii(putascii(x,keep:T)) returns x when x i s a REAL
vector with integer elements between 1 and 255, and

154 CHAPTER 2. MACANOVA HELP FILE

putascii(getascii(c),keep:T) returns c when CHARACTER sc alar c != "".

Examples
Examples:

Cmd> getascii("ABCDE") # ascii code of ’A’ is 65, etc.
(1) 65 66 67 68 69

Cmd> getascii(vector("AB","C"), "DE") # same as preceding
(1) 65 66 67 68 69

Cmd> getascii("\001\002\003\004\005") #or getascii("\1 \2\3\4\5")
(1) 1 2 3 4 5

Cmd> getascii("\x01\x02\x03\x04\x05") # same as precedin g
(1) 1 2 3 4 5

Cmd> getascii(putascii(run(30,34),keep:T))
(1) 30 31 32 33 34

Cmd> putascii(getascii("MacAnova"),keep:T)
(1) "MacAnova"

Cross references
See also putascii().

2.122 getdata()

Usage:
y <- getdata(setName), where setName is the unquoted or quot ed name of a

data set in the file whose name is in variable DATAFILE

Keywords: files, variables, input

Usage
getdata() is a pre-defined macro to retrieve named data sets from a file
whose name is in CHARACTER scalar DATAFILE. Specifically,

y <- getdata(DataName)
is equivalent to

y <- read(DATAFILE,"DataName")

The data set name optionally may be a quoted string, but may no t be a
CHARACTER variable.

The file whose name is in DATAFILE must be in the form readable by
read() and matread(). See read(), matread() and topic ’matr ead_file’.

y <- getdata(DataName,quiet:T) suppresses the printing of any
descriptive comments associated with the data set in the fil e.

Data set name
The data set name dataName need not be a legal MacAnova variab le name

2.123. GETFILENAME() 155

since the name of a data set on a file readable by read() and mat read()
can include characters such as ’.’ that are not legal in MacAn ova
variable names. For example, ’y <- getdata(jw11.5)’ is lega l and will
attempt to retrieve data set "jw11.5" from DATAFILE.

Variable DATAFILE
Variable DATAFILE is normally pre-defined to contain "maca nova.dat", the
name of a sample file with several data sets. On some systems D ATAFILE
may be pre-defined to be some standard collection of data. Af ter

Cmd> DATAFILE <- "disease.dat" # or other file name

getdata() will retrieve data sets from file disease.dat.

If the value of DATAFILE is a pure file name ("disease.dat" bu t not,
say, "data/disease.dat"), MacAnova will first search in th e current
default directory or folder and then look in the directories or folders
whose names are in CHARACTER vector DATAPATHS. See topics ’D ATAPATHS’
and ’file_names’.

Initializing in startup file
If you regularly use a particular data file, say, "mydata.tx t", you
might find it convenient to add the line DATAFILE <- "mydata. txt" to
your startup file. Or, on Unix/Linux, Windows and DOS, you ca n include
’-d mydata.txt’ in environmental variable MACANOVA. See to pics
’customize’ and ’launching’.

A useful convention
A useful convention is to have the first dataset on the file ha ve name
’info’ and 0 lines (first header line ’info 0’, with several c omment
lines starting with ’)’ listing the datasets available in th e file.
Then getdata(info) or even just getdata() will print this in formation.
See topic ’matread_file’ for an example.

2.123 getfilename()

Usage:
name <- getfilename([cancelok:T])
name <- getfilename(type:"data" or type:"restore" [,canc elok:T])
name <- getfilename(fileonly:T ...[,cancelok:T])
name <- getfilename(pathonly:T ...[,cancelok:T])
name <- getfilename(help:T [,fileonly:T or pathonly:T])
name <- getfilename(last:T [,fileonly:T or pathonly:T])

Keywords: files, input, output

Usage
On windowed versions

Cmd> fileName <- getfilename()

156 CHAPTER 2. MACANOVA HELP FILE

brings up a file navigation dialog box in which you can select a file;
the complete path name (file name with directory informatio n) of the
file is saved as a CHARACTER scalar in fileName. It is an error if the
dialog box is cancelled without selecting a file.

Cmd> fileName <- getfilename(cancelok:T)

does the same except it is not an error when the dialog box is ca ncelled
without selecting a file. It that case, fileName is set to NUL L.

There are two usages that are available on any version

Cmd> fileName <- getfilename(help:T)

returns the name of the current help file.

Cmd> fileName <- getfilename(last:T)

returns the name of the last file successfully opened by any M acAnova
command, either for reading or for writing.

Keywords
fileName <- getfilename(nameonly:T [,last:T or help:T] [, cancelok:T])
does the same, but only the name of the file, excluding the dir ectory
information (path), is returned.

pathName <- getfilename(pathonly:T [,last:T or help:T] [, cancelok:T])
does the same, but only the directory information is returne d.

It is an error to use both nameonly:T and pathonly:T as argume nts.

On a Mac OS 9, without last:T or help:T, the files displayed in the
file navigation dialog box are limited to text files such as d ata files
and workspace files created by save(). To further restrict t he files
displayed to text files, include keyword phrase type:"text " as an
argument. Keyword ’type’ can be used with ’nameonly:T’ and
’pathonly:T’. It has no effect in non-Macintosh versions.

When to use
One use for getfilename() is as an argument to macro addmacro file():

Cmd> addmacrofile(getfilename())

allows you interactively to choose a file to be added to the li st of
macro files to be searched.

A similar use is as an argument to adddatapath():

Cmd> adddatapath(getfilename(pathonly:T))

adds to variable DATAPATHS the name of the folder or director y
containing the file selected. DATAPATHS contains a list of d irectories
that are searched when a file is not found in the current defau lt

2.124. GETHELP() 157

directory.

A use for ’help:T’ might be in a macro searching several help f iles to
enable it to restore the current help file when it was done.

A use for ’last:T’ might be in a macro which uses vecread() wit h
’silent:T’ and you want to retrieve the name of the file read.

The following macro fragment should do that:
@filename <- argvalue($1,"file name","string")
@x <- vecread(@filename, silent:T)
print(paste("Reading data from file",getfilename(last: T)))
. . . .

See topics ’macros’ and ’macro_syntax’ for information on w riting
macros.

2.124 gethelp()

Usage:
gethelp([Topic1,Topic2,...] [,file:FileName or orig:T o r alt:T]\

[,scrollback:T, usage:T, silent:T, printname:T])
gethelp(Topic1:Subtopic1 [,Topic2:Subtopic2,...] [,ot her keywords]),

Topic1, Topic2 ... names of topics, Subtopic1, Subtopic2, . ..,
CHARACTER scalars or vectors

gethelp(Topic, subtopic:Subtopics [,other keywords])
gethelp(Topic, subtopic:"?" [,other keywords])
gethelp(Pattern [keywords]) where Pattern has form "start * ",

"start * end", or " * mid * ", "start * mid * ", ...
gethelp(key:KeyName [keywords]), where KeyName is a CHARA CTER scalar or

"?"
gethelp(news), gethelp(news:yymmdd1) or gethelp(news:v ector(yymmdd1, \

yymmdd2)), where yymmdd1 and yymmdd2 are integers like 9901 03,
19990103, 000717 or 20000727

Keywords: general, files

Introduction
gethelp() retrieves help information from a "help file", a t ext file
in a special format. It can be used directly, but is usually ac cessed
by macros help() or usage() which enable searching several f iles for
information.

gethelp() searches only the "current" help file. This is ini tially
"macanova.hlp" but can be changed by keywords ’file’, ’alt’ and ’orig’
or by macros help() and usage().

Usage
gethelp() with no argument prints a short message giving som e of the
help() and gethelp() options.

158 CHAPTER 2. MACANOVA HELP FILE

gethelp(" * ") lists all help topics in the current help file. There are
over 350 topics in the default help file, macanova.hlp, so th is can be a
long list.

gethelp(Topic) prints information about the named topic. T he topic name
may be unquoted (gethelp(break)) or quoted (gethelp("brea k")). Only the
current help file is searched.

gethelp(Topic, usage:T) does the same, except it gives only a brief
summary of how a command is used, without lengthy details or
explanation. This is the same information as is provided by u sage() and
getusage(). In fact, gethelp(Topic, usage:T) is equivalen t to
getusage(Topic).

gethelp(topic, silent:T [,usage:T]) does the same, except any warning
messages are suppressed. silent:T does * not * suppress printing of
help or usage information.

gethelp() returns an "invisible" LOGICAL scalar whose valu e is True only
when at least one topic requested was found. The value may be a ssigned
or tested but will not be printed automatically.

Cmd> if (!gethelp(topic)){print("No help found")}

See topic ’variables:"invisible"’.

Subtopics
Most help topics are divided into subtopics that can be acces sed
individually if you know what they are. Common subtopic name s are
"usage" and "example".

gethelp(Topic, subtopic:"?") lists all subtopic names, if any,
associated with Topic. When the topic name is no longer than 1 0
characters, gethelp(Topic:"?") does the same.

gethelp(Topic, subtopic:Subtopics), where Subtopics is a quoted string
or CHARACTER vector gives help only on the subtopic or subtop ics named
in Subtopics. Upper and lower case is ignored in these names a nd all
subtopics starting with any name in Subtopics will be listed . In the
most common case, Subtopic is a quoted string. No other topic s can be
arguments. When the topic name is no longer than 10 character s,
gethelp(Topic:Subtopics) does the same.

Examples
Examples:

Cmd> gethelp(anova); gethelp(macros); gethelp("break")
Cmd> gethelp(break) #nows work; previously didn’t
Cmd> gethelp(transformations) #now works; previously did n’t
Cmd> gethelp(regress, usage:T) # same as usage(regress)
Cmd> gethelp(anova, subtopic:"example") # or gethelp(ano va:"example")
Cmd> gethelp(regress:vector("usage","example"))
Cmd> gethelp(transformations,subtopic:"?")

2.124. GETHELP() 159

Cmd> if (!gethelp(foo,silent:T)){print("No help on topic foo")}

See macrousage() for a way to get usage information on curren tly defined
macros.

See below for using keywords ’file’, ’orig’ and ’alt’ to cont rol the
file from which gethelp() gets information.

Keyword ’scrollback’
gethelp(Topic, scrollback:T) is legal only on a windowed ve rsion.
It causes the gethelp() output to be automatically scrolled back to
its start. You can make this the default behavior by
setoptions(scrollback:T). See topics setoptions(), ’opt ions’

On windowed versions, the Help on the Help menu brings up a bro wser
(web/html) based version of the standard MacAnova help. It d oes NOT
search the standard help files. If you select a command name o r other
topic name in the command window with the mouse, menu item Hel p gives
you help on that topic.

Keyword ’key’ to find topic names
gethelp(key:"foo") lists all topic names associated with k ey "foo".
Examples of keys are "Residuals", "Missing Values", "ANOVA ", and
"Variables". In matching keys, case (upper or lower) is igno red.
Moreover, you need type only enough letters to identify a key uniquely.
For example, gethelp(key:"resid") gives the same output as
gethelp(key:"Residuals").

gethelp(key:"?") lists all recognized keys.

You can also use one of keywords ’file’, ’orig’, or ’alt’ (see below)
with ’key’.

Wild card characters
When you aren’t sure of the exact topic name, you can use the "w ild
card" characters ’ * ’ and ’?’ in a quoted string to define a pattern to
be matched. ’ * ’ will match any 0 or more successive letters in a topic
name and ’?’ matches any single letter. All matching names ar e
printed. If only one name matches, full help will be given on t hat
topic.

Examples of wild card use
Examples:

gethelp("res * ") lists all topic names beginning with "res"
gethelp(" * line * ") lists all topic names containing "line"
gethelp(" * anova") lists anova,fastanova, manova, wtanova, wtmanova
gethelp(" * plot") lists names ending in "plot" like chplot(),

boxplot()
gethelp(" * pl?t") lists all topic names whose last 4 characters or

"p", "l", any character, and "t" repectively
(plot(), lineplot() and split(), for example).

gethelp(" * tat * ") lists cellstats(), rotate(), rotation()
gethelp("add * lin * ") gives help for addlines() (only 1 matching)

160 CHAPTER 2. MACANOVA HELP FILE

gethelp(" * i * e* t") lists all topic names containing "i" and "e", in
that order, and ending with "t" (’assignment’ and
lineplot(), for example).

Multiple topics
gethelp(Topic1,Topic2,... [,scrollback:T or usage:T] [, silent:T]) prints
information about each of the topics specified by the argume nts. If an
argument is a quoted string containing ’ * ’ or ’?’, it is used as a
pattern as above, but if there is more than one topic, only the first
topic in the help file whose name matches is printed. The same rules
concerning quotes apply as when there is only one topic.

gethelp(Topic1:Subtopics1, Topic2:Subtopics2 [,...]) p rints information
in the designated subtopics of Topic1, Topic2, You can a lso mix
in ordinary topic names without subtopics.

You can’t name more than one topic when you use keyword ’subto pic’.

Examples of multiple topics
gethelp(help,break) will produce this text and informatio n about

syntax element ’break’
gethelp(anova:vector("usage","examples"),option:"sc rollback")

will print two subtopics to topic ’anova’
and one subtopic of topic ’option’

Default help file
The help information is kept in a file in a particular format. The
default file name is macanova.hlp. A description of the form at is near
the start of the macanova.hlp

The actual file used can be changed using keyword ’file’ or re stored to
the default by keyword phrase ’orig:T’. You can retrieve the name of
the actual current help file by getfilename(help:T).

Macros help() and usage() may change the current help file. B y default,
if the current help file contains the wanted topic, or if the t opic is
not found in any help file, the current help file is not change d. If
the topic is found in another file, that file becomes the curr ent help
file.

Topic ’news’
gethelp(news [,scrollback:T]) lists in reverse chronolog ical order news
items about MacAnova starting with the most recent entry bac k for three
months.

gethelp(news:vector(Date1,Date2) [,scrollback:T]), wh ere Date1 and Date2
are numbers of the form yymmdd or yyyymmdd, lists in reverse
chronological order news items about MacAnova development dated between
Date1 and Date2. For example, gethelp(news:vector(991201 ,0000131)) and
gethelp(news:vector(19991201,20001230)) list all news i tems dated in
December, 1999 or January, 2000

gethelp(news:Date) lists all news items on or after Date. Fo r example,

2.124. GETHELP() 161

gethelp(news:000101) and gethelp(news:200000100) list a ll news items on
or after January 1, 2000.

gethelp(news:0) lists all available news items. This will p roduce many
of lines of output and is not recommended.

Using other help files
Currently there are ten files distributed with MacAnova whi ch contain
help. Some also contain the macros they provide help for.

File Contents
--- -------------------
arima.mac Help on macros in arima.mac
design.hlp Help on the macros in file design.mac
graphics.mac Help on macros in graphics.mac
macanova.hlp Help on all MacAnova commands, predefined mac ros

and general information (the default help file)
macanova.nws Old news items and obsolete help topics remove d

from macanova.hlp
math.mac Help on macros in math.mac
mulvar.mac Help on macros in mulvar.mac
regress.mac Help on macros in regress.mac
tser.hlp Help on the macros in file tser.mac
userfun.hlp Help related to programming user functions

On a single call, gethelp() scans only a single file for help. The
default help file is macanova.hlp.

Predefined macro help() uses gethelp() to scan all files who se names are
in CHARACTER variable HELPFILES until it finds help on a requ ested
topic. The default value of HELPFILES contains all the above files
except macanova.nws and userfun.hlp. help() is used almost identically
to gethelp().

If you know which file the topic is, you can use one of the pre-d efined
macros arimahelp(), designhelp(), graphicshelp(), mathh elp(),
mulvarhelp(), regresshelp(), tserhelp() and userfunhelp () for easy
retrieval of help from the other files (except macanova.nws). These are
used essentially the same way as help(). See topics arimahel p(),
designhelp(), graphicshelp(), mathhelp(), mulvarhelp() , regresshelp(),
tserhelp() and userfunhelp() for details. The may have an ad vantage
over help() in that they scan only one file.

Or you can use gethelp() with keyword ’file’. See below.

Examples for help macros
arimahelp(" * ") lists all topics in file arima.mac
designhelp(aliases2) prints help information on macro ali ases2()

in design.mac
mathhelp(i0,usage:T) prints usage on macro i0() in math.ma c
regresshelp(key:"anova") lists topics related to key ’ano va’ in file

regress.mac

162 CHAPTER 2. MACANOVA HELP FILE

These macros make use of keywords ’file’, ’orig’ and ’alt’ th at direct
gethelp() to change help files.

Keywords ’file’, ’orig’ and ’alt’
gethelp(file:FileName) where FileName is a quoted string o r CHARACTER
variable specifying the name of a file, makes that file an alt ernate
help file and switches over to using it. In versions with wind ows,
when FileName is "", you use a dialog box to select the file. On e or
more topic names can follow file:FileName or file:FileName can be the
last argument. The alternate help file remains active until another is
specified, or keyword phrase orig:T appears in a gethelp() c ommand.
If the file is not in the correct format for a help file, the res ults
are unpredictable but not pleasant.

gethelp(orig:T) restores the help file to what it was at star tup. This
will either be the standard help file or the one specified (un der
Unix/Linux or DOS) by the -h option on the command line. See to pic
’launching’. One or more topic names can follow orig:T, or or ig:T can
be the last argument.

gethelp(alt:T) restores the help file to the one most recent ly specified
by file:fileName. It is an error if no alternative file was pr eviously
set. This allows you easily to use two help files, the default one and
one alternate. You switch back and forth between them by
gethelp(orig:T) and gethelp(alt:T). One or more topic name s can follow
alt:T, or alt:T can be the last argument.

Historical notes
Prior to Version 4.12, gethelp() was named help(). help() is now a
macro that uses gethelp() to search several help files. If yo u want
help() to work identically to gethelp(), you can define a sim plified
version by:

Cmd> help <- macro("gethelp($0)")

Prior to Version 4.11, topics longer than 12 characters or th at were
control words (’if’, ’while’, ’for’, ’else’, ’elseif’, ’br eak’,
’breakall’) had to be quoted. This is no longer the case.

Help() is a synonym for gethelp() and is used identically.

2.125 gethistory()

Usage:
gethistory(n) where n > 0 is an integer
gethistory()

Keywords: general

Usage
gethistory(n), where n is a positive integer, returns a CHAR ACTER vector

2.126. GETKEYWORDS() 163

containing up to n previous commands in the order they were ex ecuted.

gethistory(), with no argument, returns a CHARACTER vector containing
all available previous commands.

At most nHist - 1 commands are returned, where nHist is the val ue of
option ’history’. See topic ’options’.

If there are no previous commands available, both gethistor y(n) and
gethistory() return "".

See sethistory() for information on how to replace the curre nt internal
list of previous commands.

gethistory() is not implemented in the limited memory DOS ve rsion or in
any version that does not allow keyboard or menu retrieval of previous
commands.

2.126 getkeywords()

Usage:
getkeywords(arg1 [,arg2, arg3 ...]), arg1, arg2, ... arbit rary.

Keywords: syntax, macros

Usage
result <- getkeywords(arg1 [, arg2, ..., argK]) returns a CH ARACTER
vector of length K. If argument i is a keyword phrase, result[i] is the
keyword name; otherwise result[i] is "".

Cmd> getkeywords(cos:3, kappa:PI,a,"b",3)
(1) "cos"
(2) "kappa"
(3) ""
(4) ""
(5) ""

Use in macro
The principal use for getkeywords() is in a macro. It is one of the
tools for analyzing the argument list to a macro. For example , it is
sometimes necessary to identify which arguments are keywor d phrases and
which are not.

Here is a snippet of code that might be in a macro.

@keynames <- getkeywords($0) # check entire argument list
@keynames <- @keynames[!ismissing(@keynames)] # extract keyword names
if (!isnull(@keynames)){

@legalkeys <- vector("short","long","narrow","wide")
for (@i,1,length(@keynames)){

164 CHAPTER 2. MACANOVA HELP FILE

if (match(@keynames[@i], @legalkeys, 0) == 0) {
error(paste(@keynames[@i],"is not a legal keyword"))

}
}

}

This checks to see that all keywords in the argument list are i n a list
of permissible keyword names.

Cross references
See also argvalue(), keyvalue(), ’keywords’, ’macro_synt ax’, ’macros’,
match().

2.127 getlabels()

Usage:
getlabels(x [,silent:T,trim:F]) or getlabels(x,dims [,s ilent:T,trim:F]),

dims a vector of positive integers

Keywords: general, variables

Usage
getlabels(x) returns the coordinate labels assocated with variable x.
When x is a structure or ndims(x) = 1, the result is a CHARACTER vector
of length ncomps(x) or dim(x)[1] or a CHARACTER scalar; othe rwise the
result is a structure with ndims(x) components, each of whic h a
CHARACTER vector of length dim(x)[i] or a CHARACTER scalar.

A scalar is returned for a coordinate label only if all the lab els for
that coordinate are identical and either are "" or start with "@", in
which case the first label is returned. Effectively, non-es sential
elements are trimmed from a vector of labels.

getlabels(x, dims), where dims is a vector of positive integ ers, returns
the labels associated with coordinates dims[1], dims[2], . .. of x in the
same form as for getlabels(x). If length(dims) = 1, the resul t is a
CHARACTER scalar or vector; otherwise it is a structure of CH ARACTER
scalars or vectors.

For both usages, when x has no labels, a warning message is pri nted and
NULL is returned. See topic ’NULL’.

Keywords ’trim’ and ’silent’
getlabels(x [, dims], trim:F) forces the complete labels fo r each
requested dimension to be returned without trimming of non- essential
elements.

getlabels(x [, dims], silent:T) suppresses the warning mes sage if there
are no labels.

You can determine whether a variable has labels by

2.128. GETMACROS() 165

Cmd> if (!isnull(getlabels(x,silent:T))){...do somethi ng...}

Cross references
See also topics ’labels’, haslabels(), addmacrofile(), ad ddatapath().

2.128 getmacros()

Usage:
getmacros(name1 [,name2 ...] [,quiet:T, silent:T, printn ame:F]), name1,

name2 ... quoted or unquoted macro names to be read from one of files
named in CHARACTER vector MACROFILES

Keywords: macros, files, input

Usage
getmacros(Macro1,Macro2,...) retrieves macros Macro1, M acro2, ... from
one of the files whose names are in pre-defined CHARACTER vec tor
MACROFILES. The macro names may be quoted (getmacros("myma cro")) or
unquoted (getmacros(mymacro)), but may not be CHARACTER va riables.

By default, getmacros() prints the name of the file from each macro is
read.

getmacros(Macro1,Macro2,...,quiet:T) retrieves the mac ros but suppresses
printing the descriptive comments associated with them.

getmacros(Macro1,Macro2,...,printname:F [,quiet:T]) d oes the same, but
the file name or names are not printed.

If there is more than one copy of any of the named macros in the f iles
named in MACROFILES, getmacros() retrieves the first one fo und. The
files of macros are searched in the order they are in MACROFIL ES.

Default macro files
MACROFILES is predefined with value vector("graphics.mac ","regress.mac",
"design.mac","tser.mac","arima.mac","mulvar.mac","m ath.mac",
"macanova.mac"). Each name in MACROFILES may also include a "path" with
directory or folder information.

You can easily add files to this list using pre-defined macro
addmacrofile() (see topic addmacrofile()) or replace it en tirely by,
say, MACROFILES <- vector("mymacrofile1", "mymacrofile2 "). If you often
use a particular macro file or files you might find it conveni ent to
have MACROFILES modified in your startup file. See topic ’cu stomize’.

Automatic search for macros
Use of getmacros() is less necessary than it once was, since t he default
behavior of MacAnova is now to search the files in MACROFILES for any
undefined macro you try to use. For example, even if macro cov ar() has
not previously been read from file "MacAnova.mac", either b y getmacros()
or macroread(),

166 CHAPTER 2. MACANOVA HELP FILE

Cmd> cov <- covar(x)

will read covar() and then execute it. However, is sometimes convenient
to use getmacros() to read in several macros at a time. Moreov er,
getmacros() echos the header lines on macros (unless you use quiet:T);
these often contain details about usage which you otherwise might miss.

Example
Example: If MACROFILES has its default value

Cmd> getmacros(covar, spectrum, "confound3")
retrieves macros covar() from file "macanova.mac", spectr um() from
"tser.mac" and confound3() from "design.mac". The quotes a round
confound3() are not needed but do no harm.

Note: Prior to 4/28/96, getmacros() searched only the file s pecified in
CHARACTER scalar MACROFILE. For backward compatibility, i f vector
MACROFILES does not exist, getmacros() uses MACROFILE. It i s an error
if neither MACROFILES or MACROFILE exist.

2.129 getnotes()

Usage:
getnotes(x [,silent:T]), x REAL, LOGICAL, CHARACTER or a st ructure,

macro or GRAPH variable

Keywords: general, variables

Usage
getnotes(x) returns the "notes" attached to variable x, if a ny, as a
CHARACTER scalar or vector. If x has no notes, the result is NU LL and a
warning message is printed.

getnotes(x,silent:T) does the same, except when x does not h ave any
attached notes, the warning message is suppressed.

x can be any type of variable, including structure, macro and GRAPH.

Cross references
See also topics ’notes’, attachnotes(), appendnotes(), an d hasnotes().

2.130 getoptions()

Usage:
getoptions(option1:T [,option2:T ...] [,badoptok:T]), o ption1, option2,

... option names.
getoptions() or getoptions(all:T) gets all option values a s a structure
Type ’usage(options)’ for a succinct list of all options and their

permissible values.

2.130. GETOPTIONS() 167

Keywords: control

Usage
getoptions(option1:T, option2:T, ...), where option1, op tion2, ... are
option names, returns the values of the specified options. I f more than
one option is specified, the result is a structure with appro priately
named components. For example, getoptions(format:T) retu rns the default
format used in printing, getoptions(seeds:T) is equivalen t to
getseeds(quiet:T), and getoptions(height:T,width:T) re turns a structure
with components ’height’ and ’width’.

getoptions() or getoptions(all:T) returns the values for a ll options.

getoptions(all:T, option1:F, option2:F,...) returns val ues for all
options except those specified.

Legal option names
Legal option names are ’angles’, ’batchecho’, ’dumbplot’, ’errors’,
’findmacros’, ’format’, ’fstats’, ’height’, ’history’, ’ inline’,
’labelabove’, ’labelstyle’, ’keyboard’, ’maxlinelen’, ’ maxwhile’,
’minpvalue’, ’missing’, ’nsig’, ’pvals’, ’prompt’, ’rest oredel’,
’savehistry’, ’seeds’, ’traceback’ ’update’, ’warnings’ , ’wformat’,
and ’width’.

See topic ’options’ for details on these options. Type ’usag e(options)’
for a list of options with legal values and defaults.

Option name ’lines’ is recognized as a synonym for ’height’ f or
compatibility with earlier versions.

On windowed versions, option ’scrollback’ is also legal.

In the Mac OS 9 version, options ’font’ and ’fontsize’ are
also legal.

Options ’format’ and ’wformat’
The value returned for ’format’ or ’wformat’ always has the t ype
specifier (’f’ or ’g’) at the end ("12.5g"), even if it was set with a
string starting with ’f’ or ’g’ ("g12.5").

Keyword ’badoptok’
getoptions(option1:T[, option2:T, ...] ,badoptok:T) doe s the same,
except it is not an error if the options requested are legel. I f no
legal options are specified, getoptions() returns NULL.

This feature is intended to allow macros using new options to be written
in such a way that they are backward compatible with MacAnova versions
without the new options.

Cross references
See also restore(), save().

168 CHAPTER 2. MACANOVA HELP FILE

2.131 getseeds()

Usage:
getseeds([quiet:T])

Keywords: random numbers

Usage
getseeds() prints the current seeds and returns the current seeds in the
random number generator used by runi(), rnorm(), rbin() and rpoi() as an
"invisible" REAL vector of length 2. See topic ’variables:" invisible"’.

getseeds(quiet:T) returns the seeds as a regular (not invis ible) REAL
vector of length 2, but does not print them.

You can use getseeds() together with setseeds() to restart t he random
number generators from the same point more than once. If you r etrieve
the seeds by ’seeds <- getseeds(quiet:T)’, you can later res et the
random number generators to the same place by ’setseeds(see ds)’.

The seeds are saved by save() or asciisave() (unless you spec ify
’options:F’) and are restored by restore().

Cross references
See also setseeds(), runi(), rnorm(), rbin(), rpoi().

2.132 gettime()

Usage:
gettime(), gettime(quiet:T), or gettime(keep:T [,quiet: F])
gettime(interval:T), gettime(interval:T,quiet:T), or

gettime(interval:T,keep:T [,quiet:F])

Keywords: general

Usage
gettime() prints the time in seconds since the start of the ru n.

gettime(interval:T) prints the time in seconds since the la st time
gettime() was used (since the start if this is the first usage).

gettime(quiet:T) and gettime(interval:T, quiet:T) do not hing but save
the current time for the next time gettime(interval:T) is us ed.

gettime(keep:T [, quiet:F]) returns the time since start as a REAL
scalar. It prints nothing unless quiet:F is an argument.

gettime(interval:T, keep:T [, quiet:F]) returns the time s ince last use
as a REAL scalar. It prints nothing unless quiet:F is an argum ent.

2.133. GETUSAGE() 169

Printing elapsed time of command
You can create a macro that will print the elapsed time of an ac tion by

Cmd> timeit <- macro("gettime(quiet:T);{$0};gettime(in terval:T)")
Then, for example,

Cmd> timeit(x <- rnorm(1000);stuff <- describe(x))
will print time spent generating x and computing descriptiv e statistics.
See also topics macro(), ’macros’.

On most computers, gettime() returns the actual time elapse d as might be
measured with a stop watch. On a few computers, the time is the amount
of central processor time used. This will generally be less, often much
less than the actual elapsed time.

Examples
Examples:

Cmd> gettime()
Time since start is 377.65 seconds.

Cmd> gettime(quiet:T);mymacro(x,y);gettime(interval: T)
Elapsed time is 3.6718 seconds

Cmd> gettime(quiet:T);mymacro(x,y);gettime(interval: T,keep:T)
(1) 3.699

Cmd> gettime(quiet:T);mymacro(x,y);gettime(interval: T,keep:T,quiet:F)
Elapsed time is 3.6523 seconds
(1) 3.6523

2.133 getusage()

Usage:
getusage([Topic1,Topic2,...] [,file:FileName or orig:T or \

alt:T, silent:T])
getusage(Pattern) where Pattern has form "part * ", " * part", or " * part * ".
getusage(key:KeyNames), where KeyNames is a CHARACTER vec tor or "?"

Keywords: general

Introduction
getusage() is used by macro usage() to retrieve usage inform ation from a
"help file", a text file in a special format. It can be used dir ectly,
but has the disadvantage that it searches only one file.

getusage() searches only the "current" help file. This is in itially
"macanova.hlp" but can be changed by keywords ’file’, ’alt’ and ’orig’.

Usage
getusage() works identically to gethelp(), except it gives a only a
brief summary of the usage of commands, functions, and macro s, instead
of full details. On some general information topics such as ’ options’
and ’graph_keys’ it lists available items; on other general information

170 CHAPTER 2. MACANOVA HELP FILE

topics the usage is just a suggestion to read the full help.

getusage(...) is equivalent to gethelp(..., usage:T).

getusage(..., usage:F) is equivalent to gethelp(...).

getusage() returns an "invisible" LOGICAL scalar whose val ue is True
only when at least one topic requested was found. The value ma y be
assigned or tested but will not be printed automatically. Se e topic
’variables:"invisible"’.

getusage() scans only one help file. See gethelp() for detai ls.
Pre-defined macro usage(), used almost identically, scans all the files
named in CHARACTER vector HELPFILES. See topic usage().

For many commands and macros, you can get more complete usage
information by help(topic, subtopic:"usage").

Historical notes
Prior to Version 4.12, getusage() was named usage(). usage() is now a
macro that uses getusage() to search several help files. If y ou want
usage() to work identically to getusage(), you can define a s implified
version by:

Cmd> usage <- macro("getusage($0)")

Prior to Version 4.11, topics longer than 12 characters
(’transformations’, for example) or that were control word s (’if’,
’while’, ’for’, ’else’, ’elseif’, ’break’, ’breakall’) ha d to be quoted.
This is no longer the case.

Cross references
See gethelp() for full details.

2.134 glm

Keywords: glm, anova, categorical data, multivariate analysis, re-
gression

Introduction
The commands for analyzing linear and generalized linear mo dels are as
follows:

anova(), fastanova() Analysis of Variance
glmfit() Generalized linear model analysis
ipf(), logistic() Logistic Regression
manova(), Multivariate Analysis of Variance
poisson() Log linear models
probit() Probit analysis
regress() Linear Regression
robust() Robust Regression
screen() Best subset linear regression

2.134. GLM 171

These are generally referred to as GLM commands in help topic s. See
their individual help entries for details. Type help(key:" glm") for a
list of help entries related to analyzing linear and general ized linear
models.

In addition, wtanova(), wtmanova() and wtregress() do weig hted ANOVA,
MANOVA and regression. Since the same computations are done when
weights are specified using keyword ’weights’ or ’wts’ (see below),
these are not further mentioned here.

glmfit() is a general function that can, with appropriate ke yword
arguments, be used instead of anova(), logistic(), poisson (), and
probit(). In the future, additional options will allow anal yses not
possible at present.

All GLM commands have certain elements in common.

Model
The first argument of a GLM command specifies a model as a quot ed
string or CHARACTER variable. Examples are regress("y=x1+ x2+x3") and
anova("x=a + a.b"). If the model is absent (for example, anov a() or
logistic(,n)) the most recent GLM model is assumed or the mod el in
CHARACTER variable STRMODEL is used. Type help(models) for
information on how to specify a model.

Treatment of MISSING values
When there are MISSING values in any of the variables in a GLM m odel,
any case with any MISSING values is omitted entirely. The max imum
level of any factor is taken to be the maximum level on any of th e
complete data cases.

Side effect variables
All GLM commands but screen() create certain side-effect va riables.
The most important are the following (not all may be produced by every
command).

STRMODEL, a CHARACTER scalar containing the model used.

TERMNAMES, a CHARACTER vector containing the names of the te rms in
the model including the error terms. When the GLM command doe s an
iterative fit without keyword phrase ’inc:T’ (see topic ’gl m_keys’),
the value of TERMNAMES still has the same number of elements b ut has
the form vector("","",...,"Overall model","ERROR1"), re flecting the
fact that only model and error deviances are computed.

DEPVNAME, a CHARACTER scalar containing the name of the resp onse
variable in the model.

SS, a REAL vector of sums of squares or deviances, one for each term
in the model. For manova() this is an array of SSCP matrices, w ith
the first subscript indexing the term. Except when ’margina l:T’ is
an argument to anova(), manova() or robust(), these are comp uted
sequentially and measure the importance of a term after fitt ing

172 CHAPTER 2. MACANOVA HELP FILE

previous terms, and ignoring later terms. The first dimensi on of SS
has labels identical to TERMNAMES. After manova(), dimensi ons 2 and
3 are labeled with the column labels of the response variable if it
has labels or by vector("(1)","(2)", ...) otherwise. After a GLM
command that does an iterative fit without keyword phrase ’i nc:T’,
the value of SS is vector(0,0,...,ModelDeviance,ErrorDev iance).

DF, a REAL vector containing the degrees of freedom associat ed with
each term in the model. After a GLM command that does an iterat ive
fit without keyword phrase ’inc:T’, the value of DF is
vector(0,0,...,ModelDF,ErrorDF).

RESIDUALS, a REAL vector or matrix of residuals from the fitt ed
model. For any case with MISSING values in the data, RESIDUAL S is
MISSING.

WTDRESIDUALS, a REAL vector or matrix of weighted residuals from the
fitted model. For analyses using iteratively re-weighted l east
squares sucu as logistic(), probit(), or poisson(), the wei ghts are
those used on the last iteration. For any case with MISSING va lues
in the data, WTDRESIDUALS is MISSING. WTDRESIDUALS is not cr eated by
anova(), regress() or manova() unless weights are provided .

XTXINV (regress()), the inverse or generalized inverse of X ’X or
X’WX, where X is the n by k matrix of predictors, including the
constant vector if it is in the model, and W is the diagonal mat rix
of weights, if any.

HII, the REAL vector of leverages, the diagonal elements of
X(XTXINV)X’ or W X(XTXINV)X’, where W is the diagonal matrix of
weights, if any.

COEF (regress() only), the model coefficients.

It is an error if any GLM command finds that any side effect var iable is
locked (see lockvars(), unlockvars(), ’variables:"locke d_variables"’).

Private information
Besides creating side effect variables, most GLM commands s ave "private"
information about the analysis. This is used by commands suc h as
regpred(), contrast(), coefs() and secoefs(). It can be ret rieved by
command modelinfo(). This information is not preserved by s ave() and
asciisave() unless keyword phrase ’all:T’ is used. It is dis carded when
you assign a value to STRMODEL or delete STRMODEL.

Cross references
See topic ’glm_keys’ for a list of keyword phrases recognize d by more
than one GLM command.

2.135. GLM KEYS 173

2.135 glm keys

Keywords: glm, anova, regression, multivariate analysis, categori-
cal data

Here is a list of keyword phrases recognized by more than one G LM
command:

Keyword phrases Commands recognizing
--------------- ------------------------------------ -------
print:F All GLM commands

Directs that most of the output to the screen is suppressed,
although side effect variables are created.

silent:T All GLM commands but screen()
Directs that all output except error messages is suppressed ; side
effect variables are computed when there are no errors,

coefs:F All GLM commands but screen(), regress(),
fastanova(), ipf(), robust();

Suppresses the computation of coefficients or a generalize d inverse
to X’X (X’WX when there are weights). Except in the case of
balanced ANOVA, coefs() and secoefs() cannot be used to retr ieve
coefficients later. In addition, some of modelinfo() optio ns are
effectively disabled after using ’coefs:F’ on a GLM command .
’coefs:F’ is not legal with ’marginal:T’.

fstats:T regress(), anova(), manova(), robust()
Directs that F-statistics and P values are computed and prin ted.
The denominator is the mean square for the next following ter m whose
name is of the form "ERROR1", "ERROR2", For manova(),
statistics are given separately for each variable and print ing of
the SS/SP matrices is suppressed, although they are created as side
effect variables.

pvals:T All GLM commands except screen()
Directs that F or Chi-Squared P values are computed and print ed for
F-statistics, t-statistics, and deviances. pvals:F suppr esses
P values when they might otherwise be printed.

inc:T poisson(), ipf(), logistic(), glmfit()
Specifies that an incremental analysis of deviance table is to be
computed and printed. No longer legal on robust().

marginal:T anova(), manova(), robust()
Specifies that SS (SS/SP matrices for manova()) are compute d
marginally. When there are no empty cells, and sometimes whe n there
are, the computed SS or SS/SP are equivalent to SAS Type III
quantities. ’marginal:T’ is not legal with ’coefs:F’.

maxiter:n fastanova(), poisson(), ipf(), logistic(), rob ust(),
glmfit()

Specifies the maximum number of iterations allowed in fitti ng

174 CHAPTER 2. MACANOVA HELP FILE

eps:smallVal fastanova(), poisson(), ipf(), logistic(), robust(),
glmfit()

Specifies the a threshhold in relative change of objective f unction
for determining when convergence has been reached

problimit:smallVal glmfit() with ’dist:"binomial"’, log istic(),
probit()

Restricts iteration so that fitted probabilities are betwe en
smallVal and 1 - smallVal, where 1e-15 <= smallVal < .0001.

wts:vec anova(), manova(), regress()
weights:vec

Specifies a REAL vector to be used as weights. ’wts’ and ’weig hts’
are equivalent.

offsets:vec poisson(), logistic(), probit(), glmfit()
Causes the model to be fit to link to be 1 * vec + Model, where vec is
a REAL vector the same length as response y. vec must be in the
same units as the link function. Thus for poisson() and ipf() , vec
should be units of log(E[response]); for logistic(), vec sh ould be
in units of log(p/(1-p)) and for probit() vec should be in uni ts of
invnor(p).

When vec is a linear combination of X-variables in the model, say
b01* x1 + b02 * x2 + b03 * x3, the coefficients computed for x1, x3 and
x5 will b1-b01, b2-b02 and b3-b03, where b1, b2 and b3 are the
values that would be computed when offsets:vec is not an argu ment.
The residual deviance is not affected. If inc:T is an argumen t, the
deviance associated with x1, x2, and x3 reflects the departu re of b1
from b01, b2 from b02, and b3 from b3. This makes it possible to
test a hypothesis that one or several coefficients to have sp ecified
values. See logistic(), poisson() and probit() for example s.

Printing F and P value
If neither fstats:T nor fstats:F is an argument, for anova() and
fastanova() (but not manova()), the printing of F-statisti cs is
controlled by option ’fstats’. See topic ’options’.

If neither pvals:T nor pvals:F is an argument, for all GLM com mands
except manova(), robust() and screen(), the printing of P va lues is
controlled by option ’pvals’, except that if options ’pvals ’ has value
False, P values will be printed if F-statistics are.

Sums of squares or deviances are normally computed sequenti ally. For
anova(), manova(), and robust() these are SAS Type I quantit ies. Thus
in the unbalanced case, several analyses may be necessary to compute all
the sums of squares or deviances needed.

Effect of ’marginal:T’
Keyword phrase, ’marginal:T’, when it can be used, causes SS or SS/SP to
be computed differently. When there are no empty cells in the design
and no aliased variates, and sometimes when there are, the SS or SS/SP
computed are SAS Type III quantities. In every case, they are numerator

2.136. GLMFIT() 175

SS or SS/SP for a test that all the coeffients of non-aliased
X-variables in a term are 0, where aliasing is determined by t he
original order of the sequential fit. If there is aliasing, t he
quantities computed may depend on the order in which the term s are fit.

2.136 glmfit()

Usage:
glmfit([Model] [,dist:distName,link:linkName, n:denom , incr:T,\

print:F or silent:T, maxiter:m, epsilon:eps, coefs:F, off sets:OffVec,\
scale:sigma]), distName and linkName CHARACTER scalars, d enom > 0
REAL scalar or vector, integer m > 0, REAL eps > 0, REAL vector O ffVec

Keywords: glm, anova, regression, categorical data

Usage
glmfit(Model,dist:DistName ,link:LinkName,...) does a g eneralized linear
model analysis with assumed response distribution DistNam e and link
function LinkName, somewhat in the manner of program GLIM. T he response
variable y must be a vector (isvector(y) is True).

See topic ’models’ for information on and examples of quoted string or
CHARACTER scalar Model.

Current legal values for DistName are "binomial", "poisson ", and
"normal" (or "gaussian"). If DistName is "binomial" or "poi sson", you
must have y[i] >= 0.

Current legal values for LinkName are "logit", "probit", "l og", and
"identity".

If dist:DistName is omitted, the default DistName is "norma l".

If link:LinkName is omitted the default LinkName depends on DistName --
"logit" for "binomial", "log" for "poisson", and "identity " for
"normal".

Because of these defaults, glmfit(Model), with no distribu tion or link
specified, is equivalent to anova(Model, unbalanced:T).

Binomial response variable
If DistName is "binomial" you must specify the number of tria ls using
keyword ’n’ as for logistic() or probit(). The value Denom fo r ’n’ must
either be a REAL scalar >= max(y) or a REAL vector of the same le ngth as
y with Denom[i] >= y[i].

Algorithm and output
Except when DistName is "normal" and LinkName is "identity" , an
iterative algorithm is used to model link(E[y]) or link(E[y /Denom]) as a
linear function of X-variables associated with the right ha nd side of
Model. Normally a two line Analysis of Deviance table is prin ted. Line

176 CHAPTER 2. MACANOVA HELP FILE

1 is the difference 2 * L(1) - 2 * L(0), where L(0) is the log likelihood
for a model with all coefficients 0 and L(1) is the maximized l og
likelihood for the model fit. Line 2 is 2 * L(2) - 2 * L(1) where L(2) is
the maximized log likelihood under a model fitting one param eter for
every y[i]. Under certain conditions, the latter can be used to test
the goodness of fit of the model using a chi-squared test. Whe n
DistName is "normal" and LinkName is "identity", an Analysi s of Variance
table is printed including all terms.

Side effect variables created
glmfit() sets the side effect variables RESIDUALS, WTDRESI DUALS, SS, DF,
HII, DEPVNAME, TERMNAMES, and STRMODEL. See topic ’glm’. Wi th DistName
is "normal" and LinkName is "identity", SS contains the ANOV A sums of
squares; otherwise SS contains deviances. After an iterati ve fit
without keyword phrase ’inc:T’ (see below), TERMNAMES has v alue
vector("","", ...,"Overall model","ERROR1"), DF has valu e vector(0,0,
...,ModelDF,ErrorDF) and SS has value vector(0,0,...,Mod elDeviance,
ErrorDeviance).

Keyword ’inc’
glmfit(Model,dist:DistName,link:LinkName,inc:T,...) computes the full
fitted model and all partial models -- only a constant term, t he
constant and the first term, and so on. It prints an Analysis o f
Deviance table, with one line for each term, representing a d ifference
2* L(i) - 2 * L(i-1) where L(i) is the maximumized log likely for a model
including terms 1 through i, plus the deviance of the complet e model
labeled as "ERROR1". Each line except the last can be used in a
chi-squared test to test the significance of the term on the a ssumption
that the true model includes no later terms. The value of ’inc ’ is
ignored when DistName is "normal" and LinkName is "identity ".

Relationship to other functions
The use of glmfit() provides an alternative method to specif y a logistic
or probit analysis of binomial responses, or a log linear ana lysis of
Poisson responses.

Function DistName LinkName
logistic() "binomial" "logit"
probit() "binomial" "probit"
poisson() "poisson" "log"
anova() "normal" "identity"

In the future additional distributions such as "gamma" will be
implemented, as well as additional links such as "sqrt", "re cip", or
"power". If you specify an unimplemented combination of Lin kName and
DistName, an informative error message is printed.

Problimit error message
When fitting a model with a binomial dependent variable, a wa rning
message similar to the following

WARNING: problimit = 1e-08 was hit by glmfit() at least once
usually indicates either the presence of an extreme outlier or a best
fitting model in which many of the probabilities are almost e xactly 0 or

2.136. GLMFIT() 177

1. The latter case may not represent any problem, since the fi tted
probabilities at these points will be 1e-8 or 1 - e-8. You can t ry
reducing the threshold using keyword ’problimit’ (see belo w), but you
will probably just get the message again.

Other Keyword Phrases
Keyword phrase Default Meaning

Keyword ’maxiter’
maxiter:m 50 Positive integer m is the maximum number of

iterations that will be allowed in fitting

Keyword ’epsilon’
epsilon:eps 1e-6 Small positive REAL specifying relative e rror

in objective function (2 * log likelihood)
required to end iteration

Keyword ’problimit’
problimit:small 1e-8 With dist:"binomial", iteration is r estricted

so that no fitted probabilities are < small
or > 1 - small. Value of small must be between
1e-15 and 0.0001.

Keyword ’offsets’
offsets:OffVec none Causes model to be fit to link to be 1 * Offvec +

Model, where OffVec is a REAL vector the same
length as response y. OffVec must be in the
same units as the link function, say, logits,
logs, or probits. See topic ’glm_keys’ for
more information and poisson(), logistic() and
probit() for examples.

Keyword ’scale’
scale:sigma 1 sigma must be a positive REAL scalar or ?

(MISSING). Its value will replace a default
multiplier used by secoefs() and contrast() to
compute standard errors. If the value is
MISSING, sigma will be computed as sqrt(SS[m]/
DF[m]), where m = length(SS). The default is 1
unless dist is "normal" when it is sqrt(SS[m]/
DF[m]). In secoefs(), scale multiplies the
square roots of the diagonal values of the
inverse of X’WX, where X is the matrix of
X-variables, and W is a diagonal matrix of
weights computed using the converged fit.

Cross references
See topic ’glm_keys’ for details on keyword phrases print:F , silent:T,
coefs:F.

See also topics logistic(), poisson(), probit(), ’glm’.

178 CHAPTER 2. MACANOVA HELP FILE

2.137 glmpred()

Usage:
glmpred(variates,factors [, estimate:F, seest:F, sepred :T, n:N,

silent:T]), variates and factors REAL vectors or matrices o r NULL, N a
positive scalar or REAL vector with positive elements.

Keywords: glm, regression, anova, categorical data

Usage
glmpred(Variates, Factors) computes estimates of the expe cted value of
the response variable y for specified values of any variates and levels
of any factors in the latest GLM model. It returns a structure with
REAL components (vectors, except after manova()) "estimat e" and "SEest".

If there are no variates in the model, Variates should be NULL (see
topic ’NULL’). Otherwise, Variates should be REAL. If there are Nvar
variates in the model, Variates should either be a vector of l ength Nvar
containing values for each of the variates, or a matrix with N var
columns, with each row containing values for each variate.

If there are no factors in the model, Factors should be omitte d or
explicitly NULL. Otherwise, Factors should be REAL. If ther e are Nfac
variates in the model, Factors should either be a vector of le ngth Nfac
containing levels for each of the factors, or a matrix with Nf ac
columns, with each row containing levels for each factor.

If either Variates or Factors contains data for only one case , it is
used for all cases. Otherwise, you must have nrows(Variates) =
nrows(Factors).

Caution: After anova(), manova() and regress(), standard e rrors are
computed using the final error mean square in the model. This may not
be appropriate with mixed models, including split plot desi gns.

Keyword ’silent’
glmpred(Variates, Factors, silent:T) does the same except that certain
advisory messages are suppressed. ’silent:T’ can be used wi th any other
keywords. The default value of ’silent’ is False unless the v alue of
option’ ’warnings’ is False.

Keywords ’sepred’, ’seest’ and ’estimate’
glmpred(Variates, Factors, sepred:T) adds component SEpr ed to the output
structure containing a vector or matrix of prediction stand ard errors.
This is only permissible after regress(), anova() or manova () and their
weighted alternatives.

glmpred(Variates, Factors, seest:F) suppresses the compu tation of
standard errors.

glmpred(Variates, Factors, estimate:F) suppresses the co mputation of
expected values. This option is legal only after anova(), ma nova(),
regress() and their weighted alternatives.

2.138. GLMTABLE() 179

You cannot use glmpred() after fastanova() or ipf() or when c oefs:F was
used on the preceding GLM command.

After binomial response GLM
After GLM functions involving a Binomial response variable (logistic(),
probit(), glmfit(...,dist:"binomial")), the values comp uted are the
estimated probabilities p of "success" associated with eac h case (set of
values). In this case, you can also use keyword phrase n:N, wh ere N is
a REAL variable, to specify the number of trials for each case . N can
be a scalar or a vector whose length matches the number of case s. The
resulting estimated values are N * phat, where phat are the estimated
probabilities.

After other nonlinear GLMs
After GLM functions such as poisson(), logistic(), or probi t(), where
the expectation of the response is a non-linear function of a linear
combination of the predictors, the standard error is comput ed from the
expectation and standard error in the linear scale using the
delta-method. When the response is binomial and you also use n:N, the
standard errors are those of N * p.

Assumption
Comment: Standard errors are computed on the assumption tha t all effects
are fixed and not random. When this is not appropriate, the st andard
errors will usually indicate more precision than is warrent ed.

Example
Examples:

After regress(), glmpred(x,sepred:T) is equivalent to reg pred().
After anova("y=x+a+b"), x a variate, a and b factors,

glmpred(x, hconcat(a,b)) computes fitted values and their standard
errors for each case.

glmpred(modelvars(variates:T), modelvars(factors:T)) computes fitted
values and their standard errors for each case, regardless o f the

model.

Cross references
See also glmtable(), glmpred(), regpred(), modelinfo(), p opmodel(),
pushmodel().

2.138 glmtable()

Usage:
glmtable([wtdmeans:T or x:vals, estimate:F, seest:F, sep red:T, n:N]\

[,silent:T]) or
glmtable(Term,[wtdmeans:T or x:vals, estimate:F, seest: F, sepred:T,\

n:N] [,silent:T]) where vals is REAL vector and TERM is CHARA CTER
scalar of form "A.B. ...", where A, B are factors in current GL M
model, N is a positive REAL scalar or vector or array of positi ve
numbers.

180 CHAPTER 2. MACANOVA HELP FILE

Keywords: glm, anova

Usage
glmtable() computes tables of fitted values (estimated cel l expected
values) and their standard errors based on the computations of the most
recent GLM (generalized linear or linear model) command suc h as anova()
or poisson(). It returns a structure with components "estim ate" and
"SEest" containing the tables, each of which has a dimension for each
factor in the model, in the order the variables appear in the m odel. If
there are variates in the model, the fitted values are comput ed with
each variate set to its unweighted mean value and thus are wha t are
sometimes called the covariate adjusted cell means.

If only one array of values is computed, glmtable() returns t hat array,
not a structure.

Keyword ’silent’
glmtable(silent:T) does the same except that certain advis ory messages
are suppressed. ’silent:T’ can be used with any other keywor ds. The
default value of ’silent’ is False unless the value of option ’
’warnings’ is False.

Sepred seest and estimate keywords
glmtable(sepred:T) adds component SEpred to the output str ucture
containing a table of prediction standard errors. This is on ly
permissible after regress(), anova() or manova() and their weighted
alternatives.

glmtable(seest:F) suppresses the computation of standard errors.

glmtable(estimate:F) suppresses the computation of expec ted values.
This option is legal only after anova(), manova(), regress() and their
weighted alternatives.

Caution: After anova(), manova() and regress(), standard e rrors are
computed using the final error mean square in the model. This may not
be appropriate with mixed models, including split plot desi gns.

Keyword ’wtdmeans’
glmtable(wtdmeans:T [,...]) does the same except it adjust s cell fitted
values to the weighted means of the variates. You can use wtdm eans:T
only when there are variates and when the previous GLM comman d used
unweighted OLS (anova() or manova() with no weights supplie d). This
option would be probably appropriate when the weights were p roportional
to sample sizes.

Keyword ’x’
glmtable(x:Vals [,...]), where Vals is a REAL vector with le ngth = the
number of variates (non-factors) in the model, does the same
computation, except it uses the elements of Vals instead of u nweighted
or weighted variate means. This option allows you to estimat e cell
means that are adjusted to any level of the covariates. Use of x:Vals
is an error if there are no variates in the current GLM model.

2.138. GLMTABLE() 181

Marginal table
glmtable(Term [,...]) returns an estimated marginal table for the
factors specified by Term. Term is a quoted string or CHARACT ER scalar
of the form "Name1.Name2.Name3....", where Name1, Name2, . .. are names
of factors in the current GLM model. If there are k factor name s in
Term, the value will be an array with k dimensions (vector if k = 1,
matrix if k = 2), with the dimensions ordered in the same order as in
the model, not the order in Term if that is different. You cann ot
use glmtable(term [,...]) after anova() with a balanced des ign unless
Term includes all the factors in the model.

Example:
Cmd> glmtable("a.b", x:17) # same as glmtable("b.a",x:17)

glmtable(term:k [,...]) is equivalent to glmtable(TERMNA MES[k] [,...]),
computing the marginal table matching term k in the model.
Example:

Cmd> glmtable(term:3, x:17).

You can use sepred:T when estimating a marginal table.

Comment: When the marginal table for any term in the model con tains
empty cells, especially when a factor is nested in another wi th
different numbers of levels, the estimated means may not be w hat you
want.

After binomial GLM
For GLM functions involving a binomial response variable (l ogistic(),
probit(), glmfit() with dist:"binomial"), the values comp uted are the
estimated probabilities p of "success" associated with eac h cell. In
this case, you can also use keyword phrase n:N, where N is a REA L
variable, to specify the number of trials for each cell. N can be a
scalar, a vector whose length matches the size of the table, o r a matrix
or array whose dimensions match those of the table. The resul ting table
is a table of N * p.

After other nonlinear GLMs
After GLM functions such as poisson(), logistic(), or probi t(), where
the expectation of the response is a non-linear function of a linear
combination of the predictors, the standard error is comput ed from the
expectation and standard error in the linear scale using the
delta-method. When the response is binomial and you also use n:N, the
standard errors are those of N * p. You cannot use seest:T or sepred:T
after fastanova() or ipf().

Assumption
Comment: Standard errors are computed on the assumption tha t all effects
are fixed and not random. When this is not appropriate, the st andard
errors will usually indicate more precision than is warrent ed. In
particular, this is would be the case when one factor indexes replicates
in a randomized block design and you use glmtable(Term,sees t:T) to
estimate treatment means, where Term contains all the facto rs except
blocks.

182 CHAPTER 2. MACANOVA HELP FILE

After nonlinear GLMs
After fitting a non-linear model by logistic(), probit(), p oisson(), or
glmfit(), when Term doesn’t contain all the factors in the mo del,
glmtable(Term) first computes the estimated marginal tabl e in the linear
scale (logit, probit, or log) and then transforms it back int o the scale
of the response. This means that the computed marginal table is not the
marginal means of the fitted table. For example, if b is a fact or with
3 levels, after logistic("y=a * b", n:40), sum(glmtable("a.b"))/3 is not
the same as glmtable("b").

Limitation
When keyword phrase coefs:F was an argument on the most recen t GLM
command, glmtable() is not available.

Cross references
See also topics anova(), anovapred(), glmpred(), regpred(), modelinfo(),
popmodel(), pushmodel(), ’glm’.

2.139 goodfactors()

Usage:
goodfactors(n), n an integer scalar or vector

Keywords: general

Usage
goodfactors(n), where n is a vector of positive integers < 2ˆ 52 =
4503599627370496, returns an integer vector the same lengt h as n whose
i-th element is the smallest integer >= n[i] having no prime f actors
larger than 29. It is designed to be used to choose legal lengt hs of
vectors to be Fourier transformed using rft(), hft() or cft().

goodfactors(n,m), where n is the same and m is a positive inte ger
scalar, does the same, except the i-th element of the result i s the
smallest integer >= n[i] having no prime factors larger than m.

NOTE: Because the product of "unpaired" prime factors can’t be too
large, it is not guaranteed that a value returned by goodfact ors() is
actually a legal length for the Fourier transform functions . For
example, goodfactors(255255) = 255255, but 255255 = 3 * 5* 7* 11* 13* 17 is
not a legal length.

Example:
Cmd> goodfactors(vector(217,1409))
(1) 220 1421

Cross references
See also primefactors(), cft(), hft(), rft().

2.140. GRADE() 183

2.140 grade()

Usage:
grade(x [,down:T]), x REAL or CHARACTER or a structure with a ll REAL

or all CHARACTER components.

Keywords: ordering

Usage
grade(a) is similar to rank(a), producing a vector, matrix, or array of
the same shape as a, but with the indices of the minimum, secon d
smallest, ..., maximum values in each column in place of the r anks.
For example, if x is vector(3.2,1.4,5.6,2.1), grade(x) com putes the
vector(2,4,1,3) since x[2], x[4], x[1], x[3] are the values of x in
increasing order. The basic property is that, if x is a vector ,
x[grade(x)] is the same as sort(x).

Argument a can be either REAL or CHARACTER. When a is CHARACTE R,
ordering is based on the ASCII collating sequence. See sort() for the
complete ordering of characters.

grade(a,down:T) or simply grade(a,T) does the same except t he underlying
sort is in decreasing order so that grade(a,down:T)[1,] com putes the
case (row) numbers of the maximum of each column.

Two uses for grade() are x[grade(x[,i]),] which reorders th e rows of x
so that column i is ordered, and grade(x)[1,] or grade(x,T)[1,] which
compute the indices of the minimum and maximum of each column of x.

Structure argument
It is also acceptable for x to be a structure, whose non-struc ture
components are all REAL or all CHARACTER. In that case, grade () returns
a structure of the same form, each of whose non-structure com ponents is
the result of applying grade() to the corresponding compone nt of x.

Treatment of MISSING values
If there are k MISSING values of a column, the last k elements o f the
result are the indices of the MISSING values. For example,
grade(vector(3,1,?,0,?)) computes vector(4,2,1,3,5). C onsequently, if x
is a vector, x[grade(x)] and x[grade(x,down:T)] compute th e same vector
as sort(x) and sort(x,down:T), even when there are MISSING v alues.

Treatment of ties
When there are ties, the values computed for the tied element s are
unpredictable but still satisfy that x[grade(x),] is the sa me as
sort(x).

Examples
Examples:

Cmd> grade(vector(27,22,25,26,22,21,?,24))
yields vector(6,2,5,8,3, 4,1,7), since the minimum (21) is in position
6, the 2nd and 3rd smallest (22) are in positions 2 and 5, . . ., t he
largest (27) is in position 1, and the only MISSING value is in position
7.

184 CHAPTER 2. MACANOVA HELP FILE

Cmd> grade(vector(27,22,25,26,22,21,?,24),down:T)
yields vector(1,4,3,8,2,5,6,7).

Cross references
See also sort(), rank().

2.141 graphicshelp()

Usage:
graphicshelp(topic1 [, topic2 ...] [,usage:T] [,scrollba ck:T])
graphicshelp(topic, subtopic:Subtopics), CHARACTER sca lar or vector

Subtopics
graphicshelp(topic1:Subtopics1 [,topic2:Subtopics2 .. .])
graphicshelp(key:Key), CHARACTER scalar Key
graphicshelp(index:T [,scrollback:T])

Keywords: general, plotting

Usage
graphicshelp(Topic1 [, Topic2, ...]) prints help on topics Topic1,
Topic2, ... related to macros in file graphics.mac. The help is taken
from file graphics.mac.

graphicshelp(Topic1 [, Topic2, ...] , usage:T) prints usag e information
related to these macros.

graphicshelp(index:T) or simply graphicshelp() prints an index of the
topics available using graphicshelp(). Alternatively,
help(index:"graphics") does the same thing.

graphicshelp(Topic, subtopic:Subtopic), where Subtopic is a CHARACTER
scalar or vector, prints subtopics of topic Topic. With subt opic:"?", a
list of subtopics is printed.

graphicshelp(Topic1:Subtopics1 [,Topic2:Subtopics2], ...), where
Suptopics1 and Subtopics2 are CHARACTER scalars or vectors , prints the
specified subtopics. You can’t use any other keywords with t his usage.

In all the first 4 of these usages, you can also include help() keyword
phrase ’scrollback:T’ as an argument to graphicshelp(). In windowed
versions, this directs the output/command window will be au tomatically
scrolled back to the start of the help output.

Keyword ’key’
graphicshelp(key:key) where key is a quoted string or CHARA CTER scalar
lists all topics cross referenced under Key. graphicshelp(key:"?")
prints a list of available cross reference keys for topics in the file.

graphicshelp() is implemented as a predefined macro.

2.142. GRAPHS 185

Cross references
See help() for information on direct use of help() to retriev e
information from graphics.mac.

2.142 graphs

Keywords: plotting

Basic plotting commands
The basic plotting commands are as follows:

plot(x,y) Plot of columns of y against x
lineplot(x,y) Connected line plot of columns of y

against x
chplot(x,y,symbols:ch) Plot of columns of y against x using

symbols specified by ch
stringplot(x,y,strings:s) Draw labeling information in s at

positions defined by x and y
boxplot(x1,x2,...,xk) Box plots of vectors x1, ..., xk
boxplot(structure(x1,...xk))
addpoints(x,y) Add data to an existing graph
addlines(x,y) Add line connected data to an existing

graph
addchars(x,y,symbols:ch) Add data to an existing graph usi ng

symbols specified by ch
addstrings(x,y,strings:s) Add labeling information in s a t coord-

inates in x and y in an existing graph
showplot() Redisplay previously displayed graph

Arguments of basic plotting commands
Arguments x and y can be replaced by a structure with at least t wo
components which are interpreted as x and y. Any additional c omponents
are ignored. For example, plot(x,y) and plot(structure(x, y,z)) are
equivalent.

It is not an error when x or y is NULL; a warning message is print ed and
no plotting occurs.

Except for stringplot() and addstrings(), any points or lin es outside
the border of the plot are omitted. The exception for stringp lot() and
addstrings() allows you to place custom labels outside the f rame of the
graph.

Assignment to GRAPHWINDOWS
You can also draw a graph by a command like

Cmd> GRAPHWINDOWS[1] <- structure(x:height,y:weight [,. ..])
where any additional arguments are graphics keyword phrase s. See topics
’graph_assign’ and ’GRAPHWINDOWS’ for details.

Keyword use
See topic ’graph_keys’ for information on optional graphic s keyword
phrases. You can use some of these to specify axis labels and a title

186 CHAPTER 2. MACANOVA HELP FILE

or plotting limits. Examples are xmin:0, xmax:10,ymin:-1, ymax:1,
xlab:"X axis label", ylab:"Y axis label", and title:"Title above graph".
You can use others to specify whether the graph is to be displa yed,
written to a file, or be saved in the form of a GRAPH variable. U sing
keyword ’keys’, you can specify such keyword information as components
of a structure.

Other references
See topic ’graph_files’ for information on how to save a plot in a file
using keywords ’file’, ’new, ’ps’, ’screendump’, and ’epsf ’.

See topic ’graph_ticks’ for information on using keywords ’ ticks’,
’xticks’, ’yticks’, ’xticklen’, ’yticklen’, ’xticklabs’ and ’yticklabs’
to modify default tick mark placement and labeling.

See topic ’graph_border’ for information on using keyword ’ borders’ to
control which borders will be drawn

Use of mouse
In windowed versions you can use the mouse in a graphics windo w to
specify the positions of points, lines or rectangles to be dr awn into
the graph. You can do the same, with some restrictions, in the
Unix/Linux version using Tektronix emulation with an emula tor that
implements graphical input mode. See Mouse().

Logarithmic scaling of axes
Keyword phrases ’logx:T’ and/or ’logy:T’ specify that loga rithmic
scaling is to be used for the corresponding axis. When plotte d, the
values are transformed to logarithms, but tick marks are sti ll in the
original units. For example, plot(x,y,logy:T) creates a se mi-log plot,
with a linear x-axis and a logarithmic y-axis and plot(x,y,l ogx:T,
logy:T) creates a log-log plot.

With logx:T, any data points with x <= 0 are treated as if they h ad
MISSING values as are data points with y <= 0 when you use logy: T. A
warning message is given.

Low resolution ("dumb") plots
By default, all plotting commands produce high resolution g raphs.
Keyword phrase ’dumb:T’ on any plotting command directs tha t the graph
should be "dumb", that is a low resolution plot using charact ers that
can be printed on any printer. If you prefer to have dumb plots as the
default, type setoptions(dumbplot:T); ’dumb:F’ will then be necessary to
get high resolution plots. The default size of a dumb plot, in cluding
labels, is M lines by N - 1 character positions, where M and N ar e the
values of options ’height’ and ’width’. You can override the se defaults
by graphics keywords ’height’ and ’width’ whose values defi ne M and/or
N. See topics setoptions(), ’options’ and ’graph_keys’.

Specification of data to be plotted
Commands plot(), chplot(), lineplot(), stringplot(), add points(),
addlines(), addchars() and addstrings() all require argum ents x and y
which specify plotting positions. x is a REAL vector and y is a REAL

2.142. GRAPHS 187

vector or matrix. If y has more than 1 column, each column is pl otted
against x. For addstrings(), y must be a vector of the same len gth as
x.

Alternatively, arguments x and y can be replaced by a structu re with at
least two REAL components. For example, plot(structure(x, y)) is
equivalent to plot(x,y). If there are more than two componen ts, the
additional ones are ignored. For example, plot(structure(x,y,
info:"Test Data")) is also equivalent to plot(x,y).

Except for stringplot() and addstrings(), x can be a scalar o r a vector
of length 2 which implicitly specifies ny equally spaced val ues where ny
= nrows(y). When x = x0 is a scalar x0, the implied vector is
vector(x0,x0+1,x0+2,...). If x is vector(x0,dx), the impl ied vector is
vector(x0,x0+dx,x0+2 * dx, ...). Otherwise, x and y must have the same
number of rows.

For plot(), chplot(), and lineplot(), if x or y are specified as keyword
phrases, as in plot(Time:tm,Level:y), the keywords are use d as axis
labels; however, keywords ’xlab’ or ’ylab’ (see below) will override the
name:x or name:y forms. See topic ’graph_keys’.

Examples
plot(1,y) is short for plot(run(nrows(y)),y)
plot(vector(1979,1/12),y) is short for

plot(run(0,nrows(y)-1)/12+1979,y)
The second example might be used to plot monthly data startin g January
1979 against time.

GRAPH variable LASTPLOT
As a "side effect", all plotting commands create a GRAPH vari able with
name LASTPLOT which encapulates all the information used to create the
plot. The information is saved in a resolution independent f orm. You
can assign LASTPLOT to another variable (for example, plot1 <- LASTPLOT)
or redisplay it, possibly with changed limits or labeling in formation,
using showplot(). You can print it (as a "dumb" plot) by
print(LASTPLOT) or write(LASTPLOT) or simply by typing LAS TPLOT.

You can suppress the creation of LASTPLOT by keyword phrase ’ keep:F’.
This might be useful if you were running out of memory.

Vaariable GRAPHWINDOWS
In addition, MacAnova maintains GRAPHWINDOWS, a special st ructure
variable, with one component for each possible graphics win dow (1
component in non-windowed versions). Briefly, GRAPHWINDO WS[I]
(component I of GRAPHWINDOWS) is either a GRAPH variable enc apsulating
the plot in graphics window I, or is NULL when there is no plot i n
graphics window I. See topic ’GRAPHWINDOWS’.

Adding information to a plot
Commands addpoints(), addchars(), addlines(), and addstr ings() allow you
to display GRAPH variables with added information. Alterna tively and

188 CHAPTER 2. MACANOVA HELP FILE

equivalently, you can use the keyword phrase ’add:T’ as an ar gument to
plot(), chplot(), lineplot() or stringplot(). If the first argument is
a GRAPH variable (for example, addlines(graph,x,y)), the p lot combines
the information in the GRAPH variable with the new informati on provided.
Otherwise, the information in LASTPLOT is used. In no case is any GRAPH
variable other than LASTPLOT changed.

If graph is a GRAPH variable, plot(graph,x,y), chplot(grap h,x,y,
symbols:c) and lineplot(graph,x,y) are equivalent to addp oints(graph,
x,y), addchars(graph,x,y,symbols:c) and addlines(graph ,x,y),
respectively.

To force recomputation of any of xmin, xmax, ymin or ymax to in clude all
data use keyword phrases xmin:?, xmax:?, ymin:?, or ymax:?.

To suppress immediate display of the graph, as when you are bu ilding a
complex graph in stages, use ’show:F’ as an argument to each p lotting
command. When you are done, simply type showplot(). It is an e rror to
use both ’show:F’ and ’keep:F’.

Examples
Cmd> plot(x,y,show:F); graphVar <- LASTPLOT
Cmd> addpoints(3,4) # or plot(3,4,add:T) or plot(LASTPLOT ,3,4)
Cmd> addpoints(graphVar,10,20,keep:F)#or plot(graphVa r,10,20,keep:F)
Cmd> showplot(xmin:0,xmax:0,ymin:0,ymax:0)

produces three plots. The first and third are plots of y vs x wi th the
addition of a single point at x=3 and y=4, and the second is a pl ot of y
vs x with the addition of a point at x = 10 and y = 20. MacAnova als o
recomputes the extremes displayed for the third plot. Becau se of
’keep:F’ LASTPLOT is not updated after the second addpoints () command.

Graph Windows
On versions with windows, up to 24 windows are available for u se by
plotting commands. In addition, "Panel of Graphs" windows, containing
miniature replicas of up to four plots in their four corners a re also
created.

The graph in the currently displayed window, including the p anel
windows, may be saved to the Clipboard by selecting Copy from the Edit
menu, saved to a file by selecting Save Graph As... on the File menu,
or printed by selecting Print... on the File menu.

On any plotting command you can specify which window to draw i n by
keyword phrase ’window:n’, where 1 <= n <= 8. Keyword phrase ’ window:0’
means you want to reuse the most recently drawn window. This i s the
default on any plotting command adding information to a prev ious plot.
This is useful for displaying a sequence of related plots tha t differ in
the value of a parameter. If ’window:n’ is not used and a plot i s not
being added to, the first unused window is selected, or if all windows
are in use, a message is printed.

Pausing between plots
Keyword phrase ’pause:T’ on any plotting command results in MacAnova

2.143. GRAPHWINDOWS 189

pausing after the plot is drawn. This is particularly useful when
drawing repeated graphs in a ’for’ or ’while’ loop. Keyword p hrase
’pause:F’ suppresses any such pause. The default on windowe d versions
is pause:F while under DOS or Unix/Linux it’s pause:T. On all machines,
the pause can be terminated by hitting RETURN. You can use the File
and Edit menus to print the graph or to Copy the graph to the Cli pboard.
Together with the window keyword, this permits you to displa y an
unlimited number of graphs successively in the same window, pausing
after each one to examine it and possibly print it or copy it.

Plotting on Unix/Linux
The nonwindowed version on Unix/Linux produces Tektronix- compatible
plotting sequences. If MacAnova is running in a Xterm pseudo VT100
window, a pseudo Tektronix 4014 graphics window is opened an d drawn to,
switching back to the VT100 window when done.

The CHARACTER strings which make up the value of option ’teks et’ (see
subtopic ’options:"tekset"’) are sent to the terminal to sw itch into and
out of Tektronix emulation mode. MacAnova initializes the v alue of
’tekset’ for Xterm, when that is appropriate. Otherwise, th e value of
’tekset’ is intialized with strings that are recognized by V ersaterm, a
Macintosh terminal emulator program. When you are using som e other
terminal emulator (such as DOS kermit or Macintosh NCSA Teln et) that
supports Tektronix 4014 plotting, you will need to set optio n ’tekset’
appropriately. Some suggested values are given in topic ’op tions’. See
also topics vt() and tek().

2.143 GRAPHWINDOWS

Keywords: plotting, syntax

Introduction
A special variable GRAPHWINDOWS is always defined in MacAno va. It is a
structure (see topic ’structures’) with a component for eac h possible
graphics window. In the DOS version and non-windowed Unix/L inux
versions, GRAPHWINDOWS has only one component.

Each component of GRAPHWINDOWS is either a GRAPH variable or is NULL.
When it is a GRAPH variable, it encapsulates everything used to draw the
plot in the corresponding window (see topic ’variables’).

In windowed versions, when you close a graphics window, the
corresponding component of GRAPHWINDOWS is set to NULL.

Names of components
The name of GRAPHWINDOWS[I] (component I of GRAPHWINDOWS), where I is a
positive integer, is one of the following:

Name Meaning
Empty_I GRAPHWINDOWS[I] is NULL
Graph_I GRAPHWINDOWS[I] is a GRAPH variable
LASTPLOT GRAPHWINDOWS[I] is a GRAPH variable that is identi cal to

190 CHAPTER 2. MACANOVA HELP FILE

GRAPH variable LASTPLOT which is normally created as a
"side effect" every time a plot is drawn.

Thus
Cmd> compnames(GRAPHWINDOWS)

summarizes the status of all the windows. See compnames().

If the name of GRAPHWINDOWS[I] is LASTPLOT and you plot to win dow J !=
I, the name of GRAPHWINDOWS[I] is changed to Graph_I and GRAP HWINDOWS[J]
is given name LASTPLOT.

After a plotting command with keyword phrase ’keep:F’, GRAP HWINDOWS[I]
becomes a NULL with name Empty_I. If LASTPLOT exists, it does n’t
change.

When the name of GRAPHWINDOWS[I] is LASTPLOT, neither LASTP LOT <- var or
delete(LASTPLOT) affect the contents of GRAPHWINDOWS[I] b ut its name
automatically becomes Graph_I since it can no longer be guar anteed to be
the same as LASTPLOT.

Deleting GRAPHWINDOWS
delete(GRAPHWINDOWS) does not remove GRAPHWINDOWS but rep laces all of
its components by NULL, without changing what is actually di splayed in
any graphics window. See delete().

Assignment to GRAPHWINDOWS
You can also assign to components of GRAPHWINDOWS. For detai ls see
topic ’graph_assign’. Briefly, the behavior is as follows.

GRAPHWINDOWS[I] <- NULL makes component I of GRAPHWINDOWS NULL without
changing what is displayed or affecting LASTPLOT.

GRAPHWINDOWS[I] <- graphVar, where graphVar is a GRAPH vari able, makes
GRAPHWINDOWS[I] identical to graphVar and displays its new contents in
graphics window I. GRAPH variable LASTPLOT is set identical to
graphVar and GRAPHWINDOWS[I] is renamed LASTPLOT.

GRAPHWINDOWS[I] <- structure(graphics key words) modifie s or replaces
component GRAPHWINDOWS[I] and displays it in graphics wind ow I. GRAPH
variable LASTPLOT is set identical to GRAPHWINDOWS[i] whic h is renamed
LASTPLOT.

NULL components
GRAPHWINDOWS[I] can be NULL for one of three reasons: (a) Not hing has
been drawn in the window or it has been closed; (b) keyword phr ase
’keep:F’ was used when the graph in the window was drawn; or (c) the
graph variable has been cleared, either by delete(GRAPHWIN DOWS) or by
GRAPHWINDOWS[I] <- NULL.

Effect of save() and restore()
By default, save() and asciisave() save GRAPHWINDOWS as par t of the
saved workspace, although this can be suppressed by keyword phrase
’graphwind:F’. When the saved workspace is restored, GRAPH WINDOWS is

2.144. GRAPH ASSIGN 191

restored. In windowed versions, the restored graphs are red rawn,
replacing any existing graphs (see restore()). The names of the
restored components are all either Empty_I or Graph_I, even if one of
the original components of GRAPHWINDOWS was named LASTPLOT .

Cross references
See topic ’graphs’ and ’graph_keys’ for general informatio n about
plotting in MacAnova.

2.144 graph assign

Usage:
GRAPHWINDOWS[I] <- gVar, positive integer I, GRAPH variabl e gVar
GRAPHWINDOWS[I] <- structure(x:xvalues,y:yvalues [keyw ord phrases]),

xvalues REAL vector, yvalues REAL vector or matrix
GRAPHWINDOWS[I] <- structure(x:xvalues,y:yvalues, symb ols:ch\

[, keyword phrases])
GRAPHWINDOWS[I] <- structure(x:xvalues,y:yvalues, line s:T\

[, keyword phrases])
GRAPHWINDOWS[I] <- structure(x:xvalues,y:yvalues, stri ngs:s\

[, keyword phrases]), yvalues a REAL vector
GRAPHWINDOWS[I] <- structure(graphics keyword phrases wi thout ’x’, ’y’)
GRAPHWINDOWS[I] <- NULL

Type help(GRAPHWINDOWS) for information on special variab le GRAPHWINDOWS

Keywords: plotting, syntax

Intoduction
This topic describes the effect of GRAPHWINDOWS[I] <- var, w here
GRAPHWINDOWS is a special structure variable described in t opic
’GRAPHWINDOWS’.

GRAPHWINDOWS[I], component I of GRAPHWINDOWS, is either a G RAPH variable
encapsulating all the information used to draw the plot in th e I-th
graphics window or NULL. You can draw, modify or label a plot i n a
graphics window by GRAPHWINDOWS[I] <- var, where var is a GRA PH
variable, a structure or NULL. This facility supplements th e use of
plotting commands such as plot(), lineplot(), chplot(), st ringplot() and
showplot().

In the following, I is an integer. Currently in the windowed v ersions,
I must satisfy 1 <= I <= 8 and in the non-windowed versions I = 1.

Assignment of NULL
Cmd> GRAPHWINDOWS[I] <- NULL

sets GRAPHWINDOWS[I] to NULL and renames the component "Emp ty_I". If
GRAPHWINDOWS[I] contained a GRAPH variable, it is discarde d. This has
no effect on what, if anything, is displayed in graphics wind ow I or on
the value of variable LASTPLOT if it exists.

192 CHAPTER 2. MACANOVA HELP FILE

Assignment of graph variable
Cmd> GRAPHWINDOWS[I] <- graphVar

graphVar a GRAPH variable, displays the plot in graphics win dow I and
then makes both GRAPHWINDOWS[I] and LASTPLOT identical to g raphVar.
That is, it does the same as showplot(graphVar, window:I) (s imply
showplot(graphVar) in non-windowed versions). Moreover, GRAPHWINDOWS[I]
is renamed LASTPLOT.

Assignment of structure
Cmd> GRAPHWINDOWS[I] <- Str

where Str is a structure, can duplicate the behavior of plot(),
lineplot(..., window:I), chplot(..., window:I), stringp lot(...,
window:I) and showplot(..., window:I). Str must contain at least one
component whose name is the same as a graphics keyword (see to pic
’graph_keys’) and such keyword phrases determine what happ ens. Any
components with graphics keyword names must have the same ty pes of
values as the corresponding keyword. For example, a compone nt named
’lines’ must be a LOGICAL scalar, T or F and a component ’x’ mus t be a
REAL vector.

Str may always include components names ’x’, ’y’, ’xlab’, ’y lab’ and
’title’, as well ’ticks’, ’border’, ’xticks’, ’yticks’, ’x ticklen’,
’yticklen’, ’xticklabs’ and ’yticklabs’. When ’x’ and ’y’ a re
components, Str may also have component ’add’. Components ’ keep’ and
’show’ are allowed but must have value True. If Str has compon ent
’window’, its value must be I. You may not use ’file’ or other k eywords
related to files as component names.

If Str does not have components ’x’ and ’y’, the assignment be haves like
showplot() and Str should not have components ’lines’, ’lin etype’,
’thickness’, ’impulses’, or ’add’.

If Str has components ’x’, ’y’ and ’symbols’, the assignment behaves
like chplot(). With ’add:T’, it behaves like addchars(). St r can also
have components ’lines’, ’linetype’, ’thickness’ and ’imp ulses’.

If Str has components ’x’, ’y’ and ’strings’, the assignment behaves
like stringplot(). With ’add:T’, it behaves like addstring s(). Str
must not have components ’lines’, ’linetype’, ’thickness’ or ’impulses’.

If Str has components ’x’, ’y’ and ’lines’ but not ’symbols’, the
assignment behaves like lineplot(). With ’add:T’, it behav es like
addlines().

If Str has components ’x’ and ’y’, but not ’symbols’, ’string s’ or
’lines’, the assignment behaves like plot(). With ’add:T’, it behaves
like addpoints(). Str can also have component ’impulses’ bu t not
’linetype’ or ’thickness’.

Use of mouse
In some versions, you can use Mouse() to create Str with coord inates
taken interactively from a graphics window. See Mouse() for details.

2.145. GRAPH BORDER 193

Examples
Examples:

Cmd> GRAPHWINDOWS[3] <- structure(x:temp, y:percent, lin es:T,\
symbols:"\1", xlab:"Temperature", ylab:"Percent")

does the same as

Cmd> lineplot(temp, percent, lines:T, symbols:"\1",wind ow:3,\
xlab:"Temperature", ylab:"Percent")

Both also create GRAPH variable LASTPLOT which is identical to
GRAPHWINDOWS[3].

Cmd> GRAPHWINDOWS[4] <- graphVar # GRAPH variable graphVar

does the same as

Cmd> showplot(graphVar, window:4)

LASTPLOT is created identical to graphVar and GRAPHWINDOWS [4].

Cmd> GRAPHWINDOWS[1] <- structure(x:17.3, y:25, add:T,\
strings:"Observations made July 3, 1998", justify:"l")

does the same as

Cmd> stringplot(GRAPHWINDOWS[1], 17.3, 25, add:T, window :1,\
strings:"Observations made July 3, 1998", justify:"l")

In some versions
Cmd> stuff <- Mouse(lines:T,n:10);GRAPHWINDOWS[stuff$w indow] <- stuff

plots a segmented line with 10 segments with the end and join p oints
specified by clicking in a graphics window with the mouse.

Cross references
See also topics ’graphs’, ’graph_keys’, plot(), lineplot(), chplot(),
stringplot(), showplot(), addpoints(), addchars(), and a ddstrings().

2.145 graph border

Usage:
Graphics keyword phrase ’borders:word’ controls on which s ides of a

graph borders should be drawn. Possible values for ’word’ ar e "all",
"none" or some combination of "B", "L", "T", and "R" or their l ower
case counterparts.

Keywords: plotting, files, output

Specifying borders
By default, borders are drawn on all four sides of a graph, pro viding a

194 CHAPTER 2. MACANOVA HELP FILE

rectangular frame. You can modify this behavior using graph ics keyword
phrase ’borders:word’, where word is a quoted string or char acter
scalar. If word isn’t "all" (the default) or "none", it must c ontain
only the characters ’B’ (bottom), ’L’ (left), ’T’ (top) or ’R ’ (right),
or their lower case counterparts ’b’, ’l’, ’t’ and ’r’. Value "" is
equivalent to "none".

Keyword phrase ’borders:word’ also sets the edges where tic k marks will
be drawn, unless ’ticks:word’ is also an argument. See topic
’graph_ticks’.

Examples
Examples:

Cmd> plot(x,y,borders:"LB") # or plot(x,y,borders:"lb")
This produces a plot with border and ticks drawn only at left a nd
bottom.

Cmd> plot(x,y,borders:"none") # or plot(x,y,borders:"")
This produces a plot with no border or ticks drawn.

2.146 graph files

Keywords: plotting, files, output

Introduction
This topic summarizes those plotting options allowing you t o save a plot
in a file. See also topics ’graphs’, ’graph_keys’, ’files’.

Keyword ’file’
When keyword phrase file:FileName is an argument to a plotti ng command,
no plot is displayed. Instead, PostScript commands for the n ew plot are
written to file FileName, which must be a CHARACTER scalar or string.
If keyword phrase landscape:T is also present, the plot will be rotated
to fill an 8.5" by 11" page. If option ’dumbplot’ has been set t o True
(see subtopic ’options:"dumbplot"’), you will need to put d umb:F to get
a PostScript file.

With file:fileName, if keyword phrase dumb:T or ps:F is also an
argument, a low resolution "dumb" plot is written rather tha n
PostScript. This consists only of characters that can be pri nted on any
printer. On some systems, if ps:F appears and dumb:T does not , the plot
is written in a binary form appropriate to the platform (Tekt ronix
commands on Unix/Linux; PICT format on Mac OS 9).

If the keyword phrase ’new:T’ is an argument, the informatio n in the
file is destroyed before the plotting commands are written. Otherwise,
information is added at the end of the file. It formerly was th e case
tha a PostScript "prolog" was written only with new:T but now a prolog
is always written before PostScript commands.

Encapsulated postscript

2.146. GRAPH FILES 195

On Mac OS 9 you can write the plot as an encapsulated PostScrip t file
by using ’epsf:T, file:fileName’. The file can be imported i nto some
word-processors and graphics editing programs. epsf:T is i llegal with
new:F or ps:F.

Binary formatted files
On Mac OS 9 and in the DOS extended memory version you can write a
binary version of the plot to a file using keyword phrase
screendump:fileName. The format used is one appropriate to the
computer. The Mac OS 9 version writes a so called PICT file and the
extended memory DOS version writes a PCX file. ’screendump: fileName’ is
not legal together with dumb:T or file:FileName.

On Mac OS 9, item Save Graph As on the File menu writes the graph
window currently being displayed as a PICT file.

Cross references
See topics ’data_files’, ’matread_file’, ’vecread_file’ and
’macro_files’ for information on files containing sets and macros.

196 CHAPTER 2. MACANOVA HELP FILE

2.147 graph keys

Usage:
List of keywords which can be used on some or all graphing comm ands or
to name a component of the value of graphics keyword ’keys’.

Keyword Value
add T or F
borders "all", "none" or combination of "B","L","T","R"
dumb T or F
epsf T or F
file CHARACTER scalar file name
height Integer >= 12
impulse T or F
keep F or T
keys structure with graphics keyword component names
landscape T or F
lines T or F
linetype Integer between -99 and 99
logx T or F
logy T or F
new T or F
notes CHARACTER vector
pause T or F
ps F or T
screendump CHARACTER scalar file name
show F or T
silent F or T
strings CHARACTER scalar or vector
symbols CHARACTER or integer scalar, vector or matrix
thickness REAL scalar between .1 and 10
ticks "all", "none" or combination of "B","L","T","R"
title CHARACTER scalar (<= 75 characters)
width Integer >= 30
window Integer between 0 and 8
x REAL vector or NULL (only in ’keys’)
xaxis F or T
xlab CHARACTER scalar (<= 50 characters)
xmax REAL scalar or ?
xmin REAL scalar or ?
xticklabs CHARACTER vector
xticklen: REAL scalar >= -1
xticks REAL vector, ? or NULL
y REAL vector or matrix or NULL (only in ’keys’)
yaxis F or T
ylab CHARACTER scalar (<= 20 characters)
ymax REAL scalar or ?
ymin REAL scalar or ?
yticklabs CHARACTER vector
yticklen REAL scalar >= -1
yticks REAL vector, ? or NULL

Topic ’graphs’ has general information on making graphs.

2.147. GRAPH KEYS 197

Keywords: plotting

Here is a summary of the optional keyword phrase arguments re cognized by
most plotting commands. See also topics ’graphs’, ’graph_f iles’,
’keywords’, ’graph_assign’. You can get a list of all the key words with
their permissible values by typing ’usage(graph_keys)’.

After the list of keywords there are specific descriptions o f the use of
’add:T’, ’keys:Str’ and GRAPHWINDOWS[i] <- structure(...) with structure
components named using graphics keywords.

Catalog of graphics keywords
Keyword Phrase Description

x:xdata * xdata a REAL vector specifying
data for x-axis or NULL

y:ydata * ydata a REAL vector or matrix
specifying data for y-axis or NULL

symbols:symVar symVar a CHARACTER or integer
scalar, vector or matrix
specifying plotting symbols;
symVar = "###" means use row or
column number as plotting symbol

strings:charVar charVar a CHARACTER scalar or
vector specifying labelling
information to be plotted at
positions specified by x and y.

keys:Str Str a structure with names
matching other graphics keywords;
see below.

add:T Combine the information in the
current plotting command with
information in LASTPLOT (or a
GRAPH variable argument) to create
a new graph; see below.

title:"Plot title of your choice" (up to 75 characters)
xlab:"X-axis label" (up to 50 characters)
ylab:"Y-axis label" (up to 20 characters)
xmin:xMinVal or xmin:? Minimum and maximum values for
xmax:xMaxVal or xmax:? x-axis and y-axis. Value ?
ymin:yMinVal or ymin:? means compute from new data and
ymax:yMaxVal or ymax:? any data in graph being modified.
logx:T Use log scale for x-axis
logy:T Use log scale for y-axis
xaxis:F Do not draw x axis (line y = 0).
yaxis:F Do not draw y axis (line x = 0).
borders:Word Controls which sides of the graph

borders will be drawn. Word can
be "all", "none", "", or a
combination of one or more of "B",
"b", "L", "l", "T", "t", "R", "r".
See topic ’graph_border’.

ticks:Word Controls which sides of the
graph will have tick marks. Word
has same form as for ’borders’.

198 CHAPTER 2. MACANOVA HELP FILE

See topic ’graph_ticks’.
xticks:RealVec Locations for x- or y-axis tick
yticks:RealVec marks and labels. xticks:? and

yticks:? mean compute from data.
xticks:NULL and yticks:NULL mean
no tick marks or labels. See
topic ’graph_ticks’

xticklabs:CharVec Labels for x-axis or y-axis tick
yticklabs:CharVec locations. Permissible only with

custom tick positions and when
length(CharVec) = number of ticks.
See topic ’graph_ticks’

xticklen:length Length of x- or y-axis ticks.
yticklen:length Value length >= -1. length < 0

means outside frame; length > 2
means full gridline. Defaults are
.5

lines:T On all plotting commands except
boxplot(), stringplot() and
addstrings(), connect successive
points with lines.

lines:F Suppress drawing lines on
lineplot() and addlines().

linetype:n On lineplot() and other commands
with lines:T sets the line type to
n, default is 1 (solid line). n
must be an integer -100 < n < 100.
n < 0 is the same as abs(n) except
no warning is printed when lines
are not being drawn; n = 0 is the
same as n = -1

thickness:W On lineplot() and other commands
with lines:T sets the line
thickness to W times normal
thickness, default = 1. W must be
between .1 and 10. Has no effect
when not feasible as with dumb:T.

impulse:T On all plotting commands except
boxplot(), stringplot() and
addstrings(), draw line from
x-axis (y=0 line) to points.

show:F Do not display plot, only save as
LASTPLOT but not in GRAPHWINDOWS

keep:F Do not save plot as LASTPLOT or in
GRAPHWINDOWS; only display. The
corresponding component of
GRAPHWINDOWS is cleared unless
show:F is an argument.

dumb:T Make low resolution plot using
printable characters only,
suitable for printing on a line
printer. Default is taken from
option ’dumbplot’; F means high

2.147. GRAPH KEYS 199

resolution.
height:n Number of lines to be used in

"dumb" plot; n >= 12 is required;
ignored without dumb:T.

width:n Width in character positions to be
used in "dumb" plot; n >= 30 is
required; ignored without dumb:T.

window:n Draw plot in window n (1 <= n <=
8). (versions with windows only)
If n = 0, use window most recently
used.

pause:T (versions with windows) Forces (T) or suppresses (F) a
pause:F (other versions) pause after the graph is drawn.
file:FileName Write PostScript to file Filename
new:T Clear file FileName before writing
landscape:T PostScript plot will be rotated so

as to fill 8.5" by 11" page.
ps:F Suppresses PostScript when

writing a plot to a file. On
Unix/Linux, Tektronix plotting
commands are written. On
Mac OS 9, a PICT file is written.
On other systems, a ’dumb’ plot is
written.

epsf:T (Mac OS 9 only) Produces an encapsulated
PostScript file. Legal only with
file:fileName.

silent:T Suppress warning messages
screendump:FileName Save a copy of screen in file
(Mac OS 9 and DOS extended memory FileName in a form other
versions only) applications may be able to

import.
notes:charVec Adds notes to GRAPH symbol

LASTPLOT ; charVec must be a
CHARACTER vector or scalar. See
topic ’notes’.

* ’x’ and ’y’ have no special meaning as keywords but have meani ng as
component names of the value of keyword ’keys’ when it is an ar gument.
See below.

Use of keyword phrase ’add:T’
When keyword phrase ’add:T’ is an argument to plot(), chplot (),
lineplot() or stringplot(), it makes them behave like addpo ints(),
addchars(), addlines() and addstrings(), respectively. ’ add’ may not be
used without new data, so it is illegal with showplot(). Conv ersely,
use of ’add:F’ on addpoints(), addchars(), addlines() or ad dstrings()
makes them behave like plot(), chplot(), lineplot() or stri ngplot().

Use of keyword phrase ’keys:Str’
The various graphics keyword phrases are usually used as sep arate
arguments to plotting commands. Instead you can specify the m by
argument keys:Str, where Str is a structure with components with names
matching graphics keywords. With this usage, no graphics ke yword

200 CHAPTER 2. MACANOVA HELP FILE

phrases except keys:Str can be arguments. In addition to the regular
graphics keyword names such as ’xlab’ and ’ticks’, you can us e names ’x’
and ’y’ to specify components of Str which provide data to plo t.

This is probably best illustrated by example. The following lines are
equivalent.

Cmd> plot(time,d,xmin:0,ymin:0,xlab:"Time",ylab:"Dis tance")

Cmd> plot(time,d,keys:structure(xmin:0,ymin:0,xlab:" Time",\
ylab:"Distance"))

Cmd> plot(keys:structure(x:time,y:d,xmin:0,ymin:0,xl ab:"Time",\
ylab:"Distance"))

The following is illegal because it mixes use of ’keys’ with g raphics
keywords ’xlab’ and ’ylab’ outside the structure.

Cmd> plot(time,d,keys:structure(xmin:0,ymin:0), xlab: "Time",\
ylab:"Distance") # xlab & ylab are not in the structure

Use of keywords with GRAPHWINDOWS[I] <- structure(...)

Many of the graphics keywords can be used to define the compon ents of a
structure being assigned to GRAPHWINDOWS[I]. For example,

Cmd> GRAPHWINDOWS[3] <- structure(x:time,y:d,lines:T,x lab:"Time",\
ylab:"Distance")

has the same effect as

Cmd> lineplot(time,d,window:3,xlab:"Time", ylab:"Dist ance").

The structure being assigned to GRAPHWINDOWS[I] must not ha ve components
named ’file’, ’new’, ’landscape’, ’ps’, ’epsf’ or ’screend ump’. If
there are components named ’keep’ and/or ’show’ they must ha ve value
True. In windowed versions, the structure should not have co mponents
’dumb’, ’height’ or ’width’. If there is a component named ’w indows’,
its value must be the same as I. If either component ’x’ or ’y’ i s
NULL, GRAPHWINDOWS[I] is unchanged.

See topics ’GRAPHWINDOWS’ and ’graph_assign’ for more deta ils

2.148. GRAPH TICKS 201

2.148 graph ticks

Usage:
Graphics keywords ’xticks’, ’yticks’, ’xticklen’, ’ytick len’, ’ticks’,

’xticklabs’, ’yticklabs’ are used to modify default tick ma rks in
graphs, provide labels for them and specify which sides of a p lot they
are drawn.

Values for ’xticks’ and ’yticks’ are REAL vectors or NULL.
Values for ’xticklen’ and ’ytick’ length are REAL scalars >= -1.
Values for ’ticks’ must be "all", "none" or a combination of l etters ’B"

(bottom), ’L’ (left), ’T’ (top) and ’R’ (right) or their lowe r case
counterparts.

Values for ’xticklabs’ and ’yticklabs’ must be CHARACTER ve ctors, ?, or
NULL

Keywords: plotting

Introduction
This topic summarizes how you can customize tick positions, appearance
and labelling on graphs. See topic ’graphs’ for general info rmation on
plotting commands and topic ’graph_keys’ for information a bout keyword
phrases.

By default, plotting commands draw tick marks at automatica lly computed
"neat" positions. The default tick length is about half the w idth of a
character. All tick marks are labeled in the left or bottom ma rgin,
with the default labels being their locations.

Setting tick positions
You can customize the horizontal and vertical positions of t ick marks by
keywords ’xticks’ and ’yticks’ whose values must be REAL vec tors or
NULL. xticks:NULL and yticks:NULL suppress ticks and their labels
entirely. xticks:? or yticks:? cause the default tick mark p ositions to
be used.

Setting tick lengths
You can control the lengths of the tick marks by keywords ’xti cklen’ and
’yticklen’ whose values should be REAL scalars >= -1. The def ault
length correspondes to xticklen:.5 and yticklen:.5. Value s < 0 give
ticks outside the border and 0 values suppress drawing ticks but not
their labels. Values > 2 cause full gridlines from one side of the plot
to the other to be drawn.

Setting borders with ticks
By default, tick marks are drawn on any edge of the graph where a border
line is drawn, with full gridlines drawn if a border is drawn a t either
end of the line. You can modify this behavior using ’ticks:wo rd’, where
’word’ is a quoted string or character scalar. If ’word’ isn’ t "all" or
"none", it must contain only the characters ’B’ (bottom), ’L ’ (left),
’T’ (top) or ’R’ (right), or their lower case counterparts ’b ’, ’l’, ’t’
and ’r’. Value "" is equivalent to "none".

Using ’borders:word’ without ’ticks’ automatically sets t he sides where
ticks are drawn to match where borders are drawn. See topic

202 CHAPTER 2. MACANOVA HELP FILE

’graph_border’.

Regardless of the value of ’ticks’, tick labels will always b e put at
the bottom and left.

Setting character tick labels
You can replace numerical labels for ticks with arbitrary la bels using
keyword phrases ’xticklabs:charvec’ and/or ’yticklabs:c harvec’, where
charvec is a CHARACTER vector. This is permissible only in th e
following situations (described for the x-axis).

Keyword phrase ’xticks:realvec’ is an argument and length(charvec) =
length(charvec) = length(realvec).

You are displaying or adding to a existing plot for which x-ax is tick
positions were supplied and length(charvec) = number of suc h positions.

You are labelling the "box number" axis on a box plot and
length(realvec) = number of boxes.

In particular, ’xticklabs’ is ignored if default tick posit ions are
being used, even when charvec is of the right length.

Examples
Examples:

Cmd> plot(x,y,xticks:vector(1,2,4),yticks:NULL,xtick len:1.5,\
ticks:"B", xticklabs:vector("Fair", "OK", "Super"))

gives x-axis ticks 1.5 times the width of a character (3 times normal)
at x = 1, 2 and 4 on the bottom border only, giving them special l abels,
and suppresses all y-axis ticks and their labels.

Cmd> plot(x,y,xticklen:3,yticklen:-.5, ticks:"BL")
draws full gridlines perpendicular to the x-axis and defaul t length
ticks along the outside of the left edge of the frame. With tic ks:"L",
ticks:"R", ticks:"LR" or ticks:"none", the gridlines woul d not be drawn
at all.

Cmd> showplot(xticks:?,yticks:?)
sets the default tick positions, without altering their len gth. If
custom tick labels were set, they are discarded. Use of ’xtic klabs’ or
’yticklabs’ produces a warning message but has no other effe ct.

Cross references
See also topics ’graphs’ and ’graph_keys’.

2.149. HALFNORM() 203

2.149 halfnorm()

Usage:
halfnorm(x [,ties:"ignore" or "average" or "minimum"]), x REAL or a

structure with REAL components.
halfnorm(n:N), integer N > 0.

Keywords: transformations, descriptive statistics, ordering

Usage
halfnorm(x) computes the vector of approximate half normal scores for
the data in the REAL vector x. This probably makes sense only w hen the
elements of x are all non-negative, although that is not requ ired.

halfnorm(n:N), N a positive integer, is equivalent to halfn orm(run(N)).

What is computed is equivalent to
invnor(.5 + .5 * (rank(abs(x),ties:"ignore") - .375)/(n + .25))

where n is the number of non-MISSING values. The value corres ponding to
a missing value is MISSING.

The most important use of halfnorm() is probably plot(halfn orm(ss),
sqrt(ss)), where ss is a vector of 1 degree of freedom sums of s quares.
This produces a half normal plot of sqrt(ss).

halfnorm(x [keywords]) has the same labels as x, if any.

Keyword ’ties’
halfnorm(x,ties:Method), where Method is "ignore", "aver age", or
"minimum" (or "i", "a", "m") computes invnor(.5 +
.5 * (rank(abs(x),ties:Method) - .375)/(n + .25)). See rank() f or a
detailed discussion of the three methods. It is hard to think of a
situation when you would want to use "minimum" with halfnorm ().

Matrix or array structure argument
If x is a matrix, the result is a matrix each of whose columns co ntains
the half normal scores for the corresponding column of x.

If x is an array, halfnorm(x) is an array of the same size and sh ape
with all the elements with fixed values of subscripts 2, 3, .. . defining
a "column" whose half normal scores are computed. An array wi th
dimension > 2 is always treated as an array and not as a matrix, even if
there are at most two dimensions greater than 1.

It is also acceptable for x to be a structure, whose non-struc ture
components are all REAL. In that case, halfnorm(x) returns a structure
of the same form, each of whose non-structure components is t he result
of applying halfnorm() to the corresponding component of x.

Example
Example:

Cmd> x <- vector(.59,8.82,9.46,3.34,3.49) # ranks are 1,4, 5,2,3

Cmd> halfnorm(x)

204 CHAPTER 2. MACANOVA HELP FILE

(1) 0.14976 1.0162 1.5588 0.39821 0.67449

Cross references
See also rankits().

2.150 haslabels()

Usage:
haslabels(x), x a variable that is not NULL.

Keywords: general, variables

Usage with example
haslabels(x) is True if and only if variable x has coordinate labels.

Example;
Cmd> x <- yourMacro(y)
Cmd> if (haslabels(y)){

x <- matrix(x,labels:structure("",getlabels(y,2)))}

Cross references
See topics ’labels’, getlabels().

haslabels() is implemented as a pre-defined macro.

2.151 hasnotes()

Usage:
hasnotes(x), x a variable that is not NULL.

Keywords: general, variables

Usage with example
hasnotes(x) is True if and only if variable x has attached not es.

Example:
Cmd> x <- yourMacro(y)

Cmd> if (hasnotes(y)){attachnotes(x, getnotes(y))}

Cross references
See topics ’notes’, getnotes(), attachnotes(), appendnot es().

hasnotes() is implemented as a pre-defined macro.

2.152. HCONCAT() 205

2.152 hconcat()

Usage:
hconcat(a,b,c,... [,labels:structure(rowLabs,colLabs), silent:T]) where

a, b, c, ... matrices and rowLabs and colLabs are CHARACTER sc alars or
vectors

Keywords: combining variables, variables, null variables

Usage
hconcat(a,b,c,...) combines matrices a, b, c ... side to sid e by
concatenating their rows.

All arguments must be of the same type, REAL, LOGICAL, or CHAR ACTER, and
have the same number of rows m. The result is a matrix of that ty pe
with m rows and na+nb+nc+... columns, where na, nb, nc, ... ar e the
number of columns of a, b, c,

An argument that is a vector of length m is considered to be a m b y 1
matrix. In particular, if a is a vector of length m, hconcat(a) is a m
by 1 matrix.

An argument that is an array with only two dimensions not equa l to 1 is
considered to be a matrix (see ’matrices’). For example,

Cmd> hconcat(array(run(6),1,2,3),array(2 * run(8),2,1,4))
is equivalent to

Cmd> hconcat(matrix(run(6),2),matrix(2 * run(8),2))

If a is a vector of length n, hconcat(a) is a matrix with n rows a nd 1
column.

Any argument of type NULL is ignored. If all arguments are NUL L, so is
the result.

Keyword ’labels’
hconcat(a,b,...,labels:structure(rowLabs,colLabs) [, silent:T]) uses
CHARACTER scalars or vectors rowLabs and colLabs as row and c olumn
labels for the result. With silent:T, no warning is printed i f labels
are the wrong size. See topic ’labels’ for details.

Cross references
See also topics vconcat(), vector(), ’matrices’, ’NULL’, ’ vectors’.

2.153 hconj()

Usage:
hconj(hx), hx a REAL matrix representing complex data with H ermitian

symmetry

Keywords: time series, complex arithmetic

206 CHAPTER 2. MACANOVA HELP FILE

Usage
hconj(hx) returns the complex conjugate (in packed Hermiti an form) of
the columns of the vector or matrix hx, considered as complex series
with Hermitian symmetry in packed Hermitian form.

Cross references
See also cconj(), hreal(), himag(), creal(), cimag().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.154 hdivh()

Usage:
hdivh(hx1 [, hx2]), hx1 and hx2 REAL matrices representing c omplex data

with Hermitian symmetry

Keywords: time series, complex arithmetic

Usage
hdivh(hx1, hx2) computes the element-wise complex ratio of elements in
the columns of REAL matrices or vectors hx1 and hx2, consider ed as
complex matrices in packed Hermitian form. The result is als o a complex
matrix in packed Hermitian form.

Any ratio of the form (0 + 0i)/(0 + 0i) is returned as 0 + 0i. The r atio
of a non-zero element of cx1 and 0 + 0i is MISSING + MISSING * i.

When hx1 represents a single complex series (has 1 column), t hat series
is divided by all the series in hx2. Similarly when hx2 repres ents a
single complex series, all the series in hx1 are divided by hx 2.

For example, if hx1 is m by 1 and hx2 is m by 3, hdivh(hx1,hx2) is
equivalent to hdivh(hconcat(hx1,hx1,hx1),hx2).

hdivh(hx) is equivalent to hdivh(hx,hx) and yields a result with all
real parts = 1 and all imaginary parts = 0 (except (0 + 0i)/(0 + 0 i)
elements).

Cross references
See also hdivhj(), cdivc(), cdivcj(), hprdh(), hprdhj(), c prdc(), cprdcj().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.155. HDIVHJ() 207

2.155 hdivhj()

Usage:
hdivhj(hx1 [, hx2]), hx1 and hx2 REAL matrices representing complex data

with Hermitian symmetry

Keywords: time series, complex arithmetic

Usage
hdivhj(hx1, hx2) computes the element-wise complex ratio o f elements
in the columns of hx1 and hconj(hx2), considered as complex m atrices in
packed Hermitian form. The result is also a complex matrix in packed
Hermitian form.

Any ratio of the form (0 + 0i)/(0 + 0i) is returned as 0 + 0i. The r atio
of a non-zero element of cx1 and 0 + 0i is MISSING + MISSING * i.

When hx1 represents a single complex series (has 1 column), t hat series
is divided by all the complex conjugates of the series in hx2.
Similarly, when hx2 represents a single complex series, all the series in
hx1 are divided by hconj(hx1).

For example, if hx1 is m by 1 and hx2 is m by 3, hdivhj(hx1,hx2) i s
equivalent to hdivhj(hconcat(hx1,hx1,hx1),hx2).

hdivhj(hx) is equivalent to hdivhj(hx,hx).

Cross references
See also hdivh(), cdivc(), cdivcj(), hprdh(), hprdhj(), cp rdc(),
cprdcj(), hconj().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

208 CHAPTER 2. MACANOVA HELP FILE

2.156 help()

Usage:
help(topic [, allfiles:T])
help(topic1, topic2, ... [, allfiles:F])
help(Topic:Subtopics), Topic the name of a topic, Subtopic s a CHARACTER

scalar or vector naming subtopics of Topic
help(Topic, subtopic:Subtopics)
help(Topic, subtopic:"?")
help(index:helpfilename), CHARACTER scalar helpfilenam e
help(Pattern) where Pattern has form "start * ", "start * end", or " * mid * ",

"start * mid * ", ...
help(news [,allfiles:T]), help(news:yymmdd1 [,allfiles :T]) or

help(news:vector(yymmdd1, yymmdd2) [,allfiles:T]), whe re yymmdd1 and
yymmdd2 are integers like 990103, 19990103, 000717 or 20000 727

help(key:KeyName [keywords]), where KeyName is a CHARACTE R scalar or
"?" (scans only current help file)

help(topic [,subtopic:Subtopics] , file:fileName or orig :T or alt:T),
CHARACTER scalar fileName (scans only one help file)

Keywords: general

Usage
help() with no argument will print a short message giving som e of the
help() and gethelp() options.

help(topicname) and help("topicname") lists help informa tion on the
named topic.

help(topicname, subtopic:"subtopic_name") does the same , but lists only
the information in the named subtopic. If topicname has no mo re than 10
characters, help(topicname:"subtopic_name") does the sa me.

You can print several subtopics by, for example, help(topic name,
subtopic:vector("usage", "examples")).

help() returns an "invisible" LOGICAL scalar whose value is True only
when at least one topic requested was found. The value may be a ssigned
or tested but will not be printed automatically. See topic
’variables:"invisible"’.

Files named in pre-defined CHARACTER vector HELPFILES are s earched until
the topic is found. This is done by repeated calls to gethelp(), which
scans only one file at a time.

By default, when help is requested on only one topic, the sear ch stops
the first time the topic is found in a file. To force scanning a ll
files, use keyword phrase ’allfiles:T’.

help(topic1, topic2, ...) requests help on several topics a t once. You
cannot use keyword ’subtopic’ when there is more than one top ic, but any
argument can be of the form topicname:"subtopic_name".

In this case, by default, all the help files are scanned, whic h can take

2.156. HELP() 209

a noticable time. If you know all the topics are in a single fil e, you
can save a little waiting time by using ’allfiles:F’ as an arg ument.

Index topics
help(index:helpfilename), where helpfilename is a quoted string or
CHARACTER scalar identifying one of the help files named in H ELPFILES
prints the index topic in that file. In particular,

Cmd> help(index:HELPFILES[3])
prints the index of the file whose name is in the third element of
HELPFILES.

If helpfilename doesn’t exactly match any name in HELPFILES (ignoring
case), various matches are attempted using the wild card cha racters ’ * ’
and ’?’. Thus help(index:"design.hlp") and help(index:"d esign") both
print the annotated index of design.hlp.

No other arguments or keywords can be used with ’index’.

Examples
Examples:

Cmd> help(anova); help(macros); help("break")
Cmd> help(break); help(transformations) #now work; previ ously didn’t
Cmd> help(regress, usage:T) # same as usage(regress)
Cmd> help(stepsetup, subtopic:"example")# or help(steps etup:"example")
Cmd> help(tsplot:vector("usage","example"))
Cmd> if (!help(foo,silent:T)){print("No help on topic foo ")}
Cmd> help(index:"math")

Resetting current help file
You can reset the current help file to any particular file in H ELPFILES
by

Cmd> help(file:HELPFILES[I]) # 1 <= I <= length(HELPFILES)

On other usages of help(), the current help file is either not changed
or is changed to the last file searched.

When no help is found or when there are several topics without all:F,
the current help file is not changed.

When there are several topics with all:F or a single topic, an d at
least one topic is found, the file containing the found topic becomes
the current help file.

Regardless of the number of topics, when reset:T is an argume nt, the
current help file is not changed.

Topic ’news’
help(news) lists in reverse chronological order news items about
MacAnova starting with the most recent entry back for three m onths.

help(news:vector(Date1,Date2) [,scrollback:T] [,all:T]), where Date1
and Date2 are numbers of the form yymmdd or yyyymmdd, lists in reverse
chronological order news items about MacAnova development dated between

210 CHAPTER 2. MACANOVA HELP FILE

Date1 and Date2. For example, help(news:vector(991201,00 00131)) and
help(news:vector(19991201,20001230)) list all news item s dated in
December, 1999 or January, 2000

help(news:Date) lists all news items on or after Date. For ex ample,
help(news:000101) and help(news:200000100) list all news items on or
after January 1, 2000.

help(news:0) lists all available news items. This will prod uce many of
lines of output and is not recommended.

You can use ’scrollback:T’ with all these ways to read news to pics.

By default, when looking for news topics, only file HELPFILE S[1]
(usually "macanova.hlp") is scanned. If you include ’all:T ’ as an
argument, all files in HELPFILES are searched for news items .

Variable HELPFILES
HELPFILES is a CHARACTER vector initialized when MacAnova s tarts up to
contain all the standard help files except "userfun.hlp".

help() uses HELPFILES as a "circular" list. If the current he lp file is
in the list, than the search starts with that file and wraps ba ck to
HELPFILES[1] if necessary. If the current help file is not in that
list, then the current help file is scanned, followed by the f iles named
in HELPFILES.

Adding help files
You can use macro addhelpfile() to add a file name to HELPFILE S. For
example, addhelpfile("mymacros.hlp") and addhelpfile(" mymacros.hlp",T)
add "mymacros.hlp" at the start and end of HELPFILES, respec tively.

File related keywords
You can use gethelp() keywords ’file’, ’orig’, ’alt’ and ’ke y’, but in
that case only the current help file is scanned, not the files in
HELPFILES.

History note
help() is implemented as a macro which invokes gethelp().

NOTE: Prior to Version 4.12, gethelp() was named help() and t here was no
macro named help().

Cross references
See gethelp(), getusage() and usage().

2.157 hft()

Usage:
hft(hx [,divbyT:T]), hx a REAL matrix considered as complex in Hermitian

form

2.158. HIMAG() 211

Keywords: time series, complex arithmetic

Usage
hft(hx) where hx is a REAL vector or matrix, computes the real discrete
Fourier transform of each column of hx, considered as a compl ex series
with Hermitian symmetry in packed Hermitian form.

Any MISSING values in hx are replaced by 0 in computing the res ult and a
warning message is printed.

hft(hx,divbyt:T) does the same, except the result is divide d by the
number of rows of hx.

Inverse transform
hconj(rft(rx,divbyt:T)) is the inverse of hft() in the sens e that hx and
hconj(rft(hft(hx),divbyt:T)) are equal except for roundi ng error.

Limitation on length
The largest prime factor of nrows(hx) must not exceed 29. You can use
primefactors() to find the maximum factor of nrows(hx) and g oodfactors()
to find a length >= nrows(hx) which has no prime factors > 29. I n
addition, the product of all the "unpaired" prime factors ca n’t be too
large. For example N = 3 * 5* 7* 11* 13* 17* Mˆ2 = 255255 * Mˆ2, where M is an
integer, breaks the algorithm and hence is not allowed.

Cross references
See also cft(), rft(), hconj(), primefactors(), goodfacto rs().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.158 himag()

Usage:
himag(hx), hx a REAL matrix representing complex data with H ermitian

symmetry

Keywords: time series, complex arithmetic

Usage
himag(hx) computes the imaginary part of the packed Hermiti an matrix hx.
For examplem, himag(vector(1,2,3,4,5)) is vector(0,5,4, -4,-5) and
himag(vector(1,2,3,4,5,6)) is vector(0,6,5,0,-5,-6).

See also hconj(), cconj(), hreal(), creal(), cimag().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for

212 CHAPTER 2. MACANOVA HELP FILE

working with complex matrices.

2.159 hist()

Usage:
hist(x [, nbars] [,keyword phrases]), REAL vector x, intege r nbars >= 2
hist(x, vector(anchor,width) [,keyword phrases]), ancho r REAL scalar,

width > 0 scalar
hist(x, edges [,keyword phrases]), edges REAL vector with i ncreasing

elements
hist(x , keys:structure(keyword phrases))
Keyword phrases are relfreq:T, freq:T, leftendin:T, outsi deok:T, draw:T,

save:T plus most graphics keywords

Keywords: plotting, descriptive statistics

Usage
hist(x, nbars) draws a histogram of the data in REAL vector x u sing with
nbars equal width bars which include all data. The bar edges a re not
"neat". For example, 1,1.5,2,2.5,3.0, ... are "neat", 2.71 ,3.82, 4.93,
6.04, ... are not "neat".

Bar heights are in the so called "density scale" with height = (M/N)/W,
where M is the number of values in a bar with width W and N is the
number of non-MISSING values in x. This choice makes the tota l area of
the bars = 1.

A value x is included in bar i when L[i] < x <= R[i], where L and R a re
vectors of the left and right edges of the bars.

Keyword ’leftendin’
hist(x, nbars, leftendin:T) does the same, except a value x i s included
in bar i when L[i] <= x < R[i]. ’leftendin:T’ can be used with an y
variant of hist() arguments and any other keywords.

keywords ’freq’ and ’relfreq’
hist(x, nbars, freq:T) and hist(x, nbars, relfreq:T) do the same except
that bar heights are frequencies (M) or relative frequencie s (M/N) with
no adjustment for bar width. ’freq:T’ and ’relfreq:T’ can be used with
any variant of hist() arguments.

Default number of classes
hist(x [,keyword phrases]) does the same using floor(log2(N)) + 1 bars.

Anchored boundaries
hist(x, vector(anchor, width) [,keyword phrases]) does th e same, except
the edges of the bars are of the form anchor + j * width, with anchor +
min(j) * width < min(x) and anchor + min(j) > max(x), with the lowest an d
highest bar edges chosen to include all the data.

Specified boundaries

2.160. HPOLAR() 213

hist(x, Edges [,keyword phrases]) draws a histogram with ba r boundaries
from REAL vector Edges with length(Edges) > 2 and satisfying Edges[i] <
Edges[i+1]. The number of bars is nbars = length(Edges) - 1. A warning
message is printed when bar widths are not all equal and ’relf req:T’ or
’freq:T’ is an argument.

Outsideok
hist(x, Edges, outsideok:T) does the same, except it is not a n error
when some extreme values are outside the bars defined by Edge s. When
values are outside, a warning message is printed. Without ou tsideok:T
this is an error. A value y is outside the bars when y < Edges[1] or y
> Edges[nbars+1]. Without ’leftendin:T’, Edges[1] is outs ide; with
’leftendin:T’, Edges[nbars+1] is outside.

All of the usual plotting related keywords, including ’dumb ’, ’xlab’,
’ylab’, and ’title’, may be used with hist(). See also topics ’graphs’,
’graph_keys’, ’graph_borders’ and ’graph_files’.

Keywords ’save’ and ’draw’
result <- hist(x ... , save:T [, draw:T] [,graphics keywords]) returns
structure(x:xvals, y:yvals [,graphics keywords], lines: T, yaxis:F) as
value. REAL vectors xvals and yvals are such that lineplot(x vals,yvals,
yaxis:F [,graphics keywords]) or lineplot(keys:results) draws the
histogram. Nothing is drawn unless ’draw:T’ is also an argum ent.

Keyword ’keys’
An alternate way to specify keyword values is to create a stru cture
keyValues of keyword values and use ’keys:keyValues’ as the only keyword
phrase argument. For example

Cmd> keyValues <- structure(xlab:"Bone length",relfreq: T,\
title:"Bone histogram", ylab:"Relative frequency",save :T)

Cmd> stuff <- hist(bones,vector(0,.25),keys:keyValues)

does the same as
Cmd> stuff <- hist(bones,vector(0,.25),xlab:"Bone lengt h",relfreq:T,\

title:"Bone histogram", ylab:"Relative frequency",save :T)

Cross references
See also topic panelhist().

2.160 hpolar()

Usage:
hpolar(hx [,unwind:F or crit:val]), hx a REAL matrix repres enting

complex data with Hermitian symmetry, val a REAL scalar,
0.5 < val <= 1

Keywords: time series, complex arithmetic

214 CHAPTER 2. MACANOVA HELP FILE

Usage
hpolar(hx) computes the polar form of the packed Hermitian m atrix hx,
storing it in pseudo packed Hermitian form, with the amplitu de or
absolute value as the real part and the phase as imaginary par t. Thus
hreal(hpolar(hx)) and himag(hpolar(hx)) return REAL matr ices whose
columns are the amplitudes and phases of the complex series r epresented
by the columns of hx.

Angle units
The value of the computed phase is in radians, degrees or cycl es
depending on the value of option ’angles’. See subtopic
’options:"angles"’. By default the phase is "unwound" so as to minimize
discontinuities arising from wrap-around.

Keywords ’crit’ and ’unwind’
hpolar(hx,crit:Val), where .5 <= Val < 1 changes the criteri on
controlling "unwinding". The default is .75. See unwind() f or details.

hpolar(hx,unwind:F) suppresses the unwinding.

Cross references
See also cpolar(), crect(), hrect().

See topic ’complex’ for information on complex matrices in M acAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.161 hprdh()

Usage:
hprdh(hx1 [, hx2]), hx1 and hx2 REAL matrices representing c omplex data

with Hermitian symmetry

Keywords: time series, complex arithmetic

Usage
hprdh(hx1, hx2) computes the element-wise complex ratios o f elements in
the columns of REAL matrices or vectors hx1 and hx2, consider ed as
complex matrices in packed Hermitian form. The result is als o a complex
matrix in packed Hermitian form.

Any ratio of the form (0 + 0i)/(0 + 0i) is computed to be 0.

If hx1 or hx2 represents a single complex series (has 1 column), that
series is multiplied by all the series in the other arguments . For
example, if hx1 is m by 1 and hx2 is m by 3, hprdh(hx1,hx2) is
equivalent to hprdh(hconcat(hx1,hx1,hx1),hx2).

hprdh(hx) is equivalent to hprdh(hx,hx).

2.162. HPRDHJ() 215

Cross references
See also hprdhj(), cprdc(), cprdcj(), hdivh(), hdivhj(), c divc(),
cdivcj().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.162 hprdhj()

Usage:
hprdhj(hx1 [, hx2]), hx1 and hx2 REAL matrices representing complex data

with Hermitian symmetry

Keywords: time series, complex arithmetic

Usage
hprdhj(hx1, hx2) computes the element-wise complex produc t of elements
in the columns of hx1 and hconj(hx2), considered as complex m atrices in
packed Hermitian form. The result is also a complex matrix in packed
Hermitian form.

If hx1 or hx2 represents a single complex series (has 1 column), that
series is multiplied by all the series in the other arguments . For
example, if hx1 is m by 1 and hx2 is m by 3, hprdhj(hx1,hx2) is
equivalent to hprdhj(hconcat(hx1,hx1,hx1),hx2).

hprdhj(hx) is equivalent to hprdhj(hx,hx) and produces an p acked
Hermitian output matrix with the squared moduli of the eleme nts of hx,
considered as complex numbers, in the real part of the result , with
zeros in the imaginary part.

Cross references
See also hprdh(), cprdc(), cprdcj(), hdivh(), hdivhj(), cd ivc(),

cdivcj(), hconj().
See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.163 hreal()

Usage:
hreal(hx), hx a REAL matrix representing complex data with H ermitian

symmetry

Keywords: time series, complex arithmetic

216 CHAPTER 2. MACANOVA HELP FILE

Usage
hreal(hx) computes the real part of the packed Hermitian mat rix hx. For
example, hreal(vector(1,2,3,4,5)) returns vector(1,2,3 ,3,2) and
hreal(vector(1,2,3,4,5,6)) returns vector(1,2,3 4,3,2) .

Cross references
See also hconj(), cconj(), himag(), creal(), creal().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.164 hrect()

Usage:
hrect(hx), hx a REAL matrix representing complex data with H ermitian

symmetry

Keywords: time series, complex arithmetic

Usage
hrect(hx) is the inverse operation to hpolar(). Matrix hx is assumed to
contain the polar form of a packed Hermitian series, with amp litudes or
absolute values in the real part and phases in the imaginary p art. The
result contains the real and imaginary parts of that series i n packed
Hermitian form. See topic ’complex’ for discussion of compl ex matrices
in MacAnova.

The phases are assumed to be in units of radians, degrees or cy cles
depending on the value of option ’angles’. See subtopic
’options:"angles"’.

Cross references
See also cpolar(), crect(), hpolar().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.165 htoc()

Usage:
htoc(hx), hx a REAL matrix representing complex data with He rmitian

symmetry

Keywords: time series, complex arithmetic

2.166. HYPOT() 217

Usage
htoc(hx) returns the fully complex equivalent of the matrix hx,
considering its columns as complex series with Hermitian sy mmetry. If
hx is m by n, htoc(hx) is m by 2 * n, the real and imaginary parts of
column i of hx in columns 2 * i-1 and 2 * i of the result.

Cross references
See also ctoh(), cconj(), hconj(), hreal(), himag(), creal (), cimag().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.166 hypot()

Usage:
hypot(x,y), x and y REAL of the same size and shape, or structu res with

matching REAL components

Keywords: transformations

Usage
hypot(x,y) is mathematically equivalent to sqrt(xˆ2 + yˆ2) but can
provide answer when either (i) xˆ2 + yˆ2 is too big to be repres ented in
the computer; or (ii) xˆ2 + yˆ2 is smaller than the smallest no n-zero
value representable in the computer and thus evaluates to 0. x and y
must be REAL vectors, matrices, or arrays with the same dimen sions.

Structure arguments
hypot(x,y) is also defined when x and y are structures of the s ame
shape. The result is a structure whose i-th component is hypo t(xi,yi),
where xi and yi are the i-th components of x and y.

Character arguments
hypot(x,y) can be used when both x and y are CHARACTER variabl es with
matching dimensions. In that case the result is a CHARACTER v ariable
describing the transformation of the arguments. For exampl e,
hypot(vector("X1","X2"),vector("Y1","Y2")) returns
vector("hypot(X1,Y1)", "hypot(X2,Y2)"). This feature ma y be useful in
creating new labels for a transformed variable.

Cross references
See also topics atan(), ’transformations’, ’structures’, ’labels’.

218 CHAPTER 2. MACANOVA HELP FILE

2.167 if

Usage:
if (Logical){cmd;...}
if (Logical){cmd1;...} else {cmd2;...}
if (Logical1){cmd1;...) elseif (Logical2){cmd2;...} [el se {cmd3;...}]

Keywords: syntax, control

Usage of ’if’
if(Logical){Statement} allows conditional execution of S tatement, an
arbitrarily complex statement or compound statement. Stat ement will be
executed if and only if Logical has the value True. Logical sh ould be a
scalar LOGICAL variable or expression. A simple example wou ld be

Cmd> if(min(x) > 0){logx <- log(x);;}

Usage of ’if ... else’
if(Logical){Statement1} else {Statement2} results in Sta tement1 being
executed when Logical is True, and Statement2 being execute d when
Logical is False. An example would be

Cmd> if(min(x) > 0){logx <- log(x);;}else{
error("Illegal non-positive values")}

Usage of ’if... elseif... else’
if(Logical1){Statement1} elseif(Logical2){Statement2 } else {Statement3}
executes Statement1 when Logical1 is True, executes Statem ent2 when
Logical1 is False and Logical2 is True, and executes Stateme nt3 when
both Logical1 and Logical2 are False. An example would be

Cmd> if(min(x) > 0){logx < -log(x);;}elseif(max(x) < 0){
logx <- -log(-x);;}else{
error("Not all positive and not all negative")}

There can be additional elseif(Logical){Statement} const ructs before the
concluding ’else{...}’, and the concluding ’else{...}’ ca n be omitted.
The first Statement for which the corresponding Logical is T rue is
executed.

Value
The value of any of these constructs starting with ’if’ is the value of
whichever ’{Statement}’ is actually executed. If no value i s wanted, it
is good practice to terminate each Statement with ’;;’ so the value will
be NULL, as in the examples above. If all the Logicals are Fals e and
there is no concluding ’else{...}’, the value is NULL. For ex ample,
if(2 > 3){ ...}elseif(5 < 4){...} has value NULL. See below fo r
examples of how you can the fact that a conditional statement has a
value. See also topic ’NULL’.

Once a Logical has been found to be True, any subsequent Logic als are
not evaluated and are not even checked for syntactical corre ctness.

Examples
Cmd> if(ismatrix(x)){xinv <- solve(x);;}else {error("no t matrix");;}
Cmd> a <- if(x < 3){1} else {2}# a <- 1 if x < 3 and a <- 2 otherwise
Cmd> b <- if(x > 0){1} elseif(x < 0){-1} else{0} # b is 1, -1, or 0

2.168. INFOREAD() 219

Syntactic restriction
Note: Each ’{’ following ’if(...)’, ’elseif(...)’ or ’else ’ must be on
the same line as the preceding ’if’, ’elseif’ or ’else’; ’els eif’ and
’else’ must be on the same line as the preceding ’}’. As usual,
however, you can terminate the line with ’\’, and continue on the next
line as in the following:

Cmd> if(x<0)\
{y <- 1;;}\

else\
{y <- 2;;}

2.168 inforead()

Usage:
inforead(fileName,Name [,quiet:F, echo:T or F, silent:T, notfoundok:T,\

nofileok:T,badkeyok:T]), fileName and Name CHARACTER sca lars; FileName
can also be CONSOLE or be string:charVal where charVal is a CH ARACTER
scalar or vector.

Keywords: input, files, character variables

Usage
inforead(FileName,Name) returns the comments (lines star ting with ’)’)
following the header line of data set or macro Name on file Fil eName.
They are returned, with the leading ’)’ stripped off, as a CHA RACTER
scalar which can be printed.

The contents of the data set or macro are ignored and there is n o
checking as to whether the header line is in correct format. T he header
lines are not echoed unless ’quiet:F’ is an argument; see bel ow.

It is an error if the file cannot be read or if the named data set or
macro is not found, but see keywords ’notfoundok’ and ’nofil eok’ below.

Name must be a quoted string or CHARACTER scalar and FileName normally
has a similar form, but see keyword ’string’ below.

File name ""
In versions with windows, if FileName is the null string "", y ou will
be able to select the file using a dialog box.

inforead(FileName) does the same for the first data set or ma cro on the
file, assuming that the first non-empty line is the header li ne of a
data set or macro.

Keyword ’file’
inforead(file:FileName [,Name]) is equivalent to inforea d(FileName
[,Name]).

See below for the usage inforead(string:charVec [,Name]).

220 CHAPTER 2. MACANOVA HELP FILE

Example
Example:

Cmd> haldinfo <- inforead("macanova.dat","halddata"); p rint(haldinfo)

reads the comments describing data set halddata on file maca nova.dat
into variable haldinfo and then prints haldinfo.

Commands save() and asciisave() would save haldinfo in a fil e along with
the rest of your workspace. When you later use restore() to re cover the
workspace, print(haldinfo) displays information about th e data without
having to refer to the original data file.

Keywords
Keywords ’quiet’, ’silent’, ’notfoundok’, ’nofileok’ and ’badkeyok’
modify the behavior of inforead(). ’echo’ is recognized but ignored.

Keyword phrase Meaning
quiet:T Header and descriptive comments will not be printed

(the default for inforead())
quiet:F Header and descriptive comments will be printed

in addition being returned as value.
silent:T Only error messages will be printed; incompatible

with quiet:F or echo:T
notfoundok:T Failure to find the macro or data set is not

considered an error so NULL is returned and
no error message is printed

nofileok:T Failure to open the file is not considered an erro r
so NULL is returned and no error message is printed

badkeyok:T Unrecognized or duplicate keywords are silentl y
ignored.

Keywords notfoundok and nofileok are designed to be helpful in a macro.
You can check the returned value using isnull() and take spec ial action
if the isnull() returns True. See isnull().

Keyword ’string’
inforead(string:CharVar) where CharVec is a CHARACTER sca lar or vector,
does not read from a file. Instead, it "reads" CharVar as if ea ch
element were a line (or several lines if there are embedded en d-of-line
characters) read from a file.

The first element or line of CharVar must be a header line for a data
set or a macro. In particular, info <- inforead(string:CLIP BOARD) would
read the header information of the first variable on a replic a of a data
file in the special variable CLIPBOARD. In windowed version s, this
would be taken from the Clipboard. See topic ’CLIPBOARD’.

Keywords ’string’ and ’file’
If either keyword ’file’ or ’string’ is used, they can appear in any
position in the argument list, as can setName which must be th e only
non-keyword argument. For example, inforead(quiet:T,"my macro",
file:"myfile.dat") is equivalent to inforead("myfile.da t","mymacro",

2.169. INTERRUPT 221

quiet:T).

Cross references
See topics ’matread_file’ and ’macro_files’ for informati on on the
format of files readable by inforead().

See also matread(), macroread(), read(), save(), asciisav e().

2.169 interrupt

Keywords: general, syntax, control

Description
To stop the execution of a command after it has been initiated by Return
or Enter, press the interrupt key, defined for specific syst ems as
follows:

System Interrupt Key
------ -------------
Carapace Interrupt on the File menu or the Interrupt button
DOS Ctrl+C
Unix/Linux Ctrl+C

You can also press the interrupt key to stop a large amount of o utput
being written to the screen or window.

In the windowed versions, you may have to wait a few seconds fo r the
interruption to happen.

2.170 invbeta()

Usage:
invbeta(P, alpha, beta [,upper:T or lower:F]), P, alpha and beta REAL,

elements of P between 0 and 1, those of alpha and beta > 0

Keywords: probabilities, random numbers

Usage
invbeta(p,a,b) computes the pth quantile (100 * p percent point) of the
beta distribution with parameters a and b.

The elements of p must be between 0 and 1, inclusive, and the el ements
of a and b must be positive REAL numbers.

If p, a, and b are not all scalars (single numbers), all non-sc alar
arguments must have must have the same size and shape and any s calar
arguments are used to compute all the elements of the result.

invbeta(p,a,b,upper:T) and invbeta(p,a,b,lower:F) comp ute an upper tail
quantile mathematically equivalent to invbeta(1 - p,a,b), but more

222 CHAPTER 2. MACANOVA HELP FILE

accurate when p is very close to 1.

invbeta() is the inverse of cumbeta().

Generating beta random variables
invbeta(runi(n),a,b) will generate a random sample of size n from a beta
distribution .

Binomial confidence interval
You can use invbeta() to compute an "exact" confidence for a p robability
p based on an observed value x_obs of a binomial random variab le with n
trials and P(success) = p.

Cmd> n <- 19; x_obs <- 11; alpha <- .05 # 95% confidence

Cmd> p_l <- invbeta(alpha/2,x_obs,n - x_obs + 1)

Cmd> p_u <- invbeta(alpha/2,x_obs + 1,n - x_obs,upper:T)

Cmd> vector(p_l,p_u) # exact confidence limits
(1) 0.335 0.79748

Cmd> vector(cumbin(x_obs,n,p_u),cumbin(x_obs,n,p_l,u pper:T)) #check
(1) 0.025 0.025

Example
Cmd> invbeta(.975,3,4) # P(x <= .77722) = .975
(1) 0.77722

Cmd> invbeta(.025,3,4,upper:T) # P(x >= .77722) = .025
(1) 0.77722

Cross references
See also cumbeta(), cumbin(), runi().

2.171 invchi()

Usage:
invchi(P, df [,noncen, epsilon:eps] [,upper:T or lower:F]), P, df and

noncen REAL, elements of P between 0 and 1, elements df > 0, ele ments
of noncen >= 0, eps > 0 small.

Keywords: probabilities, random numbers, confidence intervals

Usage
invchi(p,df) computes the pth quantile (100 * p percent point, critical
value) of the chi squared distribution with df degrees of fre edom.

invchi(p,df,Noncen [, epsilon:eps]) computes the pth quan tile of
non-central chi-squared with non-centrality parameter No ncen. The
accuracy of the inverse is controled by eps which has default value

2.172. INVDUNNETT() 223

1e-10.

The elements of p must be between 0 and 1 and the elements of df m ust be
positive but need not be integers. If present, the elements o f Noncen
must be non-negative.

Any of p, df or Noncen that are not scalars (single numbers) mu st be the
same size and shape. Any argument that is a scalar is used to co mpute
all elements of the result.

invchi(p,df [,Noncen], upper:T) and invchi(p,df [,Noncen], lower:F)
compute an upper tail quantile mathematically equivalent t o invchi(1 -
p, df [,Noncen]). It may be more accurate for p very close to 1.

invchi() is the inverse of cumchi().

Use in tests and confidence limits
If alpha is small, invchi(alpha,df,upper:T) or invchi(1-a lpha,df) is the
critical value for a chi-squared test of significance level alpha.

If Ssq is the sample variance from a normally distributed ran dom sample
of size n, then (n-1) * Ssq/invchi(vector(1-alpha/2, alpha/2),n-1) is a
1-alpha confidence interval for the population variance.

Generating chi squared random variables
invchi(runi(n),df [,Noncen]) will generate a random sampl e of size n
from a possibly non-central chi-squared distribution .

Cross references
See also cumchi(), runi().

2.172 invdunnett()

Usage:
invdunnett(P, ngroup, errorDf [,groupSizes][,onesided: T][,epsilon:eps]

[,upper:T or lower:F]) P REAL with elements between 0 and 1, e lements
of ngroup integers >= 2, elements of errorDf >= 1, elements of
groupsizes >= 0, eps > 0, default = .00001.

Keywords: probabilities, comparisons

Usage
invdunnett(P, K, Df) computes Pth quantile (probability po int, critical
value) of Tmax, where Tmax is the maximum of abs(t21), abs(t3 1), ...,
abs(tK1), where t21, t31, ..., tK1 are K-1 t-statistics of th e form
tI1 = (xbarI-xbar1)/ stderr(xbarI-xbar1), I = 2,...,K.

xbar1, xbar2, ..., xbarK are the means of independent normal random
samples of the same size with identical population means and variances,
and the standard errors are computed using an independent es timate of
error variance with Df degrees of freedom. When K = 2 the value is the

224 CHAPTER 2. MACANOVA HELP FILE

same as invstu((1+P)/2, Df). See invstu().

See below for computing quantiles when the sample sizes diff er.

P, K and Df must be REAL. The elements of P must be between 0 and 1 .
The elements of K must be integers >= 2, and the elements of Df m ust be
>= 1, not necessarily integers.

Any of the arguments P, K or Df that are not scalars must all be
vectors, matrices or arrays of the same size and shape; the va lue has
the same size and shape.

invdunnett(P, K, Df, upper:T) and invdunnett(P, K, Df, lowe r:F) compute
the upper tail quantile invdunnett(1-P, K, Df).

Keyword ’onesided’
invdunnett(P, K, Df, onesided:T [,upper:T]) computes the q uantiles for
Tmax, where Tmax is now the maximum of t21, t31, ..., tK1, not o f their
absolute values. When K = 2 the value is the same as invstu(P,D f
[,upper:T]).

Keyword ’epsilon’
invdunnett(P, K, Df [, onesided:T], epsilon:eps), where ep s is a small
positive number (default .00001) which controls the accura cy to which
the quantile is computed. Specifically the logit of the prob ability
corresponding to the computed quantile should be no farther than eps
from the true logit of P (logit(P) = log(P) - log(1-P). Since
invdunnett() uses the algorithm underlying cumdunnett() c onfigured so as
to compute probabilities to within .00001, eps should not be smaller
than the default.

Use in multiple comparisons
invdunnett() is primarily used to compute critical values f or a multiple
comparisons procedure due to C. W. Dunnett wherein a control group
(group 1) is compared to K-1 other treatment groups using K-1 t-tests.

See cumdunnett() for computing P values for the Dunnett test .

Example:
Cmd> invdunnett(.05, 5, 5 * 8 - 5,upper:T)

computes the two-sided critical value for the Dunnett test w ith
significance level alpha = 0.05 for a completely randomized design with
5 groups, all with sample size 8.

Unequal group sizes
invdunnett(x, K, Df, groupSizes [,onesided:T] [,upper:T]) computes
quantiles for Tmax, with REAL argument groupSizes specifyi ng the sample
sizes.

In the simplest usage, groupSizes is a vector (ndims(groupS izes) = 1),
with elements >= 0. If groupSizes is a matrix or array
(ndims(groupSizes) > 1), it is treated as if it were a vector, matrix or
array, with one less dimension, each of whose elements is a ve ctor with

2.172. INVDUNNETT() 225

length = last dimension of groupSizes. The first ndims(grou pSizes) - 1
dimensions of groupSizes must match the dimensions of any of x, K, or DF
which is not a scalar. In particular, a m by 1 matrix, which is t reated
as a vector of length m by most MacAnova functions, is interpr eted by
invdunnett() as a set of m vectors of length 1.

In computing an element of the result based on a vector of grou p sizes
(either all of groupSizes when it is a vector, or a row or "slic e" of
groupSizes when ndims(groupSizes) > 1), invdunnett() uses up to k of the
non-zero leading values in the vector, where k is the corresp onding
element of K. If there are fewer than k non-zero values, the la st one
is replicated as many times as needed. It is an error to have a z ero
value followed by a nonzero value or to have all values zero.

If there is only 1 non-zero value in a row or "slice" of groupSi ze, the
replication of this element means the group sizes are assume d to be
equal. In particular, this is the interpretation when group Sizes is a
scalar or a m by 1 matrix.

Examples
Cmd> invdunnett(.05, 4, 12 - 4, vector(6,2,2,2), upper:T)

computes the 5% critical value for a completely randomized d esign with 4
groups and sample sizes 6, 2, 2 and 2.

Cmd> invdunnett(.05, vector(3,4), vector(12 - 3, 12 - 4),\
matrix(vector(6,3,3,0, 6,2,2,2),4)’, upper:T)

computes 5% critical values for two completely randomized d esigns, one
with 3 groups and sample sizes 6, 3, and 3, the other with 4 grou ps with
sample sizes 6, 2, 2, and 2. Because trailing values in the row s of
groupSizes are replicated, matrix(vector(6,3, 6,2),2)’ w ould be an
equivalent way to specify the group sizes.

Cmd> invdunnett(.01, 4, 12 - 4, 3, upper:T)

computes the same result as invdunnett(.01, 4, 12 - 4, upper: T), because
groupSizes is a scalar.

Ratios of group sizes
Only the ratios of non-zero elements of groupSizes are relev ant. For
example, for 5 groups (K=5), the following groupSizes are eq uivalent:
vector(5,4,3,3,3), vector(5,4,3), vector(5,4,3,0,0), v ector(10,8,6).
vector(5,4,3,0,3) and vector(5,4,3,0,0,1) would be error s because a
non-zero value follows a zero.

Caution: invdunnett() is very computation intensive. If yo u do not have
a fairly fast computer, it may be unacceptably slow. On one Ma cintosh
68000 computer with no math coprocessor, a single value took over 2300
seconds to compute. Until you know how long it will take on you r
computer, don’t compute more than one value at a time. Using a somewhat
larger value for epsilon, for example, epsilon:.0001 or eps ilon:.0005,
may speed up the calculation at the cost of some loss of accura cy.

226 CHAPTER 2. MACANOVA HELP FILE

Cross references
See also cumdunnett(), invstudrng().

2.173 invF()

Usage:
invF(P, df1, df2 [,upper:T or lower:F]), P, df1 and df2 REAL, elements

of P between 0 and 1, those of df1 and df2 > 0

Keywords: probabilities, random numbers, confidence intervals

Usage
invF(p,df1,df2) computes the pth quantile (probability po int, critical
value) of the F distribution with df1 and df2 degrees of freed om.

The elements of p must be between 0 and 1 and the elements of df1 and
df2 must be positive REAL numbers (not necessarily integers).

If p, df1, and df2 are not all scalars (single numbers), all no n-scalar
arguments must have the same size and shape. Any scalar argum ents are
used to compute all elements of the result.

invF(p,df1,df2,upper:T) and invF(p,df1,df2,lower:F) co mpute the pth
upper tail quantile. The result is mathematically equivale nt to invF(1
- p, df1,df2) but may be more accurate for small p.

invF() is the inverse of cumF().

Use in confidence limits
If S1sq and S2sq are sample variances from independent norma l random
samples of sizes n1 and n2,, you can compute a 1 - alpha confide nce
interval for the variance Var1/Var2 as

(S1sq/S2sq)/invF(vector(1-alpha/2, alpha/2), n1-1, n2- 1).

Generating F random variables
invF(runi(n), df1, df2) will generate a random sample of siz e n from a F
distribution.

Cross references
See also cumF(), runi().

2.174 invgamma()

Usage:
invgamma(P, alpha [,upper:T or lower:F]), P and alpha REAL, elements of

P between 0 and 1, those of alpha > 0

Keywords: probabilities, random numbers

2.175. INVNOR() 227

Usage
invgamma(p,alpha) computes the pth quantile (100 * p percent point) of the
gamma distribution with shape parameter alpha. Its princip al use is to
compute critical values for test statistics with a gamma dis tribution
but may also be used to compute exact confidence intervals fo r a Poisson
mean.

The elements of p must be between 0 and 1; the elements of alpha must be
positive but need not be integers.

If neither p nor alpha is a scalar (single number), they must b e the
same size and shape. If just one argument is a scalar, it is use d to
compute all the elements of the result.

invgamma(p,alpha,upper:T) and invgamma(p,alpha,lower: F) compute the pth
upper tail quantile. The result is mathematically equivale nt to
invgamma(1 - p, alpha) but may be more accurate for small p.

invgamma() is the inverse of cumgamma().

2* invgamma(p,df/2 [,upper:T]) is equivalent to invchi(p,df [,upper:T]).

Generating gamma random variables
mu* invgamma(runi(n),alpha)/alpha will generate a random sam ple of size n
from a gamma distribution with mean mu and shape parameter al pha.

Poisson confidence interval
You can use invgamma() to compute an "exact" confidence inte rval for mu
based on an observed value x_obs of a Poisson random variable with mean
mu.

Cmd> x_obs <- 11 # observed value of x

Cmd> mu_l <- invgamma(.025,x_obs) # lower 95% limit

Cmd> mu_u <- invgamma(.025,x_obs+1,upper:T) # upper 95% li mit

Cmd> vector(mu_l,mu_u) # "exact" 95% confidence interval f or mu
(1) 5.4912 19.682

Cmd> vector(cumpoi(x_obs,mu_u),cumpoi(x_obs,mu_l,upp er:T)) # check
(1) 0.025 0.025

Cross references
See also cumgamma(), cumchi(), invchi(), cumpoi(), runi() .

2.175 invnor()

Usage:
invnor(P [,upper:T or lower:F]), P REAL with elements of P be tween 0 and

1, df > 0

228 CHAPTER 2. MACANOVA HELP FILE

Keywords: probabilities, confidence intervals

Usage
invnor(P) computes the quantiles (probability points, cri tical values)
of the normal distribution corresponding to each element of P. P must be
a REAL vector or array with elements between 0 and 1. The resul t has
the same size and shape as P.

invnor(P,upper:T) and invnor(P,lower:F) compute upper ta il quantiles of
the standard normal distribution. The result is mathematic ally
equivalent to invnor(1 - P) but may be more accurate for small P.

A critical value for a two-tail Z-test with significance lev el alpha or
for a 1-alpha confidence interval may be computed as invnor(alpha/2,
upper:T) or invnor(1-alpha/2).

Critical values for a one-tail Z-test with significance lev el alpha are
computed as invnor(alpha) (lower tail test) and invnor(alp ha,upper:T) or
invnor(1-alpha) (upper tail test).

invnor() is the inverse of cumnor() in the sense that invnor(cumnor(z))
should be the same as z within rounding error and cumnor(invn or(P))
should be the same as P within rounding error.

Cross references
See also cumnor(), rnorm()

2.176 invstu()

Usage:
invstu(P, df [,upper:T or lower:F]), P and df REAL, elements of P

between 0 and 1, those of df > 0

Keywords: probabilities, random numbers, comparisons, confi-
dence intervals

Usage
invstu(P,df) computes the quantiles (probability points, critical
values) of Student’s t- distribution with df degrees of free dom
corresponding to each element of P. P must be a REAL vector or a rray
with elements between 0 and 1 and df must be a REAL vector or arr ay with
positive but not necessarily integral elements.

If df is a scalar the result has the same size and shape as P and d f is
used to compute all the values.

If P is a scalar, the result has the same size and shape as df and
consists of P-th probability points for the different value s of df.

If neither P nor df are scalars, they must be the same size and s hape
and corresponding elements of P and df are used to compute ele ments of
the result.

2.177. INVSTUDRNG() 229

invstu(P,df,upper:T) and invstu(P,df,lower:F) compute u pper tail
quantiles. The result is mathematically equivalent to invs tu(1 - P, df)
but may be more accurate for small P.

invstu() is the inverse of cumstu() in the sense that, within rounding
error, invstu(cumstu(x,df),df) should be the same as x and
cumstu(invstu(P,df),df) should be the same as P.

Use in tests and confidence intervals
A critical value for a two-tail t-test on df degrees of freedo m with
significance level alpha or for a 1-alpha confidence interv al may be
computed as invstu(alpha/2,df, upper:T) or invstu(1-alph a/2,df).

Critical values for a one-tail t-test on df degrees of freedo m with
significance level alpha are computed as invstu(alpha,df) (lower tail
test) and invstu(alpha,df,upper:T) or invstu(1-alpha,df) (upper tail
test).

Bonferronized critical values for K simultaneous two-tail t-tests with
significance level alpha or K simultaneous 1 - alpha confide nce
intervals are computed as invstu(.5 * alpha/K,df, upper:T).

Generating students t random variables
invstu(runi(n),df) will generate a random sample of size n f rom a
Student’s t-distribution .

Cross references
See also cumstu(), runi().

2.177 invstudrng()

Usage:
invstudrng(P, ngroup, errorDf [,epsilon:eps] [,upper:T o r lower:F]),

elements of P between 0 and 1, elements of ngroup integers >= 2 ,
elements of errorDf >= 1, eps > 0 small

Keywords: probabilities, comparisons, confidence intervals

Usage
invstudrng(P, K, Df) computes the quantiles (probability p oints,
critical values) of the Studentized range based on K normal v ariates and
an independent estimate of variance with Df degrees of freed om. All
three arguments must be REAL. The elements of P must be betwee n 0 and
1. K must consist of integers >= 2, and the elements of Df must b e >= 1,
not necessarily integers.

Any of the arguments P, K or Df that are not scalars must be vect ors,
matrices or arrays all of the same size and shape.

invstudrng(P,2,Df) should be the same as sqrt(2) * invstu((1+P)/2,Df)

230 CHAPTER 2. MACANOVA HELP FILE

except for computational error.

invstudrng(P, K, Df, upper:T) and invstudrng(P, K, Df, lowe r:F) compute
upper tail quantiles. The result is mathematically equival ent to
invstudrng(1 - P, K, Df).

Use in multiple comparisons
Many so-called multiple comparison methods are based on the se quantiles,
among them the Tukey HSD (Honestly Significant Difference) and the SNK
(Student-Newman-Keuls) methods. For example, if you have K independent
normal samples of size n, all with the same variance, and Ssq i s the
pooled estimate of the variance, you can compute the 5% HSD as

Cmd> q05 <- invstudrng(.05,K,K * (n-1),upper:T);hsd <- q05 * sqrt(Ssq/n)

Use in overall test of equality of means
In the same situation, you can test the null hypothesis that a ll means
are equal by the studentized range statistic computed as Q <-
(max(xbars) - min(xbars))/sqrt(Ssq/n). This is an alterna tive to the
ANOVA F-statistic. You can compute the alpha-level critica l value for Q
as invstudrng(alpha, K,K * (n-1), upper:T). Here xbars is a vector
containing the K sample means and Ssq is the pooled estimate o f
variance. See cumstudrng() for computing P values for Q.

Keyword ’epsilon’
invstudrng(P, K, Df, epsilon:eps [,upper:T]), where eps is a small
positive scalar, does the same computation with accuracy in fluenced by
eps. The smaller the value of eps, the more accurate the resul t should
be, but the longer it will take to compute it. The default valu e of eps
is 0.00001.

Cross references
See also cumstudrng(), invstu().

2.178 ipf()

Usage:
ipf([Model] [, print:F or silent:T, incr:T, pvals:T, maxit er:m,\

epsilon:eps]), vec a REAL vector, m an integer > 0, eps REAL > 0

Keywords: glm, categorical data

Usage
ipf(Model) uses iterative proportional fitting to compute a Poisson
regression (log linear) fit of the model specified in the CHA RACTER
variable Model. The default output is the deviance from the f ull model.

See topic ’models’ for information on specifying Model.

Keyword ’inc’
ipf(Model,inc:T) fits the same model except a sequential an alysis of

2.178. IPF() 231

deviance is computed. The sequential analysis of deviance h as a line
for each term in the model giving the term name, degrees of fre edom, and
the change of deviance obtained by including the term in the g iven
order. Because each of the submodels must be fit iteratively , with a
complicated models or a large data set ipf(Model,inc:T) can take many
times longer to execute than ipf(Model).

Keyword ’pvals’
ipf(Model [,...], pvals:T) prints chi-squared P values wit h each
deviance.

If option ’pvals’ has value True, P values will be printed unl ess
pvals:F is an argument.

Model omitted
ipf([,keywords]) or ipf(,inc [,keywords]) fits the last mo del used by
any of the GLM commands such as regress() or poisson(). See to pic
’glm’.

Defaulting to poisson
If there are any non-factors in the model ipf() defaults to po isson().

ipf() also defaults to poisson(), if it does not identify the model as
balanced. The only forms of balance it recognizes are comple te balance
(equal number of cases in every cell) and balanced main effec t models
(no interactions and all two-way marginals have equal cell s izes, for
example a Latin square design)

Side effect variables created
ipf() sets the side effect variables RESIDUALS, WTDRESIDUA LS, SS, DF,
HII, DEPVNAME, TERMNAMES, and STRMODEL. See topic ’glm’. Al l except
HII should be the same as computed by poisson(Model,inc) use d. Since
HII cannot be computed easily, it is set to a constant vector w ith
values m/n where m = (Model degrees of freedom) and n is the num ber of
values in the dependent variable vector. Thus sum(HII) = m as it
should. Without keyword phrase ’inc:T’ (see below), TERMNA MES has value
vector("","", ...,"Overall model","ERROR1"), DF has valu e vector(0,0,
..., ModelDF,ErrorDF) and SS has value vector(0,0,...,Mod elDeviance,
ErrorDeviance).

Keywords ’maxiter’ and ’epsilon’
ipf(Model,maxiter:m,epsilon:eps), where m is a positive i nteger and eps
is positive, is the same as ipf(Model) except up to m iteratio ns may
take place (the default is 25) and eps is the convergence crit erion
(default 1e-6). You need not specify either or both.

Keywords ’print’ and ’silent’
ipf(Model [,...], print:F) is the same as ipf(Model [,...]) except that
most printing is suppressed and the only result is to set the s ide
effect variables.

ipf(Model [,...], silent:T) does computations, creating s ide effect
variables, but prints nothing except actual error messages .

232 CHAPTER 2. MACANOVA HELP FILE

Limitations
Keyword phrase ’coefs:F’ cannot be used with ipf().

Coefficients may be retrieved by coefs(); standard errors a re not
available. You must use poisson() if you require standard er rors.

2.179 isarray()

Usage:
isarray(arg1 [,arg2, ...] [,real:T, logic:T, char:T, inte ger:T,\

positive:T, negative:T, nonneg:T])

Keywords: macros, general, variables

Usage
isarray(arg) returns True if arg is an array of any type, REAL , LOGICAL,
CHARACTER or LONG, and False otherwise. If arg is undefined, isarray()
returns False.

isarray(arg,real:T) returns True if and only if arg is a REAL array.
Similarly isarray(arg,char:T) and isarray(arg,logic:T) return True
only if arg is a array of the specified type. You can specify mo re
than one acceptable type; for example, isarray(arg,real:T ,logic:T)
returns True only if arg is a REAL or LOGICAL array.

isarray(arg, integer:T), isarray(arg, positive:T), isar ray(arg,
negative:T) and isarray(arg, nonneg:T) are similar, testi ng that arg is
a REAL array whose value has the specified property. You can u se
’integer:T’ with any of ’positive:T’, ’negative:T’ and ’no nneg:T’. You
cannot use ’char:T’ or ’logic:T’ with these keywords.

Multiple arguments
isarray(arg1, arg2, ..., argk [,keywords]) returns a LOGIC AL vector,
each element of which is True or False depending on whether or not the
corresponding argument is a array with the properties, if an y, specified
by keyword phrases.

Purpose
The principal use of isarray() is in checking the arguments o f a macro
for appropriateness. See argvalue() for another way to chec k for the
properties of macro arguments.

Examples
Examples:

Cmd> isarray(vector(x), matrix(x,4), array(x,2,2,2), st ructure(x))
has value vector(T,T,T,F) when x has 8 elements.

In a macro

if (!isarray($1,real:T,logic:T)){

2.180. ISCHAR() 233

error("$1 is not a REAL or LOGICAL")
}

ensures argument 1 is REAL or LOGICAL before proceeding.

Cross references
See also array(), error(), ischar(), isdefined(), isfacto r(),
isfunction(), isgraph(), islogic(), ismacro(), ismatrix (), isname(),
isnumber(), isnull(), isreal(), isscalar(), isstruc(), i svector().

2.180 ischar()

Usage:
ischar(arg1 [, arg2, ...])

Keywords: macros, general, variables, character variables

Usage
ischar(arg) returns True if arg is a CHARACTER variable or qu oted string
and False otherwise. If arg is undefined, ischar() returns F alse.

ischar(arg1, arg2, ..., argk) returns a LOGICAL vector, eac h element of
which is True or False depending on whether or not the corresp onding
argument is of type CHARACTER.

The principal use of ischar() is in checking the arguments of a macro
for appropriateness. See argvalue() for another way to chec k for the
properties of macro arguments.

Example
Example:

Cmd> ischar("hello",3,T) # returns vector(T,F,F).

Cross references
See also topics ’macros’, isarray(), isdefined(), isfacto r(),
isfunction(), isgraph(), islogic(), ismacro(), ismatrix (), isname(),
isnull(), isnumber(), isreal(), isscalar(), isstruc(), i svector().

2.181 isdefined()

Usage:
isdefined(arg1 [, arg2, ...])

Keywords: macros, general, variables

Usage
isdefined(arg) returns True if arg exists in the MacAnova wo rkspace and

234 CHAPTER 2. MACANOVA HELP FILE

False otherwise. If arg is a built-in function, isdefined() returns
True.

isdefined(arg1, arg2, ..., argk) returns a LOGICAL vector, each element
of which is True or False depending on whether or not the corre sponding
argument actually exists.

In a macro, isdefined() is useful for checking errors in a mac ro. For
instance, a macro to compute mean square errors might have th e line

if(!isdefined(SS) || !isdefined(DF)){
error("SS or DF not defined")}

before attempting to use SS or DF.

Cross references
See topics ’macros’, isarray(), ischar(), isfactor(), isf unction(),
isgraph(), islogic(), ismacro(), ismatrix(), isname(), i snull(),
isnumber(), isreal(), isscalar(), isstruc(), isvector() .

2.182 isfactor()

Usage:
isfactor(arg1 [, arg2, ...])

Keywords: macros, general, glm, variables

Usage
isfactor(arg) returns True if arg is a factor created by fact or() and
false otherwise. If arg is underfined, isfactor() returns F alse.

isfactor(arg1, arg2, ..., argk) returns a LOGICAL vector, e ach element
of which is True or False depending on whether or not the corre sponding
argument is a factor.

The principal use of isfactor() is in checking the arguments of a macro
for appropriateness.

Cross references
See also topics factor(), ’models’, ’glm’, anova(), isarra y(), ischar(),
isdefined(), isfunction(), isgraph(), islogic(), ismacr o(), ismatrix(),
isname(), isnumber(), isnull(), isreal(), isscalar(), is struc(),
isvector().

2.183 isfunction()

Usage:
isfunction(arg1 [, arg2, ...])

Keywords: macros, general, variables

2.184. ISGRAPH() 235

Usage
isfunction(arg) returns True if arg is a MacAnova function s uch as
describe(), sum() or regress() and False otherwise. If arg i s
undefined, isfunction() returns False.

isfunction(arg1, arg2, ..., argk) returns a LOGICAL vector , each element
of which is True or False depending on whether or not the corre sponding
argument is a MacAnova function.

The principal use of isfunction() is in checking the argumen ts of a
macro for appropriateness. See argvalue() for another way t o check for
the properties of macro arguments.

Example
Example:

Cmd> isfunction(PI, cos, boxcox, T) # returns vector(F,T,F ,F)

Cross references
See also topics isarray(), ischar(), isdefined(), isfacto r(), isgraph(),
islogic(), ismacro(), ismatrix(), isname(), isnull(), is number(),
isreal(), isscalar(), isstruc(), isvector().

2.184 isgraph()

Usage:
isgraph(arg1 [, arg2, ...])

Keywords: macros, general, variables

Usage
isgraph(arg) returns True if arg is a GRAPH variable and Fals e
otherwise. If arg is undefined, isgraph() returns False.

isgraph(arg1, arg2, ..., argk) returns a LOGICAL vector, ea ch element of
which is True or False depending on whether or not the corresp onding
argument is a GRAPH variable.

The principal use of isgraph() is in checking the arguments o f a macro
for appropriateness. See argvalue() for another way to chec k for the
properties of macro arguments.

Cross references
See also topics ’graphs’, ’macros’, isarray(), ischar(), i sdefined(),
isfactor(), isfunction(), islogic(), ismacro(), ismatri x(), isname(),
isnumber(), isnull(), isreal(), isscalar(), isstruc(), i svector().

236 CHAPTER 2. MACANOVA HELP FILE

2.185 islocked()

Usage:
islocked(arg1 [, arg2, ...])

Keywords: general, variables

Usage
islocked(arg) returns True if arg is a locked variable and Fa lse
otherwise. If arg is undefined, islocked() returns False.

islocked(arg1, arg2, ..., argk) returns a LOGICAL vector, e ach element
of which is True or False depending on whether or not the corre sponding
argument is locked.

Cross references
See also lockvars(), unlockvars(), ’variables:"locked_v ariables"’.

2.186 islogic()

Usage:
islogic(arg1 [, arg2, ...])

Keywords: macros, general, variables, logical variables

Usage
islogic(arg) returns True if arg is a LOGICAL variable and Fa lse
otherwise. If arg is undefined, islogic() returns False.

islogic(arg1, arg2, ..., argk) returns a LOGICAL vector, ea ch element of
which is True or False depending on whether or not the corresp onding
argument is of type LOGICAL.

The principal use of islogic() is in checking the arguments o f a macro
for appropriateness. See argvalue() for another way to chec k for the
properties of macro arguments.

Example
Example:

Cmd> islogic("hello",3,T) # returns vector(F,F,T).

Cross references
See also topics ’logic’, ’macros’, isarray(), ischar(), is defined(),
isfactor(), isfunction(), isgraph(), ismacro(), ismatri x(), isname(),
isnumber(), isnull(), isreal(), isscalar(), isstruc(), i svector().

2.187. ISMACRO() 237

2.187 ismacro()

Usage:
ismacro(arg1 [, arg2, ...])

Keywords: macros, general, variables

Usage
ismacro(arg) returns True if arg is a macro and False otherwi se. If arg
is undefined, ismacro() returns False.

ismacro(arg1, arg2, ..., argk) returns a LOGICAL vector, ea ch element of
which is True or False depending on whether or not the corresp onding
argument is a macro.

The principal use of ismacro() is in checking the arguments o f a macro
for appropriateness. See argvalue() for another way to chec k for the
properties of macro arguments.

Cross references
See also topics ’macros’, isarray(), ischar(), isdefined(), isfactor(),
isfunction(), isgraph(), islogic(), ismatrix(), isname(), isnull(),
isnumber(), isreal(), isscalar(), isstruc(), isvector() .

2.188 ismatrix()

Usage:
ismatrix(arg1 [,arg2, ...] [,real:T, logic:T, char:T, int eger:T,\

positive:T, negative:T, nonneg:T])

Keywords: macros, general, variables

Usage
ismatrix(arg) returns True if arg is a matrix of any type, REA L,
LOGICAL, or CHARACTER, and False otherwise. For arg to be con sidered a
matrix it is not necessary that ndims(args) be 2, just that no more than
two dimensions have length greater than 1. In particular, a s calar or a
vector is considered to be a matrix by ismatrix(). If arg is un defined,
ismatrix() returns False.

ismatrix(arg,real:T) returns True if and only if arg is a REA L matrix.
Similarly ismatrix(arg,char:T) and ismatrix(arg,logic: T) return True
only if arg is a matrix of the specified type. You can specify m ore
than one acceptable type; for example, ismatrix(arg,real: T,logic:T)
returns True only if arg is a REAL or LOGICAL matrix.

ismatrix(arg, integer:T), ismatrix(arg, positive:T), is matrix(arg,
negative:T) and ismatrix(arg, nonneg:T) are similar, test ing that arg is
a REAL matrix whose value has the specified property. You can use
’integer:T’ with any of ’positive:T’, ’negative:T’ and ’no nneg:T’. You
cannot use ’char:T’ or ’logic:T’ with these keywords.

238 CHAPTER 2. MACANOVA HELP FILE

Multiple arguments
ismatrix(arg1, arg2, ..., argk [,keywords]) returns a LOGI CAL matrix,
each element of which is True or False depending on whether or not the
corresponding argument is a matrix with the properties, if a ny,
specified by keyword phrases.

Purpose
The principal use of ismatrix() is in checking the arguments of a macro
for appropriateness. See also argvalue() for another way to check for
the properties of macro arguments.

Examples
Examples:

Cmd> ismatrix(vector(x), matrix(x,4), array(x,4,1,2), a rray(x,2,2,2))
has value vector(T,T,T,F) when x has 8 elements.

if (!ismatrix($1,real:T)){error("$1 is not a REAL matrix")}
in a macro would check argument 1 is a REAL matrix.

Cross references
See also topics ’matrices’, error(), isarray(), ischar(), isdefined(),
isfactor(), isfunction(), isgraph(), islogic(), ismacro (), isname(),
isnull(), isnumber(), isreal(), isscalar(), isstruc(), i svector().

2.189 ismissing()

Usage:
ismissing(x) where x is REAL, LOGICAL or CHARACTER or a struc ture all of

whose components are REAL, LOGICAL, or CHARACTER

Keywords: macros, general, missing values, variables, null vari-
ables

Usage
ismissing(x) returns a LOGICAL variable (with the same shap e as x) which
is True where x is MISSING and False where x is not MISSING. x mu st be
a vector, matrix, or array. If x is a CHARACTER variable, an em pty
string ("") is considered to be a missing value.

If x is a NULL variable, ismissing(x) is NULL. See topic ’NULL ’.

It is also acceptable for x to be a structure, whose non-struc ture
components are vectors, matrices or arrays. In that case, is missing()
returns a structure of the same form, each of whose non-struc ture
components is the result of applying ismissing() to the corr esponding
component of x.

ismissing(x) has the same labels as x, if any.

Examples

2.190. ISNAME() 239

Examples:
ismissing(vector(1, 3, ?, 7)) and ismissing(vector("A"," B","","Z"))

both return vector(F, F, T, F)
x[vector(ismissing(x))] <- -1 replaces all MISSING values in x by -1.
sum(vector(ismissing(x))) returns the number of MISSING v alues in x,

whether x is a vector, matrix, array, or structure.

Cross references
See also anymissing(), sum().

2.190 isname()

Usage:
isname(arg1 [, arg2, ...] [file:T or path:T]), arg1, ... CHA RACTER

scalars

Keywords: macros, general, variables

Usage
isname(arg) returns T if the value of arg is a legal MacAnova n ame.
Argument arg must be a CHARACTER scalar or be missing. See top ic
’variables’ for information on what is a legal name.

isname(arg1, ..., argk), where the arguments are either CHA RACTER
scalars or missing returns a LOGICAL vector of length k with e lement j
being True if and only if argument k is a CHARACTER scalar whos e value
is a legal MacAnova name.

isname(arg1, ..., path:T) does the same except the argument s are
checked as to whether they are appropriate file names or fold er
(directory) names on the computer being used.

isname(arg1, ..., file:T), does the same as with ’path:T’ ex cept that
False is returned for any argument that can be only a director y, that is
the name ends in a path name separator (’/’, or ’\’ on Windows o r DOS,
or’:’ on Mac OS 9).

The checking done with ’path:T’ and ’file:T’ may not exactly match the
formal definition of what is a legal file name. For instance, on
Unix/Linux, isname("-myfile.txt") is False, although ’-m yfile’ is a
legal Unix/Linux file name, because names starting with ’-’ can lead to
difficulties.

It is legal for an argument to be missing. For example, a <- isn ame()
sets a to F and a <- isname("cos",,"sin") sets a to vector(T,F ,T).

The principal use of isname() is in checking the arguments of a macro
for appropriateness.

Examples
Examples:

240 CHAPTER 2. MACANOVA HELP FILE

isname("PI") returns True
isname("123+4") returns False
isname("x","@y",,"T","too_long_a_name") returns vecto r(T,T,F,F,F)
isname("macanova.hlp","macros/",file:T) returns vecto r(T,F) on

Unix/Linux, Windows and DOS
isname("macanova.hlp","macros/",path:T) returns vecto r(T,T) on

Unix/Linux, Windows and DOS
isname("macanova.hlp",":macros:",file:T) returns vect or(T,F) on a

Mac OS 9
isname("macanova.hlp",":macros:",path:T) returns vect or(T,T) on a

Macintosh

Cross references
See also topics ’macros’, isarray(), ischar(), isdefined(), isfactor(),
isfunction(), isgraph(), islogic(), ismacro(), ismatrix (), isnull(),
isnumber(), isreal(), isscalar(), isstruc(), isvector() , nameof().

2.191 isnull()

Usage:
isnull(arg1 [, arg2, ...])

Keywords: macros, general, variables, null variables

Usage
isnull(arg) returns T if arg has type NULL and false otherwis e.

isnull(arg1, arg2, ..., argk) returns a LOGICAL vector, eac h element of
which is True or False depending on whether or not the corresp onding
argument is NULL.

See topic ’NULL’ for information on NULL variables.

The principal use of isnull() is in checking the arguments of a macro
for appropriateness.

Example
Example:

Cmd> isnull(NULL, sqrt(2)) # returns vector(T, F)

Cross references
See also topics ’macros’, isarray(), ischar(), isdefined(), isfactor(),
isfunction(), isgraph(), islogic(), ismacro(), ismatrix (), isname(),
isnumber(), isreal(), isscalar(), isstruc(), isvector() .

2.192. ISNUMBER() 241

2.192 isnumber()

Usage:
isnumber(arg1 [, arg2, ...]), arg1, ... CHARACTER scalars

Keywords: macros, general, variables

Usage
isnumber(arg) returns T if arg is a CHARACTER scalar or quote d string
such as "-3.1416" which represents a non-MISSING number. It is an error
if arg is not a CHARACTER scalar. It returns F when arg does not
represent a non-MISSING number, for example "MacAnova" or " ?". See
topic ’number’ for information on what are legal numbers.

isnumber() (with no argument) is legal and returns F.

isnumber(arg1, ..., argk), where the arguments are either C HARACTER
scalars or empty returns a LOGICAL vector of length k with ele ment j
being True if and only if argument k is a CHARACTER scalar whic h
represents a non-MISSING number.

It is legal for an argument to be missing. For example, a <- isn umber()
sets a to F and a <- isnumber("3.14",,"henry") sets a to vecto r(T,F,F).

The principal use of isnumber() is in checking the arguments of a macro
for appropriateness.

Examples
Examples:

Cmd> isnumber("3.14")
(1) T

Cmd> isnumber(3.14) # not quoted
ERROR: argument 1 to isnumber() is not CHARACTER scalar

Cmd> isnumber("1e1000") # too large to be represented
(1) F

Cmd> isnumber("3.14",,paste(PI),"PI","?","T","3d10")
(1) T F T F F F T

Cross references
See also topics ’macros’, isarray(), ischar(), isdefined(), isfactor(),
isfunction(), isgraph(), islogic(), ismacro(), ismatrix (), isname(),
isnull(), isreal(), isscalar(), isstruc(), isvector(), n ameof().

242 CHAPTER 2. MACANOVA HELP FILE

2.193 isreal()

Usage:
isreal(arg1 [, arg2, ...] [,positive:T or negative:T or non neg:T]\

[,integer:T])

Keywords: macros, general, variables

Usage
isreal(arg) returns True if arg is a REAL variable and False o therwise.
If arg is undefined, isreal() returns False.

isreal(arg, integer:T) does the same, except that True is re turned only
if arg is REAL and all the values are integers.

isreal(arg, positive:T), isreal(arg, negative:T) and isr eal(arg,
nonneg:T) do the same, except that True is returned only if ar g is REAL
and all its elements have the indicated properties. You can u se
’integer:T’ here as well.

Multiple arguments
isreal(arg1, arg2, ..., argk [keywords]) returns a LOGICAL vector, each
element of which is True or False depending on whether or not t he
corresponding argument is REAL and satisfies the propertie s specified by
any keywords.

Purpose
The principal use of isreal() is in checking the arguments of a macro
for appropriateness. See argvalue() for another way to chec k for the
properties of macro arguments.

Example
Example:

Cmd> isreal("hello",3,T) # returns vector(F,T,F).

Cross references
See also topics ’macros’, isarray(), ischar(), isdefined(), isfactor(),
isfunction(), isgraph(), islogic(), ismacro(), ismatrix (), isname(),
isnull(), isnumber(), isscalar(), isstruc(), isvector() .

2.194 isscalar()

Usage:
isscalar(arg1 [,arg2, ...] [,real:T, logic:T, char:T, int eger:T,\

positive:T, negative:T, nonneg:T])

Keywords: macros, general, variables

Usage
isscalar(arg) returns True or False, depending on whether a rg is a
scalar, that is a REAL, LOGICAL, or CHARACTER variable all of whose
dimensions are 1. If arg is undefined, isscalar() returns Fa lse.

2.195. ISSTRUC() 243

isscalar(arg,real:T) returns True if and only if arg is a REA L scalar.
Similarly isscalar(arg,char:T) and isscalar(arg,logic: T) return True
only if arg is a scalar of the specified type. You can specify m ore
than one acceptable type; for example, isscalar(arg,real: T,logic:T)
returns True only if arg is a REAL or LOGICAL scalar.

isscalar(arg, integer:T), isscalar(arg, positive:T), is scalar(arg,
negative:T) and isscalar(arg, nonneg:T) are similar, test ing that arg is
a REAL scalar whose value has the specified property. You can use
’integer:T’ with any of ’positive:T’, ’negative:T’ and ’no nneg:T’. You
cannot use ’char:T’ or ’logic:T’ with these keywords.

Multiple arguments
isscalar(arg1, arg2, ..., argk [,keywords]) returns a LOGI CAL vector,
each element of which is True or False depending on whether or not the
corresponding argument is a scalar with the properties, if a ny,
specified by keyword phrases.

Purpose
The principal use of isscalar() is in checking the arguments of a macro
for appropriateness. See argvalue() for another way to chec k for the
properties of macro arguments.

Examples
Examples:

Cmd> isscalar(1,matrix(PI,1), run(5),"hello",F)
has value vector(T,T,F,T,T)

In a macro
if (!isscalar($1,logic:T)){error("$1 not T or F")}

would check that argument 1 is a LOGICAL scalar.

Cross references
See topics ’macros’, isarray(), ischar(), isdefined(), is factor(),
isfunction(), isgraph(), islogic(), ismacro(), ismatrix (), isname(),
isnull(), isnumber(), isreal(), isstruc(), isvector().

2.195 isstruc()

Usage:
isstruc(arg1 [, arg2, ...])

Keywords: macros, general, structures

Usage
isstruc(arg) returns True or False, depending on whether ar g is a
structure. If arg is undefined, isstruc() returns False.

isstruc(arg1, arg2, ..., argk) returns a LOGICAL vector, ea ch element of

244 CHAPTER 2. MACANOVA HELP FILE

which is True or False depending on whether or not the corresp onding
argument is a structure.

The principal use of isstruc() is in checking the arguments o f a macro
for appropriateness. See argvalue() for another way to chec k for the
properties of macro arguments.

Cross references
See also topics ’structures’, ’macros’, isarray(), ischar (),
isdefined(), isfactor(), isfunction(), isgraph(), islog ic(), ismacro(),
ismatrix(), isname(), isnull(), isnumber(), isreal(), is scalar(),
isvector().

2.196 isvector()

Usage:
isvector(arg1 [,arg2, ...] [,real:T, logic:T, char:T, int eger:T,\

positive:T, negative:T, nonneg:T])

Keywords: macros, general, variables

Usage
isvector(arg) returns True or False, depending on whether a rg is a
vector of any type, REAL, LOGICAL or CHARACTER. A matrix or ar ray is
considered to be a vector by isvector() if all dimensions exc ept the
first have length 1. In particular, if arg is a scalar, isvect or(arg)
returns True, while if arg is a row vector (dimensions 1,m wit h m > 1),
isvector(arg) returns False. If arg is undefined, isvector (arg) returns
False.

isvector(arg,real:T) returns True if and only if arg is a REA L vector.
Similarly isvector(arg,char:T) and isvector(arg,logic: T) return True
only if arg is a vector of the specified type. You can specify m ore
than one acceptable type; for example, isvector(arg,real: T,logic:T)
returns True only if arg is a REAL or LOGICAL vector.

isvector(arg, integer:T), isvector(arg, positive:T), is vector(arg,
negative:T) and isvector(arg, nonneg:T) are similar, test ing that arg is
a REAL vector whose value has the specified property. You can use
’integer:T’ with any of ’positive:T’, ’negative:T’ and ’no nneg:T’. You
cannot use ’char:T’ or ’logic:T’ with these keywords.

Multiple arguments
isvector(arg1, arg2, ..., argk [,keywords]) returns a LOGI CAL vector,
each element of which is True or False depending on whether or not the
corresponding argument is a vector with the properties, if a ny,
specified by keyword phrases.

Purpose
The principal use of isvector() is in checking the arguments of a macro
for appropriateness. See argvalue() for another way to chec k for the

2.197. KEYVALUE() 245

properties of macro arguments.

Examples
Examples:

Cmd> isvector(7, vector(x), matrix(x,5), array(x,5,1,1) , matrix(x,1))
has value vector(T,T,T,T,F) if x has 5 elements.

In a macro
if(!isvector($1,char:T)){

error("$1 is not a CHARACTER vector")}
would check that argument 1 is a CHARACTER vector.

Cross references
See also topics ’vectors’, ’macros’, isarray(), ischar(), isdefined(),
isfactor(), isfunction(), isgraph(), islogic(), ismacro (), ismatrix(),
isname(), isnull(), isnumber(), isreal(), isscalar(), is struc().

2.197 keyvalue()

Usage:
keyvalue(keyname1:val1, [keyname2:val2, ...] targetkey [, properties]\

[,default:defVal]), targetkey a CHARACTER scalar, Proper ties a
CHARACTER scalar or vector whose elements are one or more of " array",
"character", "count", "graph", "integer", "logic", "macr o", "matrix",
"nonmissing", "nonnegative", "notnull", "number", "posi tive", "real",
"scalar", "square", "string", "structure", "TF" and "vect or", and
defVal arbitrary.

keyvalue(str, targetkey [, properties] [,default:defVal), str a
structure

keyvalue(, targetkey [, properties] [,default:defVal])

Keywords: syntax, macros

Usage
keyvalue(keyname1:val1, keyname2:val2, ... , TargetKey) attempts to
match keyname1, keyname2, ... with CHARACTER scalar or quot ed string
TargetKey. If no match is found, keyvalue() returns NULL. If a match
is found, the corresponding keyword value is returned.

keyvalue(keyname1:val1, keyname2:val2, ... , TargetKey, default:defVal)
does the same except that defVal is returned if no matching ke yword is
found.

keyvalue(keyname1:val1, keyname2:val2, ..., TargetKey, Properties
[,default:defVal) does the same, except that the value of a m atched
keyword is returned only if it has the properties specified b y CHARACTER
scalar or vector Properties. When TargetKey is not matched a nd
’default:defVal’ is an argument, defVal value is returned o nly if it has
all the properties specified by Properties. See below for an
explanation of Properties.

246 CHAPTER 2. MACANOVA HELP FILE

The principal use of keyvalue is in a macro when keyname1:val 1,
keyname2:val2, ... are supplied by $K as in

@nsig <- keyvalue($K,"nsig","positive integer scalar", d efault:5)
See below for another example and topic ’macro_syntax’ for a n
explanation of $K.

Keyword ’specifying’
TargetKey, the second argument, is usually a legal keyword n ame such as
"nsig". In this case an exact match of one of the keyword names is
needed.

However, TargetKey can also contain the "wild card" charact ers ’ * ’ and
’?’ so that it provides a pattern used to match a keyword name. ’ * ’
will match any 0 or more successive characters and ’?’ will ma tch any
single character. For example, if TargetKey = "pow * ", it matches
keywords ’pow’, ’power’ and ’powers’, among others, but doe s not match
’polar’. Similarly, if targetKey = "m??imum", it matches bo th keywords
’maximum’ and ’minimum’, among others. See match() for more information
about inexact matching using ’ * ’ and ’?’.

You can use structure(keyname1:val1, keyname2:val2, ...) instead of
keyname1:val1, keyname2:val2,

keyvalue(, TargetKey [,Properties]) is legal and returns N ULL.
Arguments TargetKey and Properties are checked for appropr iateness.

Use in macros
The principal use for keyvalue() is in writing macros that ex pect
keyword phrase arguments. It allows easy retrieval and chec king of
keyword values. A key point is that it is an error when the valu e of a
matched keyword value or the default value does not have the s pecified
property or properties. When this occurs in a macro, executi on of the
macro is terminated.

Here is a fragment of a macro that recognizes an optional macr o argument
of the form ’weights:w’ where w must be a REAL vector with posi tive
elements.

@weights <- keyvalue($K,"weights","real positive vector ",\
default:rep(1,@n))

If ’weights:w’ is an argument to the macro, @weights is set to w;
otherwise @weights is set to the default rep(1,@n). Presuma bly @n was
set previously. If w is not a REAL vector with positive elemen ts the
macro will be terminated with the message

ERROR: value of keyword ’weights’ is not a vector of positive REALs

If "weights" were replaced by "weight * ", keyvalue() would return w if
’weight:w’ or ’weights:w’ were an argument. This is helpful in writing
a more user friendly macro, that recognizes both ’weight’ or ’weights’
when ’weights’ is expected.

In a macro, keyvalue(structure($K),...) is almost equival ent to

2.197. KEYVALUE() 247

keyvalue($K,...), except that a warning message is printed when there
are no keyword arguments to the macro ($K expands to nothing) .

Description of Properties
Properties is usally a CHARACTER scalar or quoted string con taining one
or more of the following, separated by blanks or tabs (not com mas):

"array" "integer" "matrix" "notnull" "scalar" "vector"
"character" "logic" "nonmissing" "positive" "square"
"graph" "macro" "nonnegative" "real" "structure"

An example would be "nonmissing real vector". Properties ca n also be a
CHARACTER vector with each element containing one or more pr operties
from this list, for example, vector("nonmissing","real", "vector").

In addition, there are properties thats are abbreviations f or
combinations of properties specifying types of scalars:

"number" means "nonmissing real scalar"
"count" means "nonnegative integer scalar"
"TF" means "nonmissing logical scalar"
"string" means "character scalar"

Not all combinations of properties are permitted. See below for
details.

Any 3 character or longer initial segment of a property will m atch it,
except that "nonnegative", "nonmissing", "string" and "st ructure"
require 4. For example, "vec", "vect", "vecto", ... all matc h "vector".

Property types
Each recognized property (other than the abbreviations "TF ", "number",
"count and "string") is classified as to whether it describe s the type,
shape, value or sign of a variable:

Kind of property Property names
Type "real", "logic", "character", "macro", "graph",

"notnull"
Shape "scalar", "vector", "matrix", "array", "structure" ,

"square"
Value "integer", "nonmissing"
Sign "positive", "nonnegative"

Property restrictions
Combinations of properties are restricted as follows:

No more than one of each of the 4 kinds of property can be specif ied
except that "square" and "matrix" can be used together

Property "structure" is illegal with any Sign or Value prope rty and
with "macro", "graph" and "notnull"

Properties "positive", "nonnegative" and "integer" imply properties
"real" and "nonmissing" and are illegal with any Type proper ty
except "real". They are legal with property "number"

Property "nonmissing" is illegal with any Type property exc ept "real"
and "logical".

Properties "macro", "graph" and "notnull" cannot be combin ed with any
other properties.

248 CHAPTER 2. MACANOVA HELP FILE

Cross references
See also argvalue(), getkeywords(), nameof(), isscalar() , isvector(),
ismatrix(), isarray(), isreal(), ischar(), islogic(), is macro(),
isstruc(), isnumber(), isgraph(), isdefined(), ’keyword s’, ’macros’.

2.198 keywords

Usage:
print(nsig:5,x), plot(Obs_No:x,Response:y), regress(M odel, pvals:T),

setoptions(format:"12.5g") are examples of keyword usage

Keywords: syntax

Description
Many functions accept ’keyword phrases’ such as ’xlab:"Wei ght"’,
’down:T’ or ’nsig:7’ as optional arguments.

A keyword phrase has the form Name:Value, where Name is a name of no
more than 10 characters starting with a letter (a-z or A-Z). V alue is a
variable or constant.

When used as values of a keyword phrase, ’T’ and ’F’ can often b e
interpreted as ’yes’ and ’no’ or ’allow’ and ’suppress’.

Keywords often provide optional information, or specify va riants of the
usual computation. For example, print(nsig:7,x,y,nsig:3 ,z) prints x and
y with 7 significant digits and z with 3, and screen(Model,mb est:6)
specifies that screen() should find the 6 best subsets of ind ependent
variables.

Keyword phrases may also be used to name components when usin g
structure() and strconcat(), to label output on most output commands
(print, write, etc.), and to provide labeling information o n plotting
commands such as plot() and chplot(). The only limitation is that any
keyword that is specially recognized by the command such as ’ labels’ or
’format’ cannot be used as such a label.

Example
Example:

Cmd> boxplot(split(wts,race),vertical:T,\
title:"Weights of Army recruits by race",ylab:"Pounds")

Cross references
See also topics ’syntax’, structure(), strconcat(), keyva lue()

2.199. KMEANS() 249

2.199 kmeans()

Usage:
kmeans(y [,means or classes] [,kmax:k1,kmin:k2,start:me thod,standard:F,

weights:wts, quiet:T]), y a REAL matrix, means a REAL matrix with
ncols(y) columns, classes a REAL vector with nrows(y) rows, k1 and k2
positive integers, k1 >= k2, method one of "random", "optima l",
"means", or "classes", wts a REAL vector with nrows(wts) = nr ows(y)

Keywords: multivariate analysis

Usage
kmeans(y, kmax:k1 [, kmin:k2]) performs k-means clusterin gs of the rows
of REAL matrix y, starting with k1 clusters, and successivel y merging
clusters until there are k2 clusters. By default the data are
standardized and the initial clusters are selected randoml y. At each
stage, cases are reallocated among clusters in an attempt to minimize
the sum of the within-cluster sums of squares. If kmin:k2 is o mitted,
k2 is taken to be k1.

It is an error when k2 > k1.

kmeans() returns a structure with components ’classes’ and ’criterion’.
Component classes is a nrows(y) by k2-k1+1 matrix (vector if k2 = k1)
containing the cluster membership at each stage. Component criterion is
a k2-k1+1 REAL vector containing the minimized criterion at each stage.

By default, a brief history of the merging process is printed , including
the values of the criterion being minimized.

Keywords ’random’, ’optimal’, ’means’ and ’classes’
kmeans(y, kmax:k1 [, kmin:k2], start:"random") is identic al to kmeans(y,
kmax:k1 [, kmin:k2]).

kmeans(y, kmax:k1 [, kmin:k2], start:"optimal") attempts to select the
initial clusters so as to minimize the within-cluster sums o f squares
for column 1 of y.

kmeans(y, Means [, kmin:k2], start:"means"), where Means i s a k1 by
ncols(y) matrix, selects as initial cluster j those rows of y that are
closer to row j of Means than to any other row of Means using (Eu clidean
distance). If kmax:k1 is an argument with k1 != nrows(Means) , a warning
message is given and nrows(Means) is used. If there are dupli cates
among the rows of Means, a warning message is printed.

kmeans(y, Classes [, kmin:k2], start:"classes"), where Cl asses is a
vector of nrows(y) positive integers <= 255, uses Classes to specify
initial clusters. If kmax:k1 is an argument with k1 != max(Cl asses), a
warning message is given and max(Classes) is used. If there a re empty
classes (not all integers between 1 and max(Classes) are pre sent), the
empty classes are "squeezed out", and max(Classes) reduced accordingly.

Additional keywords
standard:F Do not standardize before clustering

250 CHAPTER 2. MACANOVA HELP FILE

weights:wts Use weighted means and sums of squares
with wts a REAL vector of length
nrows(y) with w[i] > 0.

quiet:T Suppress printing of clustering
history.

Cross references
See also cluster().

2.200 labels

Usage:
This topic has information on coordinate labels.
Functions for working with labels are:

setlabels(x, labs [,silent:T])
setlabels(x, NULL) # remove labels
labs <- getlabels(x [,silent:T])
labs <- getlabels(x,vector(1,3,5) [,silent:T])
if (haslabels(x)){..do something with labels...}
y <- vector(x,labels:labs [, silent:T])
y <- matrix(x,labels:structure(rowLabs,colLabs) [, sile nt:T])
y <- array(x,labels:structure(lab1,lab2,...) [, silent: T])
y <- structure(comp1, comp2, ..., labels:labs [, silent:T])
y <- strconcat(var1, var2, ..., labels:labs [, silent:T])
y <- hconcat(x1,x2,...,labels:structure(rowLabs,colLa bs) [, silent:T])
y <- vconcat(x1,x2,...,labels:structure(rowLabs,colLa bs) [, silent:T])
y <- read(fileName,labels:structure(rowLabs,colLabs))
y <- matread(fileName,labels:structure(rowLabs,colLab s))

Keywords: general, variables, output

Description
MacAnova vectors, matrices and arrays may have labels for ea ch
dimension. The label for dimension k is a CHARACTER vector wi th length
dim(x)[k]. When a variable x has any labels it has them for all
dimensions.

A structure Str may have a single vector of labels of length nc omps(Str)
to label the components. This is distinct from labels the ind ividual
components may have and distinct from the component names.

The primary function of the labels for a variable is to provid e
informative identification of coordinates when the variab le is printed.

Labels belonging to x are sometimes propagated to new variab les computed
from x. See below for details.

Retrieving labels
getlabels(x) retrieves all the labels, if any, associated w ith variable
x. When x is a vector or a structure, the result is a CHARACTER v ector;
otherwise the result is a structure with ndims(x) CHARACTER vector

2.200. LABELS 251

components.

getlabels(x, 2), say, retrieves the labels for dimension 2 o f x as a
CHARACTER vector. getlabels(x,vector(1,3)), for example , retrieves as a
structure with two components the labels associated with di mensions 1
and 3 of x. See getlabels().

haslabels(x) is True if and only if variable x has coordinate labels.

Removing labels
setlabels(x, NULL), removes the labels from a scalar, vecto r, matrix,
array or structure x.

Attaching labels
setlabels(x, Labs) adds coordinate labels to an existing va riable. When
x already has labels they are replaced.

In these usages, Labs is a CHARACTER vector or scalar, or a str ucture
with CHARACTER vector or scalar components, one for each dim ension of
the variable to be labeled.

Examples
Examples:

Cmd> setlabels(x, vector("MN","WI","IA","ND","SD","NE ")) # x a vector

Cmd> setlabels(w, structure(vector("M","F"),\
vector("Urban","Suburban","rural"))) # w a 2 by 3 matrix

It is not an error when the number of vectors of labels supplie d does
not match the number of dimensions. Extra labels are ignored and
missing ones are assumed to be "@" which will be printed as num bers in
parentheses (see below). In both cases a warning message is n ormally
printed.

Keyword ’labels’
You can use keyword ’labels’ on vector(), matrix(), array() , hconcat(),
vconcat(), structure(), strconcat(), read() and matread() to create a
labeled variable. The general usage

xxxxxx(... , labels:Labs [,silent:T])
where xxxxxx() is one of these functions and Labs is as descri bed for
setlabels().

Wrong length labels
Supplying a vector of coordinate labels of the wrong length t o
setlabels() is an error. On other commands on which you can se t labels
using keyword ’labels’ (matrix(), for example), providing labels of the
wrong length produces only a warning message that the labels will be
ignored.

Keyword ’silent’
On any of the commands which set labels, you can suppress warn ing
messages by keyword phrase ’silent:T’.

252 CHAPTER 2. MACANOVA HELP FILE

Labels in files
When variable x has labels, matprint(fileName, x) and matwr ite(fileName,
x) write the labels to the file immediately following x in a fo rmat that
allows

Cmd> x <- read(fileName, "x")
to retrieve both data and labels for x from the file. Topic
’matread_file’ describes the file format of labeled variab les. See also
read() and matread().

Expanding labels
Expanding Scalar Labels

When you provide labels using keyword ’labels’ on a command o r as an
argument to setlabels(), any scalar labels (quoted strings or CHARACTER
vectors of length 1) are treated specially.

A scalar label, say "root", for a coordinate with length > 1 is expanded
to vector("root1","root2",...). For example, labels:str ucture("A","B ")
generates labels vector("A1","A2",...) and vector("B 1", "B 2",...).

This doesn’t happen if a scalar label starts with ’@’ or is one of "",
"#", "(", "[", "{", "<", "/", or "\\".

Scalar label "" is expanded to rep("", length) resulting in i ts
dimension having no visible labels.

Scalar label "#" is expanded to vector("1","2",...).

Scalar label "(" is expanded to vector("(1)","(2)", ...) an d similarly
for the other special characters, with the first element of t he label
being "[1]", "{1}", "<1>", "/1/", or "\\1\\".

Scalar label "@" is expanded to rep("@", n) and a scalar label starting
with ’@’, say "@anything" is expanded to rep("@anything", n). Such
labels are further expanded when they are printed.

Expanding labels starting with ’@’
Expansion of labels starting with ’@’ when they are printed

A label of the form rep("@", n) or rep("@anything", n) is inte rpreted
specially when it is printed. At that time, it is further expa nded
similarly to the way scalar labels that do not start with ’@’ a re
expanded when they are created.

rep("@#", n) prints as ’1’, ’2’,

rep("@[", n) prints as ’[1]’, ’[2]’, ..., and similarly with "@(", "@{",
"@<", "@/",or "@\\".

rep("@", n) prints "bracketed" labels using the default lab eling style,
usually using ’(’ and ’)’. This style can be changed by option
’labelstyle’. For example, after setoptions(labelstyle: "["), "@" has
the same effect as "@[". See topic setoptions(), subtopic
’options:"labelstyle"’.

2.200. LABELS 253

rep("@anythingelse", n) prints as ’anythingelse1’, ’anyt hingelse2’,

Note: The use of ’@’ delays the substitution of numerical ind ices until
they are actually used in printing, so that the same value may have
different printed labels at different times. See the paragr aph on
propagation of labels below.

When successive coordinates have the same type of "bracket" label
starting with ’@’ created by, say, labels:structure("@[", "@[","["), the
printed labels are combined to, say, ’[1,2]’.

Examples
Examples

Cmd> setlabels(x, structure("#","X"))
x now has labels vector("1","2",...) and vector("X1","X2" ,...).

Cmd> y <- vector(vecread(fileName),labels:structure("C ase ","Y"),\
silent:T)

y has labels vector("Case 1","Case 2",...) and vector("Y1" ,"Y2",...)

Cmd> z <- read("MacAnova.dat","irisdata",\
labels:structure("",vector("Variety","Y1","Y2","Y3" ,"Y3")))

The first label of z is rep("",nrows(z)) which does not print .

Cmd> logy <- matrix(log(y),labels:structure("@",log(ge tlabels(y,2))))
The labels of logy y will be rep("@",nrows(y)) and vector("l og(Y1)",
"log(Y2)", ...). When printed the row labels of logy or any su bset of
rows of logy will be ’(1)’, ’(2)’,

Propagation of labels
A variable created by extracting part of a labeled variable u sing
subscripts is labeled with the appropriate subsets of the la bels.
Examples:
After

Cmd> x <- matrix(run(9),3,labels:structure("[","A "))[- 1,-1]
x has labels vector("[2]","[3]") and vector("A 2", "A 3").

After
Cmd> x <- matrix(run(9),3,labels:structure("@[","@A ")) [-1,-1]

has labels vector("@[","@[") and vector("@A ","@A "). When x is
printed, the row labels will be ’[1]’, ’[2]’ and the column la bels will
be ’A 1’, ’A 2’, even though these are rows 2 and 3 and columns 2 a nd 3
of matrix(run(9),3). That is, the special expansion of labe ls starting
with ’@’ occurs when they are printed, not when they are creat ed.

cos(x), sqrt(x), and other transformation of x have the same labels as
x.

ismissing(x), rank(x), rankits(x) and halfnorm(x), but no t sort(x) or
grade(x) have the same labels as x.

x’ has the same label vectors as x but in reverse order

254 CHAPTER 2. MACANOVA HELP FILE

When the result of sum(x), min(x) and other transformation t hat operate
along the first dimension of x is not a scalar, its label for th e first
dimension is "@" and the remaining labels match those of x.

+x, -x and !x have the same labels as x.

If OP is a binary operator such as ’+’, ’-’, ’ * ’, ’==’, ..., but not a
matrix operator such as % * %, %c%, and %C%, then x OP y often has the
labels of x. When x does not have labels, x OP y may have the labe ls of
y. If both x and y are scalar variables, x OP y does not have labe ls,
even if one or both of x and y do have labels.

When matrices x and y both have labels, x % * % y, x %c% y, and x %C% y
have labels taken from the row and or column labels of x and y in the
obvious way. When only one of x or y has labels, the result is la belled
as if the one without the labels had row and column labels of th e form
rep("@",m).

In most cases, functions and operators that transform struc tures to
similar shaped structures propagate labels for structure c omponents.
This includes max(), min(), sum(), prod(), sort(), rank(), grade(),
ismissing(), and mathematical transformations such as cos (), log() and
sqrt().

When x is a labelled matrix, eigen(x)$vectors and releigen(x,y)$vectors
have the same row labels as x and column labels of the form
vector("(1)", "(2)", ...).

When x is a labelled matrix, the matrices of left and right sin gular
vectors as computed by svd() have labels. Their row vectors a re the row
and column labels of x, respectively. Their column labels ar e of the
form vector("(1)", "(2)", ...).

If a is a labelled square matrix, the row and column labels of s olve(a)
are the column and row labels of a, respectively.

If a is a labelled square matrix, the row and column labels of s olve(a,
b) (a %\% b) are the column labels of a and b, respectively; the row and
column labels of rsolve(a,b) (b %/% a) are the row labels of b a nd a,
respectively. When b has no labels, they are assumed to have t he form
rep("@",m). See topics solve(), rsolve(), ’matrices’.

When x is a labelled matrix, cor(x) has row and column labels m atching
the column labels of x. cor(x1, x2, ...) has no labels, even if x1, x2,
... have lables.

When x is a labelled matrix, rft(x) and hft(x) have the same co lumn
labels as x with row labels of the form rep("@", nrows(x)). Th e same is
true for cft(x) when ncols(x) is even.

If y is a response variable in a GLM command, its labels are pro pagated
to side effect variables RESIDUALS, WTDRESIDUALS, and HII.

2.201. LAUNCHING 255

After regress(), COEF and XTXINV are labeled with the names o f the
variables (including "CONSTANT" when appropriate).

After any GLM function producing side effect variables DF an d SS, DF and
the first dimension of SS are labeled with TERMNAMES. After m anova(),
dimensions 2 and 3 of SS are labeled with the column labels of t he
response variable, it if has labels, and with vector("(1)", "(2)", ...),
otherwise. The actual brackets used in the default labellin g are
determined by the value of option ’labelstyle’. For example , if the
value of ’labelstyle’ is "[", the default labels are vector("[1]",
"[2]"’,...). See subtopic ’options:"labelstyle"’.

After manova(), the column labels of the response variable a re attached
to the last dimension of each vector, matrix, or array return ed by
coefs() and secoefs().

When any term name is longer than 12 characters (the maximum s ize for a
structure component name), structure output of coefs() and secoefs() is
labeled with the full term names.

When a structure with component labels is printed, the label s are
printed instead of the component names.

2.201 launching

Usage:
Unix/Linux and DOS: macanova [-q] [File Options] [Screen Op tions]

at Unix/Linux or DOS prompt
Macintosh: Double click on MacAnova icon or MacAnova file ic on
Windows: Double click on MacAnova for Windows icon

Keywords: general, files

Nonwindowed versions
For non-windowed versions (Unix/Linux or DOS), type ’macan ova’ at the
Unix/Linux or DOS prompt. If the MacAnova directory is not in the
search path, you will need to specify the complete path. See b elow for
command line options.

For non-windowed versions, you may also use "redirected" in put and
output to run an entire analysis noninteractively and save t he output.

macanova [options] < cmdFile > outputFile
will read commands from cmdFile and save the results in outpu tFile.

Microsoft Windows Version
If MacAnova is installed correctly under Windows 95/98/NT/ XP there is
a MacAnova entry on the Start menu, with subentries for all in stalled
versions and possibly for browser based help files. All vers ions can
also be launched from the DOS prompt.

In addition, the installer should also register the extenti ons

256 CHAPTER 2. MACANOVA HELP FILE

.mvbat, .mvsave, and .mvout for MacAnova batch files, save (workspace)
files, and output files. Double clicking any file with one of those
extensions should start MacAnova, execute the batch file, r estore
the save file, and/or open the output file.

Finally, you may drag and drop save, batch, and output files o nto the
MacAnova for Windows icon.

See also topic ’dos_windows’, ’carapace’.

Linux GTK
Assuming the Carapace GTK version has been named macanovacp c and is
in a directory in your search path, type

macanovacpc [-q] [File Options] [Path Options] [Screen Opt ions]

at the Unix/Linux prompt, where items in [...] are options. S ee below
for details on command line options.

See also topics ’unix’, ’carapace’.

Macintosh Mac OS X
Double click the MacAnova icon. In addition, the Finder shou ld also
recognize files with extensions .mvbat, .mvsave, and .mvou t (files
with creator mat2 and types TeXT, S000, and TeXT) as MacAnova batch
files, save (workspace) files, and output files. Double cli cking
any file of those types should start MacAnova, execute the ba tch
file, restore the save file, and/or open the output file. You can,
in fact, shift click on more than one such file and then choose Open
from the Finder File menu to do more than one operation.

It is possible, though rather awkward, to launch MacAnova fr om
a Terminal window. Change into the directory where MacAnova is
located; it will show up as MacAnova.app. Then change into th e
MacAnova.app directory, and the Contents directory within that,
and the MacOS directory within that. There you should find
macanovacpc, which is the actual executable. Typing ./maca novacpc
will start MacAnova. In this fashion you may also use command
line options.

See also topic ’macintosh’.

Command line options
The windowed versions of MacAnova have a greater array of com mand
line options than the nonwindowed versions. However, most c asual
users will never need these options, particularly for windo wed
versions.

The following tables give an option, whether it is usable in
windowed (W) or nonwindowed (N) versions, and its use. There will
be a 1 in the W or N column if an option can be used exactly once,
and an asterisk if the option can be used multiple times (up to 50).

2.201. LAUNCHING 257

File related options
Option W N Use
-restore filename 1 1 execute restore("filename") at start up
-batch filename * 1 execute batch("filename") at startup
-f startfile * 1 execute batch("startfile") silently
-help helpfile 1 1 use helpfile as the default help file
-macro filename * 1 add filename to variable MACROFILES
-open filename * open filename in a command window
-data filename * 1 add filename to DATAFILES
-addhelp filename * add filename to HELPFILES
-config filename 1 use filename as the Carapace preference f ile

Path related options
Option W N Use
-home pathname 1 1 set variable HOME to pathname
-appdir pathname 1 set MacAnova root directory to pathname
-path pathname * add pathname to DATAPATHS
-dpath pathname 1 add pathname to DATAPATHS
-mpath pathname 1 add pathname to DATAPATHS

Other options
Option W N Use
-q 1 1 suppress banner at startup
-prompt string 1 1 set the MacAnova prompt to string
-bprompt string 1 1 set the batch prompt to string (for -batch)
-e expression 1 1 execute expression at startup
-eq expression 1 execute expression and then quit
-l lines 1 1 set page height to l lines
-w columns 1 1 set page width to w columns
-hist count 1 1 set history length to count items

Option details

-restore saveFile
The equivalent of ’restore("saveFile")’ is executed at sta rtup and
MacAnova.ini.txt is not read and executed. See ’customize’ , restore().

-batch batchFile
The equivalent of ’batch("batchFile")’ is executed after
initialization.

-f initFile
File initFile is executed silently as a batch file at startup instead
of file MacAnova.ini.txt (see ’customize’).

-help helpFile
Help information will be taken from file helpFile rather tha n the
default help file MacAnova.hlp.txt.

-macro macroFile
"macroFile" will be added to the beginning of Pre-defined CH ARACTER
variable MACROFILES. This will mean that pre-defined macro
getmacros() will search the file before the standard macro f iles. You

258 CHAPTER 2. MACANOVA HELP FILE

can accomplish the same thing after starting MacAnova by
addmacrofile("macroFile"). See topics getmacros() and ad dmacrofile().

-open windowFile
Load the contents of windowFile into a command-output windo w, as if
Open were selected on the File menu. No startup message print ed.

-data dataFile
"dataFile" will be added to the beginning of pre-defined CHA RACTER
variable DATAFILES. DATAFILES is used by pre-defined macro
getdata() to make it easy to read data from a standard file. Se e
topic getdata().

-addhelp helpFile
"helpFile" will be added to the beginning of pre-defined CHA RACTER
variable HELPFILES. Files in HELPFILES are searched when us ing the
command help(). See topic help().

-config configFile
Use configFile instead of the default file MacAnova.config . Some
aspects of MacAnova (fonts, window sizes, etc) can be contro lled
through the configuration file.

-home homePath
Predefined CHARACTER variables HOME will have "homePath" a s value
instead of a default value. HOME is used to expand file names o f the
form "˜/filename". For instance, when HOME is "dataDir", "˜ /filename"
is expanded to "dataDir/fileName". See topic ’files’.

-appdir appPath
By default, the last element of DATAPATHS is the directory wh ere
MacAnova is located. You may override that value by using -ap pdir.
This is really only useful on Unix/Linux, because the locati on of
MacAnova cannot be determined at execution time and a defaul t value
must be used instead. Here you can override the default.

-path pathName (or -dpath dataPath or -mpath macroPath)
Add pathName to the front of the CHARACTER vector DATAPATHS, which
contains a set of directories that are searched when you atte mpt to
read a file (for example, by using vecread(), read(), matrea d() or
macroread()). If the file cannot be found in the default dire ctory,
MacAnova searches in the directories in DATAPATHS. See topi c
DATAPATHS.

If -q is present, the startup message will not be printed and t he
welcome screen is not shown.

-e Expr
Execute the MacAnova command in Expr as if it were the content s of
a batch file. Expr will be executed before anything else is do ne.

-eq Expr
Execute the MacAnova command in Expr as if it were the content s of

2.202. LENGTH() 259

a batch file and then immediately quit. Expr will be executed
before anything else is done. This option does not make sense
for windowed versions.

-prompt Prompt
Sets the non-batch command line prompt. Usually Prompt shou ld end
with a space, for example, -prompt "Next? ". This becomes the default
prompt that will be set by setoptions(default:T). See topic s
setoptions(), ’options’.

-bprompt Prompt
Sets a prompt to be used with echoed commands in batch files
specified on the command line (-batch batchFile). Usually P rompt
should end with a space, for example, -bprompt "HW 1> "..

-l Nlines
This pre-defines option ’height’ to be Nlines, where Nlines is either
0 or an integer at least 5. On windowed versions, this only con trols
the height of "dumb" plots. See subtopic ’options:"height" ’.

-w Ncols
This pre-defines option ’width’ to be Ncols, where Ncols is a n integer
at least 20. On windowed versions, this only controls the wid th of
"dumb" plots. See subtopic ’options:"width"’.

-hist Nhist
This pre-defines option ’history’ to be Nhist, an integer >= 0. This
limits the number of previous command lines that can be saved and
recalled to Nhist. The default value is 100. See subtopic
’options:"history".

See also topics ’quitting’, ’customize’.

2.202 length()

Usage:
length(x), x a vector, matrix, or array or any other type of va riable.

Keywords: variables, null variables

Usage
length(x) computes the total number of elements in the vecto r, matrix,
or array x. The value of length(x) is prod(dim(x)).

If x is a NULL variable, length(x) = 0.

If x is a GRAPH variable or a macro, length(x) = 1.

If x is a structure, length(x) is a structure. If xi is compone nt i of
x, the component i of length(x) has the same component name an d value

260 CHAPTER 2. MACANOVA HELP FILE

length(xi).

Cross references
See also topics dim(), ndims(), ncomps(), ’NULL’, ’graphs’ .

2.203 lgamma()

Usage:
lgamma(x), x REAL or a structure with REAL components

Keywords: transformations

Usage
lgamma(x) returns the natural logarithm of the gamma functi on of the
elements of x, when x is a REAL scalar, vector, matrix or array . The
result has the same shape as x. When x is an integer, lgamma(x) =
log((x-1)!).

If any element of x is MISSING, so is the corresponding elemen t of
lgamma(x). If any element of x <= 0 or x > 2.5599833278516e305 , the
corresonding element of lgamma(x) is MISSING. In both cases a warning
message is printed.

When x is a structure, all of whose non-structure components are REAL,
lgamma(x) is a structure of the same shape and with the same co mponent
names as x, with each non-structure component transformed b y lgamma().

Cross references
See topic ’transformations’ for more information on lgamma ().

2.204 lineplot()

Usage:
lineplot(x,y [,add:T,linetype:m, impulse:T] [,other gra phics keyword

phrases]), where x is a REAL vector or scalar, y is a REAL vecto r or
matrix, and m >= 0 is an integer

lineplot([Graph,] [x,y], keys:str), str a structure whose component
names are graphics keywords

Keywords: plotting

Usage
lineplot(x,y) makes a connected line plot of the data in vect or x and
vector or matrix y, drawing lines between the successive poi nts. When y
has several columns, each column is graphed separately with different
line types, solid, dashed, ..., repeating cyclically when t here are
more columns than distinct line types.

2.204. LINEPLOT() 261

Generally, lineplot() should be used only when the values in x are in
increasing or decreasing order, although there are useful e xceptions.

It is not an error when x or y is NULL; a warning message is print ed and
no plotting occurs.

Keywords ’linetype’ and ’thickness’
lineplot(x,y,linetype:k,thickness:w), k > 0 an integer an d w > 0 a REAL
scalar draws lines of type k and width w. The defaults are k = 1 a nd w
= 1. k < 0 is the same as abs(k) and k = 0 is the same as k = -1. The
interpretation of k and w depend on the computer system on whi ch
MacAnova is running. See topic ’graph_keys’.

Structure argument
lineplot(Str), where Str is a structure with at least two REA L
components, is equivalent to lineplot(Str[1], Str[2]). Fo r example,
lineplot(x,y) and lineplot(structure(x,y)) are equivale nt. Any
components of Str beyond the first two are ignored.

Variable LASTPLOT
lineplot() normally creates or replaces GRAPH variable LAS TPLOT which
encapsulates everything in the graph. In addition, if the gr aph was
drawn in graphics window I, GRAPHWINDOWS[I] is made identic al to
LASTPLOT (I is always 1 in non-windowed DOS and Unix/Linux ve rsions).
You can suppress saving the plot information in LASTPLOT and
GRAPHWINDOWS[I] by including ’keep:F’ as an argument. See t opics
’graphs’ and ’graph_assign’ for information on GRAPH varia bles and
special variable GRAPHWINDOWS.

Graph variable argument
lineplot(Graph,x,y) or lineplot(Graph,Str), where Graph is a GRAPH
variable, draws the plot encapsulated in Graph, adding to it new
information.

Keywords ’add’, ’impulses’, ’lines’ and ’symbols’
lineplot(x,y,add:T,...) is the same as lineplot(LASTPLOT ,x,y,...)
drawing the graph encapsulated in LASTPLOT, adding to it new
information. An equivalent way to do this is addlines(x,y,. ..).

When option ’dumbplot’ has been set False (see subtopic
’options:"dumbplot"’), the plot will be a low resolution pl ot unless
’dumb:F’ is an argument.

lineplot(x,y,impulses:T) draws vertical lines to the poin ts from the
x-axis (y = 0 line), in addition to drawing connecting lines

lineplot(x,y,lines:F [,...]) is equivalent to plot(x,y [, ...]).

lineplot(x,y,symbols:c [,...]) is equivalent to chplot(x ,y,symbols:c,
lines:T [,...]). In particular, when c = "###", points are la beled with
the row number when y is a vector and the column number when nco ls(y) >
1.

262 CHAPTER 2. MACANOVA HELP FILE

Short x argument
See topic ’graphs’ for information on how a scalar or length 2 vector x
specifies equally spaced x-values, on how to save and print p lots, and
on writing graphic information to a file.

Graph keywords
See topic ’graph_keys’ for information on keywords ’title’ , ’xlab’,
’ylab’, ’xmin’, ’xmax’, ’ymin’, ’ymax’, ’logx’, ’logy’, ’x axis’,
’yaxis’, ’dumb’, ’add’, ’file’, ’linetype’, ’thickness’, ’silent’ and
’notes’.

Keyword ’keys’
lineplot([Graph,] keys:structure(x:x,y:y [other keywor d phrases)) is
equivalent to lineplot([Graph,] x,y [other keyword phrase s]). See
topic ’graph_keys’ for details.

GRAPHWINDOWS
See topic ’graph_assign’ for information on how to plot in gr aphics
window I by GRAPHWINDOWS[I] <- var, where var is a structure o r GRAPH
variables.

Cross references
See also topics chplot(), plot(), showplot(), addchars(), addlines(),
addpoints(), tek(), tekx(), vt(), vtx().

2.205 list()

Usage:
list([invis:T]) or list(var1 [, var2, ...])
list([all:T, real:T or F, char:T or F, logic:T or F, macro:T o r F,\

struct:T or F, null:T or F, labeled:T or F, notes:T or F,\
locked:T or F, keep:T, nrows:n1, ncols:n2, ndims:n3]); use F’s only
with all:T, n1, n2, n3 > 0 integers

Keywords: general

Usage
list() lists the name, type, and dimensions of all currently active
variables, including structures and macros, but excluding any temporary
or "invisible" variables (variables whose names start with ’_’). The
maximum level of any factors is printed. See factor() and top ic
’variables:"invisible"’..

list(invis:T) does the same, but also includes temporary va riables and
invisible variables.

list(var1, var2, ..., vark) gives the same information only for the
specified variables.

For a macro, list() also prints ’out-of-line’ or ’in-line’ d epending on
whether or not it has been marked to be expanded out-of-line. See

2.205. LIST() 263

topics ’macros’, macro().

For any variable, list() may also print any or all of ’labels’ , ’notes’
or ’locked’ depending on whether the variable has dimension lables,
attached notes or is locked. See topics ’labels’, ’notes’, ’ locks’.

Listing by attributes
list(size:T [,invis:T]) or list(var1,var2,...,vark,siz e:T) also lists
the total size of each variable in bytes. In addition to the me mory
required for data in a variable, this total includes a fixed a mount (172
bytes in one Linux implementation) for each symbol and each s tructure
component. In addition, MacAnova prints the total size of al l listed
variables and the total of all memory currently used by MacAn ova for
variable and internal storage.

list(varType:T [,invis:T]) where varType is one of ’real’, ’factor’,
’logic’, ’char’, ’macro’, ’struc’, or ’null’ specifies tha t all
variables of the specified types are listed. More than one ke yword
phrase can appear but no variable names. For example, list(r eal:T,
logic:T) will list all variables of type REAL or LOGICAL and
list(factor:T) will list all variables that are factors.

list(all:T,varType1:F [,varType2:F...] [,invis:T]) lis ts all types
except those specified. For example, list(all:T,macros:F) lists all
objects except macros.

list(notes:T [,invis:T]) limits the listing to variables w ith notes.
See topic ’notes’.

list(labeled:T [,invis:T]) limits the listing to variable s with labels.
See topic ’labels’.

list(locked:T [,invis:T) limits the listing to variables t hat are
locked. See topic ’locks’.

list(nrows:r [,...]) lists all REAL, CHARACTER or LOGICAL v ariables with
first dimension r.

list(ncols:c [,...]) lists all REAL, CHARACTER or LOGICAL w ith second
dimension c. When c = 1, vectors are also listed. ’nrows:r’ an d
’ncols:c’ can be used together.

list(ndims:d [,...]) all REAL, CHARACTER or LOGICAL variab les with
exactly d dimensions. For example, list(ndims:1) lists all vectors.

Keywords ’nrows’, ’ncols’ and ’ndims’ can be used together w ith
’char:T’, ’real:T’, or ’logic:T’ to limit which variables a re listed.

Keywords phrases ’labeled:T’, ’notes:T’ and ’locked:T’ ca n be used
together with type and shape specifying keywords. They supp ress listing
variables that do not meet the additional restrictions.

Wildcard matching

264 CHAPTER 2. MACANOVA HELP FILE

list(Pattern ... [,invis:T]), where Pattern is a quoted str ing (but not
a CHARACTER variable) which contains one or more of the "wild card"
characters ’ * ’ and ’?’, lists only objects whose names match Pattern.

’ * ’ will match any set of 0 or more consecutive characters of var iable
names, and ’?’ will match any single character.

For example, list("x * ") lists all variables whose names start with ’x’,
list(" * length") lists all variables whose names end in ’length’, an d
list("c * b???") lists all variables whose names start with ’c’ and end
with ’b’ followed by any 3 characters, say, "crybaby". The la st does
not match "crybabies", although "c * b??? * " would.

list(pat:Pattern ... [,invis:T]) does the same, except Pat tern may bea
CHARACTER scalar whose value is a pattern containing wild ca rd
characters, not just a quoted string.

If a variable is "special" the type is preceded by ’ * ’. Currently the
only special variables are CLIPBOARD, SELECTION (GTK only) and
GRAPHWINDOWS. See topics ’CLIPBOARD’, ’GRAPHWINDOWS’ and
’graph_assign’..

Examples of wildcard use
Examples:

Cmd> list(" * plot") # lists colplot but not plot1 or myplots
Cmd> list("plot * ") # lists plot1 but not colplot or myplots
Cmd> list(" * plot * ") # lists all three.

Keyword ’keep’
list(...,keep:T [,invis:T]) suppresses the listing, but r eturns a
CHARACTER vector containing the names of the variables that would
otherwise have been listed; no information on type or dimens ions is
returned.

Examples of selective listing
Example:

Cmd> list("a * ", real:T) # or list(pat:"a * ", real:T)
will list all REAL variables whose names start with "a".

Cross references
See also delete(), listbrief(), dim().

2.206 listbrief()

Usage:
listbrief([invis:T]) or listbrief(var1 [, var2, ...])
listbrief([all:T, real:T or F, char:T or F, logic:T or F, mac ro:T or F,\

struct:T or F, null:T or F, labeled:T or F, notes:T or F, \
locked:T or F keep:T, nrows:n1, ncols:n2, ndims:n3]); use F ’s only
with all:T, n1, n2, n3 > 0 integers

2.207. LOADUSER() 265

Keywords: general

Usage
listbrief() lists the names of currently active variables, including
structures and macros. No information on type or dimension i s given.

listbrief(invis:T) does the same, but also includes tempor ary variables
and variables whose names start with ’_’.

listbrief(var1, var2, ..., vark) does the same for specifie d variables,
except that undefined variables in the list are identified.

listbrief(pat:Pattern [,invis:T]) lists variables whose names match the
value of quoted string or CHARACTER variable Pattern. If Pat tern is a
quoted string, ’pat:’ may be ommitted. See list() for detail s.

You can also use keywords ’real’, ’factor’, ’logic’, ’char’ , ’macro’,
’struc’, ’null’, ’labeled’, ’notes’, ’locked’, ’all’, ’ke ep’, ’nrows’,
’ncols’, and ’ndims’ as in list().

Cross references
See also delete().

2.207 loadUser()

Usage:
loadUser(fileName [,reload:T or clear:T]), CHARACTER sca lar fileName.

Keywords: general, control, files

Information
Help on loadUser() is in file userfun.hlp. You can retrieve t he help by

Cmd> userfunhelp(loadUser)

It provides a complete description of loadUser() which you m ust call
prior to using an externally compiled user function.

Cross references
See also topics User() and ’user_fun’ in file userfun.hlp. T ype
userfunhelp(User) or userfunhelp(user_fun). Type userfu nhelp() for a
complete list of topics related to user functions.

2.208 locks

Keywords: general, variables

Description

266 CHAPTER 2. MACANOVA HELP FILE

A locked variable is a variable that is protected from casual
destruction or modification. You lock variables using lock vars() and
unlock them using unlockvars(). A few pre-defined variable s and macros
such as PI, E, VERSION and redo() are automatically locked at start up.
Most other pre-defined constants and macros are not locked.

It is an error to attempt to assign a value to a locked variable or to a
subscript of a locked variable.

Cmd> PI <- sqrt(2)
ERROR: illegal assignment to locked variable near PI <-

Cmd> a <- run(10); lockvars(a); a[3] <- PI
ERROR: illegal to assign to subscript of a locked variable ne ar
a <- run(10); lockvars(a); a[3] <-

If you try to delete a locked variable, it is not deleted and a w arning
message (suppressed by ’silent:T’) is printed.

Cmd> delete(a) # delete(a, silent:T) prints nothing
WARNING: attempt to delete locked variable a

You can force deletion by keyword phrase ’lockedok:T’ on del ete.

Cmd> delete(a,lockedok:T); print(a)
ERROR: argument 1 (a) to print() is not defined

You can unlock a variable using unlockvars().

Cmd> unlockvars(PI); delete(PI); print(PI)
ERROR: argument 1 (PI) to print() is not defined

Testing locked variable
You can test whether variables are locked using islocked().

Cmd> islocked(E, VERSION, MACROFILES, boxcox, redo)
(1) T T F F T

Locked variable in file
When the header line on a data set or macro in a file readable by
read(), matread() or macroread() contains the work LOCKED, the value
returned by read(), matread() or macroread() is saved as a lo cked
variable.

Cmd> doit <- macroread("macrofile.txt","doit")
doit MACRO LOCKED

Cmd> list(doit)
doit MACRO (in-line) (locked)

Unlockable variables
You cannot lock temporary variables (names starting with ’@ ’), special
variables such as CLIPBOARD and GRAPHWINDOWS and a few other variables
such as LASTPLOT and LASTLINE.

2.209. LOCKVARS() 267

Cmd> lockvars(LASTLINE)
ERROR: can’t lock variable LASTLINE

GLM side effect variables
If you lock a GLM side effect variable such as RESIDUALS or STR MODEL, it
effectively blocks any more GLM commands such as regress(), anova() or
poisson() until the variable is unlocked or deleted.

Saving and restoring
save() and asciisave() save the locked/unlocked status of a variable, so
when the workspace file is restored, a locked variable is res tored as a
locked variable.

restore(workspaceFile, delete:F) will not restore variab les with the
same name as existing locked variables. Unless the locked va riable is a
REAL scalar and the value in the file is the same as the current value,
a warning message is printed.

Cross references
See also ’variables’, unlockvars(), lockvars(), islocked ().

2.209 lockvars()

Usage:
lockvars(a [,b,c,...] [,silent:T]), a, b, c, ... arbitrary variables

other than GRAPHWINDOWS, CLIPBOARD, and SELECTION

Keywords: general, variables

Usage
lockvars(var1, var2, ...) marks variables var1, var2, ... a s locked
variables. This means they cannot be deleted or assigned to. Any named
variables can be locked except for temporary variables (nam es beginning
with ’@’) and the "special" variables GRAPHWINDOWS, CLIPBO ARD,
SELECTION. A warning is printed if any argument is a built in f unction
name or is alreadly locked. It is an error if any argument is an
expression or a function result.

lockvars(var1, var2, ..., silent:T) does the same except th at no warning
message is printed.

When you save a locked variable (see save() and asciisave()) , its locked
status is also saved so that when it is restored (see restore()), it
will still be locked.

Locking a variable does not protect it from destruction by re store().

Cross references
See also unlockvars(), delete(), ’variables’

268 CHAPTER 2. MACANOVA HELP FILE

2.210 log()

Usage:
log(x), x REAL or a structure with REAL components

Keywords: transformations

Usage
log(x) returns the natural logarithm (base e log) of the elem ents of x,
when x is a REAL scalar, vector, matrix or array. The result ha s the
same shape as x.

If any element of x is MISSING, so is the corresponding elemen t of
log(x). If any element of x <= 0, the corresonding element of l og(x)
is MISSING. In both cases a warning message is printed.

When x is a structure, all of whose non-structure components are REAL,
log(x) is a structure of the same shape and with the same compo nent
names as x, with each non-structure component transformed b y log().

Cross references
See topic ’transformations’ for more information on log().

2.211 log10()

Usage:
log10(x), x REAL or a structure with REAL components

Keywords: transformations

Usage
log10(x) returns the common logarithm (base 10 log) of the el ements of
x, when x is a REAL scalar, vector, matrix or array. The result has the
same shape as x.

If any element of x is MISSING, so is the corresponding elemen t of
log10(x). If any element of x <= 0, the corresonding element o f
log10(x) is MISSING. In both cases a warning message is print ed.

When x is a structure, all of whose non-structure components are REAL,
log10(x) is a structure of the same shape and with the same com ponent
names as x, with each non-structure component transformed b y log10().

Cross references
See topic ’transformations’ for more information on log10().

2.212. LOG2() 269

2.212 log2()

Usage:
log2(x), x REAL or a structure with REAL components

Keywords: transformations

Usage
log2(x) returns base 2 log logarithm of the elements of x, whe n x is a
REAL scalar, vector, matrix or array. The result has the same shape as
x.

If any element of x is MISSING, so is the corresponding elemen t of
log2(x). If any element of x <= 0, the corresonding element of
log2(x) is MISSING. In both cases a warning message is printe d.

When x is a structure, all of whose non-structure components are REAL,
log2(x) is a structure of the same shape and with the same comp onent
names as x, with each non-structure component transformed b y log2().

Cross references
See topic ’transformations’ for more information on log2() .

2.213 logic

Usage:
a && b, a || b, !a, where a and b are LOGICAL or structures with LO GICAL

components
LOGICAL constants are T (True) and F (False)

Keywords: variables, syntax, logical variables, missing values, op-
erations

Description of LOGICAL variables
Elements of a LOGICAL variable have only three possible valu es -- True,
False, and MISSING. A LOGICAL variable may be a vector, matri x, or
array.

Logical values are printed as ’T’ (True) and ’F’ (False), the same
symbols as you use to enter them. For example, ’a <- vector(T, F,F,T)’
creates a LOGICAL vector of length 4.

When used as the value of a keyword phrase, as in ’quiet:T’, T a nd F can
usually be interpreted as ’yes’ and ’no’, respectively.

You can also create LOGICAL data as the result of comparing RE AL,
LOGICAL or CHARACTER variables using the following compari son operators:

Comparison operators list
There are 6 comparison operators used with REAL, LOGICAL and CHARACTER
data and structures of such data.

270 CHAPTER 2. MACANOVA HELP FILE

Comparison
Operator Precedence Meaning

a == b 8 Equal or same
a != b 8 Not equal or different
a < b 8 Less than
a <= b 8 Less than or equal
a > b 8 Greater than
a >= b 8 Greater than or equal

Logical operators list
There are three purely operators used only with LOGICAL data .

Logical
Operator Precedence Meaning

a || b 5 Logical Or (T||T,T||F,F||T are True, F||F False)
a && b 6 Logical And (T&&T is True, T&&F,F&&T,F&&F False)

!a 7 Logical Not (!T is False, !F is True)

Precedence
The precedence level in the lists of operators above affects the order
of evaluation when there is more than one operator in an expre ssion. An
operator with higher precedence is evaluated before one wit h lower
precedence. For example, MacAnova interprets T && F || T && T a s
(T && F) || (T && T) because ’&&’ has higher precedence (6) than ’||’
(5).

See topic ’precedence’ for a complete discussion of operato r association
and precedence.

Comparison Operators
Comparison operators are most useful with REAL and CHARACTE R data. When
they are used with LOGICAL data, True and False are interpret ed as 1 and
0, respectively, in the same way as with arithmetic operator s +, -, * ,
and ˆ or ** (see ’arithmetic’). In particular F == F and T == T are
True and F == T and T < F are False.

Comparison operators do not "associate". For example, an ex pression
like ’3 < x <= 5’ is meaningless and is an error. Instead, you ca n use
’3 < x && x <= 5’.

As you would expect, the precedence of comparison operators is lower
than all arithmetic operations (see ’arithmetic’) so that, for example,
3* 4 == 14-2 is interpreted as (3 * 4) == (14-2) and is True.

Comparison of CHARACTER data
CHARACTER variables are compared using the ASCII collating sequence.
Most punctuation and all numerals are "less than" upper case letters
which in turn are "less than" lower case letters. A space is "l ess
than" all printable characters. Here is the explicit orderi ng starting
with space:

!"#$%&’() * +,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]ˆ_
‘abcdefghijklmnopqrstuvwxyz{|}˜

On computers with extended character sets, the ordering is d ependent on

2.213. LOGIC 271

the internal representation of the characters.

Comparisons with MISSING
Here’s what happens when you make a comparison involving a MI SSING
value.

Operators ’<’, ’<=’, ’>’, or ’>=’: The result is MISSING.
Operator ’==’ : Result is True only when if both operands are M ISSING
Operator ’!=’ : Result is True only when just one operand is MI SSING.

Examples
Examples:

2 == 1, 3 != 3, 3 < 1, T == F, and T > 1 all have the value False
2 == 2, 3 != 2, 3 > -1, F == F, and 0 == F all have value True
"A" > "a", "A" != "A", and "MacAnova 2" == "MacAnova 3" are all F alse

Special characters
Because ’<-’ is the assignment operator, ’a<-5’ will always be
interpreted as "assign 5 to a" even if what is wanted is a compa rison of
a with -5. To obtain the latter a space must follow ’<’ as in ’a < -5’.

On Mac OS 9, you can use ’Option+<’, ’Option+>’ and ’Option+= ’ in
place of ’<=’, ’>=’, and ’!=’, respectively.

Purely logical operators
You can use operators ’&&’, ’||’ and ’!’ (logical AND, OR and N OT) to
combine several conditions to make a single condition or to s pecify the
opposite of a condition. For example, (x > 1) && (x < 3) is True i f and
only if the value of x is greater than 1 and less than 4 and (x < 0) ||
(y < 0) is True if and only if one or both of x and y is negative.
Also, !(x < 0) means the same as x >= 0.

If an operand of ’||’, ’&&’ or ’!’ is MISSING, so is the result .

The precedence of logical operators is lower than the preced ence of
arithmetic expressions (see ’arithmetic’) and comparison operations.
For example, ’x > 1 && x < 4’ is interpreted as ’(x > 1) && (x < 4)’,
and is True if and only if the value of x is greater than 1 and les s
than 4. Because the precedence of ’!’ is lower than the preced ence of
the comparison operators, expressions like ’! a < b’ are eval uated as
’!(a < b)’. See also topic ’precedence’.

Examples:
F && T, F || F, and !T all have the value False
F || T and !F have the value True

Functions alltrue() and anytrue()
In contrast with the C programming language, both expressio ns that are
combined with ’&&’ and ’||’ are always evaluated regardless of the value
of the first expression. For example, in

(sqrt(2) < sqrt(3)) || (log(5) < log(6))
both log(5) and log(6) are evaluated although the final valu e of the
expression (True) could have been determined once it was fou nd that
sqrt(2) < sqrt(3) was True.

272 CHAPTER 2. MACANOVA HELP FILE

alltrue() and anytrue() provide the C behavior. For example
Cmd> anytrue(sqrt(2) < sqrt(3), log(5) > log(6)) # value is T rue

and

Cmd> alltrue(sqrt(4) < sqrt(2), log(5) < log(6)) # value is F alse

evaluate only the first arguments.

Comparison and logical operations with non-scalars
MacAnova allows comparison of or logical combination of arr ays of
different sizes entirely analogously to the way they can be c ombined
arithmetically by ’+’, ’-’, ’ * ’, ’/’, ’ˆ’, and ’%%’. For instance, ’2 <
run(3)’ is vector(F,F,T). See topic ’arithmetic’ for detai ls.

When one of the operands is a structure, each of its component s is
combined with the other argument, producing a structure wit h the same
shape as the structure argument. If both arguments are struc tures, they
must have the same shape and the corresponding components ar e combined.
In either case, all the components of a structure must have th e same
type and all components must be compatible. See topic ’struc tures’.

2.214 logistic()

Usage:
logistic([Model],n:Denom [, incr:T, offsets:vec, print: F or silent:T,\

pvals:T, maxiter:m, epsilon:eps, coefs:F, problimit:sma llVal]), Denom
REAL scalar or vector > 0, vec a REAL vector, m an integer > 0, ep s
and smallVal small REAL scalars > 0.

Keywords: glm, regression, categorical data

Usage
logistic(Model,n:Denom) computes a logistic regression f it of the model
specified in the CHARACTER variable Model. If y is the respon se
variable in the model it must consist of integers y[i] >= 0. De nom must
either be an integer scalar >= max(y) or a REAL vector of the sa me
length as y with Denom[i] >= y[i]. Estimation is by maximum li kelihood
on the assumption that y[i] is binomial with Denom[i] trials (Denom
trials for scalar DENOM).

If either Denom or y contains non-integer values a warning me ssage is
printed.

See topic ’models’ for information on specifying Model.

Side effect variables created
logistic() sets the side effect variables RESIDUALS, WTDRE SIDUALS, SS,
DF, HII, DEPVNAME, TERMNAMES, and STRMODEL. See topic ’glm’ . Without
keyword phrase ’inc:T’ (see below), TERMNAMES has value vec tor("","",

2.214. LOGISTIC() 273

...,"Overall model","ERROR1"), DF has value vector(0,0,. ..,ModelDF,
ErrorDF) and SS has value vector(0,0,...,ModelDeviance,E rrorDeviance).

Output
If, say, Model is "y=x1+x2", an iterative algorithm is used t o predict
logit(E[y/Denom]) as a linear function of x1 and x2, where lo git(p) =
log(p/(1-p)). A two line Analysis of Deviance table is print ed.

Line 1 is the difference 2 * L(1) - 2 * L(0), where L(0) is the log
likelihood for a model with all coefficients 0 and L(1) is the maximized
log likelihood for the model fit.

Line 2 is 2 * L(2) - 2 * L(1) where L(2) is the maximized log likelihood
under a model fitting one parameter for every y[i]. Under cer tain
conditions, the latter can be used to test the goodness of fit of the
model using a chi-squared test.

Incremental deviances
logistic(Model,n:Denom,inc:T) computes the full logisti c model and all
partial models -- only a constant term, the constant and the f irst term,
and so on. It prints an Analysis of Deviance table, with one li ne for
each term, representing a difference 2 * L(i) - 2 * L(i-1) where L(i) is the
maximumized log likely for a model including terms 1 through i, plus the
deviance of the complete model labeled as "ERROR1". Each lin e except
the last can be used in a chi-squared test to test the signific ance of
the term on the assumption that the true model includes no lat er terms.

Omitting model
If you omit Model (logistic(,n:Denom ...)), the model from t he most
recent GLM command such as poisson() or anova(), or the model in
CHARACTER variable STRMODEL is used.

Computations are carried out using iteratively reweighted least squares.

logistic(Model,n:Denom,...) is equivalent to glmfit(Mod el,n:Denom,
dist:"binomial", link:"logit",...).

Problimit warning
If you get a warning message similar to the following

WARNING: problimit = 1e-08 was hit by logistic() at least onc e
it usually indicates either the presence of an extreme outli er or a best
fitting model in which many of the probabilities are almost e xactly 0 or
1. The latter case may not represent any problem, since the fi tted
probabilities at these points will be 1e-8 or 1 - e-8. You can t ry
reducing the threshold using keyword ’problimit’ (see belo w), but you
will probably just get the message again.

Other keyword phrases
Keyword phrase Default Meaning

Keyword ’maxiter’
maxiter:m 50 Positive integer m is the maximum number of

iterations that will be allowed in fitting

274 CHAPTER 2. MACANOVA HELP FILE

Keyword ’epsilon’
epsilon:eps 1e-6 Small positive REAL specifying relative e rror

in objective function (2 * log likelihood)
required to end iteration

Keyword ’problimit’
problimit:small 1e-8 Iteration is restricted so that no fit ted

probabilities are < small or > 1 - small. Value
of small must be between 1e-15 and 0.0001.

Keyword ’offsets’
offsets:OffVec none Causes model to be fit to logit(p) to be

1* Offvec+Model, where OffVec is a REAL vector
the same length as response y. Note OffVec is
in logit units. See topic ’glm_keys’ for more
details.

Keyword ’pvals’
pvals:T or F F Nominal chi-squared P-values will be printed

for each deviance. The default value can be
changed by setoptions(pvals:T). See topics
setoptions(), ’options’.

Keywords ’print’, ’silent’ and ’coefs’
See topic ’glm_keys’ for information on keyword phrases pri nt:F,
silent:T, coefs:F

Examples of the use of ’offsets’

Cmd> logistic("y=x", n:15, offsets:3 * x, inc:T, pvals:T)
The P value associated with x can be used to test the hypothesi s H0:
beta1 = 3 in the model log(p/(1-p)) = beta0 + beta1 * x.

Cmd> logistic("y=1", n:20, offsets:rep(log(.25/(1-.25)),length(y)),\
inc:T, pvals:T)

The P value associated with the CONSTANT term can be used to te st H0: p
= .25, assuming y contains a random sample from a binomial dis tribution
with n = 20.

2.215 lowess()

Usage:
result <- lowess(x, y [,xpred:xp] [,fract:f] [,iter:m] [, d elta:Delta])

REAL nonMISSING vectors x, y, xp, nondecreasing x, xp, lengt h(x)=
length(y), REAL scalars f and Delta, 0 < f <= 1, Delta >= 0, inte ger
iter > 0; result is structure(x:x,y:yfit [,xpred:xp,ypred :yp])

Keywords: regression, descriptive statistics, plotting

Introduction
lowess() uses the LOWESS smoother algorithm to summarize th e dependence

2.215. LOWESS() 275

of a REAL vector y on a non-decreasing REAL vector x of the same length.

The assumed model is y = g(x) + e, where g(x) is a "smooth" unkno wn
function of a predictor x and e is an random "error" with E[e] = 0. The
smoothed output values are estimates of g(x).

Optionally lowess() also estimates E(yp|xp) = g(xp), where xp may differ
from all x[i], assuming approximately linear dependence ne ar xp.

LOWESS is a resistant (to outliers) locally linear smoother . See below
for more information.

Usage
Result <- lowess(x,y) and Result <- lowess(structure(x,y)) use the
LOWESS smoother to find a vector ys with ys[i] = smoothed y val ue
corresponding to x[i]. x and y must be REAL vectors with the sa me
length and with no MISSING elements. Also, x must be non-decr easing,
that is x[i] <= x[i+1].

Result = structure(x:x, y:ys), where x is identical to the in put x
vector and ys is a REAL vector the same length as x and y.

Result <- lowess(x,y, xpred:xp) and Result <- lowess(struc ture(x,y),
xpred:xp) do the same but also compute a vector yp of fitted va lues
corresponding to REAL vector xp using weighted least square s. xp must
have no MISSING values and must be nondecreasing.

With xpred:xp, Result = structure(x:x, y:y, xpred:xp, ypre d:yp), where
yp is a REAL vector the same length as xp with yp[i] the predict ed value
corresponding to xp[i]. When xp[i] = x[j], yp[i] = ys[j]. If x p[i] <
x[1] or xp[i] > x[n], where n = length(x), yp[i] is computed by
extrapolation using the straight line used to compute ys[1] or ys[n].

When there are tied x[i]’s, say x[i] = x[i+1] = ... x[i+k-1], y s[i] =
ys[i+1] = ... = ys[i+k-1].

You can modify the behavior of lowess() using keywords ’frac t’, ’delta’
and ’iter’.

When x is not sorted, you need to use lowess(sort(x),y[grade (x)]).

Keywords
The following summarizes the lowess() keyword phrases whic h modify the
smoothing algorithm. All have REAL scalar values and can be u sed with
’xpred’.

Keyword Value Default Description
--- --------------------
fract:f 0 < f <= 1 2/3 Fraction of points used to compute

each smoothed value
delta:Delta 0 <= Delta x_range/100 x values within Delta of o ther x

values have smoothed values
computed by interpolation rather than
additional regressions

276 CHAPTER 2. MACANOVA HELP FILE

iter:m integer m > 0 3 number of iterations of robust
fitting

These defaults are the same as those in R.

The larger f is, the smoother ys will be. This is because each w eighted
regression is based on r data pairs, (x[j], y[j]), j = j1, j1+1 , ..., j2
= j1+r-1, where r = max(2,round(f * n)).

Non-zero values of delta can result in faster fitting. See be low.

When there are tied x’s, the value of ys can differ for differe nt
orderings of the ties x’s.

’fract’ and ’delta’ can be abbreviated to ’f’ and ’del’, resp ectively.

Method
lowess() uses iteratively reweighted least squares to fit a straight
line to data near each x[i]. The weight for x[j] depends on |x[j]-x[i]|
and, after the first iteration, on |y[j]-y_smooth[j]|, whe re y_smooth[j]
is the smoothed value from the previous iteration. Larger di stances and
larger residuals result in lower weights. See the reference below for
details on the weights used.

ys[i] is computed from r pairs, (x[j], y[j]), j=j1,...,j2 = j 1 + r - 1
and r = max(2, round(f * n)) with x[j1] <= x[i] <= x[j2], where j1 <=
n+1-r is chosen to minimize max(x[i] - x[j1], x[j2] - x[i]).

When these x[j]’s don’t vary enough reliably to estimate a sl ope, ys[i]
is a weighted average of y[j], j1 <= j <= j2.

Some shortcuts are made:

When there are k tied x’s, that is x[i] = x[i+1] = ... = x[i+k-1] , the
regression computation is done only for x[i] and then ys[i+1], ...,
y[i+k-1] are set equal to ys[i].

When Delta > 0 and there are near ties, that is x[i1]-x[i] <= De lta, i1
> i, ys[i1] is computed by linear interpolation between ys[i] and ys[i2]
where x[i2] - x[i] > Delta (or between ys[i] and ys[n] when x[n]-x[i] <
Delta.

Reference
You can find more information about the lowess() method in th e following
reference:

Cleveland, W. S. (1979) Robust locally weighted regression and
smoothing scatterplots. J. Amer. Statist. Assoc. 74, 829-8 36.

The code used is adapted from ratfor subroutines lowess() an d lowest()
by W. S. Cleveland obtained from statlib.

Example
Cmd> irisdata <- getdata(irisdata, quiet:T) # Fisher Iris D ata

2.216. MACINTOSH 277

Read from file "/usr/libs/macanova/auxfiles/macanova.d at"

Cmd> variety <- irisdata[,1]

Cmd> x <- irisdata[variety==1,2] # I. setosa sepal length

Cmd> y <- irisdata[variety==1,3] # I. setosa sepal width

Cmd> plot(x,y,symbols:"\1",show:F)

Cmd> addlines(lowess(sort(x),y[grade(x)]), show:F)

Cmd> showplot(dumb:T,width:70,xlab:"Sepal length",yla b:"Sepal width",\
title:"Iris Setosa Sepal width vs Sepal length with smooth")

Iris Setosa Sepal width vs Sepal length with smooth
+---+-------+------+------+-------+------+------+-- -----++

4.5+ o +
| |
| o |
| o |

S 4+o+
e | o |
p | o o ..o..... o |
a | o o o |
l 3.5+ o ..o. o o +

| o o .o. o o o |
w | o o |
i | oo..o. o |
d 3+o..o. o o o o +
t | o |
h | |

| |
| |

2.5+ +
| o |
+---+-------+------+------+-------+------+------+-- -----++

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8
Sepal length

Cross references
See also regress().

2.216 macintosh

Keywords: general

Summary of features special to the Mac OS X version.

MacAnova for Macintosh OS X is built using Carapace (see help topic
’carapace’), so all of the Carapace features are present on t he

278 CHAPTER 2. MACANOVA HELP FILE

Macintosh.

Menus are slightly different on Mac OS X to conform with stand ard
Macintosh guidelines. In particular, the About menu item an d the
Quit menu item are under the program menu rather than the Help and
File menus.

The standard search paths in DATAPATHS include a "user" dire ctory
(folder) and an "application" directory (see topic ’DATAPA THS’). On
Mac OS X, the user directory is "˜/Library/Application Supp ort/MacAnova"
where ˜ is the user’s home directory. The application direct ory is the
SharedSupport folder that came with MacAnova; it must be in t he same
folder as the MacAnova application.

MacAnova reads from many files (macros, help, etc.). For exa mple,
MacAnova.mac.txt is the standard macro file. If you put your own
modified copy of MacAnova.mac.txt into the user directory, then
MacAnova will read from your file instead of its own copy, bec ause
the user directory comes before the application directory i n the
search order.

2.217 mac classic

Keywords: general

Summary of features special to the Mac OS 9 version.

Windows
There can be up to nine command/output windows. Everything y ou type and
all character output goes in the frontmost one. You can creat e a new
window using New Window on the Windows menu or Open on the File menu.
The latter loads the window with the contents of the file sele cted. You
can switch between windows, close them or hide them using the Windows
menu. You can print all of a window or a selection from a window by
selecting Print Window or Print Selection on the File menu. Y ou can
save their contents as files on disk by selecting Save Window or Save
Window As on the File menu.

There are eight high resolution graphics windows plus two pa nel windows,
Panel 1-4 and Panel 5-8, which display the other graph window s in
miniature. You can switch between graphics windows, close t hem or hide
them using the Windows menu. Any graphics window including t he panel
windows can be printed using Print Graph... on the File menu o r copied
to the clipboard for pasting into the Scrapbook or other appl ication
using Copy on the Edit menu. You can direct a plot to graph wind ow i by
plotting keyword phrase ’window:i’, where 1 <= i <= 8. ’windo w:0’ puts
the graph in the window most recently written in.

You can display any graph window by pressing Command+1, Comm and+2, ...,
Command+8 or Command+F1, ..., Command+F8, and display pane l windows by
Command+G. Command+G also switches to the other panel windo w when a

2.217. MAC CLASSIC 279

panel window is displayed.

All windows have a close box in the upper left corner, a resizi ng box in
the lower right corner, and a zoom box in the upper right corne r.
Output windows also have a scroll bar for moving backward and forward
through output.

Executing a command
MacAnova recognizes a command as being ready to execute only if the
cursor is at the end of the line when you hit Return, or if you hi t
Enter (see next paragraph). Of course, as in all versions, th e line
will not be accepted as complete if there is any ’{’ unmatched by a
corresponding ’}’ or if there is an unfinished quoted string
started by ’"’.

Enter key
The Enter key is not equivalent to Return but might be conside red an
"execute" key. It behaves differently depending on whether you have
selected text before the prompt in the output window. Comman d+Return or
Shift+Return are both equivalent to Enter.

(a) If nothing is selected with the mouse in the output window , Enter
is equivalent to moving the cursor to the end of the command li ne and
pressing Return. This causes the command on that line to be ex ecuted
unless there is an incomplete quoted string or unbalanced cu rly
brackets ({...}). This is particularly useful when editing a command
about to be executed. No matter where in the line the cursor is ,
Enter causes the edited command to be executed, while Return does not
initiate execution unless the cursor is at the end of the line

(b) If you have used the mouse to select text before the curren t
prompt, Enter causes it to be copied to the end of the current
command line, followed by Return. Except when there are unba lanced
curly brackets or an incomplete quoted string, the current c ommand
line is then executed. This makes for very easy re-execution of
commands, possibly after editing them in place.

Item Copy and Execute (or Execute, when nothing is selected i n the
output window) on the Edit menu does the same thing as Enter, a s does
pressing Command+\ or key F6.

History of previous commands
Typed commands are automatically saved in an internal "hist ory" list.
You can move through this list, inserting previous commands after the
prompt, using items Up History and Down History on the Edit me nu.

By default, MacAnova saves the most recent 100 lines. To chan ge this,
say, to 150, type ’setoptions(history:150)’. See topics se toptions(),
’options’.

Up and down history
Pressing F7 or the key combination Option+up-arrow is equiv alent to
selecting menu item Up History. Pressing F8 or Option+down- arrow is

280 CHAPTER 2. MACANOVA HELP FILE

equivalent to selecting Down History.

Command+Option+up-arrow retrieves the oldest saved comma nd.
Command+Option+down-arrow reinserts whatever you had ori ginally typed,
if anything, before recalling earlier commands.

Moving around the window
Arrow keys move the cursor as you would expect. Command+B (Ba ck) and
Command+F (Forward) are equivalent to the left- and right-a rrow keys.
There is no equivalent to the up- and down-arrow keys.

Pressing the Option key while pressing a left- or right-arro w key moves
backward or forward one "name" (stretch of characters that a re legal in
names). Pressing the Option key while pressing an up- or down -arrow key
inserts previous commands at the prompt similar to items Up H istory and
Down History on the Edit menu.

Pressing the Command key while pressing an arrow key moves th e cursor to
the start or end of the line (left- or right-arrow) or the top o r bottom
of the window (up- or down-arrow). Repeated use of Command+u p or
Command+down-arrow scrolls through the window, moving the cursor as it
goes.

Pressing the Shift key while using an arrow key selects whate ver is
between where you start and where you end.

Windows menu shortcuts
Command+A (Go To Prompt on the Windows menu) moves the cursor to the
start of the current command line, just after the current pro mpt.

Command+E (Go To End on the Windows menu) or End on suitable ke yboards
moves it to the end of the current command line at the very end o f
window.

Command+T (Scroll To Top on the Windows menu) or Home scrolls to the Top
of the current command/output window. Command+U (or Page Up) scrools
back a screenful. Command+D (or Page Down) scrolls forward a screenful.
These do not move the cursor.

Specifying file names
When you use "" as the file name in any command requiring one (f or
example vecread("")), the usual Macintosh scrolling dialo g box lets you
select the file. You can also use an explicit file or "path" na me. In
the latter case, if the name does not contain ’:’ (which would identify
it as a "path" name), MacAnova will look for it first in the def ault
Folder (see topic ’files’) and then in the Folders specified in pre-
defined CHARACTER vector DATAPATHS. See topics ’file_name s’,
’DATAPATHS’, adddatapath(), ’customize’.

Help
Selecting item Help on the Apple menu is equivalent to typing ’help()’.
If a word, say ’matrix’, is selected in the window, item Help i s
equivalent to ’help("matrix"). Command+H or the Help key do es the same.

2.217. MAC CLASSIC 281

Interrupting
Command+. (period) or Command+I may be used to interrupt an o peration or
output. Depending on the operation it may not be recognized
immediately.

File menu
Open (Command+O) creates a new output window and reads a file into it.
It might, for example contain output from a previous MacAnov a session.

Save (Command+S) and Save As write the current command/outp ut window to
a file.

Page Setup and Print/Print Selection/Print Graph (Command +P) do what you
would think they should do.

Interrupt (Command+I) is equivalent to pressing Command+. (period) (see
above).

Go On resumes computing after a graphing command with keywor d phrase
’pause:T’. See topic ’graph_keys’.

Save Workspace (Command+K) and Save Workspace As invoke sav e()
(asciisave() if asciisave() was used previously). See save () and
asciisave().

Open Batch File (Command+Option+O) is equivalent to ’batch ("")’. See
batch().

Spool Output to File (Command+Option+S) is equivalent to ’s pool("")’.
If a spool file has previously been specified this menu item w ill be
Stop Spooling or Resume Spooling and is equivalent to ’spool ()’.

Edit menu
In the output/command window you can use Undo/Redo (Command +Z), Cut
(Command+X), Copy (Command+C), and Paste (Command+V) in th e usual way.
For a graph window only Copy is active.

Copy to End (Command+/) copies the current selection to the e nd of
the command line without putting it on the Clipboard.

Copy and Execute/Execute (Command+\) is equivalent to pres sing Enter
(see above) in the output command window.

Up History inserts the previously typed command after the pr ompt.
Repeated selection of Up History successively inserts olde r and older
commands. It is equivalent to pressing the Option and up-arr ow keys.

Down History moves forward through previously saved comman ds, inserting
them after the prompt. It is equivalent to pressing the Optio n and
down-arrow keys.

Function keys F1, F2, F3, F4, F5, F6, F7 and F8 are equivalent t o

282 CHAPTER 2. MACANOVA HELP FILE

Undo/Redo, Cut, Copy, Paste, Copy To End, Execute (Copy and E xecute), Up
History and Down History, respectively. Enter, Shift+Retu rn and
Command+Return are additional keyboard short cuts for Exec ute.

Windows menu
This menu allows you to close or hide a window (Close and Hide) , create
a new output/command window (New Window or Command+N), sele ct a graph
window (Graph 1, Graph 2, ... Graph 8, Panel 1-4 and Panel 5-8) , select
an output command window by name, and move around the output/ command
window (Scroll To Top, Go To End, Go To Prompt, Page Up, Page Do wn).

Command menu
The last 8 items are pre-defioned commands that are inserted in the
output/command window. You can also select them by pressing Command+
+Option+1, ..., Command+Option+8.

Edit Commands... allows you to edit or replace any or all of th e 8
commands. Since each command can be a macro, this allows a gre at deal
of flexibility.

Options menu
Significant Digits, Output Formats, Random # Seeds, Angle U nits, GLM
Options, Batch Options and Other Options allow you to set man y of the
items that can be changed by setoptions().

Font menu
Size allows you to change the font size of the text in the curre nt
output/command window.

The remaining items are the names of fonts you can select for t he text
in the current output/command window. You should probably r estrict
your choices to non-proportional (equal character width) f onts such as
Monaco or Courier. The default font is McAOVMonaco 9, a modif ied form
of Monaco 9. Courier 18 may be preferable for use with an overh ead
projector. You can also change fonts using setoptions() usi ng keywords
’font’ and ’fontsize’. See topic ’options’.

Other information
MacAnova can "background", that is it will continue running when you
switch to another application under System 7 or when you are u sing
Multifinder under earlier systems.

Option+’<’, Option+’>’ and Option+’=’ are recognized as eq uivalent to
’<=’, ’>=’, and ’!=’, respectively. Option+’\’ and Option+ ’|’
(Option+Shift-’\’) are recognized as equivalent to ’<<’ an d ’>>’,
respectively.

The shell() command and special treatment of lines starting with ’!’ is
not available on the Macintosh. On System 7 or later, you can r un other
programs just be starting them. On SYstem 6 you can do the same using
Multifinder. On all systems you can run Desk Accessories fro m within
MacAnova.

2.218. MACRO() 283

Files produced by save() in all Macintosh versions 3.xx and 4 .xx, but
not 2.xx, can be restored. However, files produced by asciis ave()
should restore correctly.

Color is not supported under MacAnova except in so far as the s ystem
provides it automatically for all applications.

2.218 macro()

Usage:
macro(text [, dollars:T, inline:T or F ,notes:Notes]), tex t a CHARACTER

scalar, Notes CHARACTER scalar or vector

Keywords: macros, control, syntax

Usage with example
macro(Text) creates a macro from the commands contained in t he CHARACTER
variable or quoted string Text. Text can also be an existing m acro.

Here is a short example of the use of macro().

Cmd> vhat <-\
macro("@x <- argvalue($1,\"argument 1\",\"real matrix no nmissing\")
@n <- nrows(@x); @p <- ncols(@x) #get dimensions
@x <- @x - sum(@x)/@n # compute residuals from mean
@v <- if (@n > 1){(@x %c% @x)/(@n * (@n-1))}else{

matrix(rep(0,@p * @p),@p)} # 0 matrix when n = 1
delete(@n,@x,@p) # cleanup
@v")

vhat(x) returns S/n, where S is the sample variance/covaria nce matrix of
matrix x. See topics ’macros’, ’macro_syntax’ and argvalue () for
interpreting the text.

Quotes and backslashes
When you use macro() to define a macro, you should type any quo tes
’"’ as ’\"’, as in the example. Similarly to include a backsla sh ’\’
you must type ’\\’. In particular, quoted quotes in a macro mu st
be typed as ’\\\"’ as in

Cmd> quotedecho <- macro("print(\"\\\"$0\\\"\")")

Cmd> quotedecho(The answer is 42)
"The answer is 42"

Keyword ’dollars’
macro(Text,dollars:T) creates a macro from Text, adding "$ $" to every
temporary name (name starting with ’@’) that (a) is not in a qu oted
string, (b) is not in a comment starting with ’#’ and (c) does n ot
already end in "$$". When the macro is executed, "$$" is repla ced by a
2 digit number unique to the particular macro invocation so t hat the
actual name is unique to the macro. The length of any temporar y name

284 CHAPTER 2. MACANOVA HELP FILE

you use must be no more than 10 characters, counting ’@’. The f ollowing
appends ’$$’ to all temporary variable names in vhat:

Cmd> vhat <- macro(vhat, dollars:T)

The first line of vhat now starts ’@x$$ <-’ instead of ’@x <-. S ee
topic ’macro_syntax’ for more information about using ’$$’ in macros.

Keyword ’notes’
You can attach explanatory notes to a macro using keyword phr ase
’notes:Notes’, where Notes is a CHARACTER vector. See topic ’notes’ for
details.

Keyword ’inline’
macro(Text,inline:F [,dollars:T]) marks the macro being c reated as one
to be expanded out-of-line instead of having the expansion i nserted into
the input line. This primarily means that the macro will be fr eshly
expanded every time it is encountered, even on multiple trip s through a
loop. An instance of an in-line macro is expanded just once. S ee topic
’macros’. inline:T marks the macro as to be expanded in-line , even if
the value of option ’inline’ is False. See subtopic ’options :"inline"’.
You can mark an existing macro myMacro() to be expanded out-o f-line by

Cmd> myMacro <- macro(myMacro, inline:F)

Nonstandard characters
Within quotes ("..."), any characters other than "\n" and "\ t" whose
ASCII codes are either 127 or less than 32, are replaced by the ir
escaped octal representation of form \nnn. For example,

Cmd> myplot <- macro("chplot($1,$2,symbols:\"\001\",$K)")
Cmd> myplot <- macro("chplot($1,$2,symbols:\"\x01\",$K)")

and
Cmd> myplot <- macro("chplot($1,$2,symbols:\"\\001\",$ K)")

are completely equivalent.

Non-standard characters with ASCII codes >= 128 are not trea ted
specially. For example,

Cmd> myplot <- macro("chplot($1,$2,symbols:\"\201\",$K)")
Cmd> myplot <- macro("chplot($1,$2,symbols:\"\x81\",$K)")

are equivalent, producing a macro containing whatever char acter has
ASCII code 129, which has a computer specific interpretatio n.

Cross references_topic_macros
See topic ’macros’ for details on writing macros, including the use of
special symbols ’$0, ’$1’, ’$2’, ..., ’$N’, ’$V’, ’$v’, ’$K’ , ’$k’, ’$S’
and ’$$’.

Examples
Examples:

Cmd> median <- macro("describe($1,median:T)")
Cmd> myread <- macro("matrix(vecread(\"$1\"),$2)’") #no te transpose
Cmd> greetings <- macro("print(\"\\\"Hello\\\"\")")
Cmd> xlogx1 <- macro("@x <- $1; @x * log(@x)")

2.219. MACRO FILES 285

Cmd> xlogx2 <- macro("@x$$ <- $1; @x$$ * log(@x$$)")
Cmd> xlogx3 <- macro("@x <- $1; @x * log(@x)", dollars:T)

median(x) would compute the medians of the columns of x. See
describe().

y <- myread(family.dat,23) would create a matrix with 23 col umns from
data from file family.dat, assumed to have a total of n * 23 data items
arranged in n rows.

greetings() prints "Hello", complete with the quotation ma rks.

xlogx1(x), xlogx2(x) and xlogx3 all compute x * log(x). However, use of
xlogx1 might lead to a problem if some other macro also used @x as a
temporary variable. xlogx2 avoids this problem because the temporary
variable name @x$$ will be expanded to @x51, say, a name that s hould not
conflict with any other temporary name. xlogx3 is identical to xlogx2
because each instance of @x is converted to @x$$.

Cross references
See also topics ’macros’, ’macro_syntax’, macroread(), ma crowrite().

2.219 macro files

Keywords: macros, files, input, output

Introduction
This topic describes the format of a file to be read by macrore ad().
See topics ’data_files’, ’vecread_file’ and ’matread_fil e’ for
information on data files, and topic ’files’ for more techni cal
information on file names, default directories or folders, and
abbreviated file names of the form "˜/filename".

General description of file format
A file that can be read by macroread() must be a plain text or as cii
file. If you create it in a word processor, be sure to save it as a
text or ascii file. On the file can be any number of macros, eac h with
a header line, followed by optional comment lines and macro t ext lines.
The header line must contain keyword MACRO and may contain on e or more
keywords INLINE, OUTOFLINE, NOTES, ENDED or DOLLARS. MACRO must be the
first keyword but the order of others is irrelevant.

Formats for macros
There are two possible formats for macros that can be read by
macroread(). Both can include descriptive notes (see topic ’notes’).

Form A is terminated by a special line:
Name MACRO [other keywords]
) 0 or more descriptive comment lines starting with ’)’
)
Line 1 of macro

286 CHAPTER 2. MACANOVA HELP FILE

.
Line Nlines of macro
%Name%

Form B, requires a count of the lines and is considered obsole te:
Name Nlines MACRO [other keywords]
) 0 or more descriptive comment lines starting with ’)’
)
Line 1 of macro
.
Line Nlines of macro

Name is the macro name to be searched for. Case is ignored in se arching
for the name, so that macroread(FileName,"mymacro") will f ind mymacro(),
MyMacro(), or MYMACRO(), for example.

The text of the macro immediately follows the header and comm ent lines.

In form A, the line immediately after the last line of macro te xt must
be %macroname%, where macroname must be identical, includi ng use of
upper and lower case letters, to the name on the name line.

In form B, Nlines must be an integer and there must be exactly N lines of
text. The count includes lines starting with "#" but not the
descriptive comment lines, if any.

It is good practice to include both header comment lines star ting with
")" and macro comment lines starting with "#" describing the usage of
the macro. See also macrousage().

Empty macro
It is permissible for there to be no lines of macro text (%macr oname%
immediately following comment lines for form A or Nlines = 0 f or Form
B). When macroread() reads such a "macro", only the descript ive
comments are printed (if ’quiet:T’ is not present). It is a us eful
convention to make the first macro on a file have 0 length with the
header describing the contents of the file, since then
’macroread(FileName)’ will print the contents.

Optional keywords on the name line
OUTOFLINE:
When the name line is of the form

Name MACRO OUTOFLINE [other keywords]
or

Name MACRO Nlines OUTOFLINE [other keywords]
the macro will be marked so that it will always be expanded out -of-line.
When INLINE appears instead of OUTOFLINE, it will not be so ma rked.
Simply OUT or IN can be used instead of OUTOFLINE or INLINE. Si nce in-
line expansion is the default, INLINE is never required.

NOTES:
When the name line is of the form

Name MACRO NOTES [other keywords]

2.219. MACRO FILES 287

or
Name MACRO Nlines NOTES [other keywords]

the macro should be followed by a data set named "Name$NOTES" containing
a CHARACTER vector of descriptive usage notes. See topic ’ma tread_file’
for the format.

DOLLARS:
When the name line is of the form

Name MACRO DOLLARS [other keywords]
or

Name MACRO Nlines DOLLARS [other keywords]
’$$’ will be appended to any temporary variable names (names starting
with ’@’) that don’t already end with ’$$’. When DOLLARS is on the name
line of macro myMacro(), macroread(fileName,"myMacro") i s equivalent to
macro(macroread(fileName,"mymacro"),dollars:T). See t opics macro() and
’macro_syntax’.

ENDED:
When a form B name line has the form

Name MACRO Nlines ENDED [other keywords]
it signals that the macro is followed by a line starting ’%mac roname%’,
where ’macroname’ exactly matches the name on the name line. In some
cases, this can prevent read(), matread() or macroread() fr om
erroneously recognizing a line of the macro as the header for another
macro. ENDED may also be used on form A macros, but is unnecess ary
since they are required to have an ending line.

LOCKED:
When the name line is of the form

Name MACRO LOCKED [other keywords]
or

Name MACRO Nlines LOCKED [other keywords]
and the result of macroread() or read() is assigned to create a macro,
that macro will be locked. See topic ’locks’.

Cmd> doit <- macroread("macrofile.txt","doit")
doit MACRO LOCKED

Cmd> list(doit)
doit MACRO (in-line) (locked)

End-of-macros line
A line starting _E_N_D_O_F_M_A_C_R_O_S_ terminates the re ading of macros
or data from a file. You can put help information for the macro s after
this line. See file macanova.hlp for a description of the req uired
format for the help that would follow this line.

Example file
Example of macro file containing a 0 length, information onl y, macro and
three genuine macros:

info MACRO
) This file contains macros median(), rm(), and means()

288 CHAPTER 2. MACANOVA HELP FILE

%info%

median MACRO
) median(x) computes medians of columns of x
usage: median(x) [it’s helpful to include usage in body of m acro]
describe($1,median:T)
%median%

rm 2 MACRO
) rm(a,b,...) alias for delete for Unix/Linux lovers
usage: rm(a,b,...) equivalent to delete(a,b,...)
delete($0)

means MACRO NOTES DOLLARS
) means(x1,x2,...) computes means of vector arguments
usage: means(x1,x2,...) computes means of vector argumen ts
@args <- structure($0) # make structure of all arguments
for(@i,1,$N){

if(!isvector(@args[@i])){
error("Arguments to macro $S must be vectors")

}
}
@result <- rep(0,$N) #create vector of right length
for(@i,1,$N){

@result[@i] <- sum(@args[@i])/nrows(@args[@i])
}
@result
%means%

means$NOTES CHARACTER
) Two lines of usage notes for macro means()
means(x1,x2,...) computes means of its vector arguments, r eturning
them in a vector.
%means$NOTES%

_E_N_D_O_F_M_A_C_R_O_S_

The _E_N_D_O_F_M_A_C_R_O_S_ line is optional but recommen ded. It must
be used if anything else other than data sets, for example hel p
information, follows the macros in the file.

Note: Form A was new with Version 4.04 of MacAnova. Keywords E NDED and
DOLLARS were new in February 1999.

2.220 macro syntax

Keywords: macros, syntax, control

Introduction
This topic presumes familiarity with topic ’macros’. It des cribes
the use of comments in macros, how values are returned, the sp ecial

2.220. MACRO SYNTAX 289

symbols that may be used in macros and gives some tips on writi ng
robust and efficient macros.

Topics include Macro Self-Documentation, The Value of a Mac ro,
Referencing Macro Arguments, Use of Temporary Variables, E xpansion of
Other Special Symbols Containing ’$’, Recursive Use of Macr os, Tips For
Good Macro Writing, and Functions Useful in Macros

Macro Self-Documentation
Often the first few lines of a macro are comments ("#" at the st art of
the line) which describe how the macro is used. You can use com mand
macrousage() to print such comment lines. When you write a ma cro, it is
good practice to include such lines.

The value of a macro
The last expression appearing in a macro is returned as its va lue. If
this expression is the name of an "invisible" variable (name starting
with ’_’ or ’@_’) the macro value can be assigned or used in an
expression but will not be printed. If no value is to be return ed, the
macro should end with ’;;’ which ensures the value returned i s NULL.

In addition, you can use ’return(Value)’ almost anywhere in a macro to
immediately leave the macro, returning Value as the value of the macro.
Value may be a constant, expression or variable. ’return()’ and
’return’ without parentheses are equivalent to ’return(NU LL)’. See
topic ’return’.

See below for the use of delete() with keyword phrase return: T to return
a temporary variable as value.

Referencing macro arguments
In the text of a macro the place holders ’$1’, ’$2’, ... are use d to
refer to argument 1, argument 2, When the macro is execut ed,
MacAnova examines its text and substitutes the appropriate argument,
almost exactly as typed, for any such place holder. It then ex ecutes
the commands as if they had been typed at the keyboard. For exa mple, if
the first argument to a macro is ’3+4’, ’@a <- $1’ gets expande d to ’@a
<- 3+4’.

When a macro references a missing argument (for example, $3 w hen there
are only two arguments) it usually terminates immediately w ith an error
message. When, however, a missing argument appears in a quot ed string
(’print("$3")’ when there are only two arguments) it is "exp anded" to
nothing (’print("")’). When you use place holders of the for m ’$01’,
’$02’, ..., with a leading 0 for the number, then a missing arg ument is
expanded to NULL outside of a quoted string (see topic ’NULL’). This
may or may not result in an error message if the argument is use d, but
you can test the value using one or more of the isxxxx() functi ons (see
below).

Quoted string argument
When an argument which is itself a quoted string, possibly co ntaining
backslashes (’\’), is referenced in the macro as part of a quo ted

290 CHAPTER 2. MACANOVA HELP FILE

string, then all instances of ’"’ and ’\’ in the argument are c hanged to
’\"’ and ’\\’. For example, in a macro, ’print("$1")’ expand s to
’print("3+4")’ when the first argument is ’3+4’ but expands to
’print("\"foo\"")’ when the first argument is ’"foo"’.

Use of temporary variables
It is good practice to use temporary variables (names starti ng with ’@’)
in macros so they will be deleted automatically just before t he next
prompt. You can also append ’$$’ to names to create a name that should
be unique to the macro (see below). When you use ’dollars:T’ a s an
additional argument to macro() in creating a macro, ’$$’ wil l be
automatically appended to all temporary names not already e nding in
’$$’. This also happens when a macro with keyword DOLLARS on i ts header
line is read from a file.

Because temporary variables are not deleted until the next p rompt, it is
often a good idea to delete them before exiting a macro, excep t for a
result being returned, of course. To delete a variable, say ’ @result’,
whose value is to be returned, the last command in the macro sh ould be
delete(@result,return:T). @result will be deleted but its value will
still be returned. See delete().

Invisible variable
Occasionally you may want to create a non-temporary "invisi ble"
variable, that is, one that is not normally listed by list() o r
listbrief(). You do this by assigning a name starting with ’_ ’ such as
’_x’. One use for this is to create a variable to be used by seve ral
related macros but not directly referenced by the user. See a lso list()
and listbrief(). A temporary variable is "invisible" if its name starts
with ’@_’, say ’@_x’. See topic ’variables:"invisible"’.

You can return an "invisible" result by

delete(@result,return:T,invisible:T)

Expansion of other special symbols containing ’$’
In a macro, certain symbols starting with ’$’ have a special m eaning.
Although they would be errors outside a macro, in a macro thes e symbols
are "expanded", that is, something is substituted for them i n the text
of the macro. In brief, these symbols are as follows:

Symbol Expanded value
$0 The complete comma-separated list of macro arguments.
$N The number of macro arguments = 1 + (number of separating

commas) except when the agument list is empty, when the
value is 0

$V A comma separated list of all macro arguments that are not
keyword phrases.

$v The number of macro arguments that are not keyword phrases .
$K A comma separated list of all macro arguments that are

keyword phrases.
$k The number of macro arguments that are keyword phrases.
$A A CHARACTER vector whose elements are the character strin gs

2.220. MACRO SYNTAX 291

specifying the arguments, that is, vector("$1","$2",...) .
$S The name of the macro.
$$ Expands to a unique 2 digit number, 00, 01, ..., 49 in out-

of-line macros and 50, 51, ..., 99 in in-line macros.

$N, $V, $v, $K, $k, $S and $A are not treated specially when the y are
preceded or followed by a character that could be part of a var iable
name. For example, str$N would be interpreted as component N of
structure str (see ’structures’) and $Na would not be change d and would
probably result in an error.

Dollars details
Here are fuller explanations or examples of the use of these s pecial
symbols. In all the following we assume the symbols are in a ma cro
invoked by mymacro(x, title:"Hello Dolly",run(5),new:T) .

$0 (full list of arguments):
In the example $0 is replaced by ’x,title:"Hello Dolly",run (5),new:T’.
$0 is particularly useful in defining "aliases" of standard commands.
For example,

Cmd> dir <- macro("list($0)")
defines macro dir() which is used identically to list().

When $0 appears in a quoted string, all instances of ’"’ or ’\’ in any
macro argument are prefixed by ’\’. In the example, "$0" is re placed
by "x, title:\"Hello Dolly\",run(5),new:T".

$N (number of arguments):
In the example, $N is replaced by ’4’.

$V (list of non keyword arguments):
In the example, $V is replaced by ’x,run(5)’. When $V is used w ithin
double quotes, any instances of ’"’ or ’\’ are expanded as for $0.

$v (number of non keyword arguments):
In the example, $v is replaced by ’2’.

$K (list of keyword arguments):
In the example, $K is replaced by ’title:"Hello Dolly",new: T’. This
is useful for passing on all the keywords to a function invoke d by the
macro. See pre-defined macro colplot() for an example of the use of
$K. When $K is used within double quotes, any instances of ’"’ or ’\’
are expanded as for $0.

$k (number of keyword arguments):
In the example, $k is replaced by ’2’.

$A (CHARACTER vector of all arguments in quotes):
In the example $A is replaced by vector("x","title:\"Hello Dolly\"",
"run(5)","new:T"). To print argument 3 to a macro as it appea red in
the call, instead of print("$3"), you might use print($A[3]). In
the example this would print ’run(5)’. Any instances of ’"’ o r ’\’ in
the arguments are replaced by ’\"’ and ’\\’. When $A is part of a

292 CHAPTER 2. MACANOVA HELP FILE

quoted string, it is not expanded.

$S (name of macro):
In the example, $S is replaced by ’mymacro’ whether or not it i s in
quotes.

$$ (number unique to macro expansion):
This expands to a unique two digit number, even in a quoted str ing.
The particular integer that replaces $$ remains the same thr oughout an
invocation of the macro, but is incremented by 1 for each macr o in
which $$ is used. It allows you to create temporary variable n ames
that are specific to a particular execution of a macro. For ex ample,
’@A$$ <- 3’ might become ’@A52 <- 3’ or ’@A57 <- 3’ depending on when
and where the macro is executed. As long as you don’t use any
temporary names ending in two digits, rigorous use of ’$$’ el iminates
the possibility of "collisions" between temporary variabl es names in
different macros.

In a macro expanded in-line, the value of $$ starts at 50. If $$
reaches 100, all macros abort. In a macro expanded out-of-li ne, the
value of $$ ranges from 0 to 49 and all macros abort if it reache s 50.
This behavior limits the depth to which macros can be nested o r
recursive macros can call themselves

Note that each invocation of a macro expanded in-line in a loo p will
have the same value for $$ since it is expanded only once, the f irst
time through the loop. This will usually be the case for macro s
expanded out-of-line, too, but it cannot be guaranteed.

Recursive use of macros
A macro may invoke itself directly or indirectly up to a maxim um depth
of 50, provided some test is included to avoid infinite recur sion. In
practice, current limitations of the parser limit the maxim um depth to
around 20. If you need greater depth, you may be able to attain it
using evaluate().

Tips for good macro writing
Because macro arguments are expanded literally, their plac e holders
should usually be enclosed in parentheses when used in expre ssions.
For example, use ’($1) * ($2)’ rather than ’$1 * $2’.

When a macro argument is referred to more than once in a macro i t should
usually first be copied to a temporary variable. For example , a macro
to compute a mean should be defined by

Cmd> mean <- macro("@x <- $1;sum(@x)/dim(@x)[1]",dollars :T)
rather than by the somewhat simpler

Cmd> mean <- macro("sum($1)/dim($1)[1]")
If the latter definition is used, ’mean(boxcox(x[,vector(1,2,4)],.5))’
would result in boxcox(x[,vector(1,2,4)],.5) being evalu ated twice.

When a macro is not intended to return a value, end it with ’;;’ . For
arcane reasons, this helps MacAnova allocate memory more ef ficiently.

2.220. MACRO SYNTAX 293

Use error() to print any messages describing errors that ter minate the
macro. It works similarly to print() but automatically pref aces the
message with "ERROR: ", appends " in macro xxxxx" and produce s an error
condition that terminates the macro and returns to the promp t level.

If the error message contains the macro name (dollar symbol $ S), use
keyword phrase ’macroname:F’ with error() as in

if ($v != 2){error("$S requires 2 non-keyword arguments",m acroname:F)}

See topic error() for more information.

If you use anova(), regress() or any other GLM command in the m acro and
you do not want to destroy information from a previous GLM com mand,
bracket the use of a GLM command by pushmodel() and popmodel() as in the
following fragment:

if (pushmodel(canpush:T)){pushmodel()}
anova(@model, silent:T)
if (popmodel(canpop:T)){popmodel()}

If you want to have the macro run on versions dating prior to th e
introduction of pushmodel() and popmodel(), use

if (alltrue(isfunction(pushmodel),pushmodel(canpush: T))){pushmodel()}
anova(@model, silent:T)
if (alltrue(isfunction(popmodel),popmodel(canpop:T))){popmodel()}

Functions useful in macros
There are several functions whose primary usefulness is wit hin a macro.

keyvalue() interprets arguments that are keyword phrases l ist and check
their values for appropriateness.

argvalue() lets you access a non-keyword argument while che cking it for
appropriateness.

anymissing(), isdefined(), isscalar(), isvector(), isma trix(),
isarray(), isfactor(), isreal(), ischar(), islogic(), is null(),
isgraph(), isstruc(), ismacro(), isfunction(), isnumber () and isname()
are also useful in checking whether an argument is suitable.

modelvars(), modelinfo(), varnames(), xvariables() and x rows() allow a
macro to do sophisticated computations based on the results of a
previous GLM command.

pushmodel() and popmodel() allow you to save and restore res ults from a
previous GLM command.

setodometer() is helpful in looping over all combinations o f factor
levels.

Example
Here is a fragment that might be in a macro whose first argumen t should
be a REAL scalar and second argument should a CHARACTER vecto r, and
which should recognize keywords ’down’ with T or F for value a nd ’power’

294 CHAPTER 2. MACANOVA HELP FILE

with positive REAL scalar value. ’down’ is optional with def ault F and
’power’ is required.

@n <- argvalue($1,"sample size","positive integer scalar ")
@labs <- argvalue($2,"labels","character vector")
@down <- keyvalue($K,"down","TF",default:F)
@power <- keyvalue($K,"power","positive number")
if (isnull(@power)){

error("keyword ’power’ is required by $S",macroname:F)
}
....

When the value of an argument doesn’t have the specified prop erties,
argvalue() and keyvalue() immediately terminate the macro .

Cross references
See macroread() for examples of macros.

2.221 macroread()

Usage:
mymacro <- macroread(FileName,macroName [,quiet:T or F, e cho:T or F,\

silent:T, printname:F, notfoundok:T, nofileok:T, prompt :F,\
badkeyok:T]), FileName and macroName CHARACTER scalars; F ileName can
also be CONSOLE or have the form string:charVal where charVa l is a
CHARACTER scalar or vector.

Keywords: macros, files, input

Usage
mymacro <- macroread(FileName,macroName) searches the na med file for a
macro whose name matches macroName. If the macro is found, it is read
and made available under the name mymacro(). FileName and ma croName
must be quoted strings or CHARACTER scalars.

Usually the name to the left of ’<-’ will be the same as the name of the
macro read as in

Cmd> density <- macroread("densities.mac","density")

In searching the file for a matching name, case is ignored so t hat, so
that macroread(FileName, "mymacro") will find mymacro(), MyMacro(), or
MYMACRO(), for example. See topic ’macro_files’ for a descr iption of
the required file format.

In a version with windows, when FileName is the null string "" , you
will be prompted to select the file using a dialog box.

The header and comment lines are normally echoed to output, b ut this can
be suppressed by keywords; see below.

If the macro has keyword LOCKED on the header line, and the res ult is

2.221. MACROREAD() 295

assigned to a variable, that variable will be locked. See top ic
’locks’.

Cmd> doit <- macroread("macrofile.txt","doit")
doit MACRO LOCKED

Cmd> list(doit)
doit MACRO (in-line) (locked)

Macro name omitted
mymacro <- macroread(FileName) with no macro name reads the first macro
on the file. The first non-empty, non-blank line in the file i s assumed
to be the start of the macro as described in topic ’macro_file s’. It is
an error if it is not in the right format for the first header li ne of a
macro or data set.

Assignment of result
Just reading a macro does not make it available; you must assi gn the
value of macroread() using ’<-’. You can usually use getmacr os() to
simultaneously read a macro and make it available.

Macro getmacros()
When you are reading a macro from one of the standard macro fil es
(arima.mac, design.mac, graphics.mac, macanova.mac, mat h.mac,
mulvar.mac, regress.mac and tser.mac) pre-defined macro g etmacros() is
more convenient to use than macroread(). An example of its us e is

Cmd> getmacros(covar)

This replaces to ’covar <- macroread("macanova.mac","cov ar")’, except
that you don’t even need to know which file covar() is located in.

Automatic search for macros
Use of macroread() or getmacros() is sometimes not necessar y, since the
default behavior of MacAnova is to search the files in MACROF ILES (see
getmacros()) for any undefined macro you try to use. For exam ple, even
if macro covar() has not previously been read from file "MacA nova.mac",
either by getmacros() or macroread(),

Cmd> cov <- covar(x)

will read covar() and then execute it. However, both macrore ad() and
getmacros() normally echo the header lines on macros; these often
contain details about usage which you otherwise might miss.

See below for discussion of keywords ’quiet’, ’echo’, ’sile nt’,
’notfoundok’ and ’nofileok’.

OUTOFLINE on header
If ’OUTOFLINE’ or simply ’OUT’ appears on the first header li ne of the
macro, it will be marked to be always expanded out-of-line. O therwise,
the expansion of the macro will be determined by the value of o ption
’inline’. See topics ’macros’, ’options’.

296 CHAPTER 2. MACANOVA HELP FILE

Reading from console or batch file
macroread(CONSOLE [,prompt:F]) reads from the regular inp ut stream
allowing you to type in the macro using the format described u nder topic
’macro_files’.

On windowed versions, type one line at a time in the dialog box that is
opened.

On Unix/Linux and DOS, type the necessary lines after the pro mpt. The
value of CONSOLE is ignored. The first line must be of the form ’Name
nLines MACRO’, where nLines is the number of lines in the macr o.

On any machine, when macroread(CONSOLE) is used in a batch fi le, it
reads the macro from the lines immediately following the mac roread()
command. See batch(). No prompt is printed when prompt:F is a n
argument.

Any blank lines at the end of a macro are trimmed off when it is r ead.

Keywords
There are several keywords, ’quiet’, ’echo’, ’silent’, ’no tfoundok’ and
’nofileok’ which control what will be printed by macroread().

Keyword phrase Meaning
quiet:T Header and descriptive comments will not be printed
quiet:F All header and descriptive comments will be printed
echo:T Lines of the macro itself will be printed as they

are read
silent:T Only error messages will be printed; incompatible

with quiet:F or echo:T
printname:F The name of the file read will not be printed;

printname:T is ignored with silent:T
notfoundok:T Failure to find the macro is not considered an e rror

so no error message is printed.
nofileok:T Failure to open the file is not considered an erro r

so no error message is printed.
badkeyok:T Unrecognized or duplicate keywords are silentl y

ignored.

Without quiet:T or quiet:F, the header and comment lines not starting
with ’))’ preceding the macro will be echoed to output.

Even without echo:T, header lines are printed when FileName is CONSOLE
and the macroread() command is in a batch file. (In windowed v ersions,
a macro will be echoed if FileName is CONSOLE whether or not th e command
is in a batch file.) Such echoing can be suppressed by ’echo:F ’.

When notfoundok:T is an argument and the macro is not found or
nofileok:T is an argument and the file cannot be opend, macro read()
returns NULL as value. When used in a macro, this feature allo ws
special action to be taken if macroName is not found. See topi c ’NULL’.

2.222. MACROS 297

Keywords ’file’ and ’string’
macroread(file:FileName,...) is equivalent to macroread (FileName,...).

macroread(string:CharVar,...) where CharVec is a CHARACT ER scalar or
vector, does not read from a file. Instead, it "reads" CharVa r as if
each element were a line (or several lines if there are embedd ed
end-of-line characters) read from a file. The first element or line of
CharVar must be a header line with a name and number of lines. I n
particular, mymacro <- macroread(string:CLIPBOARD) woul d read the first
macro on a replica of a data file in the special variable CLIPB OARD. In
windowed versions this would be taken from the Clipboard. In the GTK
version, you can also "read" from special variable SELECTIO N in a
similar way. See topic ’CLIPBOARD’.

If either keyword ’file’ or ’string’ is used, they can appear in any
position in the argument list, as can setName which must be th e only
non-keyword argument. For example,

Cmd> macroread(quiet:T,"mymacro",file:"myfile.dat")
is equivalent to

Cmd> macroread("myfile.dat","mymacro", quiet:T).

Variable MACROFILES
A predefined CHARACTER variable MACROFILES contains the na mes of files
containing macros. A pre-defined macro getmacros() allows easy
retrieval of macros from the files whose names are in MACROFI LES. At
startup, MACROFILES is initialized to vector("graphics.m ac",
"regress.mac", "design.mac", "tser.mac", "arima.mac", " mulvar.mac",
"math.mac", "macanova.mac"), but you can change it if desir ed. See
topics getmacros() and addmacrofile().

Cross references
See also topics ’macros’, macro(), read(), matread(), info read(),
’macro_files’, ’files’

2.222 macros

Usage:
mymacro <- macro(charVar [, dollars:T])
mymacro <- macroread(fileName [,"mymacro"])
getmacros(macro1 [, macro2 ...]) (reads macro from one of fi les

specified in MACROFILES)
macrowrite(fileName, mymacro)

Keywords: macros, control, syntax

Description
A macro is a collection of commands grouped together to make i t easy to
execute them all at once. It is used (invoked) the same way as a
function, by typing its name followed by 0 or more arguments i n
parentheses. For example, y <- boxcox(x,.5) invokes macro b oxcox().

298 CHAPTER 2. MACANOVA HELP FILE

A macro is stored in the MacAnova workspace as a variable simi lar to a
CHARACTER scalar. You can print its text by typing its name.

In-line expansion of a macro
By default, when a macro is invoked it is expanded in-line, th at is, its
arguments are literally substituted into the text of the mac ro and the
modified text is inserted in the line being executed exactly as if it
had been typed in place of the macro call.

Because an in-line macro is inserted directly in the line, a p articular
instance of a macro is expanded only once, even if it is repeat edly
encountered during a loop (see ’for’ and ’while’). This make s it
impossible to redefine an in-line macro in a loop and execute the new
version the next time through. However, a macro that is expan ded
out-of-line (see below) is expanded every time it is encount ered,
allowing meaningful redefinition within a loop.

Ways macros may be defined
Macros may be read from a file by macroread() or created direc tly using
macro(). There also many pre-defined macros such as readcol s() and
boxcox(). Macros may be written to a file by macrowrite().

When you try to use a macro that has not been defined, the defau lt
behavior of MacAnova is to print a warning message and then se arch the
standard macro files (specifically the files whose names ar e in
CHARACTER variable MACROFILES; see getmacros()) for the ma cro. If the
macro is found, it is read in (without echoing the header line s) and
executed; if not, further execution of the command line is te rminated.
Option ’findmacros’ allows you to suppress the automatic se arch and/or
the printing of warning messages. See topic ’options’.

A macro can be a component of a structure (see ’structures’) a lthough it
must be extracted in order to be used. For example, if structu re
boxcoxstr was created by boxcoxstr <- structure(boxcox),
boxcoxstr$boxcox(x,.5) is illegal. You would have to use so mething like
@tmpboxcox <- boxcoxstr$boxcox;@tmpboxcox(x,.5).

Out-of-line expansion of a macro
An alternative mode of macro expansion is out-of-line. In th is mode, a
modified copy of the macro text is created, substituting mac ro arguments
in the text. This is then executed without being inserted in t he line
being executed. In a loop, a particular instance of an out-of -line
macro will be expanded every time through the loop. The value of option
’inline’ (default value is True) determines the default exp ansion mode.
In addition a macro can be marked always to be expanded out-of -line by
keyword phrase inline:F on macro(). See topics ’options’ an d macro().

Cross references
See also topics addmacrofile(), getmacros(), macro(), mac rowrite(),
macrousage(), ’macro_files’, ’macro_syntax’.

See macroread() for examples of macros.

2.223. MACROUSAGE() 299

2.223 macrousage()

Usage:
macrousage(Macro1 [,Macro2, ...] [,silent:T]), Macro1, M acro2, ...,

currently defined macros

Keywords: macros, general

Usage
macrousage(Macro) prints all comment lines (lines that sta rt with "#")
in Macro(). It is an error if Macro is not the name of a macro. Th ese
usally describe the usage of the macro, but that may not alway s be the
case.

macrousage(Macro, silent:T) does the same, except any warn ing messages
are suppressed. silent:T does * not * suppress printing the usage
information.

macrousage(macroNames [,silent:T]), where macroNames is a quoted string
or CHARACTER variable specifying one or more macro names, pr ints the
comment lines in each macro named.

macrousage(arg1, arg2, ... [, silent:T]), where each argum ent is either
a macro or a CHARACTER variable does the same for several macr os.

macrousage() returns in invisible LOGICAL scalar whose val ue is True if
and only if at least on macro was found.

Examples
Example:

Cmd> macrousage(colplot, rowplot)
Cmd> macrousage(listbrief(macros:T, keep:T)) # usage for all macros
Cmd> if (!macrousage(foo,silent:T)){print("foo not foun d")}

Cross references
See also topics help(), macro(), ’macros’.

2.224 macrowrite()

Usage:
macrowrite(fileName,a,b,... [,name:Name,header:F,com ments:charVec,\

oldstyle:T,stripdols:T]), a, b, ... macros, fileName and N ame
CHARACTER scalars, charVec a CHARACTER vector or scalar

Keywords: macros, files, output

Usage
macrowrite(FileName,a, b, ...) writes macros a, b, ... on th e file.
Filename must be a CHARACTER variable or quoted string and a, b,
... must be macros. a, b, ... are written in the form recognize d by
macroread. The default is to write each with no line count in t he

300 CHAPTER 2. MACANOVA HELP FILE

header and with a trailing line of the form %macroname%.

If FileName is variable CONSOLE or a CHARACTER variable whos e value is
"CONSOLE", the output is written to the screen rather than to a file.
The value of variable CONSOLE is ignored.

If the macro was previously marked to be expanded out-of-lin e,
"OUTOFLINE" is added to the header line,

Keyword ’new’
Keyword ’new’:
macrowrite(FileName, a, b, ..., new:T) removes all informa tion currently
in the file before writing new information. Without ’new:T’ , macros are
written at the end of the file.

Keyword ’comment’
Keyword ’comment’:
macrowrite(FileName, a, comment:charVec) writes each ele ment of
CHARACTER vector or quoted string charVec, prefixed by ") ", as a
comment line after the header. If header:F appears, no such c omments
are written.

Keyword ’header’
Keyword ’header’:
macrowrite(FileName,a,b,...,header:F) writes the macro s without any
header lines or any trailing %macroname%. They will not be re adable by
macroread(). Also, keyword ’comments’ will be ignored.

Keyword ’oldstyle’
Keyword ’oldstyle’
macrowrite(FileName, a, b, ..., oldstyle:T) writes each ma cro in the old
style format. A line count will be included in the header line and no
trailing %macroname% line will be written.

Keyword ’stripdols’
Keyword ’stripdols’
macrowrite(FileName, a, b, ..., stripdols:T) strips ’$$’ o ff the end of
variable names of the form @name$$ as each macro is written, a nd adds
’DOLLARS’ to the header line. When the macro is subsequently read from
the file by macroread(), ’$$’ will be automatically added to all
temporary variable names of the form @name. As long a macro or iginally
had no temporary variables that did not end in ’$$’, reading t he macro
restores it exactly. See topics ’macro_files’ and ’variabl es’. This
feature was added because it is easier to read and edit macros if the
temporary names don’t all end in ’$$’.

Cross references
See also topics getmacros(), ’macros’, macro(), macroread (), matwrite(),
read(), matread(), ’macro_files’, ’files’.

2.225. MAKECOLS() 301

2.225 makecols()

Usage:
makecols(x,var1,var2, ... [,keyword phrases]), where x is a REAL matrix,

var1, var2, ... unquoted or quoted variable names
makecols(x,vector("var1","var2", ...) [,keyword phrase s])
makecols(x [,keyword phrases]), x a REAL matrix with labels .
makecols(charx,var1,var2, ... [,keyword phrases]), char x a CHARACTER

scalar or vector
makecols(charx,vector("var1","var2", ...) [,keyword ph rases])
makecols(charx [,keyword phrases]), first line of charx co ntaining

variable names
Keyword phrases are factors:facVec, nomissing:T, quiet:T or silent:T,

facVec a LOGICAL vector or vector of positive integers

Keywords: combining variables

Usage
makecols(x,name_1,...,name_k), where x is a REAL matrix an d name_1, ...,
name_k are unquoted or quoted variable names, creates new RE AL vectors
name_1, name_2, ... from the columns of x.

You can think of makecols() as a sort of inverse to hconcat(). If a
name which is not a quoted string is the name of an existing var iable,
only the name is used, not the value of variable. A report is pr inted
of the variables created.

It’s OK for the number of names to differ from the number of col umns in
x. When there are more names than columns, the extras are igno red.
When there are more columns than names, the final columns are ignored.

makecols(x,vector("name_1","name_2",...,"name_k") [k eyword phrases]) is
an alternative usage.

Keyword ’factors’
makecols(x,name_1,...,name_k, factors:facVec) does the same, but
specifies that some of the columns of x are to be saved as facto rs.
facVec can be a vector of positive integer column numbers or a LOGICAL
vector of length k. When facVec contains integers, they are t he columns
of x to be saved as factors. When facVec is LOGICAL, column i of x is
saved as a factor only if facVec[i] is True. For example, when x has 4
columns, both makecols(x,a,b,c,y,factor:run(3)) and mak ecols(x,a,b,c,y,
factor:vector(T,T,T,F) saves columns 1, 2 and 3 of x as facto rs a, b and
c and column 4 of x as REAL vector y.

You can use keyword ’factors’ with any other keyword.

CHARACTER argument 1
makecols(charx,name_1,...,name_k), where charx is a CHAR ACTER scalar or
vector does the same, except the data to be saved is obtained a s
vecread(string:charx, fields:T) (see subtopic vecread:" reading_from_
character_variable").

makecols(charx) does the same, provided the first line of CH ARACTER

302 CHAPTER 2. MACANOVA HELP FILE

scalar or vector charx consists of a list of legal MacAnova na mes.

Use with data on clipboard
An important special case of a CHARACTER first argument is
makecols(CLIPBOARD, name_1, ... [,factors:TorFvec). You could use this
when you have copied a data matrix to the clipboard, perhaps i n a spread
sheet program. makecols(CLIPBOARD [,factors:TorFvec[) w ould be
appropriate when the first line of the selection copied cont ained column
headings to be used as variable names. See topic ’CLIPBOARD’ .

Keywords ’quiet’ and’ ’silent’
makecols(x,name_1,...,name_k,quiet:T) does the same, ex cept no report is
printed.

makecols(x,name_1,...,name_k,silent:T) does the same, e xcept nothing is
printed, not even warning messages.

’quiet:T’ and ’silent:T’ can always be used, no matter how na mes are
specified.

Keyword ’nomissing’
makecols(x,name_1,...,name_k,nomissing:T) does the sam e except any
MISSING values are removed from the variables created. If al l the
elements in a column of x are MISSING, the corresponding vari able is
NULL. A warning message is printed unless ’silent:T’ is an ar gument.

’nomissing:T’ can always be used, no matter how names are spe cified.

Names from column labels
makecols(x), with no names provided, is legal when x has labe ls. It is
equivalent to makecols(x,getlabels(x2)), and creates var iables using the
column labels as names. See topics ’labels’, getlabels().

The first argument can also be a CHARACTER scalar or vector su ch as
CLIPBOARD; see below.

Examples
Example:

Cmd> makecols(x, x1, x2, x3, x4)
Cmd> makecols(x,"x1","x2","x3","x4")
Cmd> makecols(x, vector("x1","x2","x3","x4"), quiet:T)

These all create vectors x1, x2, x3 and x4 from the first 4 colu mns of
x. All but the last print a report that these vectors were crea ted

Cmd> makecols(x, x1, x2, x3, x4, nomissing:T,silent:T)

This does the same except x1, ..., x4 will have no MISSING valu es, with
no report and any warning messages suppressed.

Cmd> makecols(data,a,b,c,y,factors:run(3))

Cmd> makecols(data,a,b,c,y,factors:vector(T,T,T,F)

2.226. MAKEFACTOR() 303

These both save columns 1, 2 and 3 of data as factors a, b and c an d
column 4 as vector y.

Cmd> makecols(vector("1 2","3 4"),x,y)# makecols(" 1 2\n 3 4", x, y)
Cmd> makecols(vector("x y","1 2","3 4"))# makecols("x y\n 1 2\n 3 4")

These both create vectors x and y of length 2 by "reading" the C HARACTER
first argument.

makecols() is implemented as a pre-defined macro.

Cross references
See also topics readcols(), clipreaddata(), hconcat().

2.226 makefactor()

Usage:
makefactor(vec [,sort:F] [,labels:T or F]), vec a REAL, CHA RACTER or

LOGICAL vector

Keywords: glm, anova, character variables

Usage
makefactor(vec) creates a factor constructed from the REAL , CHARACTER or
LOGICAL vector vec. If there are m unique values in vec, the ou tput
will be a factor with m levels in the same order as the values in vec.
MISSING values remain MISSING.

makefactor(vec, sort:F) does the same, except the factor le vels may not
have the same order as the elements of vec. Level 1 will be assi gned to
value[1], level 2 to the next value in vec different from vec[1], and so
on.

If vec is a CHARACTER vector without row labels, its values ar e attached
to the result as row labels unless ’labels:F’ is an additiona l argument.

With labeled argument
If vec has row labels, they become the row labels of the result .

makefactor(vec, labels:F, [, sort:F]) does the same, excep t the result
has no row labels.

makefactor(vec, labels:T, [, sort:F]) does the same, excep t that if vec
does not have labels, a CHARACTER representation of the valu es in vec is
attached to the result as row labels.

makefactor() vs factor()
Even when vec is REAL and consists of positive integers, it ma y be
preferable to use makefactor() rather than factor(), since the output
from factor() will not contain all m levels if max(vec) > m, or if some

304 CHAPTER 2. MACANOVA HELP FILE

levels are missing in vec.

Examples
Examples:

Cmd> a <- makefactor(vector(5.2,2.6,3.9,1.3,3.9,1.3,5. 2,2.6)); a
(1) 4 2 3 1 3
(6) 1 4 2

Cmd> b <- makefactor(vector("D","B","C","A","C","A","D ","B"));b
D B C A C
A D B
4 2 3 1 3
1 4 2

Cmd> c <- makefactor(vector(5.2,2.6,3.9,1.3,3.9,1.3,5. 2,2.6),sort:F);c
(1) 1 2 3 4 3
(6) 4 1 2

Cmd> d <- makefactor(rpoi(5,11)/10,labels:T); d
1.2 0.9 1 1.4 0.9

3 1 2 4 1

makefactor() is implemented as a macro.

Cross references
See also factor().

2.227 makestr()

Usage:
makestr(var1 [,var2,...,vark] [, KeyPhrases]), where var 1, var2, ... are

arbitrary variables
KeyPhrases can be compnames:Charvec, labels:lab, and sile nt:T, where

Charvec and lab are CHARACTER scalars or vectors.
Use structure() instead.

Keywords: structures, combining variables

Usage
makestr() is identical to structure(). See structure() inf ormation
on its use.

The use of makestr() is deprecated -- that is, it will continu e to be
available for the immediate future, but at some point may be d isabled.
Use structure() instead.

Cross references
See also topics strconcat(), ’structures’, ’keywords’, ch angestr(),
compnames().

2.228. MAKESYMBOLS() 305

2.228 makesymbols()

Usage:
plotsymbols(intVar), intVar a REAL variable with integer e lements

between 1 and 255
plotsymbols(charVar [,medium:T or small:T]), charVar a CH ARACTER

variable of shape names "diamond", "plus", "square", "cros s",
"triangle", "star", "dot" or "circle"

Keywords: character variables, plotting

Usage
makesymbols(intVar), where intVar is a REAL scalar, vector , matrix or
array whose elements are integers between 1 and 255 returns a CHARACTER
variable with the same size and shape as intVar. Each element of intVar
is interpreted as an ASCII code and the corresponding elemen t of the
result is the single character with that code.

Cmd> symbols <- makesymbols(vector(2,29,65,97)); symbol s
(1) "\002" [octal representation of 2]
(2) "\035" [octal representation of 29]
(3) "A" [ASCII code 65]
(4) "a" [ASCII code 97]

makesymbols(charVar), where charVar is a CHARACTER scalar , vector,
matrix or array, also returns a CHARACTER variable the same s ize and
shape as charVar. Any element of charVar whose first three ch aracters
match the first three letters of "diamond", "plus", "square ", "cross",
"triangle", "star", "dot" or "circle", is replaced in the re sult by
"\001", "\002", "\003", "\004", "\005", "\006", "\007", or "\010",
respectively. These are the plotting symbol codes for these shapes.
Any elements of charVar not specifying one of these shapes ar e put in
the result without change.

Cmd> makesymbols(vector("diamond","dot","circle"))
(1) "\001"
(2) "\007"
(3) "\010"

symbols <- makesymbols(charVar, medium:T) does the same ex cept the shape
names are translated to "\011", "\012", "\013", "\014", "\0 15",
"\016", "\017", or "\020".

symbols <- makesymbols(charVar, small:T) does the same exc ept the shape
names are translated to "\021", "\022", "\023", "\024", "\0 25",
"\026", "\027", or "\023".

See subtopic "chplot:drawn_plotting_symbols" for more in formation about
plotting symbols. In particular, in specifying these symbo ls
explicitly, leading 0’s can be omitted, so chplot(x,y,symb ols:"\7") is
the same as chplot(x,y,symbols:"\007").

Use in plotting
makesymbols() is designed to be used to create a CHARACTER ve ctor or

306 CHAPTER 2. MACANOVA HELP FILE

matrix to be used as the value of keyword ’symbols’ on plottin g commands
such as plot(), chplot() and addchars(). For this usage the d imensions
of intVec and charVec must match what is expected. See subtop ic
"chplot:symbol_variable_shape" for details.

Examples:
In the following, x is a vector and y a matrix with 3 columns:

Cmd> plot(x,y[,1],symbols:makesymbols("diamond"))#or makesymbols(1)

plots column 1 of y using diamonds (code "\001") as plotting s ymbol.

Cmd> lineplot(x,y, symbols:makesymbols(vector("dia"," plus","squ"),\
medium:T))

Cmd> lineplot(x,y, symbols:makesymbols(9, 10, 11))

Cmd> lineplot(x,y, symbols:vector("\11", "\12", "\13"))

all make line plots of the columns of y, with medium sized diam onds,
plus signs and squares used as plotting symbols for each colu mns

Difference from putascii()
When intVar is a vector, the usage makesymbols(intVar) is so mewhat
similar to putascii(intVar, keep:T) since both translate A SCII codes to
characters. The difference is that putascii() returns a CHA RACTER
scalar with length(intVar) characters while makesymbols() returns a
CHARACTER vector of length(intVar), with each element a sin gle
character.

Cross references
See also topics chplot(), ’plotting’, putascii().

2.229 manova()

Usage:
manova([Model] [,print:F or silent:T, coefs:F, pvals:T, f stats:T,\

byvar:T, sssp:F or T]), Model a CHARACTER scalar

Keywords: glm, multivariate analysis, anova

Usage
manova(Model) computes a MANOVA table of SS/SP (sums of squa res and sums
of products) matrices for the model in the CHARACTER variabl e Model.
The response variable should be a matrix with rows as cases an d columns
the variables.

Type ’help(models)’ for information on how to specify Model .

If the response is univariate (has only one column), manova() is
equivalent to anova().

2.229. MANOVA() 307

Unless ’marginal:T’ is an argument, SS/SP matrices are comp uted
sequentially (so called SAS Type I quantities).

Normally, when each row of a SS/SP matrix will fit on a single l ine, all
matrices are printed in their entirety. When a row would requ ire more
than one line, only the term names and the degrees of freedom a re
printed. This behavior can be modified by keywords ’sssp’, ’ byvar’,
’fstats’ and ’pvals’; see below. In any case the matrices are saved in
the three-dimensional side effect array SS, with the first s ubscript
indexing terms and with the first dimension labeled by TERMN AMES.

Keyword ’weights’
manova(Model,weights:Wts) does a weighted analysis. Wts m ust be a REAL
vector with Wts[i] >= 0 and nrows(Wts) = nrows(response). Th e results
are the same as if the i-th row of the response and all X-variab les
(variates and dummy variables and their products), includi ng the
constant vector were multiplied by sqrt(Wts[i]) and a least squares fit
(without an intercept) computed. You can abbreviate ’weigh ts:Wts’ to
’wts:Wts’.

No model supplied
manova() or manova(,weights:Wts) (no model supplied) uses the model used
by the most recent GLM command such as manova(), anova(), or p oisson().
See topic ’glm’.

Side effect variables created
Side effect variables created are RESIDUALS, HII, DF, SS, DE PVNAME,
TERMNAMES, and STRMODEL. When weights are specified, RESID UALS =
Response - Fitted and WTDRESIDUALS = sqrt(Wts) * RESIDUALS is an
additional side effect vector. You should use WTDRESIDUALS rather than
RESIDUALS in residual plots or other diagnostic procedures .

Multivariate tests
SS is a 3-dimensional array such that SS[j,,] is the sum of squ ares and
products matrix for term j. If the appropriate error matrix f or the
k-th term is SS[j,,], the eigenvalues needed for several sta ndard tests
(Wilks, Roy, Pillai, Hotelling generalized T-squared) may be computed by
releigenvals(SS[j,,],SS[k,,]) or you can compute some tes t statistics
directly, for example,

Cmd> T2 <- dferror * trace(solve(SS[k,,],SS[j,,])
or

Cmd> lambda <- det(SS[j,,])/det(SS[k,,]+SS[j,,]).

Other Keywords
Keyword phrase Default Meaning

byvar:T F Computes a complete ANOVA table for each
variable. The full SS/SP matrices are not
printed although they are still available in
array SS.

sssp:T none Forces the printing of the full SS/SP matrices,
even when each row would require more than one

308 CHAPTER 2. MACANOVA HELP FILE

line. This option is ignored with any of
fstats:T, pvals:T, or byvar:T.

sssp:F Suppresses printing of the full SS/SP matrices,
even if a row would fit on a single line. Only
the term names and degrees of freedom are
printed.

See topic ’glm_keys’ for information on keyword phrases ’pr int:F’,
’silent:T’, ’fstats:T’, ’pvals:T’, ’coefs:F’ and ’margin al:T’.

Keyword ’byvar’
When byvar:T is an argument, options (not keywords) ’fstats ’ and ’pvals’
have the same effect as with anova(). If byvar:T is not an argu ment,
these options are ignored. See topics ’options’ and ’glm_ke ys’.

When byvar:T is not an argument, options ’fstats’ and ’pvals ’ are
ignored. If either ’fstats:T’ or ’pvals:T’ is an argument, u nivariate
SS and MS are printed for each variable and term, together wit h F-
statistics and/or P values . The information is essentially the same as
with byvar:T except that all the statistics for a term are gro uped
together. The full SS/SP matrices are not printed but are ava ilable in
array SS.

Interaction with other functions
contrast(), coefs(), predtable(), and cellstats() work af ter manova().

2.230 match()

Usage:
match(x,Target [,nomatch, exact:F or fuzz:d, relative:T, ignorecase:T]),

x REAL, LOGICAL or CHARACTER, Target a variable of the same ty pe as x,
nomatch and d >= 0 REAL scalars; x and Target can’t both be nonv ectors

Keywords: ordering, variables, character variables

Usage
match(x,Target,noMatch), where x is REAL, LOGICAL or CHARA CTER and
noMatch is a REAL scalar, attempts to match each element of ar ray x with
each element of vector Target. Target must be the same type as x. The
result is REAL with the same dimensions as x. When x is REAL or
LOGICAL, it is an error for Target to contain any MISSING valu es.

Let J represent the subscripts of an element of x. Then result [J] has
value noMatch, when no element of Target matches x[J], and ha s value k
when Target[k] is the first value with Target[k] = x[J]. When x is REAL
and x[J] is MISSING, then result[J] is MISSING.

match(x,Target) does the same except that length(Target) + 1 is used as
a value for noMatch and, when there are any non-matching elem ents, an
advisory message is printed.

2.230. MATCH() 309

When x is a vector, Target can be a matrix or array and the match ing is
done for each combination of the second and higher dimension of Target.
The result has dimensions vector(length(x), dims(Target) [-1]). In this
case, when noMatch is omitted, the value for non-matching el ements is
dim(Target)[1] + 1.

@inexact_matching
match(x,Target [,noMatch], fuzz:d), where x is REAL and d >= 0 is a
non-MISSING REAL scalar, does the same, except that x[J] mat ches
Target[k] when abs(x[J] - Target[k]) <= d.

match(x,Target [,noMatch], fuzz:d, relative:T) does the s ame, except
that x[J] matches Target[k] when (abs(x[J] - Target[k]) <= D , where
D = d* (abs(x[J]) + abs(Target[k])).

match(x,Target [,noMatch], ignorecase:T) ignores the cas e, upper or
lower, of any alphabetic characters in elements of CHARACTE R variables x
and A. For example, match("AbC",vector("xYz","abc","def "),
ignorecase:T) has value 2.

match(Pattern,Target [,noMatch], exact:F [,ignorecase: T]), where Pattern
is a CHARACTER scalar containing one or more of the "wild card "
characters ’ * ’ and ’?’, and Target is a CHARACTER vector, does the same,
except that an exact match is not required to ’hit’ Target.

Wild card characters ’ * ’ and ’?’
A ’ * ’ in Pattern will match 0 or more successive characters of an
element of Target, without regard to what they are. A ’?’ in Pa ttern
will match any single character of an element of Target, with out regard
to what it is. For example, "start * " matches the first element of
Target that begins with "start", " * mid * " matches the first element
containing "mid", " * mid1 * mid2 * end" matches the first element finishing
with "end" that earlier contains "mid1" and "mid2" in that or der, "p?l * "
matches the first element starting with ’p’ and whose third l etter is
’l’, and so on. As particular cases, " * " always matches Target[1] and
"\" * \"" matches the first element starting and ending with ’"’.

Examples
Examples:

match(vector(1.3,2.4,1.3,5,5.1),vector(2.4,1.3),-1) returns
vector(2,1,2,-1,-1)

match(vector(1.3,2.4,1.3,5,2.4,?),vector(2.4,1.3)) r eturns
vector(2,1,2,3,1,?)

match(vector(1.3,2.4,1.3,5,2.4),run(3),-99,fuzz:.5) returns
vector(1,2,1,-99,2)

match(vector("A","B","A","C","B"),vector("B","A")) y ields
vector(2,1,2,3,1)

a <- factor(match(x,sort(unique(x)))) transforms a REAL x to a factor
unique(x)[match(x,unique(x))] yields x when x is a vector.
match(scalarValue,vec,0) != 0 if and only scalarValue is in vec
match(" * c",vector("abc","ade","gfh"),exact:F) returns 1
match(" * d* ",vector("abc","ade","gfh"),exact:F) returns 2
match("g * ",vector("abc","ade","gfh"),exact:F) returns 3

310 CHAPTER 2. MACANOVA HELP FILE

match("g * h",vector("abc","ade","gfh"),exact:F) returns 3
match("a * b* c",vector("abc","ade","gfh"),exact:F) returns 1
match("a * b???",vector("aqbde","bb123", "allbdef"),exact:F) ret urns 3

In a macro, it can be helpful to know whether an argument is a an
explicit quoted string:

if (match("\" * \"","$1",0,exact:F) != 0){
print("arg 1 is a quoted string")

}

Cross references
See also unique(), ’macro_syntax’.

2.231 mathhelp()

Usage:
mathhelp(topic1 [, topic2 ...] [,usage:T] [,scrollback:T])
mathhelp(topic, subtopic:Subtopics), CHARACTER scalar o r vector

Subtopics
mathhelp(topic1:Subtopics1 [,topic2:Subtopics2 ...])
mathhelp(key:Key), CHARACTER scalar Key
mathhelp(index:T [,scrollback:T])

Keywords: general, matrix algebra

Usage
mathhelp(Topic1 [, Topic2, ...]) prints help on topics Topi c1, Topic2,
... related to macros in file math.mac. The help is taken from file
math.mac.

mathhelp(Topic1 [, Topic2, ...] , usage:T) prints usage inf ormation
related to these macros.

mathhelp(index:T) or simply mathhelp() prints an index of t he topics
available using mathhelp(). Alternatively, help(index:" math") does the
same thing.

mathhelp(Topic, subtopic:Subtopic), where Subtopic is a C HARACTER scalar
or vector, prints subtopics of topic Topic. With subtopic:" ?", a list
of subtopics is printed.

mathhelp(Topic1:Subtopics1 [,Topic2:Subtopics2], ...) , where Suptopics1
and Subtopics2 are CHARACTER scalars or vectors, prints the specified
subtopics. You can’t use any other keywords with this usage.

In all the first 4 of these usages, you can also include help() keyword
phrase ’scrollback:T’ as an argument to mathhelp(). In wind owed
versions, this directs the output/command window will be au tomatically
scrolled back to the start of the help output.

Keyword ’key’

2.232. MATPRINT() 311

mathhelp(key:key) where key is a quoted string or CHARACTER scalar lists
all topics cross referenced under Key. mathhelp(key:"?") p rints a list
of available cross reference keys for topics in the file.

mathhelp() is implemented as a predefined macro.

Cross references
See help() for information on direct use of help() to retriev e
information from math.mac.

2.232 matprint()

Usage:
matprint(fileName, a, b, ... [, new:T, format:Fmt, nsig:n, sep:sepChar,\

quoted:T or bylines:T,missing:mVal, name:Name, comments :charVec,\
width:w, header:F, oldstyle:T, stripdols:T]), a, b, ... ar bitrary
variables, Fmt, sepChar and Name CHARACTER scalars with sep Char only a
single character, charVec a CHARACTER vector or scalar, mVa l a REAL
scalar, w >= 30 integer.

Keywords: output, files, missing values

Usage
matprint(FileName,a,b,... [,new:T]) writes REAL, LOGICA L and CHARACTER
variables a, b,... (scalars, vectors, matrices, or arrays) file
FileName in a form which can be read by read() and matread(). I t can
also write NULL variables and structures. GRAPH variables a re legal
arguments but are currently written as NULL variables. See t opic
’NULL’.

matprint(a,b,...,file:FileName [,new:T]) is an alternat ive usage.

If new:T is present, anything already in the file is discarde d before
writing. Otherwise, writing is to the end of the file.

Keyword ’width’
If width:w, with w an integer >= 30, is not an argument, the def ault
value is taken from option ’width’ (see subtopi ’options:"w idth"’).
This is the presumed line length and is used to determine the m aximum
number of values printed on one line.

Default formats
For REAL and LOGICAL variables, by default matprint() uses t he format
that is used by print(), namely the format specified in optio n ’format’;
this normally provides 5 significant digits in floating poi nt form.

For CHARACTER variables, the default format, whenever poss ible, is "by
fields", that is elements are written as fields separated by spaces.
This is not feasible if there are any spaces or non-printable characters
in the data. In that case, each element is quoted ("...").

312 CHAPTER 2. MACANOVA HELP FILE

Structures are written in a form that not only allows read() a nd
matread() to read all the components, but also can read indiv idual
components if desired. Since macros may be elements of struc tures,
keyword phrases ’oldstyle:T’ and ’stripdols:T’ may be argu ments of
matprint(). See macrowrite().

See topic ’matread_file’ for description of the file format .

Naming output
matprint(FileName,Name1:a,Name2:b,...) gives names Nam e1, Name2,... to
the data sets written in the file. Name1, Name2,... must not b e
keywords recognized by matprint, see below. For example,

matprint("Results.mat",values:releigenvals(h,e))
will write a matrix on file Results.mat with name ’values’ on the first
line of the header .

Repeated keywords
Keywords ’nsig’, ’format’, ’name’, ’header’, ’missing’ ’w idth’,
’oldstyle’, ’stripdols’ and ’comments’ are all recognized and can appear
more than once. They affect the printing of objects that foll ow them,
until they are changed, except that the values of ’name’ and ’ comments’
are used only once. Any of them that follow all items to be prin ted are
treated as coming before all items. For example,

Cmd> matprint("data.txt",x,nsig:5,y,nsig:10)
and

Cmd> matprint("data.txt",nsig:10, x,nsig:5,y)
are equivalent. This does not apply to keywords ’file’ and ’n ew’ which
can appear only once.

Keyword ’name’
Keyword ’name’:
matprint(FileName,name:charVar, a, b, ...) prints a with t he name
specified by quoted string or CHARACTER scalar charVar on th e header.
This is an alternative to using a keyword to specify a name and can be
used when the name is not a legal MacAnova keyword name. For ex ample,
matprint("myfile", name:"Residuals",r) and matprint("m yfile",
Residuals:r) are equivalent. Keyword ’name’ can be used sev eral times
in the argument list, and affects only the next item to be writ ten to
the file. If name:charVar is the last argument, it is treated as if it
came before all items to be written to the file.

Keyword ’comment’
Keyword ’comment’:
matprint(FileName, a, comment:charVec) writes each eleme nt of CHARACTER
vector or quoted string charVec, prefixed by ") ", as a commen t line
after the header. If header:F appears, no such comments are w ritten.

Keyword ’missing’
Keyword ’missing’:
matprint(FileName,a,b,...,missing:realVal) recodes MI SSING values with
REAL number realVal. For example, matprint("mydata.txt", x, missing:-99)
substitutes -99 for every MISSING value. If ’missing’ is not used,
MISSING values will be coded as -99999.9999. In either case, for any

2.232. MATPRINT() 313

variable with MISSING values, a comment line of the form ’)MI SSING
value’ is written before the data, where value is either -999 99.9999 or
the value specified by ’missing’. This enables read() and ma tread() to
recognize missing values and read them appropriately. Keyw ord ’missing’
can be used several times, each affecting any variables late r in the
argument list. If it follows all variables to be printed, as i n the
example, it is as if it preceded them all. The value for ’missi ng’
cannot itself be a MISSING value.

Note this use of ’missing’ differs from print(), write() and
setoptions() -- its value must be a REAL scalar, not a charact er string.

Keyword ’header’
Keyword ’header’:
matprint(FileName,a,b,...,header:F) writes the variabl es without any
header lines. They will not be readable by read() or matread() but will
be readable by other programs that can read numbers separate d by spaces.
The only time you need header:T is when sep:"c" is an argument and you
want to force the writing of a header.

Keyword ’width’
Keyword ’width’:
matprint(FileName,a,b,...,width:w) temporarily sets op tion ’width’ to w,
an integer >= 30. This affects how many items are printed per l ine.

Keyword ’sep’
Keyword ’sep’:
matprint(FileName,a,b,...,sep:"c"), where c is an arbitr ary character,
writes items of data separated by c instead of by spaces. This also
suppress the printing of header lines unless ’header:T’ is a n argument.
This option is useful if you want to export data to a spreadshe et or
other program that can read comma- or tab-separated items. F or example,
to write x with values separated by commas, use matprint("ex port.dat",x,
sep:","). matprint("export.dat",x,sep:"\t") writes ite ms separated by
tabs.

Keywords ’quoted’ and ’bylines’
Keywords ’quoted’ and ’bylines’:
When writing a CHARACTER variable you can also include keywo rd phrases
quoted:T or bylines:T. matprint(fileName, charVar, quote d:T) outputs
the data set in "quoted fields" format, that is with each elem ent
enclosed in double quotes ("..."). matprint(fileName, cha rVar,
byline:T) outputs the data set in "by lines" format, with eac h element
starting on a new line. However, if there are non-printable c haracters
in the data, "quoted" fields format will be used. You can outp ut a
character variable in comma separated quoted fields as is re quired form
some programs such as data bases, by matprint(fileName, cha rvar,
quoted:T,sep:",").

File name ""
On a version with windows, if FileName is "", you will be able t o
specify the file name and folder using a dialog box.

314 CHAPTER 2. MACANOVA HELP FILE

Keywords ’nsig’ and ’format’
Keywords ’nsig’ and ’format’:
matprint() uses the same default format for each item writte n as does
print() and has the same keywords ’nsig’ and ’format’. See pr int() for
information on ’nsig’ and ’format’.

LOGICAL argument
If an argument is LOGICAL, a comment line of the form ’) LOGICA L’ is
added to the header lines. This is recognized by read() and ma tread().

Writing to CONSOLE
If FileName is variable CONSOLE or a CHARACTER variable whos e value is
"CONSOLE", the output is written to the screen rather than to a file.
The value of variable CONSOLE is ignored.

Changing default format
You can change the default format for print() and matprint() by
setoptions() using keywords ’nsig’ or ’format’. See topics ’setoptions’
and ’options’.

Cross references
See also topics write(), write(), matprint(), macrowrite(), read(),
matread(), ’files’.

2.233 matread()

Usage:
y <- matread(FileName,setName [,quiet:T or F, echo:T or F,p rintname:F,\

labels:Labels, silent:T, notfoundok:T, nofileok:T, badk eyok:T,\
prompt:F]),
FileName and setName CHARACTER scalars; FileName can also b e CONSOLE
or have the form string:charVal where charVal is a CHARACTER scalar or
vector.

Keywords: input, files, missing values

Usage
In the following you can substitute read() for matread(). Th e only
difference between them is that read() prints no warning mes sage when it
finds a macro rather than a data set.

x <- matread(FileName,setName) searches a file for a data se t whose name
matches setName. If the data set is found, it is read and the da ta are
saved in variable x. The data set must be a REAL, LOGICAL or CHA RACTER
vector, matrix, or array or a structure with REAL, LOGICAL, C HARACTER or
macro components. FileName and setName must be CHARACTER va riables or
quoted strings. See topic ’matread_file’ for the required f orm for the
data set.

In searching the file for a matching name, case is ignored so t hat, so
that matread(FileName,"mydata") will find mydata, MyData , or MYDATA, for

2.233. MATREAD() 315

example.

If setName is omitted (x <- matread("mydata.txt")), matrea d() will read
the first dataset on the file, expecting that the first non-b lank and
non-empty line is a header line of the correct form (see below).

If the data set has keyword LOCKED on the header line, and the r esult is
assigned to a variable, that variable will be locked. See top ic
’locks’.

Cmd> x <- matread("datafile.txt","x")
x 3 COLUMNS LOCKED

Cmd> list(x)
x REAL 3 (locked)

If setName is the name of a macro rather than a data set, it will be
read, but a warning message is printed (no warning printed by read()).

Empty file name
In a version with windows, if FileName is the null string "", y ou will
be able to select the file using a dialog box.

Assigning result
Just reading a data set does not make it available; you must as sign the
value of matread() using ’<-’.

Macro getdata()
Pre-defined macro getdata() is somewhat easier to use, prov ided you have
set variable DATAFILE to the name of the file. Since the defau lt value
of DATAFILE is "macanova.dat", another way to read ’irisdat a’ is

Cmd> x <- getdata(irisdata)

If you have a file of data sets you will be analyzing, say file
"mydata.txt", redefine DATAFILE by

Cmd> DATAFILE <- "mydata.txt"
Then you can use getdata() to read data sets from your file. Se e
topic getdata().

Too large data items
If any data items in numerical data set are too large to be repr esented
in the computer (for example "1e3000), they are set to MISSIN G.

Unreadable items
If any data item in the file is not a proper number (for example
3."4a5"), it, together with numbers following it on the same line, are
set to MISSING.

matread() and getdata() work only with files in a special for mat with
header information. Use vecread() and readcols() to read da ta files
that just consist of numbers.

316 CHAPTER 2. MACANOVA HELP FILE

Reading from CONSOLE or batch file
matread(CONSOLE [,prompt:F]) reads from the regular input stream
allowing you to type in the matrix using the format described under
topic ’matread_file’. On windowed versions, type one line a t a time in the
dialog box that is opened. On nonwindowed versions, type the necessary
lines after the prompt. The value of CONSOLE is ignored. The f irst
line entered must be a header which includes a name and dimens ions. On
any machine, when matread(CONSOLE) is used in a batch file, i t reads the
data from the lines immediately following the matread() com mand. This
allows even large data sets to be included directly in a batch file.
See batch(). No prompt is given if you include prompt:F as an a rgument.

Keywords
There are several keywords, ’quiet’, ’echo’, ’silent’, ’no tfoundok’ and
’nofileok’ which control what will be printed by matread().

Keyword phrase Meaning
quiet:T Header and descriptive comments will not be printed
quiet:F All header and descriptive comments will be printed
echo:T Data lines will be printed as they are read
silent:T Only error messages will be printed; incompatible

with quiet:F or echo:T
printname:F The name of the file read will not be printed;

printname:T is ignored with silent:T
notfoundok:T Failure to find the data set is not considered a n

error so no error message is printed.
nofileok:T Failure to open the file is not considered an erro r

so no error message is printed.
badkeyok:T Unrecognized or duplicate keywords are silentl y

ignored.

Without quiet:T or quiet:F, the header and comment lines not starting
with ’))’ preceding the macro will be echoed to output.

Even without echo:T, data lines are printed when FileName is CONSOLE
and the matread() command is in a batch file. (In windowed ver sions,
data will be echoed if FileName is CONSOLE whether or not the c ommand is
in a batch file.) Such echoing can be suppressed by ’echo:F’.

Keyword ’notfoundok’
When notfoundok:T is an argument and the data set is not found or when
nofileok:T is an argument and the file cannot be opend, matre ad()
returns NULL as value (see topic ’NULL’). When used in macro, this
feature allows special action if data setName is not found.

Keywords ’file’ and ’string’
matread(file:FileName,...) is equivalent to matread(Fil eName,...).

matread(string:CharVar,...) where CharVec is a CHARACTER scalar or
vector, does not read from a file. Instead, it "reads" CharVa r as if
each element were a line (or several lines if there are embedd ed
end-of-line characters) read from a file. The first element or line of
CharVar must be a header line with a name and dimensioning inf ormation.

2.234. MATREAD FILE 317

In particular,

Cmd> x <- matread(string:CLIPBOARD)

would read the first data set on a replica of a data file in the s pecial
variable CLIPBOARD. In a version with windows, this would be taken from
the Clipboard. In the GTK version, you can also "read" from sp ecial
variable SELECTION in a similar way. See topic ’CLIPBOARD’.

If either keyword ’file’ or ’string’ is used, they can appear in any
position in the argument list, as can setName which must be th e only
non-keyword argument. For example,

Cmd> x <- matread(quiet:T,"mydataset",file:"myfile.dat ")

is equivalent to

Cmd> x <- matread("myfile.dat","mydataset",quiet:T).

Cross references
See also topics read(), vecread(), readcols(), macroread(), inforead(),
’files’.

2.234 matread file

Keywords: variables, files, input, output

Introduction
This topic discusses the format of files to be read by matread () and
read(). They are plain text files which contain named data se ts, each
starting with one or more header lines, such as are written by
matprint() and matwrite().

matread() and read() behave identically except that read() does not
print a warning message when the name requested belongs to a m acro
rather than a data set. In the following, you can substitute ’ read()’
for ’matread()’.

No more than 50 numerical items can be on any single line of a da ta set
read by matread() or read().

General description of format
A single file can contain one or more named data sets correspo nding to
any type of variable except GRAPH. This includes REAL, LOGIC AL and
CHARACTER data, as well as NULL variables, macros and struct ures. Data
sets can have coordinate labels and/or descriptive notes. S ee topics
’variables’, ’logic’, ’NULL’, ’notes’. The file can also ha ve macros
readable by macroread() mixed in among the data sets. See top ics
’macro_files’ and macroread().

Every data set must have one or more header lines which give th e data

318 CHAPTER 2. MACANOVA HELP FILE

set name, information about its structure and internal form at. The
first line starts with the name and is called the ’name line’.
read(fileName, setName) and matread(fileName, setName) s earch the file
for the first line which starts with ’setName’. Such a line is assumed
to be the name line for the data set.

’ENDED’ header keyword
Any data set may optionally be followed by a line starting ’%s etName%’,
where ’setName’ is its name. When this is done, keyword ’ENDE D’ should
appear on the name line of the data set. When the data sets has
associated labels or notes, ’%setName%’ should follow them . This usage
allows read() and matread() to skip past a data set without ex amining
individual lines. Even if a line in such a data set starts with the
name of another data set, read() and matread() will not "see" it and
mistakenly treat it as a name line.

End of macros line
A line starting _E_N_D_O_F_M_A_C_R_O_S_ terminates a sear ch for a data
set or a macro. You can put help or other information after thi s line
without the danger that a line might be mistaken for the start of a data
set.

Format of data set header
The first header line for each data set starts with its name, f ollowed
by dimension information and possibly keywords. This line m ay be
optionally followed by descriptive comment lines starting with ’)’.
These may also provide information on the number of values pe r line and
coding for MISSING values. Thus a data set starts with the fol lowing
general form:

Name Dims Keywords
) 0 or more descriptive or comment lines starting with ’)’, re ferred
) to as ’comment lines’ below
)

Data set name
Name is the name of the data set (’mydata’, say) to be matched t o
setName, the second argument to read() or matread(). Case is ignored in
searching for the name, so that read(fileName, "mydata") wi ll find
mydata, MyData, or MYDATA, for example.

Data dimensions
Dims, the dimensions of the data set, is a list of 1 or more posi tive
integers. When Dims is a single number (’mydata 20’), the dat a set is a
vector of length Dims or a structure with Dims components. Wh en it is
two numbers, nrows and ncols, (’mydata 20 5’) the dataset is a nrows by
ncols matrix. If Dims consists of p >= 3 numbers, the data set i s a
p-dimensional array.

It is also acceptable for Dims to be ’0’, in which case no data i s
expected. When such a data set is read by read() or matread(), the
comment lines are printed and NULL is returned. A useful conv ention is
to have the first "data set" on a file be empty, with the commen ts
describing the remainder of the file. See topic ’NULL’.

2.234. MATREAD FILE 319

Keywords that may be put on the first line of the header
Keyword Description
CHARACTER The data set is a CHARACTER variable in either "by

fields" or "by lines" format (see below)
COLS or COLUMNS The data follow in transposed form. For a matr ix,

this is in column by column order, each column
starting on a new line.

ENDED A line starting ’%setName%’, where ’setName’ is
the name of the data set, immediately follows the
data set. This does not affect how the data set
is read.

FORMAT Indicates that a Fortran format starting with ’(’
will follow the last comment line. It is ignored
by MacAnova but might help a program written in
Fortran to read the data.

LABELS The data set has coordinate labels which follow
the data in the file (see below)

LOCKED If the result of matread(), macroread() or read()
is assigned to a variable, that variable will be
locked. See topic ’locks’.

LOGICAL The data set is a LOGICAL variable, with False and
True represented as zero and non-zero values,
respectively. Most commonly these are 0 and 1.

NOTES The data set has attached descriptive notes which
follow the data in the file (see below).

NULL The data set is a NULL variable, containing no
data, although there may be comment lines. Dims
must be 0. There can be no other keywords. See
topic ’NULL’.

QUOTED The data set is a CHARACTER variable in "by quoted
fields" format (see below).

REAL The data is a REAL variable. This is the default
and hence REAL is never required

ROWS The data follow a row at a time (constant value
for first subscript), each row starting on a new
line. This is the default and hence ROWS is never
required.

STRUCTURE The data set is a structure.

Upper and lower case letters are not distinguished in these k eywords,
so, for example, ’macro’ and ’Macro’ are both recognized as t he same as
’MACRO’.

Vector treated like matrix
A vector (single dimension specified) is treated like a matr ix with a
single column. That is, if COLS or COLUMNS is specified it sho uld all
be on one line, and if not, every element must be on a separate l ine.

Conventions on Comment lines
) LOGICAL The data are to be interpreted as being LOGICAL, wit h

zero and non-zero values translated to F and T,
respectively. This is retained for backward

320 CHAPTER 2. MACANOVA HELP FILE

compatibility and is ignored for CHARACTER, NULL or
STRUCTURE data sets.

)"%f %f... %f" specifies a format for each row of a REAL or LOGI CAL
data set that is analogous to that used by scanf in the
C programming language. If the data set is CHARACTER,
’%f’ is replaced by ’%s’; see below. Let N1 and Nk be
the first and last dimensions. If there are fewer
"%f"’s than Nk (or fewer than N1 if COLS or COLUMNS is
specified), then this indicates that, for each value of
the last index (first index with COLS or COLUMNS),
there are several lines in the file containing data.
Each such line, except possibly the last, must have the
same number of data items as there are %f’s. If no
explicit format is given, one with Nk or N1 (if COLS or
COLUMNS is on line 1 of the header) %f’s is assumed.
No more than 50 values can be put on a single line.

)"NNx%f %f ... %f" where NN is an integer, causes the first NN
characters of each line to be skipped. This allows you
to skip case labels or line numbers. Example:)"12x%f
%f" skips 12 characters at the start of each line.

)"%s %s ... %s" specifies a format for each row of a CHARACTER d ata
set. If present, the data will be expected to be in
"by fields" format or "by quoted fields" (if QUOTED is
on header line) format (see below). The number of
"%s"’s is the maximum number of elements that will be
read per line.

)"NNx%s %s ...%s" where NN is an integer causes the first NN
characters of each line read to be skipped before
scanning for CHARACTER data in "by fields" or "by
quoted fields" format.

) MISSING XX where XX is a number indicates that XX in the data s et
is to be read as MISSING. The default missing value
code is -99999.9999. Because only integers can be
guaranteed to be represented exactly in the computer,
it is preferable for XX to be an integer, positive or
negative. Example:) MISSING -99 specifies MISSING is
coded as -99. This is ignored for data sets that are
not REAL or LOGICAL. MISSING must be all upper case.

CHARACTER data formats
There are three possible formats for CHARACTER data, ’by lin es’, ’by
fields’ and ’by quoted fields’. ’Quoted’ means enclosed in " ’s as in
"Regression analysis".

By lines
Each element starts on a new line and is not quoted. If an eleme nt
extends over more than one line, each line except the last mus t end
with ’\’. This format is signaled by the presence of CHARACTE R on

2.234. MATREAD FILE 321

the header and the absence of any ")%s..." format among the co mment
lines.

By fields
Each stretch of "non-white" characters on a line is consider ed to be
an element. This format is signaled by the presence of CHARAC TER on
the header and the presence of a ")%s..." format among the com ment
lines. The number of fields on a line is the number of "%s"’s in the
format. Commas are treated as non-white characters and do no t
separate fields.

By quoted fields
Each element must be enclosed in quotes ("...") and elements in a
line are separated by spaces, tabs, and possibly a comma. Thi s
format is signaled by the presence of QUOTED on the header. If there
is no ")%s..." format among the comment lines, the number of i tems
expected per line is the size of the last dimension or 1 if the d ata
set is a vector. If COLUMNS or COLS is on the header, the defaul t
number expected per line is the size of the first dimension. I f
there is a ")%s..." format, the number of elements expected p er line
is no more than the number of "%s"’s in the format, with any
additional lines, except the last, having the same number of
elements.

Format for structure data sets
The name line for a structure data set must be of the form

strName ncomps STRUCTURE
where strName is the name of the structure and integer ncomps > 0 is the
number of components. There must follow ncomps data sets, ea ch in one
of the formats just described, or in the format for a structur e. Each
component must have a name of the form strName$compName, whe re compName
is the name of the component. If a component is a structure, th en the
names of its components would thus be strName$compName$com pName1.

Each structure component * must * be preceded by at least one blank line.
An individual component can be read like any other data set by
specifying its full name, "mystruc$b", for example.

Format for labels and notes
If a variable with name "x", say, has coordinate labels (see t opic
’labels’), the header line must contain keyword "LABELS", a nd the labels
for all coordinates must be in a CHARACTER vector with name "x $LABELS"
immediately following the data associated with x. When ndim s(x) > 1,
the labels for the first dimension come first, followed by th ose for the
second dimension, and so on, all in one vector. Thus the lengt h of the
vector normally matches the sum of the dimensions of x. Becau se they
are written in the usual form for a CHARACTER vector, you can r ead the
labels without reading the data by read(fileName, "x$LABEL S").

Labels may be "expanded" similarly to the expansion done by s etlabels().
Specifically, if the number of x$labels is less than the sum o f
dimensions of x, any label starting with ’@’ or of the form ’(’ , ’[’,
’{’, ’<’, ’/’, or ’\’ is expanded to the length of the appropri ate

322 CHAPTER 2. MACANOVA HELP FILE

dimension. For example, labels vector("@[", "X1", "X2") fo r a 10 by 2
matrix are equivalent to vector(rep("@[",10), "X1","X2") . See topics
’labels’, setlabels().

If variable x has attached notes (see topic ’notes’), the hea der line
must contain keyword "NOTES", and the notes must be in a CHARA CTER
vector with name "x$NOTES" immediately following the data o r labels.
Because notes are written in the usual form for a CHARACTER ve ctor, you
can read them without reading the data by read(fileName, "x$ NOTES").

Example data file, data.txt

info 0
) Sample data file containing REAL data set sampledata,
) CHARACTER data set samplechars, and structure mystruct

sampledata 4 3 COLUMNS LABELS NOTES ENDED
) Small REAL data set with one missing value coded as -99.
) Each line contains data for one column (COLUMNS on header)
) MISSING -99
) ’4x’ in the following format skips 4 characters (variable l abel)
)"4x%f %f %f %f"
Temp 34.5 45.2 23.1 20.1
Conc .170 -99 .883 .401
Secs 3.5 4.7 3.2 5.8

sampledata$LABELS 4 QUOTED COLUMNS
) Labels for sample data in quoted format by columns
) Labels are expanded to "@" "@" "@" "@" "Temp" "Conc" "Secs"
)"%s %s %s %s"

"@" "Temp" "Conc" "Secs"

sampledata$NOTES 1 CHARACTER
) Notes for sampledata in "by line" format
Small REAL data set with one missing value.
%sampledata%

samplechars 2 4 CHARACTER
) 4 by 2 CHARACTER matrix with each row in 2 lines containing
) 3 and 1 unquoted fields
)"%s %s %s"
This is by-fields
format
without any double
quotes

mystruc 2 STRUCTURE
) this is a structure with two components, a and b
) The blank line before the header of each component is requir ed

mystruc$a 2 QUOTED COLUMNS
) character vector of length 2
) Two quoted fields

2.234. MATREAD FILE 323

"The quick brown fox" "Jumps over the lazy dog"

mystruc$b 2 STRUCTURE
) This component is a structure with two components, pi and e

mystrucbpi 1 1
) 1 by 1 matrix
3.14159265358979

mystrucbe 1
) vector of length 1
2.71828182845905

Examples
Examples of reading data sets from data.txt

Cmd> sampledata <- read("data.txt","sampledata", quiet: T)

Cmd> print(sampledata) # note that labels were read
sampledata:

Temp Conc Secs
(1) 34.5 0.17 3.5
(2) 45.2 MISSING 4.7
(3) 23.1 0.883 3.2
(4) 20.1 0.401 5.8

Cmd> getnotes(sampledata) # notes were retrieved as well as data
(1) "Small REAL data set with one missing value."

Cmd> notes <- read("data.txt", "sampledata$notes"); note s
(1) "Small REAL data set with one missing value."

Cmd> samplechars <- read("data.txt","samplechars",quie t:T)

Cmd> print(samplechars)
samplechars:
(1,1) "This"
(1,2) "is"
(1,3) "by-fields"
(1,4) "format"
(2,1) "without"
(2,2) "any"
(2,3) "double"
(2,4) "quotes"

Cmd> mystruc <- read("data.txt","mystruc",quiet:T)

Cmd> print(mystruc)
mystruc:
component: a
(1) "The quick brown fox"
(2) "Jumps over the lazy dog"
component: b

324 CHAPTER 2. MACANOVA HELP FILE

component: pi
(1,1) 3.1416

component: e
(1) 2.7183

Cmd> mystruc_b <- read("data.txt", "mystruc$b",quiet:T)

Cmd> print(mystruc_b)
mystruc_b:
component: pi
(1,1) 3.1416
component: e
(1) 2.7183

In these examples, ’quiet:T’ suppresses echoing the header line and
comments. See read() and matread().

Cross references
See also topics read(), matread(), matprint(), matwrite() , ’files’,
’macro_files’.

2.235 matrices

Usage:
Matrix transposition x’ or t(x)
Matrix multiplication x % * % y, x %c% y, x %C% y
Matrix inversion solve(a)
Linear equation solution solve(a, b) or a %\% b, rsolve(a,b) or

b %/% a
Extract elements x[i,j], x[,j], x[i,], i, j integer scalars or

vectors or LOGICAL vectors.
Eigen values and vectors eigen(a), eigenvals(a), releigen (a,b),

releigenvals(a,b), trideigen(diag,subdiag...)
Other decompositions qr(x [,pivot:T]), cholesky(x),

svd(x [all:T, right:T or F, left:T or F])
Other Functions of matrices

trace(x), det(x), diag(x), nrows(x), ncols(x)
Create matrices matrix(x,nrows), hconcat(a,b,...),

vconcat(a,b,...), dmat(vec), dmat(x, n)

Keywords: matrix algebra, operations, variables

Description
A matrix is a two dimensional array, that is, it has two subscr ipts.

If x is a REAL, LOGICAL, or CHARACTER vector of length m * n, matrix(x,m)
creates an m by n matrix from the elements of x.

A vector of length n is, in most contexts, equivalent to a n by 1
matrix. See topic ’vectors’.

2.235. MATRICES 325

Generalized matrix
A generalized matrix is an array with more than two dimension s but which
has no more than 2 dimensions greater than 1. With few excepti ons, a
generalized matrix can be used wherever a matrix can be used.

A generalized matrix with exactly two dimensions with lengt hs m > 1 and
n > 1, is interpreted as a m by n matrix. For example, array(run (20),1,
4,1,5) is considered for most purposes as if it were a 4 by 5 mat rix.

A generalized matrix whose first dimension is n and all other s are 1 is
iterpreted as an n by 1 matrix or, in some contexts, as a vector of
length n. For example, array(run(7),7,1,1,1) is generally treated as
either a 7 by 1 matrix or a vector of length 7.

A generalized matrix whose first dimension is 1 and which has a single
dimension with length n > 1 is interpreted as a 1 by n matrix, th at is,
as a row vector. For example, array(run(5),1,1,5) is consid ered to be a
1 by 5 matrix.

A generalized matrix all of whose dimensions are 1 (example:
array(17,1,1,1,1)) is interpreted as a 1 by 1 matrix or, in mo st
contexts, a scalar.

If x is a generalized matrix, ismatrix(x) returns True and nr ows(x) and
ncols(x) return the numbers of rows and columns as just descr ibed.

If x is a generalized matrix, matrix(x) is equivalent to matr ix(x,
nrows(x)) and is an ordinary two dimensional matrix with the same
elements as x.

Transpose of matrix
You can compute the transpose of a matrix x by either x’ or t(x) . The
transpose of a generalized matrix is a generalized matrix wi th the same
dimensions in reverse order.

Multiplying matrices
You can multiply two REAL matrices or generalized matrices w ith
conforming dimensions and no MISSING values as follows:

Operator Precedence Meaning
x %* % y 11 x MatMult y
x %c% y 11 transpose(x) MatMult y
x %C% y 11 x MatMult transpose(y)

where MatMult is ordinary matrix multiplication. The resul t is always a
matrix with two dimensions, even if either x and.or y is a gene ralized
matrix. Either or both operands can also be structures. See
topic ’structures’.

It formerly was the case on some computers that, when x and y we re
large, x’ %c% y was considerably faster than x % * % y or x %C% y’. That
is no longer the case; all three operations take about the sam e amount
of time.

Dividing matrices

326 CHAPTER 2. MACANOVA HELP FILE

You can "divide" one matrix by another (in the sense of multip lying by
an inverse) if they have conforming dimensions and no MISSIN G values as
follows:

Operator Precedence Meaning
x %/% y 11 x MatMult inverse(y) (same as rsolve(y,x)
x %\% y 11 inverse(x) MatMult y (same as solve(x,y)

Neither %/% or %\% can be used with structures.

Note: These 5 matrix operations are "left associative", tha t is, for
example that x % * % y %\% z is equivalent to (x % * % y) %\% z, not x % * %
(y %\% z).

Precedence
Precedence level 11 is just above the precedence level of ’ * ’, ’/’ and
’%%’ and just below the precedence level of ’ˆ’.

Examples:
Expression Interpretation Required to be legal
a %* % b + 3 (a %* % b) + 3 ncols(a) = nrows(b)
3 / a %c% bˆ2 3 / (a %c% (bˆ2)) nrows(a) = nrows(b)
a / 3 %C% b a / (3 %C% b) ncols(b) = 1

See topic ’precedence’ for the precedence levels of other op erators.

Functions useful with matrices
Here are some functions that are useful with matrices. All tr eat
generalized matrices as matrices.

cholesky() Compute Cholesky decomposition of x
det(x) Compute the determinant of x
det(x,mantexp:T) Compute the determinant of x in base

10 mantissa and exponent form
diag(x) Extract the diagonal of x.
eigenvals(x) and eigen(x) Compute eigenvalues and/or

eigenvectors of x
hconcat(x,y,...) Concatenate x, y, ... horizontally (y

to the right of x, ...)
nrows(x), ncols(x) Find the number of rows or columns of

x
qr(x [,pivot:T]) Compute QR decomposition of x
releigenvals(a,b), releigen(a,b) Compute eigenvalues an d/or

eigenvectors of a relative to b
rsolve(a, b) Solve x % * % a = b; equivalent to

b %/% a.
solve(x) Invert x
solve(a,b) Solve a % * % x = b; equivalent to

a %\% b.
svd(x) Compute singular value decomposition

of x
swp(x,intvec) Apply Beaton SWP operator to rows

and columns of x specified by intvec
t(x) or x’ Transpose of x
trace(x) Compute the trace of x

2.236. MATRIX() 327

trideigen(diag,subdiag [,...]) Compute eigenvalues and/ or
eigenvectors of symetric tridiagonal
matrix

vconcat(x,y,...) Concatenate x, y, ... vertically (y
below x, ...)

Other useful functions
The following are also useful, but they do not treat a general ized
matrix x exactly like matrix(x).

max(x) Maximum of each column of x
min(x) Minimum of each column of x
prod(x) Product down columns of x
sum(x) Sum down columns of x

These all operate on the first actual dimension of x, produci ng a result
with the same number of dimensions as x, but with first dimens ion 1. If
you want to treat a generalized matrix as if it were a matrix, u se, say,
sum(matrix(x)). See help on the functions for information o n how to
operate on dimensions other than the first.

Complex matrices
MacAnova stores complex data in REAL matrices in two formats , fully
complex and packed Hermitian. See topic ’complex’ for detai ls of the
format and information about functions useful with complex data.

The following are macros explicitly for working with comple x matrices A
and B stored in REAL matrices a and b

cmatmultc(a,b [,op:OP) matrix product A % * % B, A %c% B or A %C% B
ctranspose(a) A’
cjtranspose(a) conj(A)’
cdiag(a) diag(A)
ctrace(a) trace(A)
ceigen(a) eigenvalues and eigenvectors of Hermitian A
csolve(a) inverse of non-singular A
csubscr(a [,i [,j]) simulated A[], A[i], A[i,], A[,j] or A[i ,j]

Cross references
See also det(), trace(), swp(), eigen(), eigenvals(), rele igen(),
releigenvals(), dim(), nrows(), ncols(), svd(), cholesky ().

2.236 matrix()

Usage:
matrix(x,Rowdim [,KeyPhrases]), x a vector, Rowdim > 0 an in teger

dividing length(x)
matrix(x [,KeyPhrases]), x a generalized matrix.
KeyPhrases can be labels:structure(rowLabs,colLabs), no tes:Notes and

silent:T, where rowLabs, colLabs and Notes are CHARACTER sc alars or
vectors.

Keywords: matrix algebra, variables, combining variables

328 CHAPTER 2. MACANOVA HELP FILE

Usage
matrix(x,Rowdim) creates a matrix (two dimensional array) with Rowdim
rows containing the data in x. x can be a vector, matrix, or hig her
dimensional array, all of whose elements are used, with firs t subscript
changing fastest, second subscript, if any, changing next, and so on.

Rowdim must be a positive integer exactly dividing the lengt h of vector,
matrix, or array x.

Example
Example:

Cmd> c <- matrix(vector(1,1,1, -1,1,0, -1,-1,2),3)
creates the following matrix:

1 -1 -1
c = 1 1 -1 .

1 0 2

No dimensions supplied
matrix(x), with no Rowdim, is equivalent to matrix(x,nrows (x)). It is
valid for any one- or two-dimensional x, or for any higher dim ensional
array with no more than two dimensions greater than 1, that is for any x
such that ’ismatrix(x)’ would be True. See topics ismatrix() and
’matrices’.

Example: h <- matrix(SS[2,,]) creates a true p by p matrix fro m the 1 by
p by p array SS[2,,], if SS is an array of SSCP matrices created as a
side effect by manova(). See manova().

Although most operations, including matrix multiplicatio n, matrix
inversion, and eigenvalue computation, treat SS[2,,] and m atrix(SS[2,,])
identically, there are a few that do not. Using matrix() can a void some
surprises.

Keywords ’labels’ and ’notes’
On both usages, you can specify row and column labels for the o utput
using keywords labels. See topic ’labels’ for details.

You can attach a CHARACTER vector of descriptive notes to the result
using keyword phrase ’notes:Notes’. See topic ’notes’ for d etails.

When x is a matrix and either Rowdim is not specified or nrows(x) =
Rowdim, any coordinate labels or descriptive notes of x are t ransferred
to the result unless ’labels’ or ’notes’ provide new labels o r notes or
are NULL.

Cross references
See also topics array(), nrows(), ’matrices’.

2.237. MATWRITE() 329

2.237 matwrite()

Usage:
matwrite(fileName, a, b, ... [, new:T, format:Fmt, nsig:n, sep:sepChar,\

quoted:T or bylines:T,missing:mVal, name:Name, comments :charVec,\
width:w, header:F, oldstyle:T, stripdols:T]), a, b, ... ar bitrary
variables, Fmt, sepChar and Name CHARACTER scalars with sep Char only a
single character, charVec a CHARACTER vector or scalar, mVa l a REAL
scalar, w >= 30 integer.

Keywords: files, output

Usage
matwrite(FileName,a,b,... [,new:T]) writes REAL, LOGICA L and CHARACTER
variables a, b,... (scalars, vectors, matrices, or arrays) file
FileName in a form which can be read by read() and matread(). I t can
also write NULL variables and structures. GRAPH variables a re legal
arguments but are currently written as NULL variables. See t opic
’NULL’.

matwrite(a,b,...,file:FileName [,new:T]) is an alternat ive usage.

matwrite() compared with matprint()
matwrite() differs from matprint() only in the default form at used for
REAL and LOGICAL variables. It uses the format used by write(), namely
the format specified by option ’wformat’. This normally pro vides 9
significant digits. It is provided to make it easier for you t o write
data sets with increased precision without having explicit ly to provide
a format.

Changing default format
You can change the default format for write() and matwrite() by
setoptions() using keyword ’wformat’. See topics setoptio ns() and
’options’.

Cross references
See matprint() for information on keywords ’missing’, ’sep ’, ’name’,
’header’, ’width’, ’quoted’, ’bylines’, and ’comments’, m acrowrite() for
information on ’oldstyle’ and ’stripdols’, and print() for information
on keywords ’nsig’ and ’format’.

See topic ’matread_file’ for a description of the file forma t.

See also topics print(), write(), matwrite(), macrowrite(), read(),
matread(), ’files’.

330 CHAPTER 2. MACANOVA HELP FILE

2.238 max()

Usage:
max(x [,squeeze:T] [,silent:T,undefval:U]), x REAL or LOG ICAL or a

structure with REAL or LOGICAL components, U a REAL scalar
max(x, dimensions:J [,squeeze:T] [,silent:T,undefval:U]), vector of

positive integers J
max(x, margins:K [,squeeze:F] [,silent:T,undefval:U]), vector of

positive integers K
max(x1,x2,... [,silent:T,undefval:U]), x1, x2, ... REAL o r LOGICAL

vectors, all the same type.

Keywords: descriptive statistics

Usage
max(x) computes the maximum of the elements of a REAL or LOGIC AL vector
x.

If x is LOGICAL, True is interpreted as 1.0 and False as 0.0 and hence
max(x) is 1.0 if any element of x is True, and 0.0 if all element s are
False.

If x is a m by n matrix, max(x) computes a row vector (1 by n matri x)
consisting of the maxima of the elements in each column of x.

If x is an array with dimensions n1, n2, n3, ..., y <- max(x) com putes
an array with dimensions 1, n2, n3, ... such that y[1,j,k,...] =
max(x[i,j,k,...], i=1,...,n1). This is consistent with wh at happens
when x is a matrix. Note: MacAnova3.35 and earlier produced a result
with dimensions n2, n3,

max(x, squeeze:T) does the same, except the first dimension of the
result (of length 1) is squeezed out unless the result is a sca lar. In
particular, if x is a matrix, max(x,squeeze:T) will be ident ical to
vector(max(x)), and if x is an array, max(x,squeeze:T) will be identical
to array(max(x),dim(x)[-1]).

max(NULL) is NULL.

max(a,b,c,...) is equivalent to max(vector(a,b,c,...)) i f a, b, c,
... are all vectors. They must all have the same type, REAL or L OGICAL,
or be NULL. max(NULL,NULL,...,NULL) is NULL.

min(x, silent:T) or min(a,b,c,...,silent:T) does the same but suppresses
warning messages about MISSING values.

If all the elements of a vector x are MISSING, max(x) is MISSIN G.

max(x, undefval:U), where U is a REAL scalar does the same, ex cept the
returned value is U when all the elements of x are MISSING.

Keyword ’dimensions’
max(x, dimensions:J [,squeeze:T] [,silent:T] [undefval: U]) finds the
maximum over the dimensions in J = vector(j1,j2,...,jn) whe re j1, ...,

2.238. MAX() 331

jn are distinct positive integers <= ndims(x). Without ’squ eeze:T’, the
result has the same number of dimensions as x, with dimension s j1, j2,
..., jn of length 1. With ’squeeze:T’, these dimensions are r emoved
from the result. The order of j1, j2, ... is ignored.

It is an error if max(J) > ndims(x) or if there are duplicate el ements
in J.

For example, if x is a matrix, max(x, dimensions:2) computes the row
maxima as a nrows(x) by 1 matrix and max(x, dimensions:2,squ eeze:T)
computes them as a one dimensional vector.

Keyword ’margins’
max(x, margins:K [,squeeze:F] [,silent:T] [undefval:U]) finds the maxima
over the dimensions not in K = vector(k1, k2, ..., km), where k 1, ...,
km are distinct positive integers <= ndims(x). This compute s maxima for
the margins specified in K.

Without ’squeeze:F’, only the dimensions in K are retained i n the
result. Otherwise the other dimensions are retained but hav e length 1.
This is opposite from the default with ’dimensions:J’.

It is an error if max(K) > ndims(x) or if there are duplicate el ements
in K.

Structure argument
If x is a structure, max(x [dimensions:J or margins:K] [,squ eeze:T or F]
[,silent:T] [undefval:U]) computes a structure, each of wh ose components
is max() applied to that component of x.

Example
Examples:

Cmd> x # matrix with labels
B1 B2

A1 18 15
A2 17 26
A3 18 19

Cmd> max(x) # maxima down columns
B1 B2

(1) 18 26

Cmd> max(x,dimensions:2) # maxima across rows; 3 by 1 matrix
(1)

A1 18
A2 26
A3 19

Cmd> max(x,dimensions:2,squeeze:T) # same, length 3 vecto r
A1 A2 A3
18 26 19

Cmd> max(x,margins:1) # same as preceding

332 CHAPTER 2. MACANOVA HELP FILE

A1 A2 A3
18 26 19

Example
See also topics min(), ’NULL’.

2.239 memory

Keywords: general

Memory usage information
The MacAnova "workspace", (all variables and macros; see to pic
’workspace’), "resides" in memory (RAM) and not on your hard disk.

You can use keyword phrase size:T on list() to get informatio n on the
amount of memory used by individual variables and the total u sed by all
variables and internal MacAnova storage. This does not incl ude the
memory required for the program itself nor, in a windowed ver sion,
memory associated with windows and graphs. See list().

memoryinfo() returns a vector summarizing several aspects of memory
usage. See memoryinfo() for details.

Not enough memory problem
Because RAM is a finite resource, you may sometimes be unable to carry
out a computation because there is no room for intermediate a nd/or final
results. When this happens you get a message similar to the fo llowing:

ERROR: Not enough memory. Try deleting variables

When this happens, use delete() to get rid of the largest vari ables you
can do without. If you really need to keep them, use save() or
asciisave() to save some or all of your variables on disk befo re
deleting them.

Cmd> save("myvars.sav", x, y, residplot:LASTPLOT)

Cmd> delete(x, y, LASTPLOT)

Other work arounds
You can free up memory used to store information related to th e most
recent GLM command such as regress() or anova() by

Cmd> delete(STRMODEL)
This will make certain functions such as secoefs() and model info()
unavailable until after another GLM command.

In Windowed versions, memory can sometimes be made availabl e by closing
unneeded graphics and/or command/output windows.

Comparison of versions
The amount of memory available for individual variables and the entire
workspace differs between versions, primarily because of d ifferences in
operating systems.

2.240. MEMORYINFO() 333

All versions have no effective limit on the size of variables other than
the availability of memory on your computer.

The Macintosh classic (OS 9) version runs in its own memory "p artition".
When MacAnova is launched, its partition is allocated a spec ific amount
of space for program and data and MacAnova cannot exceed the l imit, even
if a lot more memory is installed. When the limit is, say, 1000 KB
(1 KB is 1024 bytes), then MacAnova has N KB for variables, whe re,
because memory is needed for the program, N in the neighborho od of 600.
When the limit is 2500 KB = (1000 + 1500) KB, then MacAnova has N + 1500
KB of memory for its workspace. When the partition is allocat ed 5000 KB
= (1000 + 4000) KB, available memory is N + 4000 KB, and so on.

Changing Macintosh partition size
As distributed, the Mac OS 9 version of MacAnova has a default maximum
partition size of 5000 KB. However, it is quite easy to change the
limit from the Finder. Open the folder where MacAnova is inst alled and
select the MacAnova icon with the mouse. Select Get Info on th e File
menu to display a dialog box containing a ’Show:’ popup menu o n which
you should select ’Memory’. This will display a Memory Requi rements
panel. (In older systems, the Memory Requirements panel may be
immediately displayed by Get Info.) Type a new number in the " Suggested
size" box to set a new maximum partition size and then close th e dialog
box. That’s all there is to it.

Cross references
See also topics delete(), save(), asciisave(), ’workspace ’

2.240 memoryinfo()

Usage:
memoryinfo()

Keywords: general

Usage
info <- memoryinfo() sets info to a vector of length 5 contain ing the
following information about memory usage:

info[1] Total memory used by named variables, excluding bui lt-in
functions but including macros and special variables such a s
CLIPBOARD and GRAPHWINDOWS

info[2] Total memory currently used by scratch variables. T his
includes the results of any computations not yet in named
variables but not scratch variables used in invoking
memoryinfo()

info[3] Total memory currently used by internal copies of wh at was
typed at the prompt

info[4] Total memory allocated by MacAnova. This excludes m emory
required by the program itself and some memory that is

334 CHAPTER 2. MACANOVA HELP FILE

allocated at the start and kept for the entire run. On
windowed system, it excludes memory for command and graphic s
windows and menus.

info[5] The maximum memory so far allocated by MacAnova, alw ays >=
info[4]

The values returned are the number of bytes used or allocated .

memoryinfo() is primarily useful in (a) tracking down bugs i n memory
allocation by MacAnova itself, and (b) determining why a mac ro uses more
memory than you think it ought to.

Cross references
See also topic ’memory’.

2.241 min()

Usage:
min(x [,squeeze:T] [,silent:T,undefval:U]), x REAL or LOG ICAL or a

structure with REAL or LOGICAL components, U a REAL scalar
min(x, dimensions:J [,squeeze:T] [,silent:T,undefval:U]), vector of

positive integers J
min(x, margins:K [,squeeze:F] [,silent:T,undefval:U]), vector of

positive integers K
min(x1,x2,... [,silent:T,undefval:U]), x1, x2, ... REAL o r LOGICAL

vectors, all the same type.

Keywords: descriptive statistics

Usage
min(x) computes the minimum of the elements of a REAL or LOGIC AL vector
x.

If x is LOGICAL, True is interpreted as 1.0 and False as 0.0 and hence
min(x) is 0.0 if any element of x is False, and 1.0 if all elemen ts are
True.

If x is a m by n matrix, min(x) computes a row vector (1 by n matri x)
consisting of the minima of the elements in each column of x.

If x is an array with dimensions n1, n2, n3, ..., y <- min(x) com putes
an array with dimensions 1, n2, n3, ... such that y[1,j,k,...] =
min(x[i,j,k,...], i=1,...,n1). This is consistent with wh at happens
when x is a matrix. Note: MacAnova3.35 and earlier produced a result
with dimensions n2, n3,

min(x, squeeze:T) does the same, except the first dimension of the
result (of length 1) is squeezed out unless the result is a sca lar. In
particular, if x is a matrix, min(x,squeeze:T) will be ident ical to
vector(min(x)), and if x is an array, min(x,squeeze:T) will be identical
to array(min(x),dim(x)[-1]).

2.241. MIN() 335

min(NULL) is NULL.

min(a,b,c,...) is equivalent to min(vector(a,b,c,...)) i f a, b, c,
... are all vectors. They must all have the same type, REAL or L OGICAL,
or be NULL. min(NULL, NULL, ..., NULL) is NULL.

min(x, silent:T) or min(a,b,c,...,silent:T) does the same but suppresses
warning messages about MISSING values.

If all the elements of a vector x are MISSING, min(x) is MISSIN G.

min(x, undefval:U), where U is a REAL scalar does the same, ex cept the
returned value is U when all the elements of x are MISSING.

Keyword ’dimensions’
min(x, dimensions:J [,squeeze:T] [,silent:T] [undefval: U]) finds the
minimum over the dimensions in J = vector(j1,j2,...,jn) whe re j1, ...,
jn are distinct positive integers <= ndims(x). Without ’squ eeze:T’, the
result has the same number of dimensions as x, with dimension s j1, j2,
..., jn of length 1. With ’squeeze:T’, these dimensions are r emoved
from the result. The order of j1, j2, ... is ignored.

It is an error if max(J) > ndims(x) or if there are duplicate el ements
in J.

For example, if x is a matrix, min(x, dimensions:2) computes the row
minima as a nrows(x) by 1 matrix and min(x, dimensions:2,squ eeze:T)
computes them as a one dimensional vector.

Keyword ’margins’
min(x, margins:K [,squeeze:F] [,silent:T] [undefval:U]) finds the minima
over the dimensions not in K = vector(k1, k2, ..., km), where k 1, ...,
km are distinct positive integers <= ndims(x). This compute s minima for
the margins specified in K.

Without ’squeeze:F’, only the dimensions in K are retained i n the
result. Otherwise the other dimensions are retained but hav e length 1.
This is opposite from the default with ’dimensions:J’.

It is an error if max(K) > ndims(x) or if there are duplicate el ements
in K.

Structure argument
If x is a structure, min(x [dimensions:J or margins:K] [,squ eeze:T or F]
[,silent:T] [undefval:U]) computes a structure, each of wh ose components
is min() applied to that component of x.

Example
Examples:

Cmd> x # matrix with labels
B1 B2

A1 18 15

336 CHAPTER 2. MACANOVA HELP FILE

A2 17 26
A3 18 19

Cmd> min(x) # minima down columns
B1 B2

(1) 17 15

Cmd> min(x,dimensions:2) # minima across rows; 3 by 1 matrix
(1)

A1 15
A2 17
A3 18

Cmd> min(x,dimensions:2,squeeze:T) # same, length 3 vecto r
A1 A2 A3
15 17 18

Cmd> min(x,margins:1) # same as preceding
A1 A2 A3
15 17 18

Cross references
See also topics max(), ’NULL’.

2.242 modelinfo()

Usage:
modelinfo([all:T] keyword1:T or F, keyword2:T or F ...[,no modelok:T]\

[,missing:missvalue]), missvalue a REAL scalar and the key words
are one or more of ’aliased’, ’bitmodel’, ’coefs’, ’colcoun t’,
’distrib’, ’link’, ’parameters’, ’scale’, ’sigmahat’ ’st rmodel’,
’termnames’, ’weights’, ’xtxinv’, ’xvars’, and ’y’

Keywords: glm

Usage
modelinfo(keyword1:T, keyword2:T, ...) computes one or mo re vectors or
matrices associated the most recent GLM (generalized linea r or linear
model) command such as regress(), anova(), poisson(), or gl mfit(). This
gives you direct access to such things as the design variable s or
X-variables (xvars:T), the estimated coefficients of the X -variables
(coefs:T), and the inverse of the X’X matrix (xtxinv:T).

Permissible keyword names specifying quantities returned are ’aliased’,
’bitmodel’, ’coefs’, ’colcount’, ’distrib’, ’link’, ’par ameters’,
’scale’, ’sigmahat’ ’strmodel’, ’termnames’, ’weights’, ’xtxinv’,
’xvars’, and ’y’. You can also use ’all:T’; see below.

You can’t use modelinfo() after fastanova(), ipf(), or scre en().

Any component requested that is not available is set to NULL. In

2.242. MODELINFO() 337

particular this happens for components ’coefs’ and ’xtxinv ’ after
anova() when the model is balanced, or after any GLM command w ith
’coefs:F’, and for component parameters after any GLM for wh ich a sample
size or other parameter is specified such as for logistic() a nd
probit().

When more than one of the keywords specifying type of output h as value
True, modelinfo() returns a structure with component names the same as
the keywords. Otherwise it returns a vector or matrix.

Keyword ’missing’
modelinfo(xvars:T, ..., missing:missval) returns the mat rix of
X-variables associated with the active model with all the va lues for a
case in which there was missing data set to REAL scalar missva l. The
default value is 0.

Keywords ’all’ and ’nomodelok’
modelinfo(all:T) is equivalent to modelinfo(xvars:T,y:T ,coefs:T,
xtxinv:T,colcount:T,weights:T,parameters:T,strmodel :T,bitmodel:T,
termnames:T, scale:T, sigmahat:T,aliased:T). To suppres s any particular
components, say ’strmodel’, ’bitmodel’, and ’termnames’, use
modelinfo(all:T, strmodel:F,bitmodel:F,termnames:F). Use of all:F is an
error.

Normally, it is an error if there is no active GLM model. Howev er, if
nomodelok:T is an argument, when there is no active model mod elinfo()
returns NULL without printing an error message. For example , you can
test for the existence of an active model by

Cmd> if(isnull(modelinfo(strmodel:T,nomodelok:T))){. ..do something...}

You can use ’nomodelok:T’ with any of the keywords specifyin g components
to return.

See isnull().

Permissible Keyword Phrases
Keyword ’aliased’

aliased:T
A LOGICAL vector whose length is the number of X-variables in the
model. The i-th variable is True if and only if the i-th
X-variables as returned by xvars:T is aliased with previous
X-variables. If there was no aliasing every element should b e
False.

Keyword ’bitmodel’
bitmodel:T

A REAL vector or matrix with as many rows as there are terms in t he
model, including the CONSTANT term, if any, but excluding th e final
error term. This encodes the model in a special form. See belo w
for details.

Keyword ’coefs’

338 CHAPTER 2. MACANOVA HELP FILE

coefs:T
The vector of coefficients of the X-variables in the fitted m odel.
Coefficients corresponding to aliased X-variables (those that are
apparently linearly dependent on previous X-variables) ar e set to
zero. After manova() with a p-dimensional response matrix, the
coefficients form a matrix with p columns. Note: If there are
factors in the model, some of the coefficients computed will differ
from the coefficients computed by coefs() and secoefs().

Keyword ’colcount’
colcount:T

A REAL vector containing the numbers of X-variables assocat ed with
each term in the active model. The numbers of the first column
associated with each term can be obtained by autoreg(1,
modelinfo(colcount:T)). If no X-variables are aliased wit h earlier
X-variables, these values are the degrees of freedom associ ated
with each term.

Keyword ’parameters’
parameters:T

A REAL vector containing the sample sizes or other distribut ion
parameters after logistic() or probit(), or after glmfit() with
keywords n or parameters.

Keyword ’scale’
scale:T

A REAL factor or factors to multiply the square roots of the
diagonals of the inverse of the X’X matrix so as to obtain
estimated standard errors for the estimated coefficients. After
logistic(), poisson(), probit(), or glmfit(), scale will b e the
default value, unless changed by keyword ’scale’ on the GLM
command. After other GLM commands, including robust(), sca le will
be sqrt(SSerror/DFerror), where DFerror and SSerror come f rom the
final line of the ANOVA table. After manova(), scale will be t he
vector consisting of the square roots of diagonal elements o f
SSerror/DFerror, where SSerror is the error matrix.

Keyword ’sigmahat’
sigmahat:T

The robust estimate of sigma printed after the robust() ANOV A
table. It is not usable after any other GLM command. Note that
this is not a suitable value to use in computing standard erro rs.

Keyword ’strmodel’
strmodel:T

A CHARACTER variable containing the current model taken fro m
STRMODEL.

Keyword ’termnames’
termnames:T

A CHARACTER vector of the terms in the model taken from TERMNA MES.
This includes the name (usually "ERROR1") of the final error term,
and thus the length of the result is 1 greater than the number o f

2.242. MODELINFO() 339

rows in modelinfo(bitmodel:T).

Keyword ’weights’
weights:T

A REAL vector containing the weights associated with each ca se. If
there are no missing data and no weights were specified, eith er
explicitly or implicitly, this is a vector of 1’s. Otherwise it
contains either the weights specified by keyword ’weights’ or ’wts’
in anova(), manova() or regress() or the implicit weights fr om the
final iteration of poisson(), logistic(), or robust(). The weight
for any case with MISSING data is always zero.

Keyword ’xtxinv’
xtxinv:T

The inverse of the X’X matrix computed from the X-variables. The
row and column corresponding to any aliased X-variable is se t to
zero. If the previous GLM command specified weights either
explicitly (keyword ’weights’ or ’wts’ on anova(), regress (),
manova()) or implicitly (poisson() or logistic()) the matr ix
computed is the inverse of X’WX, where W is the diagonal matri x of
the weights. After robust(), the matrix computed is the inve rse of
X’X, ignoring the implicit weights. The weights may be obtai ned by
keyword phrase weights:T (see above).

Keyword ’xvars’
xvars:T

The matrix of X-variables associated with the active model. If
there is no active model, but STRMODEL is defined and there ar e no
other keywords, it works identically to xvariables().

When ’missing:missValue’ is an argument, where missValue i s a REAL
scalar, the X-variable values for a case with any missing dat a will
be set to missValue. In particular, you can used ’missing:?’ to
set the X-variables for a case with MISSING data to MISSING. T he
default value is 0. See xvariables() for more information.

Keyword ’y’
y:T

The dependent variable in the model as a vector or matrix.
modelinfo(y:T) is thus equivalent to modelvars(0).

More on keyword ’bitmodel’
Each row of modelinfo(bitmodel:T) corresponds to a term in t he model and
consists of one or more integers between 0 and 4294967295 = 2ˆ 32 - 1,
the bits of whose binary representation encode the variates and/or
factors in that term. If there are 33 to 64 or 65 to 95 variates a nd
factors, the result is a matrix with 2 or 3 columns. Thus each r ow of
the output has room for Nvar bits, where Nvar is the number of v ariates
and/or factors in the model.

The bits of each row should be considered to be numbered from 1 to Nvar.
Bit 1 is the least significant and bit 32 is the most significa nt bit of
the first element; bit 33 is the least significant and bit 64 i s the

340 CHAPTER 2. MACANOVA HELP FILE

most significant bit of the second element, if any; and bit 65 is the
least significant and bit 96 is the most significant bit of th e third
element, if any. Bit i of row j of the result is 1 if and only if th e
i-th variable or factor is in the j-th term of the model, follo wing the
order in which variables and factors first appear in the mode l. All the
elements in a row corresponding to the CONSTANT term (usuall y row 1) are
zero.

Cross references
See topics ’bit_ops’ and nbits() for information on how to ex tract
information from the result of modelinfo(bitmodel:T).

See also topics varnames(), modelvars(), xvariables(), co efs(),
secoefs(), glmpred(), glmtable(), regpred(), predtable(), popmodel(),
pushmodel(), ’models’.

2.243 models

Usage:
Regression: regress("y=x1+x2+...+xk")
One-way ANOVA: anova("y=A"), factor A
Randomized block ANOVA: anova("y=Repl+A"), factors Repl a nd A
Nested ANOVA: anova("y=A/B") or anova("y=A+A.B")
Two-way factorial: anova("y=A * B") or anova("y=A+B+A.B"), factors A and B
Completely randomized Split plot ANOVA: anova("y=A+E(Rep l.A)+B+A.B"),

factors A, B, and Repl
Analysis of covariance: anova("y=x+A"), factor A, variate x
Transform variables on the fly: regress("{log10(y)}={sqr t(x)}")
Polynomial regression: regress("y=P3(x)")
Periodic regression: regress("y=C2(2 * PI * hour/24)")

Keywords: glm, anova, regression

Form of GLM model
All of the GLM (generalized linear or linear model) commands such as
regress(), anova(), or poisson() require you to specify a mo del in a
quoted string or CHARACTER variable.

A model can be specified as
"Response = Term" or "Response = Term1 + Term2 + ..."

where ’Response’ is the name of the dependent or response var iable
and each term is of the form Name or Name1.Name2.Namek, w here
Name, Name1, Name2 ... are the names of variables. A period or dot (.)
between the variable names is interpreted as a product opera tor
indicating that all combinations of the variable values are included in
the model.

Model Variables
Variables in model terms, including those computed on the fl y (see
below), may be either factors (vectors of positive integers created
using factor()) or variates. No more than one variate may app ear in a

2.243. MODELS 341

single term. Up to 95 variables may appear in a model, includi ng no
more than 31 factors.

Factors and variates must be vectors or matrices with one col umn. They
must all have the same number of rows as the response variable .

Any factors must have been created using factor() or been sel ected from
such a variable using subscripts. For balanced designs with factor
levels in a reasonable order a factor may often be computed by
factor(rep(run(r),s)), factor(rep(run(s), rep(r,s))), or something
similar. See factor(), rep().

The constant term may be specified as 1, but is always include d by
default, that is "y = Model" is equivalent to "y = 1 + Model". Yo u can
omit a constant term by "y = Model - 1" or move it to the end by
"y = Model - 1 + 1".

Computing Variables "on the fly"
You can transform or otherwise compute model variables "on t he fly." In
place of the name of a variable, including the response varia ble, you
can use {Expr}, where Expr is a MacAnova expression such as xˆ 2 or
log10(y). If the same expression, say {sqrt(x)}, appears mo re than once
in a model, it is evaluated only once and only one model variab le is
introduced. In comparing expressions, leading and trailin g spaces are
ignored, so that { sqrt(x) } is considered the same as {sqrt(x)};
however, other differences in the presence or placement of s paces will
cause expressions to be considered different variables. Fo r example,
{sqrt(x)} is not recognized to be the same as {sqrt(x)}. The o nly
limitation on Expr is that it may not directly or indirectly e xecute
another GLM command.

Since subscripted factors remain factors (see ’subscripts ’), when groups
is a factor, anova("{y[-3]} = {groups[-3]}") computes a one factor
analysis of variance omitting case 3.

Examples
a and b are factors and y, x1, x2, and x3 are REAL vectors

Model Description
"y = a + b + a.b" Two factor model with both main effects

and interaction
"y = a + a.b" Two factor model with b nested in a
"y = x1 + x2 + x3" Three variable multiple regression
"{sqrt(y)} = x1 + {x1ˆ2}" 2nd order polynomial regression of square

root of y on x.

Shortcuts for Polynomial and Periodic Regression
You can use special short cuts of the form Pn(expr) and Cn(exp r) to
specify a polynomial term or a periodic term, respectively, where n is
an integer between 1 and 95 and expr is a MacAnova expression. For
example, P4(x-10) expands to ({x-10}+{(x-10)ˆ2}+{(x-10) ˆ3}+{(x-10)ˆ4})
and C2(2 * PI * x/24) expands to ({cos(2 * PI * x/24)}+{sin(2 * PI * x/24)}+
{cos(2 * (2 * PI * x/24))}+{sin(2 * (2 * PI * x/24))}).

342 CHAPTER 2. MACANOVA HELP FILE

Pn(expr) and Cn(expr) can be used wherever a variable name ca n be used
on the right side of ’=’, except not in a {...} expression. Thu s the
last example in the preceding list could have been written "{ sqrt(y)} =
P2(x1)". They can be "dotted" with a factor. For example, P2(x).a
expands to {x}.a + {(x)ˆ2}.a.

If you are doing a regression on a subset of cases uses subscri pts, the
subscripts must be applied to x, not Cn(x) or Pn(x). For examp le,

Cmd> regress("{y[-run(3)]} = P3(x[-run(3)])")
fits a cubic polynomial omitting the first 3 rows of x and y.

See below for other shortcuts you can use to specify models.

Combining Variables
Parts of terms can be replaced by ’submodels’, enclosed in
parentheses, for example,

Cmd> anova("y = a + b + c + d + (a + b).(c + d)")
is equivalent to

Cmd> anova("y = a + b + c + d + a.c + b.c + a.d + b.d")

The product of a factor or variate with itself (a.a) is equiva lent to
the variate or factor itself. For example,

Cmd> anova("y = (a + b).(a + c)")
is equivalent to

Cmd> anova("y = a + b.a + a.c + b.c")

The order of factors and variates in a term is immaterial. Tha t is a.b
is equivalent to b.a.

Order of terms
The order of terms in a model is very important since fitting a model is
done sequentially, term by term. For example, although "y = a + a.b" is
a model with b nested in a, "y = a.b + a" is computationally equi valent
to "y = a.b", since after fitting all combinations of a and b, t here is
nothing left for ’a’ to fit.

If a term in a model is duplicated, only the first occurrence i s
retained. For example, (a + b).(a + b) expands to a.a + b.a + b.a + b.b
which is equivalent to a + a.b + a.b + b which is trimmed to a + a.b + b
(which is computationally equivalent to a + a.b).

Order of terms in expanded models
If M1, M2, ..., Mk, N1, N2, ..., Nl are terms or submodels,
(M1 + M2 + ... + Mk).(N1 + N2 + ... + Nl) is equivalent to
M1.N1 + M2.N1 + ... + Mk.N1 + M1.N2 + M2.N2 + ... + Mk.N2 + ... + Mk. Nl

If M1, M2, ..., Mk are terms or submodels, M1.M2.M3.Mk is expanded
as (...((M1.M2).M3) ...).Mk.

Short cut formulas for combining terms or submodels
In the following, M1, M2, ... are terms or submodels.

M1* M2 is an abbreviation for M1 + M2 + M1.M2

2.243. MODELS 343

M1* M2* ... * Mk is an abbreviation for (...((M1 * M2)* M3) ...) * Mk. In
particular, M1 * M2* M3 is an abbreviation for (M1 * M2)* M3, that is for
M1 + M2 + M1.M2 + M3 + M1.M3 + M2.M3 + M1.M2.M3

M1ˆN is an abbreviation for M1.(1+M1).(1+M1), where th ere are N
factors. N must be a digit between 1 and 31. This contains the s ame
terms as M1 * M1* ... * M1 (N factors) but in a different order. For
example, (a+b+c+d)ˆ4 has main effects followed by 2-way int eractions
followed by 3-way interactions followed by a.b.c.d. Note th at M1ˆN is
usually not equivalent to and does not contain the same terms as
M1.M1 (N dot factors).

M1/M2 is an abbreviation for M1 + MM1.M2 where MM1 has the form
a.b.z, where a, b, ..., z are all the factors and/or varia tes in
M1. For example, (a+b+c)/(d+e) is equivalent to a+b+c+a.b. c.d+
a.b.c.e. Note: Earlier versions of help and other documenta tion had a
different definition which was correct only in some common s imple
cases.

M1 - M2 is an abbreviation for a model containing all the terms in M1,
omitting any term in M2. In particular Model - 1 specifies a mo del
with no constant term or intercept and Model - 1 + 1 specifies a model
with a contant term that is fit after all other terms in Model.

M1 -* M2 is an abbreviation for a model containing all the terms in M 1,
but omitting any terms containing all the variables in any te rm of M2.

Examples of use of shortcuts
"y = a * b" is equivalent to "y = a + b + a.b"
"y = a/b" is equivalent to "y = a + a.b"
"y = a * b* c" is equivalent to "y = a + b + a.b + c + a.c + b.c +

a.b.c"
"y = (a+b+c)ˆ2" is equivalent to "y = a + b + c + a.b + a.c + b.c"
"y = (a+b+c)ˆ3" is equivalent to "y = a + b + c + a.b + a.c + b.c +

a.b.c"
"y = a * b* c - a.b.c" is equivalent to "y = a + b + a.b + c + a.c +

b.c"
"y = a * b* c - * (a.b + a.c)" is equivalent to "y = a + b + c + b.c"

Note the order of the exanded terms. In particular, observed that,
although "y=a * b* c" and "y=(a+b+c)ˆ3" contain the same terms when
expanded, they are in a different order.

Error Terms
In the output from commands such as anova() or poisson() that produce an
analysis of variance or deviance table, there is always one l ine,
usually labeled "ERROR1", following all the terms explicit ly or
implicitly specified in Model. It consists of the sum of squa res or
deviance associated with all the degrees of freedom not incl uded in the
model. If the model fitted uses up all the degrees of freedom t his line
will still be present, but will have 0 degrees of freedom.

344 CHAPTER 2. MACANOVA HELP FILE

You can also label other terms as ERROR. If a term is of the form
E(Term) (for example, E(a.b.c)), it will be labeled "ERRORn " in the
ANOVA table, where n is 1, 2, ..., . The final error line will st ill be
printed but will be labeled "ERRORm", where m-1 is the number of error
terms you specified. E(1) is not legal, nor is it legal to spec ify a
term as an error term more than once (E(a.b) + E(a.b)). Moreov er, once
a term is designated as an error term, it cannot be deleted by ’ -’ or
’- * ’. Term in E(term) must be a single factor or a pure product of
factors. For example, E(a.b+a.b.c) is illegal.

Comments in models
A ’#’ in Model marks the end of the model, allowing models to be self-
documenting as in anova("y = a + b #additive model").

Variable STRMODEL
Any GLM command sets the CHARACTER variable STRMODEL to the s pecified
model as a "side effect" of the analysis. If no model is specif ied on a
subsequent GLM commands (for example anova()), it is taken f rom this
variable. Alternatively, if you set STRMODEL directly, for example

Cmd> STRMODEL <- "y = x1 + x2 + x3"
then the value of STRMODEL will be used by the next GLM command if it
has no model as argument. Note, however, when you assign a val ue to
STRMODEL, MacAnova discards the internal information save d by the most
recent GLM command that is used by functions such as secoefs() and
contrast().

Examples of GLM Models
Cmd> anova("y = a + b + a.b") # or anova("y = a * b")

will produce a two-way analysis of variance with interactio n for the
response in y, provided vector y is defined and a and b are fact ors with
the same length as y.

Cmd> anova("y = a + a.b") # or anova("y = a/b")
where a and b are factors will produce a nested analysis of var iance
with b nested within a.

Cmd> anova("y = blk + a + E(a.blk) + b + a.b")
would be appropriate for the analysis of a two factor split pl ot
experiment with the whole plot treatments in a randomized bl ock design.
Do not attempt to use the name ’rep’ for a blocking factor, sin ce ’rep’
is the name of a built-in operation.

2.244 modelvars()

Usage:
modelvars(varList [,Model]), varList a vector of integers >= 0, Model a

CHARACTER scalar
modelvars(y:T or x:T or variates:T or factors:T or all:T [, M odel])
modelvars(nx:T or nvariates:T or nfactors:T or hasconst:T [, Model])

Keywords: glm

2.244. MODELVARS() 345

Usage
modelvars(VarList,Model), where VarList is a vector of non -negative
integers, say vector(i1,i2,i3,...), returns a vector or ma trix whose
columns are the variables in the model specified by the scala r CHARACTER
variable or quoted string Model. Variable 0 is the dependent variable
(the variable before ’=’ in Model) and, if i > 0, variable i is t he i-th
variate or factor appearing on the right hand side of Model (a fter ’=’).

See topic ’models’ for information on specifying Model.

Keywords ’x’ and ’y’
modelvars(y:T,Model) returns a vector or matrix containin g the dependent
variable of Model. This usage yields the same result as model vars(0,
Model).

modelvars(x:T,Model) returns a vector or matrix containin g the
independent variates and factors of on the right hand side of Model.
This yields the same as modelvars(run(nv), Model), where nv is the
number of variates and factors. When there are no variates an d factors
("y=1"), NULL is returned. See topic ’NULL’. See keyword ’nx ’ below
for determining the total number of variates and factors.

Keywords ’factors’ and ’variates’
modelvars(factors:T,Model) returns a vector or matrix con taining the
factors on the right hand side of Model. When there are no fact ors in
the model, NULL is returned. See keyword ’nfactors’ below fo r
determining the total number of factors.

modelvars(variates:T,Model) returns a vector or matrix co ntaining the
variates on the right hand side of Model. When there are no var iates in
the model, NULL is returned. See keyword ’nvariates’ below f or
determining the total number of variates.

Keyword ’all’
modelvars(all:T,Model) returns a matrix containing the de pendent
variable followed by the independent variates and factors o f Model.
Equivalent to this is modelvars(run(0,nv),Model).

Omitted model
When Model is omitted (modelvars(VarList) or modelvars(ke yword:T)),
variables are taken from internal copies of the variables in the current
active model. This allows retrieval of the dependent variab le and/or
model variables even if they were temporary variables (thei r names
started with ’@’). When there is no active model but variable STRMODEL
exists, modelvars(keyword:T) and modelvars(VarList) are equivalent to
modelvars(keyword:T,STRMODEL) and modelvars(VarList,S TRMODEL). Here
keyword is one of ’x’, ’y’, ’factors’, ’variates’, or ’all’.

Examples
modelvars(vector(1,2,0),"y=x+a") is equivalent to hconc at(x,a,y)
modelvars(x:T,"y=x+a+a.x") is equivalent to hconcat(x,a)
modelvars(all:T,"y=x1+x2") is equivalent to hconcat(y,x 1,x2)

346 CHAPTER 2. MACANOVA HELP FILE

Note: Any variables that are factors are returned unchanged . This is
very different from xvariables(), which computes dummy X-v ariables
associated with a factor.

Counting Factors and Variables
You can also use modelvars() to determine how many factors an d variates
there are in a model or to check whether the constant term is in the
model. This can be useful in a macro using the results of a GLM c ommand
to do further analyses.

modelvars(nx:T [,Model]) returns the number of independen t variates and
factors on the right hand side of Model, that is, what would be computed
by ncols(modelvars(x:T [,Model])). When there are no varia tes and
factors ("y=1"), 0 is returned.

modelvars(nfactors:T [,Model]) returns the number of fact ors on the
right hand side of Model, that is, what would be computed by
ncols(modelvars(factors:T, [,Model])). When there are no factors 0 is
returned.

modelvars(nvariates:T [,Model]) returns the number of var iates on the
right hand side of Model, that is, what would be computed by
ncols(modelvars(variates:T [,Model])). When there are no variates 0 is
returned.

modelvars(hasconst:T [,Model]) is True if and only if the co nstant term
is in the model.

Examples
Cmd> x <- run(4);y <- rnorm(4)

Cmd> a <- factor(1,1,2,2); b <- factor(1,2,1,2)

Cmd> modelvars(nfactors:T,"y=x+a+b+a.x")
(1) 2

Cmd> modelvars(nvariates:T,"y=x+a+b+a.x")
(1) 1

Cmd> modelvars(nx:T,"y=x+a+b+a.x")
(1) 3

Cmd> modelvars(hasconst:T, "y=x")
(1) T

Cmd> modelvars(hasconst:T, "y=x-1")
(1) F

Cross references
See also topics ’models’, varnames(), xvariables().

2.245. MORE() 347

2.245 more()

Usage:
more(x [, nsig:n, format:Fmt, missing:M ,stripdol:T]), wh ere x is a

macro or is a REAL, CHARACTER, or LOGICAL variable, n > 0 is an
integer, Fmt and M are CHARACTER scalars

Keywords: output, general

Usage
more(x) displays object x using a ’paging’ program that disp lays a
screenful at a time. On Unix/Linux by default it uses Unix/Li nux
program ’more’. If variable PAGER exists and is a CHARACTER s calar,
then it is assumed to specify a paging program. For example, o n some
Unix/Linux systems, if the value of PAGER is "less -x4", then more()
invokes Unix/Linux program ’less’ with tab stops set every 4 positions.

By default, when x is a macro, more(x) displays it after strip ping off
’$$’ from temporary variable names. Use more(x,stripdol:F) To see the
actual ’$$’ in the macro.

When x is REAL, you may use any of keywords ’nsig’, ’format’, a nd
’missing’ as on print(), but not ’name’ and ’file’.

The lines written to the screen are not written to a spool file , nor are
they redisplayed after a plot. See spool().

More is implemented as a pre-defined macro and is not availab le in all
versions of MacAnova.

2.246 Mouse()

Usage:
Str <- Mouse([getpoints:T or getlines:T or getbox:T] [,xyo nly:T or n:N]\

[,cancelok:T] [graphics keyword phrases]), positive inte ger N <= 20

Keywords: plotting

Introduction
Mouse() provides a way to get x-y coordinates from a graphics window so
that you can add points, lines, boxes or character informati on at points
whose x- and y-coordinates are chosen interactively.

Mouse() is implemented only in windowed versions and on Unix /Linux
versions implementing Tektronix 4014 emulation. (Of cours e, it cannot
workout a Tektronix terminal emulator that allows graphica l input (GIN)
mode.)

In a Unix/Linux version with Tektronix emulation, Mouse() a utomatically
activates the graphics screen. In windowed versions, you ha ve to select
the graphics window where you want to get x-y coordinates. In some
versions, pressing ’q’ at any time before the operation is fi nished

348 CHAPTER 2. MACANOVA HELP FILE

aborts Mouse() and pressing ’r’ restarts it, forgetting any coordinates
already selected.

Usage
The basic usages of Mouse() are as follows

Usage Returns
Str <- Mouse([xyonly:T]) x-y coordinates of 1 point
Str <- Mouse(getpoints:T [,xyonly:T]) x-y coordinates of 1 point
Str <- Mouse(getpoints:T, n:N [,xyonly:T]) x-y coordinate s of N points
Str <- Mouse(getlines:T [,xyonly:T]) 2 endpoints of a line
Str <- Mouse(getlines:T, n:N [,xyonly:T]) N+1 points defin ing seg-

mented line
Str <- Mouse(getbox:T [,xyonly:T]) x-y coordinates of the c or-

ners of a rectangular box,
plus the first corner
repeated.

N must be an integer between 1 and 20.

With each of these usages, you can also use keyword phrase ’ca ncelok:T’;
without ’cancelok:T’, cancelling Mouse() by pressing ’q’ i s considered
an error; with ’cancelok:T’, pressing ’q’ causes Mouse() im mediately to
return NULL.

Result
After you select one or more positions in graphics window I, S tr becomes
a structure whose first two components, ’x’ and ’y’, are REAL scalars or
vectors containing the x- and y-coordinates being returned .

With keyword phrase ’xyonly:T’, ’x’ and ’y’ are the only comp onents.
Otherwise the structure also has component ’window’ with in teger value
I, and component ’add’, a LOGICAL scalar with value True. Wit h
getlines:T and getbox:T, ’lines’ is an additional LOGICAL s calar
component having value True.

Graphics keyword use
When ’xyonly:T’ is not an argument, you can include addition al "extra"
keyword phrases, usually graphics keyword phrases, after t he Mouse()
keyword phrases just described. These will be made part of th e output
structure. For example, Mouse(getbox:T,linetype:2,thic kness:3) returns
structure(x:xcoord, y:ycoord, window:I, add:T,lines:T, linetype:2,
thickness:3). If keyword ’add’ is among these "extra" keywo rds, Mouse()
does not include its own component ’add’ in the structure ret urned, and
similarly for keywords ’lines’ and ’window’. For example,

Cmd> Str <- Mouse(getlines:T, symbols:"\1",add:F, lines: F)

sets Str to structure(x:xcoord, y:ycoord, window:I, symbo ls:"\1", add:F,
lines:F).

Comparison of versions
Using Mouse() differs slightly among different versions. O n windowed
versions you select positions by clicking and releasing the mouse button
with the cursor or pointer in a graphics window. In a version r unning

2.246. MOUSE() 349

under Xterm on a Unix/Linux workstation, you need to press En ter or
Return after releasing the mouse button. On other Tektronix terminal
emulators pressing the mouse button may be sufficient. On so me
emulators, it may not work at all.

The action of Mouse() starts when you click and release the mo use with
the cursor or pointer in a graphics window. The action then ta ken
depends on whether ’getpoints:T’, ’getlines:T’ or ’getbox :T’ is an
argument to Mouse() (default is ’getpoints:T’). The action ends when
you depress and release the button the final time. In the wind owed
versions, Mouse() draws temporary lines as you move the mous e in the
window, erasing them before it returns.

In windowed versions, at any time before the final click you c an restart
selection of locations by moving the cursor outside the wind ow.
Temporary lines or marks are erased and you can select a diffe rent
window if you want.

In windowed versions, you can interrupt and terminate the ac tion at any
time by selecting Interrupt on the File menu or pressing Ctrl +I
(Command+I on Macintosh). In unwindowed versions, pressin g the
interrupt key (usually Ctrl-C) terminates the action.

Keyword ’getpoints’
Mouse(getpoints:T [,n:N] ...) and Mouse([n:N] ...).

As you move the mouse, cross hairs (horizontal and vertical l ines)
appear and follow the cursor until you click and release at wh ich time
the point selected is marked temporarily. When N > 1, the cros s hairs
appear again until you click and release to mark the next poin t. This
continues for N points. After the final click, Mouse() erase s the
marked points and returns structure(x:xcoord, y:ycoord, w indow:I,
add:T) where xcoord and ycoord are the x- and y-coordinates o f the
point or points selected.

Mouse(getpoints:T,xyonly:T [,n:N]) or Mouse(xyonly:T [, n:N]) returns
only structure(x:xcoord, y:ycoord).

Keyword ’getlines’
Mouse(getlines:T [,n:N])

As you move the mouse until you click and release it again, a co ntin-
uously updated line is drawn between the current position of the mouse
and the first location clicked. When N > 1, another continuou sly
updated line is drawn between the current position and the se cond
location selected, and so on until N connected line segments have been
drawn. After the final click and release, Mouse() erases the lines
drawn and returns structure(x:xcoord, y:ycoord, window:I , add:T,
lines:T) where xcoord and ycoord contain the x- and y-coordi nates of
the N+1 points defining the segmented line.

Mouse(getlines:T,xyonly:T [,n:N]) returns only structur e(x:xcoord,
y:ycoord).

If you press the shift key while tracing a line, the line being drawn

350 CHAPTER 2. MACANOVA HELP FILE

if forced to be either horizontal or vertical.

Keyword ’getbox’
Mouse(getbox:T)

As you move the mouse, a continuously updated rectangular bo x is drawn.
One corner is at the first position clicked on and the opposit e corner
is the current position. After a second and final click and re lease,
Mouse() returns structure(x:vector(x1,x1,x2,x2,x1), y: vector(y1, y2,
y2,y1,y1),window:I, add:T,lines:T), where (x1,y1) is the initial
position clicked on and (x2,y2) is the final position of the o pposite
corner. Note that the initial position is repeated as the las t point
and that the points trace out the entire border of the box. Key word
phrase ’n:N’ is illegal with ’getbox:T’.

Mouse(getbox:T,xyonly:T) returns only
structure(x:vector(x1,x1,x2,x2,x1),y:vector(y1,y2,y 2,y1,y1))

If you press the shift key while moving the mouse, the rectang le drawn
is forced to be square (not in Tektronix emulation).

The form of the output from Mouse() is designed to make it easy inter-
actively to add information to a plot, either using one of the graphics
commands (see topic ’graphs’) or assignment to GRAPHWINDOW S (see topic
’graph_assign’).

Examples
Examples

Cmd> s <- Mouse(getpoints:T, symbols:" * ") # or s <- Mouse(symbols:" * ")

Cmd> GRAPHWINDOWS[s$window] <- s

This plots " * " at the position selected with the cross hairs. The
second command can be replaced by addpoints(GRAPHWINDOWS[s$window],
keys:s).

Cmd> s <- Mouse(getlines:T, linetype:2); GRAPHWINDOWS[s$ window] <- s

This draws in the window the line determined by two click and r eleases
of the mouse in a graphics window.

Cmd> s <- Mouse(getbox:T); GRAPHWINDOWS[s$window] <- s

This draws in the window the box determined by the mouse posit ions.

Use with GRAPHWINDOWS
If you know the window you will draw into, say window 1, you can plot a
point, line or box simply by GRAPHWINDOWS[1] <- Mouse(KEY:T ...), where
KEY is ’getpoint’, ’getline’ or ’getbox’:

Cmd> s <- Mouse(getlines:T, n:5, linetype:2,thickness:3)

Cmd> addlines(GRAPHWINDOWS[s$window], keys:s)

2.247. MOVAVG() 351

This draws 5 connected line segments with line type 2 and thic kness 3.

Cmd> s <- Mouse(getlines:T, show:F)

Cmd> addlines(GRAPHWINDOWS[s[3]], keys:s[-3])

Cmd> addstrings(s$x[1],s$y[1], "Interesting feature",\
window:s$window, justify:"l")

This draws the line and then draws "Interesting feature" at t he first
position clicked on. Component ’window’ is omitted in addli nes() (by
using s[-3] as an argument) because ’window:n’ can’t be used with
’show:F’.

Cross references
See also ’structures’, strconcat(), addlines(), addstrin gs().

2.247 movavg()

Usage:
movavg(Theta,A [,reverse:T, limits:vector(i1 [,i2]), st art:startVals,\

seasonal:L]), REAL vector or NULL Theta, REAL vector or matr ix A, REAL
startVals the same size and shape as A, positive integer L

Keywords: time series

Introduction
movavg() is designed to implement a moving average operator as the term
is used in ARIMA time series analysis. For a more ordinary mov ing
average, convolve() is preferable. movavg() can also be use d to compute
differences of a series or, together with autoreg(), to find the power
series coefficients of rational functions.

Usage
movavg(Theta,A) applies the moving average operators spec ified by the
columns of the REAL matrix Theta to the columns of the REAL mat rix A.
If ncols(Theta) = 1, Theta is applied to every column of A and i f
ncols(A) = 1, each column of Theta is applied to A. The result i s a
matrix with nrows(A) rows and max(ncols(Theta), ncols(A)) columns. If
both Theta and A have more than one column, they must both have the same
number of columns.

Specifically, assuming for simplicity that both Theta and A are vectors
so that the result x is a vector, then

x[i] = A[i] - sum(Theta[k] * A[i-k],1<=k<=nrows(theta)),
with A[l] taken to be 0 for l < 1.

When Theta is a vector, movavg(Theta,A) can be expressed in m atrix terms
as Theta1 % * % A, where Theta1 is a nrows(A) by nrows(A) matrix. For
example, when nrows(Theta) = 2,

[1 0 0 0 ... 0 0 0]

352 CHAPTER 2. MACANOVA HELP FILE

[-Theta[1] 1 0 0 ... 0 0 0]
Theta1 = [-Theta[2] -Theta[1] 1 0 ... 0 0 0]

[0 -Theta[2] -Theta[1] 1 ... 0 0 0]
[..]
[0 0 0 0 ... -Theta[2] -Theta[1] 1]

NOTE: The sign assumed for Theta is not affected by variable M ASIGN
which is recognized by several macros in file Arima.mac. Typ e
arimahelp(MASIGN) for details.

If Theta is NULL, the result is the same as A, stripped of label s or
notes, if any. Also, the result is a true vector or matrix (ndi ms = 1
or 2).

First and higher differences
A common usage is movavg(1,A), where A is a vector or matrix. T his
computes the first differences A[1,] - 0,A[2,]-A[1,], ..., A[n,]-A[n-1,].
Second differences can be computed by movavg(vector(2,-1) ,A), third
differences by movavg(vector(3, -3, 1), A), and so on.

Keywords ’reverse’ and ’seasonal’
movavg(Theta,A,reverse:T) applies the moving average ope rator in
reverse:

x[i] = A[i] - sum(Theta[k] * A[i+k],1<=k<=nrows(phi))
with A[l] = 0 for l > nrows(A).

movavg(Theta,A,seasonal:L [,reverse:T) does the same, ex cept that the
computations are of the forms

x[i] = A[i] - sum(Theta[k] * A[i-k * L],1<=k<=nrows(Theta)).

Keywords ’limits’ and ’start’
movavg(Theta,A,limits:vector(i1,i2),start:StartVals [,reverse:T,
seasonal:L]) is the same except that x[i] is computed as just described
only for i1 <= i <= i2, with the remaining values copied from ro ws 1 to
i1-1 and rows i2+1 to nrows(A) of matrix StartVals.

The value for limits can also be a scalar j between 1 and nrows(A). In
this case, with reverse:T, i1 = 1, i2 = j, and without reverse: T, i1 =
j, i2 = nrows(A).

StartVals must have the same number of columns as A and usuall y has the
same number of rows. When nrows(StartVCals) != nrows(A), wi thout
reverse:T, i2 must be nrows(A) and with reverse:T, i1 must be 1. In
this case, the elements of StartVals are copied to the rows no t included
between i1 and i2 and hence nrows(start) must match nrows(A) - (i2 - i1
+ 1).

Unlike what happens with autoreg(), the values computed for rows i1 to
i2 are unaffected by the values of StartVals.

Examples
Examples (theta and theta1 vectors of same length):

Cmd> m <- nrows(theta); n <- 300

2.248. MULVARHELP() 353

Cmd> movavg(theta,rnorm(n+m))[-run(m)]
generates a moving average series with normal innovations.

Cmd> movavg(theta,matrix(rnorm(10 * (n+m),10))[-run(m),]
generates 10 independent moving average series

Cmd> movavg(hconcat(theta,theta1),rnorm(n+m))[-run(m)]
generates two moving average series with the same innovatio ns

Cmd> movavg(.3,movavg(-.1,rnorm(230),seasonal:4))[-r un(30)] generates
a (0,0,1)x(0,0,1)-4 seasonal ARMA time series

Relationship with autoreg()
movavg() is the inverse of autoreg() and vice versa, in that

movavg(phi,autoreg(phi,x)) and autoreg(phi,movavg(phi ,x))
both reproduce x, except for rounding error.

Cross references
See also autoreg().

2.248 mulvarhelp()

Usage:
mulvarhelp(topic1 [, topic2 ...] [,usage:T] [,scrollback :T])
mulvarhelp(topic, subtopic:Subtopics), CHARACTER scala r or vector

Subtopics
mulvarhelp(topic1:Subtopics1 [,topic2:Subtopics2 ...])
mulvarhelp(key:Key), CHARACTER scalar Key
mulvarhelp(index:T [,scrollback:T])

Keywords: general, multivariate analysis

Usage
mulvarhelp(Topic1 [, Topic2, ...]) prints help on topics To pic1, Topic2,
... related to macros in file mulvar.mac. The help is taken fr om file
mulvar.mac.

mulvarhelp(Topic1 [, Topic2, ...] , usage:T) prints usage i nformation
related to these macros.

mulvarhelp(index:T) or simply mulvarhelp() prints an inde x of the topics
available using mulvarhelp(). Alternatively, help(index :"mulvar") does
the same thing.

mulvarhelp(Topic, subtopic:Subtopic), where Subtopic is a CHARACTER
scalar or vector, prints subtopics of topic Topic. With subt opic:"?", a
list of subtopics is printed.

mulvarhelp(Topic1:Subtopics1 [,Topic2:Subtopics2], .. .), where
Suptopics1 and Subtopics2 are CHARACTER scalars or vectors , prints the
specified subtopics. You can’t use any other keywords with t his usage.

In all the first 4 of these usages, you can also include help() keyword
phrase ’scrollback:T’ as an argument to mulvarhelp(). In wi ndowed

354 CHAPTER 2. MACANOVA HELP FILE

versions, this directs the output/command window will be au tomatically
scrolled back to the start of the help output.

Keyword ’key’
mulvarhelp(key:key) where key is a quoted string or CHARACT ER scalar
lists all topics cross referenced under Key. mulvarhelp(ke y:"?") prints
a list of available cross reference keys for topics in the fil e.

mulvarhelp() is implemented as a predefined macro.

Cross references
See help() for information on direct use of help() to retriev e
information from mulvar.mac.

2.249 nameof()

Usage:
nameof(var1, var2, ...)

Keywords: variables, character variables

Usage and example
nameof(arg1, arg2, ..., argk) returns a CHARACTER vector co ntaining the
names of the arguments. If an argument is the result of a compu tation
or is a quoted string, its name will be descriptive.

If an argument is missing, the name returned is "".

Example:
Cmd> nameof(x,cos,17,3+5,vector(x),matrix(run(10),5) ,,"Hello")
(1) "x"
(2) "cos"
(3) "NUMBER"
(4) "NUMBER"
(5) "VECTOR"
(6) "MATRIX"
(7) ""
(8) "STRING"

Cross references
See also compnames(), isname(), typeof(), varnames(), ren ame()

2.250 nbits()

Usage:
nbits(x), where x consists of 1 or more integers between 0 and

4294967295

2.251. NCOLS() 355

Keywords: operations, transformations, glm

Usage
nbits(x), where x is an integer with value between 0 and 42949 67295
(2ˆ32-1), computes the number of non-zero bits in the binary
representation of x. For example, nbits(123455) is 11 since 123455 has
binary representation 0000000000000001111000100011111 1b.

If x is not an integer or x < 0 or x > 4294967295, a warning messag e is
printed and the result is set to MISSING.

If x is a REAL vector, matrix or array or a structure all of whos e
components are REAL, nbits(x) is a variable or structure of t he same
size and shape as x, each element of which is the number of bits in the
corresponding element of x.

nbits() is useful with the output of modelinfo(bitmodel:T) .

Examples
Examples:
After anova("y=(a+b)ˆ2 + ((a+b)ˆ2).x",silent:T) the foll owing commands
compute the number of variables or variates in term 5 and in al l terms:

Cmd> nvars5 <- sum(vector(nbits(modelinfo(bitmodel:T)[5,]))); nvars5
(1) 2

Cmd> vector(sum(nbits(modelinfo(bitmodel:T)’)),label s:TERMNAMES[-8])
CONSTANT a b a.b a.x b.x

a.b.x
0 1 1 2 2 2
3

Cross references
See also topics ’bit_ops’, modelinfo().

2.251 ncols()

Usage:
ncols(x) where x is a matrix or generalized matrix

Keywords: variables

Usage and examples
ncols(x) returns the number of columns of matrix argument x. If x has
more than two dimensions, no more than two dimensions may exc eed 1 and
it is treated as described in topic ’matrices’.

If x is a structure, ncols(x) is a structure. If xi is the i-th
component of x, the i-th component of ncols(x) is ncols(xi).

Examples

356 CHAPTER 2. MACANOVA HELP FILE

Cmd> x <- run(7); vector(nrows(x),ncols(x),nrows(x’),nc ols(x’))
(1) 7 1 1 7

Cmd> y <- array(run(24),1,6,1,4);vector(nrows(y),ncols (y))
(1) 6 4

Cmd> ncols(structure(x,y))
component: x
(1) 1
component: y
(1) 4

Cross references
See also topics nrows(), dim(), ndims(), length(), ’struct ures’.

2.252 ncomps()

Usage:
ncomps(Str) where Str is a structure

Keywords: variables, structures

Usage and example
ncomps(Str) returns the number of components in structure S tr. It is an
error if Str is not a structure.

Example:
Cmd> ncomps(describe(run(10))) # describe has structure r esult
(1) 8

Cross references
See also topics ndims(), dim(), length(), isstruc(), descr ibe(),
’structures’.

2.253 ndims()

Usage:
ndims(x)

Keywords: variables, null variables

Usage
ndims(x) computes the number of dimensions of x. If x is a vect or,
ndims(x) is 1; if x is a matrix, ndims(x) is 2, even if has colum n
dimension 1.

If x is a NULL variable, ndims(x) is 0.

2.254. NEXT 357

If x is a structure, ndims(x) is a structure. If x_i is the i-th
component of x, the i-th component of ndims(x) is ndims(x_i) .

Examples
Examples:

Cmd> x <- run(7); vector(ndims(x),ndims(x’), ndims(x’’))
(1) 1 2 2

Cmd> y <- array(run(24),1,6,1,4); ndims(y)
(1) 4

Cmd> ndims(structure(x,y))
component: x
(1) 1
component: y
(1) 4

Cross references
See also topics length(), dim(), ’NULL’.

2.254 next

Usage:
for(i,run(n)){if(x[i] < 0){next} }
for(i,run(n)){for(j,run(m)){if(x[i,j] < 0){next 2} }}

Keywords: control, syntax

Usage
’next’, when used in a ’while’ or ’for’ loop, skips to just bef ore the
’}’ that terminates the loop, ignoring any intervening comm ands.
Execution resumes immediately before the ’}’.

’next n’, where n is a positive integer, skips to the end of the n-th
enclosing loop. For example, ’next 1’ is equivalent to ’next ’ and will
skip to the end of the current loop; ’next 2’ will exit the curr ent loop
and skip to the end of the loop enclosing it; and so on. n must be a
literal integer (’1’, ’2’, ...) and not a variable with integ er value.

It is an error to use ’next’ outside of a loop or to use ’next n’ w hen
not enclosed in at least n loops.

In a macro or evaluated string
In an evaluated string or out-of-line macro, ’next’ can be us ed only to
skip to the end of a loop that started in the macro or evaluated string.
It is an error to try to skip to the end of a loop that started out side
the macro or evaluated string. See evaluate() and ’macros’.

Using ’next’ in an in-line macro to skip to the end a loop that s tarted
outside the macro will work, but is a bad programming practic e.

358 CHAPTER 2. MACANOVA HELP FILE

Examples
Examples:

for(i,run(100)){... compute x ...;if(x<0){next};... do s omething ...;}
Whenever the computed x becomes negative, no further comput ation is done
for that value of i.

for(i,run(10)){for(j,run(5)){...;if(x<0){next 2}; ... }; ...}
Whenever x becomes negative on any pass through the j loop, th at loop is
terminated and execution resumes before the ’}’ which ends t he i loop.

Cross references
See also topics ’if’, ’for’, ’while’, ’break’, ’breakall’, batch().

2.255 notes

Usage:
This topic has information on" notes" attached to variables .
Functions for working with such notes are:

attachnotes(x, Notes) # attach Notes to x
attachnotes(x, NULL) # remove notes from x
notes <- getnotes(x) # retrieve notes from x
if (hasnotes(x)){...do something with notes...}
y <- vector(x, notes:Notes) # create vector with notes Notes
y <- matrix(x, notes:Notes) # create matrix with notes Notes
y <- array(x, notes:Notes) # create array with notes Notes
plot(x,y [,...],notes:Notes) # Notes attached to LASTPLOT
chplot(x,y,symbols:ch [,...],notes:Notes) # Notes attac hed to LASTPLOT
lineplot(x,y [,...], notes:Notes) # Notes attached to LAST PLOT
showplot([...,] notes:Notes) # Notes attached to LASTPLOT

Keywords: general, macros, variables

Using notes on variables
You can attach CHARACTER vectors as "notes" to almost any var iable,
including GRAPH variables and macros. These can be used to re cord
descriptions of data or plots or usage notes for macros.

When x is an existing variable

Cmd> attachnotes(x, vector("Heights of Stat 1001 students ",\
"collected Fall 1997"))

attaches the descriptions to variable x.

You can append additional notes to a variable using appendno tes():

Cmd> appendnotes(x, "There were 29 women and 21 men")

You retrieve notes from a variable by, for example,

2.255. NOTES 359

Cmd> getnotes(x)
(1) "Heights of Stat 1001 students"
(2) "collected Fall 1997"
(3) "There were 29 women and 21 men"

Use with inforead()
One useful trick is to use inforead() to retrieve the comment lines
associated with a data set in a file readable by read() and mat read()
(see topics ’matread_file’ and inforead()) and then use att achnotes() to
attach them to the matrix:

Cmd> y <- read("macanova.dat", "irisdata", quiet:T)

Cmd> attachnotes(y, inforead("macanova.dat", "irisdata ", quiet:T))

Keyword ’notes’
You can also attach notes using keyword phrase ’notes:Notes ’ on
vector(), matrix(), array(), structure(), macro() or any o f the plotting
commands, where Notes is a CHARACTER scalar or vector. For ex ample,

Cmd> x <- array(x, notes:Notes) # Notes a CHARACTER vector

Cmd> plot(x, y, notes:"Plot of height vs weight")

Notes in files
Commands matprint(), matwrite() and macrowrite() automat ically write any
attached notes in a form that is readable by read(), matread() and
macroread(). See topic ’matread_file’

Propagation of notes
Generally notes do not "propagate" except in a few situation s when the
result of a function is essentially the same as an argument to that
function. Here are the specific situations when a copy of any notes
attached to x is attached to y.

y <- x
y <- vector(x [,labels:Labels]), when isvector(x) is True
y <- matrix(x [,labels:Labels]), when ismatrix(x) is True
y <- matrix(x, nrows(x) [,labels:Labels]), when ismatrix(x) is True
y <- array(x, [,labels:Labels])
y <- array(x,dim1,dim2,.. [labels:Labels]), when all the n ew

dimensions match those of x
y <- strconcat(x [,labels:Labels] [,compnames:Names]) wh en

x is a structure.

Cross references
See also topics attachnotes(), getnotes(), appendnotes() , vector(),
matrix(), array(), structure(), macro(), list(), ’graph_ keys’.

360 CHAPTER 2. MACANOVA HELP FILE

2.256 nrows()

Usage:
nrows(x), x a matrix or generalized matrix

Keywords: variables

Usage and examples
nrows(x) returns the number of rows of matrix argument x. If x has more
than two dimensions, no more than two dimensions may exceed 1 and it is
treated as described in topic ’matrices’.

Examples:
Cmd> x <- array(run(24),1,6,1,4); y <- run(7)

Cmd> vector(nrows(x),ncols(x))
(1) 6 4

Cmd> vector(nrows(y),ncols(y))
(1) 7 1

Cmd> vector(nrows(y’),ncols(y’))
(1) 1 7

If x is a structure, nrows(x) is a structure. If xi is the i-th
component of x, the i-th component of nrows(x) is nrows(xi).

Cross references
See also topics ncols(), dim(), ndims(), length(), ’struct ures’.

2.257 NULL

Usage:
x <- NULL creates a NULL variable
isnull(x) tests whether a variable is NULL.

Keywords: null variables, variables

Description
A NULL variable is a special type of variable. Unlike REAL, LO GICAL or
CHARACTER variables, a NULL variable contains no data. You m ight think
of it as an completely empty variable. Many functions and com mands such
as anova(), regress() and print() that are primarily execut ed for their
"side effects" return a NULL variable as value.

Working with NULL variables
You can explicitly create a NULL variable by

Cmd> nullvar <- NULL
or

Cmd> nullvar <- print("Hello!") # value of print() is NULL

2.258. NUMBER 361

You can use isnull() to test whether a variable is NULL.

Cmd> isnull(NULL, PI, T, "hello", nullvar)
(1) T F F F T

See isnull() for details.

Limitations
For obvious reasons, you can’t do arithmetic or comparisons with NULL
variables and most commands and functions do not accept NULL variables
as arguments.

NULL arguments
A few functions such as vector(), hconcat(), vconcat(), sum (), prod(),
min() and max() do accept NULL arguments. For example, vecto r(NULL,a,b)
and min(NULL,a,b) are equivalent to vector(a,b) and min(a, b),
respectively. Here is an example where this might be useful.

Cmd> x <- run(10); fstats <- NULL # or fstats <- vector(NULL)

Cmd> for(i,run(1000)){regress("{.1 * x+rnorm(10)}=x",silent:T)
fstats <- vector(fstats,SS[2]/(SS[3]/DF[3]));;}

This creates a random sample of F-statistics based on a regre ssion of y
on x where y = .1 * x + rnorm(10) (see regress(), ’models’, rnorm())
Although fstats starts out NULL, by the end of the first trip t hrough
the loop, it contains the first F-statistic. Without NULL va riables,
the loop would have to be something like the following:

Cmd> for(i,run(1000)){
regress("{x+rnorm(10)}=x",silent:T); fstats <- \

if(i==1){SS[2]/(SS[3]/DF[3])}else{vector(f,SS[2]/(S S[3]/DF[3]))}}

A better way to implement this example would probably be init ialize by
fstats <- rep(0,1000), and save each value by fstats[i] <-
SS[2]/(SS[3]/DF[3]).

Cross references
See also topics ’for’ and ’if’.

2.258 number

Keywords: variables, syntax, missing values

Entering numbers and missing values
You enter numbers as integers with or without out a decimal po int, as
decimal numbers, or using exponential notation (X.XXeY or X .XXEY is XX.X

* 10ˆY).

Cmd> a <- 65535 # same as a <- 65535. or a <- 65535.0000

362 CHAPTER 2. MACANOVA HELP FILE

Cmd> a <- -3141.592654; b <- .0000415; c <- 1000000

Cmd> a <- -3.141592654e3; b <- 4.15E-5; c <- 1e6# same as prece ding

For greater readability of long numbers, you can use ’_’ to se parate
digits in the mantissa (the entire number without ’e’ or ’E’ o r the part
before ’e’ or ’E’).

Cmd> a <- -3_141.592_654e4 # same as a <- -3141.592654e4

Warning: _3_141, for example, is a legal variable name, not a number.

Fortran style double precision numbers like -3.14592654d3 and 4.15D-5
are read as if the ’d’ or ’D’ were ’e’ (except by read() and matr ead()).

It is an error to attempt to enter a number that is too large to b e
represented in the computer. For example,

Cmd> d <- 3.1e5000

is an error. On most computers the largest numbers are about + -2ˆ1024 =
+-1.79769e+308 and the smallest nonzero numbers are about + -2ˆ(-1024) =
5.56268e-309.

You enter MISSING values using the symbol ’?’.

Cmd> e <- vector(1,2,3,?,4,5,?) # vector with 2 MISSING valu es.

Other representations for MISSING such as ’ * ’ and ’.’ which are
recognized by vecread() are not recognized in MacAnova comm ands.
However, since NA is a predefined locked REAL scalar with val ue MISSING,

Cmd> e <- vector(1,2,3,NA,4,5,NA) # vector with 2 MISSING va lues

works fine (unless you have deleted NA).

Numbers and missing values in output
By default, most numeric output is printed using a hybrid bet ween
integer, decimal and exponential format. MISSING values ar e normally
printed as ’MISSING’.

Cmd> vector(100 * PI, 1e6 * PI, PI/100, PI/1e6)
(1) 314.16 3.1416e+06 0.031416 3.1416e-06

Cmd> vector(34, ?)
(1) 34 MISSING

You can change these defaults by setoptions() keywords ’for mat’ and
’missing’. Here is an example:

Cmd> setoptions(missing:"NA", format:"12.4f")

Cmd> vector(100 * PI, 1e6 * PI, PI/100, PI/1e6)

2.258. NUMBER 363

(1) 314.1593 3141592.6536 0.0314 0.0000

Cmd> vector(34, ?)
(1) 34.0000 NA

See topics setoptions(), ’options’, print().

Cross references
See also topic ’syntax’.

364 CHAPTER 2. MACANOVA HELP FILE

2.259 options

Usage:
setoptions(option1:value [,option2:value ...] [,badopt ok:T]) option1,

option2, ... names of options, sets option values
getoptions(option1:T [,option2:T ...] [,badoptok:T]), o ption1, option2,

... option names of options, retrieves option values
List of options that may be set and retrieved

Option name Values (* = default)
angles "radians" * , "degrees" or "cycles"
batchecho T * or F
dumbplot T * or F
errors integer >= 0
findmacros "yes" * , "silent" or "no"
font quoted string ("McAOVMonaco" *) [Mac]
fontsize integer > 0 (9) [Mac]
format quoted string ("12.5g" *)
fstats T or F *
height integer >= 0 (screen size *)
history integer >= 0 (100 *)
inline T or F *
keyboard integer >= 0 (2 *) [Windows]
labelabove T or F *
labelstyle "(" * , "[", "{", "<", "/", "\\"
lines integer >= 0 (screen size *) [same as ’height’]
matchdelay integer >= 0 [windowed versions only]
maxlinelen integer >= 80
maxwhile integer >= 10 (1000 *)
minpvalue 0 <= number <= .001 (1e-8)
missing quoted string <= 20 characters ("MISSING" *)
nsig 0 < integer <= 20 (5 *)
prompt quoted string <= 20 characters ("Cmd> " *)
pvals T or F *
quiet T or F *
restoredel T * or F
savehistry T * or F [not limited memory DOS]
scrollback T or F * [windowed versions only]
seeds 2 integers > 0 or both 0 *
tekset CHARACTER vector of length 2 [non-windowed

Unix/Linux only]
traceback T or F *
update T or F [not windowed versions]
vecread "byfields" or "notbyfields" *
warnings T * or F
wformat quoted string ("16.9g" *)
width integer >= 30 (screen size *)

For details on an option, type help(options:Option) where O ption is a
quoted option name. Example: help(options:"nsig").

Keywords: control, missing values, output, random numbers, gen-
eral

Introduction
MacAnova has a variety of options you may set. These control o r affect

2.259. OPTIONS 365

output formatting, "dumb" graph size, the units used by trig onometric
functions, the string printed for MISSING values, the comma nd line
prompt, macro creation, while loops, random number generat ion and the
action of save(), asciisave() and restore() (not an exhaust ive list).

It may be helpful to think of options as hidden variables with LOGICAL,
CHARACTER or REAL values. You use setoptions() to change the ir values
and getoptions() to retrieve their values.

You can get a brief list of options names with permissible val ues by
typing ’usage(options)’.

You can get an description of an individual option by typing
help(options:optionName), where optionName is the quoted name of the
option. For example, help(options:"format") gives inform ation on
option ’format’.

This topic lists all option that may be set. Permissible valu es for
each option are in parentheses after the option name, usuall y with the
default value indicated. A quoted string ("radians", for ex ample) can
be replaced by a CHARACTER scalar and T or F can be replaced by a
LOGICAL scalar.

Options that may be set
Option ’angles’

angles ("radians", "degrees" or "cycles", default = "radia ns")
Example: setoptions(angles:"cycles")

The value specifies the angular units assumed for sin(), cos (), tan(),
asin(), acos(), atan(), cpolar(), hpolar(), crect(), hrec t() and
unwind(). The default value is "radians". When ’angles’ is
"degrees", 360 is equivalent to 2 * PI radians; when it is "cycles", 1
is equivalent to 2 * PI radians. See also topic ’transformations’.

Option ’batchecho’
batchecho (T or F, default = T) Example: setoptions(batchec ho:F)

The value determines whether command lines that are read fro m a file
by batch() are echoed to output. True means echo; False means don’t
echo. It is ignored when you use keyword ’echo’ on batch(). Se e
batch().

Option ’dumbplot’
dumbplot (T or F, default = F) Example: setoptions(dumbplot :F)

The value affects the default behavior of all plotting comma nds
(plot(), chplot(), lineplot(), addpoints(), boxplot(), . ..). When it
is True, these commands make "dumb" plots, that is plots usin g only
characters such as could be produced on a printer with no grap hics
capability. When ’dumbplot’ is False, high resolution grap hs are
drawn. It is ignored when you use keyword ’dumb’ on a plotting
command. In non-interactive mode, ’dumbplot’ is always Tru e.

When you use spool() to save your output to disk and ’dumbplot ’ is
True, copies of all your plots will be spooled.

366 CHAPTER 2. MACANOVA HELP FILE

Option ’errors’
errors (integer >= 0) Example: setoptions(errors:20)

The value n is the maximum number of errors tolerated. n = 0 mea ns
errors will not be counted.

When setoptions(errors:n) is executed from a batch file, n i s used
only until entry from the keyboard is next needed. If more tha n n
errors are found while a batch file is being read, reading fro m all
current batch files is terminated.

In interactive mode, ’errors’ is initially set to 0 (ignore e rrors).
If it is not reset, use of batch() temporarily sets the error l imit to
1; it reverts to 0 when commands from the batch file are comple ted.

Option ’findmacros’
findmacros ("yes", "silent" or "no", default = "yes")

Example: setoptions(findmacros:"no")
The value controls the behavior of MacAnova when it encounte rs what
looks like a call to a macro, but no macro with the name is defin ed.
When ’findmacros’ is "yes" or "silent", MacAnova searches a ll the
files in pre-defined CHARACTER variable MACROFILES (see ge tmacros()
and addmacrofile()) for the macro. If a macro with that name i s
found, it is read in and then executed. When ’findmacros’ is " no", no
search is made, resulting in an error. When ’findmacros’ is " yes", a
warning message is printed before the search, and another on e if the
search is unsuccessful. When ’findmacros’ is "silent" or "n o", no
special messages are printed.

Option ’font’
font (quoted string) Example: setoptions(font:"Courier")

This option is only available on Mac OS 9. The value is the name of
the font used in the active command/output window and any add itional
windows that you may open from this window. The value should b e the
name of an available font such as "Courier" or "Monaco". You c an set
both options ’font’ and ’fontsize’ by, for example,
setoptions(font:"Courier 12") (see ’fontsize’ below). Th e default
value of ’font’ is "McAOVMonaco".

setoptions(font:"default") restores the default font and size. See
options ’fontsize’ below.

When you change the font, you will almost certainly want to ch oose a
non-proportional font such as "Courier" or "Monaco", that i s, a font
for which all characters, including spaces, have the same wi dth. If
not, columns will not line up and, in general, output will be h ard to
read.

If you regularly prefer a font other than the default font, yo u might
want to set this option in your startup file. See topic ’custo mize’.

Option ’fontsize’
fontsize (integer > 0) Example: setoptions(fontsize:18)

The value is the size of the font used in the command/output wi ndow

2.259. OPTIONS 367

and any additional windows you may open from this window. Opt ion
’fontsize’ is available only in Mac OS 9 versions, for which t he
default value is 9.

Option ’format’
format (quoted string, default "12.5g")

Example: setoptions(format:"13.6f")
The value specifies the default format for printing. For exa mple, if
the value of ’format’ is "12.5g", most output will be in float ing
point form with 5 significant digits and a maximum width of 12
characters.

The value must be of the form "w.dg" (floating point with d
significant digits and width w characters, including sign a nd
exponent), or "w.df" (fixed point format with d digits after the
decimal and minimum width w). If w is omitted (for example, ". 5g") it
is taken to be d+7. Examples are "10.5f" (fixed point with 5 de cimal
places and total width of 10) and ".15g" (floating point with 15
significant digits and width 22). See print() for more discu ssion of
format specification.

When setting ’format’, you can put the format type specifier (’f’ or
’g’) at the start of format. For example, setoptions(format :"f10.6")
is equivalent to setoptions(format:"10.6f"). When you ret rieve the
value using getoptions(format:T), ’f’ or ’g’ is always at th e end.

If you omit the width w (setoptions(format:".10g")), w = d+7 is
assumed ("17.10g"). If you try to set the format so that w > 27 o r d
> 20, 27 and 20 are used, respectively.

The ’g’ format is a hybrid of integer format, decimal format w ith no
exponent, and exponential format. There is no purely expone ntial
format available. See topic ’number’.

Option ’fstats’
fstats (T or F, default F) Example: setoptions(fstats:T)

The value affects the default behavior of anova(), robust() and
fastanova(). F-statistics are printed only when the value i s True.
The value of option ’fstats’ is ignored when keyword ’fstats ’ is used
on these commands.

Option ’fstats’ affects manova() only when ’byvar:T’ is an a rgument.

Option ’height’
height (integer >= 0, default depends on screen size)

Example: setoptions(height:20)
The value is the assumed number of lines of output that will fi t on
the screen or in the command/output window.

If nLines is the value of ’height’, under Unix/Linux and DOS, whenever
nLines-1 lines of output printed by a single command line, Ma cAnova
will print "Hit RETURN to continue or q RETURN to go to next com mand
line:" and then pause. If command line editing is available, the

368 CHAPTER 2. MACANOVA HELP FILE

message is "Press ’q’ to quit, ’j’ or ’n’ to see next line, any o ther
key to continue".

The value of ’height’ also affects the default size of stemle af
displays and "dumb" plots.

When the value of ’height’ is 0, counting of output lines is
suppressed and the default size of stemleaf displays and "du mb" plots
is 24.

On Mac OS 9, the value of ’height’ may be reset when the output
window is resized; the only effect of the value is on the numbe r of
lines in a "dumb" plot.

The value of ’height’ can be predefined using the -l command l ine
option. See topic ’launching’.

The value of option ’height’ is ignored when keyword ’height ’ is used
on print(), write(), matprint(), matwrite() and error() or on plotting
functions such as plot() and boxplot() (see ’graph_keys’).

See topics stemleaf(), ’graphs’.

Option ’history’
history (integer >= 0) Example: setoptions(history:200)

The value is the number of command lines that are saved and may be
retrieved. The default value for history is 100.

When the value of ’history’ is 0, no command lines are saved.

Option ’inline’
inline (T or F, default = F) Example: setoptions(inline:T)

The value specifies the default method of macro expansion, i n-line
when the value is True or out-of-line when it is False. The val ue of
option ’inline’ is ignored when you use keyword ’inline’ on m acro() or
when you use macroread() to read a macro with ’INLINE’ or ’OUT LINE’ on
its header line. See topics macro(), macroread(), ’macros’ ,
macro_files.

Option ’keyboard’
keyboard (integer >= 0) Example: setoptions(keyboard:1)

This currently has an effect only in the Windows version when using a
non-US keyboard with an Alt Gr key. The value determines whet her
codes generated by key combinations involving the Alt Gr key are
recognized. When keyboard = 2 (the default), any such key
combinations are recognized. When keyboard = 1, only key com binations
associated with ASCII codes between 32 (space) and 126 (˜) ar e
recognized. When keyboard = 0, no Alt Gr key combinations are
recognized.

Note: This value of ’keyboard’ should not affect US keyboard
configurations. The option is provided to allow modificati on of
recognition of Alt Gr combinations in case there are problem s with the

2.259. OPTIONS 369

default behavior. Other values may have special meaning in t he
future.

Option ’labelabove’
labelabove (T or F, default = F) Example: setoptions(labela bove:T)

This option specifies the placement of default coordinate l abels when
printing variables without labels (see topic ’labels’).

When the value is True, the values for the last subscript (onl y
subscript in the case of vectors) are printed above the data i nstead
of all the subscripts being printed in the left margin. This h as no
effect on the printed labels of CHARACTER varables which are always at
the left. The effect is the same as if the variable had labels w hich
were all of the form rep("@",dimsize). The default value is F alse.

Option ’labelstyle’
labelstyle ("(", "[", "{", "<", "/", "\\", default = "(")

Example: setoptions(labelstyle:"[")
This option specifies the style used in printing coordinate labels for
unlabelled variables (see topic ’labels’). For example, wh en its
value is "[", ’[’ and ’]’ are used instead of the default ’(’ an d ’)’.

Option ’lines’
lines (integer >= 0, default depends on screen size)

Example: setoptions(lines:20)
Option ’lines’ is the same as option ’height’ (see above). It is
retained for compatibility with earlier versions.

Option ’matchdelay’
matchdelay (integer >= 0, default 20) (Macintosh OS 9 only)

Example: setoptions(matchdelay:30)
This sets the amount of time a matching left parenthesis or br acket is
highlighted when you type a right parenthsis or bracket. A va lue of 0
turns off such highlighting. The unit is ticks (1/60 second) .

Option ’maxlinelen’
maxlinelen (integer >= 80, default 2000)

Example: setoptions(maxlinelen:5000)
This provides an upper limit on the length of lines from a file that
can be completely read by vecread(), read(), matread() and
macroread(). It also applies when reading from a CHARACTER v ariable
using keyword ’string’. If a longer line is found, you are war ned
that not everything in the line was read.

Option ’maxwhile’
maxwhile (integer >= 10, default 1000)

Example: setoptions(maxwhile:50000)
The value is the default upper limit on the number of repetiti ons of a
while(){...} loop. When the limit is exceeded the loop is ter minated
with an error message.

Option ’minpvalue’
minpvalue (0 <= number <= .001, default .00000001)

370 CHAPTER 2. MACANOVA HELP FILE

Example: setoptions(minpvalue:5e-6)
The value is the default lower limits for P-values to be print ed as
computed by GLM commands such as regress(), anova() or logis tic().
Values below the limit are printed as "> 1e-8", for example. W hen the
value is 0, P-values are always printed as computed.

If the value provided has more than 2 significant digits (2.5 4e-6, for
example) it is rounded (to 2.5e-6, for example) and a warning message
is printed.

Changing option ’minpvalue’ doesn’t affect values compute d by cumxxx()
functions (cumF(17.975,5,45,upper:T), for example) or by macro
twotailt().

Option ’missing’
missing (quoted string with length <= 20 characters, defaul t "MISSING")

Example: setoptions(missing:"NA")
The value is the default string used to print MISSING REAL or L OGICAL
values. For example, after setoptions(missing:"NA") any M ISSING
values will be printed as "NA" instead of the usual "MISSING" . The
value of option ’missing’ is ignored when you use keyword ’mi ssing’ on
print() or write(). See print(), write().

Changing option ’missing’ does not affect the internal repr esentation
of MISSING or what gets written by matprint() and matwrite() .

Option ’nsig’
nsig (0 < integer <= 20, default = 5)

Example: setoptions(nsig:10)
The value is the maximum number of significant digits or deci mals to
be used in most numerical output. Its value is linked to that o f
option ’format’. If the value of format is "w.dg" or "w.df", t hen the
value of nsig is d. setoptions(nsig:d) is equivalent to
’setoptions(format:"w.dg")’ where d is a positive integer and w = d+7.
See option ’format’ above.

Option ’prompt’
prompt (quoted string of no more than 20 characters, default = "Cmd> ")

Example: setoptions(prompt:">> ")
The value is printed at the start of each command line. For exa mple,
after setoptions(prompt:"Next? "), each line will start wi th "Next? "
instead of "Cmd> ". In all versions except Mac OS 9, the initia l
value of ’prompt’ can be set by command line flag -prompt (see
’launching’).

When setoptions(prompt:Prompt) is executed in a batch file (see
batch()), the new prompt remains in effect only until the com mands in
the file are finished. Since a startup file (see ’customize’) is
executed as a batch file, this option cannot be usefully set i n a
startup file since the prompt is forgotten when the batch fil e is
completed.

Option ’pvals’

2.259. OPTIONS 371

pvals (T or F, default = F) Example: setoptions(pvals:T)
The value affects the default behavior of all the GLM command s except
for robust() and screen(). It affects manova() only when key words
’byvar’ or ’fstats’ are used. When the value is True, P values for
t-, F- and chi-squared statistics are printed; when it is Fal se, P
values are not printed. The value of option ’pvals’ is ignore d when
you use keyword ’pvals’ as an argument to a GLM command.

Option ’quiet’
quiet (T or F, default = F) Example: setoptions(quiet:T)

When True, all output is suppressed except for error message s and the
input prompt (Cmd>). Option ’quiet’ differs from other opti ons in
that its value is associated with a the macro currently runni ng.

A macro inherits the value of quiet from the prompt level, if c alled
there, or from the value in a macro that calls it.

When ’quiet’ is set by setoptions() in a macro, it reverts to t he
former value when leaving the macro.

Option ’restoredel’
restoredel (T or F, default = T) Example: setoptions(restor edel:F)

The value determines whether existing variables will be del eted by
restore(). When the value is True, they will be deleted; when it is
False they will be deleted only when they are overwritten. Th e value
of ’restoredel’ is ignored when you use keyword ’delete’ on r estore().

Option ’savehistry’
savehistry (T or F) (note spelling)

Example: setoptions(savehistry:F)
The value determines whether a history of recent command lin es will be
saved by save() and asciisave(). When the value is True such a
history is saved and will be automatically restored by resto re(); when
the value is False, the history is not saved. Option ’savehis try’ is
ignored when keyword ’history’ is used on save() and asciisa ve(). The
default value of ’savehistry’ is True except in non-interac tive mode.

’savehistry’ is not available on versions such as the limite d memory
DOS version that do not maintain such a history.

Option ’scrollback’
scrollback (T or F, default = F) Example: setoptions(scroll back:T)

The value determines when the command/output window will be
automatically scrolled back to the beginning of output that is longer
than the window can hold. When the value is True, the window is
scrolled back so that the most recent command line is visible . When
the value is False, no such scrolling takes place. On help(), this
default behavior can be overridden by the help() keyword ’sc rollback’.
Option ’scrollback’ is available only in windowed versions .

Option ’seeds’
seeds (vector of 2 integers > 0 or both 0, default = vector(0,0))

Example: setoptions(seeds:vector(6542821,6228765))

372 CHAPTER 2. MACANOVA HELP FILE

The value is a REAL vector of length 2, say vector(n1,n2), whe re n1 >=
0 and n2 >= 0 are integers <= 2147483399. These values are used and
updated by random number generators runi(), rnorm(), rbin() and
rpoi().

You normally set this option by setseeds() since setseeds(n 1,n2) is
equivalent to setoptions(seeds:vector(n1,n2)).

When the value is vector(0,0), the first use of runi(), rnorm (),
rpoi() or rbin() causes the seeds to be set to pseudo-random v alues
determined from the time of day.

Option ’tekset’
tekset (CHARACTER vector of length 2)

Example: setoptions(tekset:vector("\033[?38h\0338"," \033\003"))
The value is a CHARACTER vector of length 2, say vector(ToTek ,
FromTek). ToTek is the CHARACTER string that switches the te rminal
emulator you are using to Tektronix 4014 mode and FromTek is t he
CHARACTER string that switches out of Tektronix 4014 mode. T hese are
used before starting and after finishing a plot, and are used by
Mouse().

When ToTek is "", no code is sent to switch to Tektronix mode.
Similarly, when FromTek is "", no code is sent to switch back.

When MacAnova is running under Xterm on a Unix/Linux worksta tion, the
default is as in the example above, which could also be set by

Cmd> setoptions(tekset:vector(putascii(27,91,63,51,5 6,104,27,56,\
keep:T), putascii(27,3,keep:T)))

When MacAnova is not running under Xterm, the default is
vector("\035\0338", "\0332") which is equivalent to
vector(putascii(29, 27, 56, keep:T), putascii(27, 50, kee p:T))

Both defaults initialize the character size to large.

The non-Xterm default works for Macintosh program Versater m. For
other terminal emulators, this option should be initialize d in a
startup file. See topic ’customize’. For example, for publi c domain
program Kermit 3.0 for Windows/DOS computers, your startup file might
contain the command (not tested)

setoptions(tekset:vector("\33[?38h\0338","\033[?38h "))

For NCSA Telnet 2.6 for a Macintosh, use
setoptions(tekset:vector("\033\014","\030"))

Option ’tekset’ is available only on Unix/Linux versions us ing
Tetronix 4014 emulation for high resolution graphs.

Option ’traceback’
traceback (T or F) Example: setoptions(traceback:F)

The value controls whether the chain of calling macros will b e printed
when an error occurs in a macro called by another macro. It has no

2.259. OPTIONS 373

effect when an error does not occur in a macro. When an error oc curs
in a macro and the value is F (the default), only the name macro is
printed. When the value is true the name of the macro and, when that
macro was called in a macro, the chain of calling macros is pri nted.

This option makes use of the fact that expanded macros are pre faced by
the header ’{#)#macroname’. Because some error messages ap pend about
50 characters of input preceding the error, you may see some c alling
macro names in short macros. Here is an example of what this me ans:

Cmd> a <- macro("q + PI"); b <- macro("a()"); c <- macro("b()")

Cmd> setoptions(traceback:F); c() # no traceback (q not def ined)
ERROR: arithmetic with undefined operand
UNDEF + REAL in macro a near setoptions(traceback:F); {#)#c
{#)#b
{#)#a
q + PI

Cmd> setoptions(traceback:T); c() # traceback
ERROR: arithmetic with undefined operand
UNDEF + REAL near setoptions(traceback:T); {#)#c
{#)#b
{#)#a
q + PI

in macro a
called by macro b
called by macro c

There may be a few error messages unaffected by the value of
’traceback’.

See topic macro_syntax for information about writing macro s.

Option ’update’
update (T or F) Example: setoptions(update:F)

The value controls whether the screen will be updated (previ ous
commands and output re-printed) after a high resolution plo t (True
means update; False means don’t update). The default value o f update
is True in DOS versions and False in non-windowed Unix/Linux versions.

Option ’update’ is not available in a Windowed version.

Option ’vecread’
vecread ("byfields" or "notbyfields", default = "notbyfie lds")

Example: setoptions(vecread:"byfields")
The value specifies the default mode for vecread() when read ing REAL
data. When it is "notbyfields", the default value for vecrea d()
keyword ’byfields’ is False; when it is "byfields" the defau lt value
of ’byfields’ is True.

Option ’vecread’ is ignored by vecread() when it is reading C HARACTER
data.

374 CHAPTER 2. MACANOVA HELP FILE

Option ’warnings’
warnings (T or F, default = T) Example: setoptions(warnings :F)

The value controls whether MacAnova will suppress the print ing of
warning messages (those that start with "WARNING:"). Such l ines will
be printed only when the value of ’warnings’ is True. Setting
’warnings’ to False can be useful when doing arithmetic with and
transformations of vectors or matrices with missing data. H owever,
since many warning messages are quite important, it should b e used
with caution. When you change ’warnings’ to False, you shoul d use
setoptions(warnings:T) to restore the usual behavior as so on as
possible.

Option ’wformat’
wformat (quoted string, default = "16.9g")

Example: setoptions(wformat:".17g")
The value specifies the default format for the commands writ e() and
matwrite(). For example, if the value is "16.9g", most outpu t will be
in floating point form with 9 significant digits and a maximu m width
of 16 characters.

See option ’format’ above for more information about permis sible
values.

Option ’width’
width (integer >= 30, default depends on screen width)

Example: setoptions(width:65)
The value is the number of characters assumed to fit on a line o n the
screen or in the window. This number, together with the curre nt
formatting options, determines how many items are printed p er line and
the width of "dumb" plots.

The value of option ’width’ is ignored when keyword ’width’ i s used on
print(), write(), matprint(), matwrite() and error() and o n plotting
functions such as plot() and boxplot() (see ’graph_keys’).

On Unix/Linux and DOS ’width’ may be initialized by the -w com mand
line flag (see topic ’launching’). On Mac OS 9, ’width’ may be
reset when the output window is resized.

Some output does not respect this limit.

2.260 outer()

Usage:
outer(x1, x2, ...), x1, x2, ... REAL

Keywords: matrix algebra

Usage

2.261. PADTO() 375

outer(x1, x2) returns a matrix or array which is the "outer pr oduct" of
REAL variables x1 and x2. The dimensions of the result are the
joined dimensions of the arguments.

After result <- outer(x1,x2), the elements of the result are
result[i,j,k,...,l,m,n,...] = x1[i,j,k,...] * x2[l,m,n,...].

outer(x1, x2) is equivalent to array(vector(x1) * vector(x2)’,
vector(dim(x1), dim(x2))).

outer(x1, x2, x3) is mathematically equivalent to outer(ou ter(x1,x2),
x3) and in general outer(x1, x2, x3, ..., xk) is mathematical ly
equivalent to outer(outer(...(outer(x1,x2), x3), ...), x k). The
elements of the result are all possible k-way products of ele ments from
each of the arguments.

Multi dimensional contrasts
One use for outer() is to construct multidimensional contra sts that are
products of 1 dimensional contrasts. Suppose c1, c2 and c3 ar e vectors
of main effect contrast coefficients for each factor for a 3 f actor
design. Then after anova("y=a * b* c"),

Cmd> contrast("a.b.c", outer(c1,c2,c3))

computes results for the three way product contrast that is p art of the
a.b.c interaction.

Cross references
See also topics contrast(), array(), ’matrices’

2.261 padto()

Usage:
padto(x,n), x a REAL vector or matrix, n > 0 an integer

Keywords: time series

Usage and example
padto(x,n) creates a new matrix or vector from REAL vector or matrix x
by adding n - nrows(x) rows of all zeros so as to bring the total number
of rows to n. When n < nrows(x), the last nrows(x) - n rows of x ar e
deleted to bring the number down to n. n must be a positive inte ger.

The principal use of padto() is to add zeros to a time series af ter
subtracting the mean or other estimate of trend but before co mputing its
Fourier transform, as in rft(padto(x-sum(x)/nrows(x),S)), where S is the
number of frequencies desired. If x has several columns, the y all get
padded simultaneously.

Example:

376 CHAPTER 2. MACANOVA HELP FILE

Cmd> padto(vector(1,2,2)’,4) # pad row vector to matrix wit h 4 rows
(1,1) 1 2 2
(2,1) 0 0 0
(3,1) 0 0 0
(4,1) 0 0 0

2.262 partacf()

Usage:
partacf(rho), rho a REAL matrix whose columns are autocorre lations
partacf(phikk, inverse:T), phikk a REAL matrix whose colum ns are

partical autocorrelations

Keywords: time series

Usage
partacf(rho), where rho is a REAL vector, computes the parti al
autocorrelations corresponding to the autocorrelation fu nction in the
REAL vector rho. Row k of rho should contain the lag k autocorr elation.
The Levinson-Durbin algorithm is used.

If rho is a matrix, partacf(rho) is a matrix of the same shape w hose
j-th column contains partial autocorrelations correspond ing to
autocorrelations in column j of rho.

If any column of rho is not a valid autocorrelation function, that is,
it does not define a positive definite Toeplitz matrix, a war ning
message is printed.

partacf(phikk,inverse:T) is the inverse function to parta cf. Each
column of REAL vector or matrix phikk is considered to be the p artial
autocorrelation function of a time series. The correspondi ng column of
the result is the corresponding autocorrelation function. All the
elements of phikk must be less than 1 in absolute value.

Cross references
See also yulewalker().

2.263 paste()

Usage:
paste(arg1, arg2, ... [,format:Fmt,sep:C,intwidth:Iw,c harwidth:Cw,\

missing:S]), Fmt, C, and S CHARACTER scalars, Iw and Cw integ ers > 0
paste(arg,multiline:T [,format:Fmt,sep:Cs,linesep:Cl ,missing:S]), where

Cs and Cl are CHARACTER scalars consisting of a single charac ter.
’iw’, ’cw’, ’fmt’, and ’just’ are synonyms for ’intwidth’, ’ charwidth’,

’format’ and ’justify’

Keywords: output, missing values

2.263. PASTE() 377

Usage
paste(arg1, arg2, ...) returns a CHARACTER scalar concaten ating the
arguments. For example, the value of

paste("The answer is", run(7), "; ok?")
is the string "The answer is 1 2 3 4 5 6 7 ; ok?" .

An important use of paste() is in constructing labels for gra phs (for
example, title:paste("Variable",j,"vs variable",i)). I t is also useful
for producing informative messages to be printed in a macro a nd can be
used to prepare nicely formatted lines for output.

The default behavior is to print the arguments separated by s ingle
spaces, with exact integers printed as such, non-integers p rinted using
the default print format (see print(), subtopi ’options:"f ormat"’) with
leading spaces trimmed off, and missing values printed as "M ISSING". If
you have used setoptions() to replace "MISSING" by a differe nt default
string, the replacement will be used.

A NULL non-keyword argument is ignored unless it is the only a rgument,
in which case paste(NULL) returns "".

Keyword ’sep’
paste(arg1, arg2, ..., sep:S), where S is a CHARACTER variab le or quoted
string, uses S to separate arguments rather than a space. For example,
paste(run(5),sep:",") produces the string "1,2,3,4,5" an d
paste("A","B","C","D","E",sep:"") produces the string " ABCDE". No
separator is ever put before the first item in the output vari able. You
can have several instances of ’sep:S’ with different separa tors, each
affecting later arguments until changed.

Keyword ’intwidth’
paste(arg1, arg2, ..., intwidth:w), where w is a positive in teger prints
each exact integer using at least w positions, padding on the left with
spaces if necessary. For example, paste(12,intwidth:5) pr oduces " 12".
You can use iw:w instead of intwidth:w.

Keyword ’format’
paste(arg1, arg2, ..., format:Fmt), where Fmt is a CHARACTE R variable or
quoted string representing either a f-format ("10.5f" or "f 10.5") or
g-format ("11.7g" or "g11.7") (see print()) prints any non- integer REALs
using format Fmt If the width is omitted (".7f") leading spac es will be
stripped off. If the width is not omitted ("10.7f"), any non- integer
REAL variables printed will be formatted so as to use at least this
width. If ’intwidth:w’ has not previously appeared, this wi dth will
also be used for integers. You can use fmt:Fmt instead of form at:Fmt.

Keyword ’charwidth’
paste(arg1, arg2, ..., charwidth:w), w is a positive intege r, uses at
least w character positions for any CHARACTER argument, pad ding on the
right with spaces if necessary, unless justify:"r" or justi fy:"c" is an
argument. You can use cw:w instead of charwidth:w.

Keyword ’justify’

378 CHAPTER 2. MACANOVA HELP FILE

paste(arg1, arg2, ..., justify:C), where C is "right", "lef t", or
"center" (or simply "r", "l", or "c"), specifies that any str ings are to
be right justified, left justified or centered, respective ly. This has
no effect unless charwidth:w is specified and a string is sho rter than
w. The default is justify:"left". You can use just:C instead of
justify:C.

Keyword ’missing’
paste(arg1, arg2, ..., missing:String), where String is a q uoted string
or CHARACTER scalar such as "?", uses String to represent a mi ssing
value instead of "MISSING". If a format has been specified wi th width >
0 longer than the length of String, String will be padded on th e left to
make it have this width.

Keywords used more than once
You can use any of the keywords more than once anywhere in the a rgument
list, with each usage affecting the formatting of subsequen t items until
changed by a new keyword phrase. Putting it after all non-key word
arguments, as illustrated above, is equivalent to putting i t before
them. For example, paste(sep:",",charwidth:5,a,b,c) is e quivalent to
paste(a,b,c,sep:",", charwidth:5).

Keyword ’multiline’
paste(arg,multiline:T) has somewhat different behavior. The result is
much as before, except, if arg is other than a row vector, the r esult is
a CHARACTER vector, with one element for each value of the fir st
dimension that is greater than 1. Thus, if arg is a matrix or ve ctor,
each element of the output is a character representation of a row of
arg. When you use ’multiline:T’, there must be exactly 1 non- keyword
argument. If arg is LOGICAL, it is first translated to REAL wi th True
and False becoming 1 and 0, respectively. If arg is NULL, the r esult is
"".

paste(arg,multiline:T,linesep:Char), where Char is a str ing with just
one character such as ";" or "\n" (the end-of-line character), combines
the rows into a single CHARACTER scalar with each row separat ed by Char.
If arg is a row vector (just 1 row), Char is ignored.

Along with ’multiline:T’, you can use keywords ’sep’, ’form at’, and
’missing’, but not ’intwidth’ and ’charwidth’. If it appear s, the value
for ’sep’ must be a string with just one character, for exampl e, " "
(the default) or "\t". Any leading or trailing blanks in each numerical
field are trimmed off when ’sep’ is used.

paste() does not recognize keyword ’nsig’.

Examples without ’multiline:T’
Cmd> paste(sep:"-","tick","tock",sep:", ","ding",sep: "-","dong")
(1) "tick-tock, ding-dong"

The first ’sep:"-"’ could also come at the end.

Cmd> paste("PI is",PI,format:".10f") # or "Pi is",PI,fmt: ".10f"

2.264. PLOT() 379

(1) "PI is 3.1415926536"

Cmd> paste(format:"10.2f",sqrt(2),format:".15g",sqrt (2))
(1) " 1.41 1.4142135623731"

Cmd> paste("Blocks",DF[2],SS[2],SS[2]/DF[2],format:" 7.3f",\
(SS[2]/DF[2])/mse,charwidth:8,format:"13.6g",intwid th:2)

(1) "Blocks 4 48.0368 12.0092 18.782"

In the preceding, ’cw’, ’iw’, and ’fmt’ could replace ’charw idth’,
’intwidth’ and ’format’.

Examples with ’multiline:T’
Cmd> paste(x, multiline:T) # 3 by 5 matrix x
(1) "10.322 9.5278 10.636 10.411 9.6343"
(2) "9.9979 10.606 8.1604 MISSING 8.5926"
(3) "8.6147 11.212 9.4683 7.7964 10.489"

Cmd> paste(x,multiline:T,linesep:"\n",sep:",",\
missing:"-99",format:"0.4f")

(1) "10.3222,9.5278,10.6357,10.4106,9.6343
9.9979,10.6057,8.1604,-99,8.5926
8.6147,11.2120,9.4683,7.7964,10.4889"

Cross references
See also print().

2.264 plot()

Usage:
plot(x,y [,add:T,impulses:T, lines:T] [other graphics ke yword phrases]),

where x is a REAL vector or scalar, y is a REAL vector or matrix
plot([Graph,] [x,y], keys:str), str a structure whose comp onent names

are graphics keywords

Keywords: plotting

Usage
plot(x,y) makes a scatter plot of the data in vector x and vect or or
matrix y using characters such as asterisks or diamonds as pl otting
symbols. If y has several columns, they are plotted with symb ols
asterisk, diamond, cross, square, X, triangle, asterisk, d ot, small
cross, diamond,..., thereafter cycling through the plotti ng symbols.

It is not an error when x or y is NULL; a warning message is print ed and
no plotting occurs.

plot(x,y, symbols:c), where c is a CHARACTER or integer scal ar, vector,
or matrix with ncols(c) == ncols(y), uses the elements of c as plotting
symbols as for chplot(). In particular, if c is a CHARACTER sc alar
other than "###", it is used as a plotting symbol for all point s (at

380 CHAPTER 2. MACANOVA HELP FILE

most first three characters).

plot(x,y,symbols:"###") labels each point with the row num ber when y is
a vector and with the column number when ncols(y) > 1.

plot(x,y,impulses:T [,symbols:c]) makes an "impulse" plo t of y vs x,
drawing vertical lines from the x = 0 line to each point. If y ha s
several columns, a different line type is used for each colum n.
However, since the lines will probably be superimposed, it m ay be hard
to interpret the resulting plot.

plot(x,y, lines:T [,impulses:T, symbols:c) does the same e xcept the
points or impulses will be connected by lines similarly to li neplot().
You can also use keywords ’linetype’ and ’thickness’. See to pic
’graph_keys’.

Structure first argument
plot(Str [,impulses:T]), where Str is a structure with at le ast two REAL
components, is equivalent to plot(Str[1], Str[2] [,impuls es:T]). For
example, plot(x,y) and plot(structure(x,y)) are equivale nt. Any
components of Str beyond the first two are ignored.

LASTPLOT and GRAPHWINDOWS
plot() normally creates or replaces GRAPH variable LASTPLO T which
encapsulates everything in the graph. In addition, if the gr aph was
drawn in graphics window I, GRAPHWINDOWS[I] is made identic al to
LASTPLOT (I is always 1 in non-windowed DOS and Unix/Linux ve rsions).
Saving the plot information in LASTPLOT and GRAPHWINDOWS[I] can be
suppressed by including ’keep:F’ as an argument. See topics ’graphs’
and ’graph_assign’ for information on GRAPH variables and s pecial
variable GRAPHWINDOWS.

Graph variable first argument
plot(graph,x,y [,impulses:T]) or plot(graph,Str [,impul ses:T]), where
graph is a GRAPH variable, draws the plot encapsulated in gra ph, adding
to it the new information. See topic ’graphs’ for details on a dding
information to a plot.

Keyword ’add’
plot(x,y [,impulses:T],add:T,...) is the same as plot(LAS TPLOT,x,y
[,impulses:T],...) drawing the graph encapsulated in LAST PLOT, adding
to it new information. An equivalent way to do this is addpoin ts(x,y
[,impulses:T],...).

Low resolution plot
If option ’dumbplot’ has been set False (see subtopi
’options:"dumbplot"’), the plot will be a low resolution pl ot unless
’dumb:F’ is an argument.

Short vector for x
See topic ’graphs’ for information on how a scalar or length 2 vector x
specifies equally spaced x-values, on how to save and print p lots, and
on writing graphic information to a file.

2.265. POISSON() 381

Graphics keywords
Keywords ’dumb’, ’lines’, ’linetype’, ’thickness’, ’impu lse’, ’xmin’,
’xmax’, ’ymin’, ’ymax’, ’logx’, ’logy’, ’xlab’, ’ylab’, ’t itle’,
’xaxis’, ’yaxis’, ’borders’, ’ticks’, ’xticks’, ’yticks’ , ’xticklen’,
’yticklen’, ’xticklabs’, ’yticklabs’, ’height’, ’width’ , ’pause’,
’silent’ and ’notes’ may be used as for other plotting comman ds. See
topics ’graph_keys’, ’graph_border’ and ’graph_keys’

plot([Graph,] keys:structure(x:x,y:y [other keyword phr ases)) is
equivalent to plot([Graph,] x:x,y:y [other keyword phrase s]). See topic
’graph_keys’ for details.

See topic ’graph_assign’ for information on how to plot in gr aphics
window I by GRAPHWINDOWS[I] <- var, where var is a structure o r GRAPH
variables.

Examples
Examples:

Cmd> plot(yhat1:yhat[,1],resid1:RESIDUALS[,1],\
title:"Residuals vs yhat")

Cmd> plot(X:1,run(20)ˆ(.2 * run(5)’),ylab:"Powers of X",\
title:"Xˆ.2, Xˆ.4, Xˆ.6, Xˆ.8, and X", file:"ps.out",new: T)

Cmd> plot(X:1,run(20)ˆ(.2 * run(5)’),ylab:"Powers of X",\
title:"Xˆ.2, Xˆ.4, Xˆ.6, Xˆ.8, and X", logy:T)

Cross references
See also topics chplot(), lineplot(), addpoints(), addlin es(),
addchars(), showplot(), colplot(), rowplot(), tek(), tek x(), vt(),
vtx().

2.265 poisson()

Usage:
poisson([Model] [, print:F or silent:T, incr:T, offsets:v ec, pvals:T,\

maxiter:m, epsilon:eps, coefs:F]), vec a REAL vector, m an i nteger >
0, eps REAL > 0

Keywords: glm, regression, categorical data

Usage
poisson(Model) computes a log linear regression fit of the m odel
specified in the CHARACTER variable Model. If y is the respon se
variable in the model it must be a REAL vector with y[i] >= 0.
Estimation is by maximum likelihood on the assumption that y [i] is
Poisson. If any y[i] is not an integer a warning message is pri nted.

See topic ’models’ for information on specifying Model.

382 CHAPTER 2. MACANOVA HELP FILE

poisson(Model,...) is equivalent to glmfit(Model,dist:" poisson",
link:"log",...).

Side effect variables created
poisson() sets the side effect variables RESIDUALS, WTDRES IDUALS, SS,
DF, HII, DEPVNAME, TERMNAMES, and STRMODEL. The elements of
WTDRESIDUALS are the final weighted residuals in the iterat ively
reweighted least squares fit to log(response). See topic ’g lm’.
Without keyword phrase ’inc:T’ (see below), TERMNAMES has v alue
vector("","", ...,"Overall model","ERROR1"), DF has valu e vector(0,0,
...,ModelDF,ErrorDF) and SS has value vector(0,0,...,Mod elDeviance,
ErrorDeviance).

Analysis of deviance
If, say, Model is "y=x1+x2", an iterative algorithm fits log (y) as a
linear function of x1 and x2. A two line Analysis of Deviance t able is
printed, with line 1 the diffence between the deviance from a model with
all coefficients 0 and the deviance of the estimated model, a nd line
2, labeled "ERROR", the deviance of the estimated model. Und er
appropriate assumptions, the latter can be used to test the g oodness of
fit of the model.

Incremental fitting
poisson(Model,inc:T) computes the full Poisson model and a ll partial
models -- only a constant term, the constant and the first ter m, and so
on. It prints an Analysis of Deviance table, with one line for each
term, plus the deviance of the complete model labeled as "ERR OR" .
Each term’s deviance is the reduction in deviance associate d with that
term.

Omitting model
If you omit Model (poisson()), the model from the most recent GLM
command such as poisson() or anova(), or the model in CHARACT ER variable
STRMODEL is assumed.

Algorithm
Computations are carried out using iteratively reweighted least squares
with starting values derived from an unweighted least squar es fit of
log(y + .25).

Other keyword phrases
Keyword phrase Default Meaning

maxiter:m 50 Positive integer m is the maximum number of
iterations that will be allowed in fitting

epsilon:eps 1e-6 Small positive REAL specifying relative e rror
in objective function (2 * log likelihood)
required to end iteration

offsets:OffVec none Causes model to be fit to log(p) to be 1 * Offvec
+ Model, where OffVec is a REAL vector the same
length as response y. Note OffVec is in log
units.

2.266. POLYGAMMA() 383

See topic ’glm_keys’ for information on keyword phrases pri nt:F,
silent:T, coefs:F and pvals:T.

The default value for pvals can be changed by setoptions(pva ls:T). See
topic setoptions(), subtopic ’options:"pvals"’.

Examples of the use of ’offsets’
Cmd> poisson("y=x", offsets:3 * x, inc:T, pvals:T)

The P value associated with x can be used to test the hypothesi s H0:
beta1 = 3 in the model log(E[y]) = beta0 + beta1 * x.

Cmd> poisson("y=1", offsets:rep(log(10), length(y), inc :T, pvals:T)
The P value associated with the CONSTANT term can be used to te st H0:
E[y] = 10, assuming y contains a random sample from a Poisson
distribution.

2.266 polygamma()

Usage:
polygamma(x [,n]), x REAL with positive elements or a struct ure with

REAL components with positive elements, integer n >= 0

Keywords: transformations

Usage
polygamma(x,0) and polygamma(x) both return the digamma fu nction (first
derivative of log(gamma(x))) of the elements of x, when x is a REAL
scalar, vector, matrix or array with positive elements. The result has
the same shape as x. You can use digamma(x) instead.

polygamma(x, n), where n > 0 is an integer returns the n-th der ivative
of the digamma function ((n+1)-th derivative of log(gamma(x))).

polygamma(x, n, scale:T) returns (-1)ˆ(n+1) * n! * polygamma(x,n).

For n >= 1, polygamma(x, n, scale:T) = sum((x+k)ˆ(-n-1),k=0 ,1,2,...,oo).
In particular, polygamma(1,n,scale:T) computes zeta(n+1), where zeta(s)
is the Riemann Zeta function.

Structure argument
When x is a structure, all of whose non-structure components are REAL
with positive elements, polygamma(x [,n] [,scale:T]) retu rns a structure
of the same shape and with the same component names as x with ea ch
non-structure component transformed by polygamma().

CHARACTER argument
polygamma(x, n) can also be used when x is a CHARACTER variabl e and n,
if present, is a quoted string or CHARACTER scalar or REAL sca lar. The
result is a CHARACTER variable of the same shape as x describi ng the
transformation. See example below.

384 CHAPTER 2. MACANOVA HELP FILE

Any element of x that is "" or starts with ’@’, ’(’, ’[’, ’{’, ’< ’, ’/’
or ’\’ is not modified. This can be useful for creating labels for a
transformed variable.

Examples
Examples:

Cmd> polygamma(run(10)) # or polygamma(run(10),0), or dig amma(run(10))
(1) -0.57722 0.42278 0.92278 1.2561 1.5061
(6) 1.7061 1.8728 2.0156 2.1406 2.2518

Cmd> polygamma(run(1,2,.25),1) # trigamma
(1) 1.6449 1.1973 0.9348 0.7641 0.64493

Cmd> polygamma(vector("x","y"),3) # or polygamma(vector ("x","y"),"3")
(1) "polygamma(x,3)"
(2) "polygamma(y,3)"

Cmd> print(nsig:17,polygamma(1,23,scale:T),name:"zet a(24)")
zeta(24):
(1) 1.0000000596081891

Cross references
See also digamma(), lgamma(), ’transformations’.

2.267 polyroot()

Usage:
polyroot(coefs), coefs a REAL matrix

Keywords: time series, complex arithmetic

Usage
polyroot(Coef) computes the real and possibly complex root s of the
polynomials specified by the columns of REAL matrix Coef. If c[i] is
Coef[i,j], then the polynomial whose roots are found is

xˆn - c[1] * xˆ(n-1) - c[2] * xˆ(n-2) - ... - c[n-1] * x - c[n],
where n = nrows(Coef). Note that the leading coefficient (of xˆn) is 1,
and the coeficients are associated with descending powers o f x.

NOTE: The sign assumed for Coef is not affected by variables A RSIGN or
MASIGN which are recognized by several macros in file Arima. mac. Type
arimahelp(MASIGN) for details.

If Coef is n by m, the result returned is a n by 2 * m matrix with the
real and imaginary parts of the roots associated with column j of Coef
in columns 2 * j-1 and 2 * j, that is in the standard fully complex form.
See topic ’complex’.

To find the roots of polynomial d[1] * xˆn+d[2] * xˆ(n-1)+...+d[n] * x+

2.268. POPMODEL() 385

d[n+1], use polyroot(-d[-1]/d[1]) (when d is a matrix use
polyroot(-d[-1,]/d[1,])).

To find the roots of polynomial d[1]+d[2] * x+d[3] * xˆ2...+d[n+1] * xˆn, use
polyroot(-reverse(d[-(n+1)])/d[n+1]) (when d is a matrix use
polyroot(-reverse(d[-(n+1),])/d[n+1,])). See reverse().

Use with autoreg() and movavg()
The form of the argument to polyroot is adapted to its use in ev aluating
autoregressive and moving average operators. If phi is a REA L vector
and x is a vector of white noise, autoreg(phi,x) generates a s tationary
autoregressive series if and only if the roots computed by po lyroot(phi)
are inside the unit circle, that is, max(creal(cpolar(poly root(phi)))) <
1. Similarly, movavg(theta,x) generates an invertible mov ing average
model if and only if all the roots computed by polyroot(theta) lie
inside the unit circle.

Cross references
See also topics autoreg(), movavg(), ’complex’ and subtopi c
’matrices:"complex_matrices".

2.268 popmodel()

Usage:
popmodel([all:T])
popmodel(canpop:T)

Keywords: anova, glm, multivariate analysis, regression, residuals

Introduction
All GLM commands except screen(), for example regress() and anova(),
retain information (GLM information) internally for use by certain
functions such as coefs() and modelinfo() that provide resu lts from the
most recent GLM command. When a GLM command is run, informati on from
the previous GLM command, if any, is replaced. When the GLM co mmand is
in a macro, this may confuse the user who may expect that coefs (), say,
gives the same answer after the macro is used as before.

Commands pushmodel() and popmodel() allow a macro to save an d restore
the current GLM information.

pushmodel() saves the current GLM information so that it can
subsequently be restored by popmodel(). Until a new GLM comm and has
been run or GLM information has been restored by popmodel(), there is no
GLM information available to commands such as secoefs() and modelinfo().

After the next prompt following the use of pushmodel(), the a ctive model
before the first use of pushmodel() is restored (equivalent to an
automatic execution of popmodel(all:T)).

pushmodel() and popmodel() are intended to be used in macros . A macro

386 CHAPTER 2. MACANOVA HELP FILE

can run pushmodel() before a GLM command and then run popmode l() before
finishing to ensure that the current GLM information is not c hanged. Of
course, if the purpose of the macro is to change the informati on, it
should not use pushmodel() and popmodel().

The default maximum number of sets of GLM information that ca n be saved
is 2 (0 in limited memory DOS version). On versions allowing c ommand
line arguments you can change the default by ’-savemodels N’ where N >=
0 is an integer. See ’launching’.

Usage
popmodel() replaces the current GLM information by the GLM i nformation
saved most recently by pushmodel(). It also deletes all GLM s ide effect
variables such as RESIDUALS and STRMODEL and then replaces t hem by side
effect variables appropriate to the model being restored.

popmodel(all:T) discards the current GLM information and a ll but the
first GLM information saved by previous use of pushmodel().

With either usage, when there is no information that has been saved by
pushmodel(), a warning message is printed and the current GL M
information is not discarded nor are side effect variables m odified.

popmodel(canpop:T) returns True if there is saved GLM infor mation that
could be restored by popmodel(). It does not change the curre nt model
or side effect variables.

Example
Type help(pushmodel:"example") for an example.

Cross references
See also pushmodel(), modelinfo(), coefs(), secoefs(), co ntrast(),
’macros’.

2.269 power()

Usage:
power(noncen,ngrp,nrep,alpha [,design:"rbd"]), noncen >= 0, 0 < alpha

< 1, integers ngrp > 0 and nrep > 0; some or all arguments may be
vectors

Keywords: probabilities, glm, anova

Usage
power(noncen,ngrp,nrep,alpha) computes the power of an F- test with
significance level alpha in a balanced one-way analysis of v ariance
(completely randomized design) for ngrp groups of size nrep (ngrp
treatments with nrep replications) with the n=1 noncentral ity parameter
noncen.

The noncentrality parameter is noncen = sum(effects_iˆ2)/ sigmaˆ2 = the

2.270. POWER2() 387

sum of the squared treatment effects divided by the error var iance.
This is sometimes called the "n=1 noncentrality parameter. " It differs
from the definition of the noncentrality parameter for powe r2() which
includes a factor of n.

power(noncen,ngrp,nrep,alpha,design:"rbd") computes p ower for a
randomized block design with nrep blocks and ngrp >= 2 treatm ents.

power(mu_aˆ2/sigmaˆ2,1,n,alpha) computes the power agai nst the
alternative hypothesis H_a: mu = mu_a of a single-sample two -tail t-test
of H_0: mu = 0 based on a sample of size n. To compute the power of a
one-tail t-test, see cumstu:"non_central_t".

Some or all of the arguments of power may be vectors, in which c ase all
non-scalars must be the same length, which will also be the le ngth of
the result. For example, you can compute the power of randomi zed block
designs with 2 to 20 blocks, g treatments and noncentrality p arameter 2
by

Cmd> power(2.5, g, run(2,20), .05, design:"rbd")

This is exactly equivalent to
Cmd> power2(run(2,20) * 2.5, g-1, (g-1) * (run(2,20) - 1), .05)

If nrep was computed as samplesize(noncen,ngrp,alpha,pwr), the value of
power(noncen,ngrp, nrep,alpha) should be approximately e qual to pwr, but
no smaller.

Cross references
See also power2() and samplesize().

2.270 power2()

Usage:
power2(noncent2,numDF,denomDF,alpha), noncent2 >= 0, 0 < alpha < 1,

numDF >0, denomDF > 0; some or all arguments may be vectors

Keywords: probabilities, glm, anova, regression

Usage
power2(noncen2,numDF,denomDF,alpha) computes the power for an F test
with numDF numerator degrees of freedom, denomDF denominat or degrees of
freedom, a significance level of alpha, and noncentrality p arameter
noncen2.

The noncentrality parameter noncen2 = sum(n_i * (effect_i)ˆ2)/sigmaˆ2,
where n_i and effect_i = mu_i - mu_all are the sample size and t reatment
effect for group i, with mu_i = treatment i mean and mu_all =
sum(n_i * mu_i)/sum(n_i).

An more mathematical definition is
noncen2 = numDF* (E[Numerator MS]/E[denominator MS] - 1);

388 CHAPTER 2. MACANOVA HELP FILE

Note that this differs from the n=1 non-centrality paramete r expected by
power() which does not include a sample size. For example, yo u will get
the same answers from

Cmd> power2(nrep * noncen,ngrp-1,(nrep-1) * ngrp,alpha)
and

Cmd> power(noncen,ngrp,nrep,alpha)

power2(n * mu_aˆ2/sigmaˆ2,1,n-1,alpha) computes the power against t he
alternative hypothesis H_a: mu = mu_a of a single-sample two -tail t-test
of H_0: mu = 0 based on a sample of size n. To compute the power of a
one-tail t-test, see cumstu:"non_central_t".

Some or all of the arguments of power2() may be vectors, in whi ch case
all non-scalars must be the same length, which will also be th e length
of the result. For example, you can compute a power as a functi on of
noncen2 by, say

Cmd> power2(run(0,100) * 1.2,10,20,.05)

If nrep was computed as samplesize(noncen,ngrp,alpha,pwr), the value of
power2(nrep * noncen,ngrp-1,(nrep-1) * ngrp,alpha) should be approximately
equal to pwr, but no smaller.

power2() is useful for computing the power of a test for a cont rast, or
for interaction and related effects where the error degrees of freedom
are complicated functions of n.

Cross references
See also power() and samplesize().

2.271 precedence

Usage:
This topic has information on the precedence and grouping pr operities of
arithmetic, matrix, logical, comparison and bit operation s.

Keywords: syntax, operations

Introduction
Operators in MacAnova such as ’+’, ’/’, ’<’, ’&&’ and ’<-’ hav e rules of
association and precedence which determine the order in whi ch they are
evaluated when used together. As much as possible these mimi c the rules
of ordinary algebra where they apply and for most purposes th at is all
you need to know. This topic summarizes the rules and include s a
precedence table for all operators.

Association properties of operators
A binary operator OP such as ’+’, ’ˆ’ or ’<=’ either associate s from
left to right, that is, x OP y OP z means (x OP y) OP z, or from righ t
to left, that is x OP y OP z means x OP (y OP z), or does not associa te
at all, that is x OP y OP z is meaningless.

2.271. PRECEDENCE 389

Binary arithmetic operators ’+’, ’-’, ’ * ’, ’/’, and ’%%’ associate from
left to right. For example, x - y - z means (x - y) - z and x/y/z mea ns
(x/y)/z. See topic ’arithmetic’.

Exponentiation (’ˆ’ or ’ ** ’) associates from right to left, that is
xˆyˆz is xˆ(yˆz), not (xˆy)ˆz. See topic ’arithmetic’.

Binary logical operators ’&&’ and ’||’ associate from left t o right.
For example, u && v && w means ((u && v) && w). See topic ’logic’.

Matrix multiplication operators ’% * %’, ’%c%’ and ’%C%’ associate from
left to right. For example, x % * % y %c% z %C% w is interpreted as
((x % * % y) %c% z) %C% w. See topic ’matrices’.

The assignment operator ’<-’ and arithmetic assignment ope rators ’<-+’,
’<--’, ’<- * ’, ’<-/’, ’<-ˆ’ and <-%%’ (see topic ’arithmetic’) also
associate from right to left. That is, x <- y <- z is interprete d as x
<- (y <- z) and x <-+ y <-+ z is interpreted as x <-+ (y <-+ z). See
topics ’assignment’ and ’arithmetic’.

Comparison operators do not associate, that is, for example , x < y < z
has no meaning. See topic ’logic’.

Precedence of operators
"Precedence" has to do with the interpretations of expressi ons involving
more than one operator, for example ’x <- 3 + 4/5ˆ2’ which invo lves
operators ’<-’, ’+’, ’/’ and ’ˆ’. Every operator has a numeri cal
precedence level.

The rule is simple: Operators with higher precedence are eva luated
before operators with lower precedence.

Table of precedence levels of operations
Precedence Meaning

x %| y 1 Bitwise Or (OR)
x %ˆ y 2 Bitwise Exclusive Or (XOR)
x %& y 3 Bitwise And (AND)
%!x 4 Bitwise Complement (COMPL)
x || y 5 Logical Or
x && y 6 Logical And
!x 7 Logical Not
x == y 8 Equal or same
x != y 8 Not equal or different
x < y 8 Less than
x <= y 8 Less than or equal
x > y 8 Greater than
x >= y 8 Greater than or equal
x + y 9 Addition (sum of x and y)
x - y 9 Subtraction (difference of x and y)
x * y 10 Multiplication (product of x and y)
x / y 10 Division (x divided by y)
x %% y 10 Modular division (x - y * floor(x/y))

390 CHAPTER 2. MACANOVA HELP FILE

x %* % y 11 x MatMult y
x %c% y 11 transpose(x) MatMult y
x %C% y 11 x MatMult transpose(y)
-x 12 Unary minus ((-1) * x)
+x 12 Unary plus ((+1) * x)
x ˆ y or x ** y 13 Exponentiation (x to the y-th power)
x <- y 14 or 0 Assign value of y to x
x <-+ y 14 or 0 x <- x + y
x <-- y 14 or 0 x <- x - y
x <- * y 14 or 0 x <- x * y
x <-/ y 14 or 0 x <- x / y
x <-ˆ y 14 or 0 x <- x ˆ y
x <- ** y 14 or 0 x <- x ** y
x <-%% y 14 or 0 x <- x %% y

In the above MatMult is ordinary matrix multiplication.

You may use parentheses to group terms and change the order of
evaluation. Subexpressions within ’(...)’ or ’{...}’ are e valuated
before the bracketed terms are combined.

The dual levels 0 and 14 for the assignment operators reflect the fact
that they have lower precedence than any operator to their ri ght and
higher precedence than any operator to their left. For examp le, x <- y
+ z sets x to y + z while x + y <- z assigns z to y and then computes
the sum of x and the new value of y. Similarly x <-+ y + z is
equivalent to x <-+ (y+z) and x + y <-+ z is equivalent to x + (y <- +
z).

Examples
Examples

Expression Interpretation Value Explanation
30/5/2 (30/5)/2 3 / associates to left
3ˆ2ˆ4 3ˆ(2ˆ4) 43046721 ˆ associates to right
4* 3-2 (4 * 3) - 2 12 - 2 = 10 * has higher precedence than -
3* 2ˆ4 3 * (2ˆ4) 3 * 16 = 48 ˆ has higher precedence than *
(3 * 2)ˆ4 6ˆ4 = 1296 Parentheses change evaluation

order
-2ˆ4 -(2ˆ4) -16 ˆ has higher precedence than

prefix -
(-2)ˆ4 16 Parentheses change evaluation

order
3<2+4 3 < (2+4) 3 < 6 = T + has higher precedence than <
T||F&&F T||(F&&F) T||F = T && has higher precedence than ||
!T||T (!T)||T F||T = T ! has higher precedence than ||
!(T||T) !T = F Parentheses change evaluation

order

Cross references
See topic ’bit_ops’ for examples of how precedence and paren theses
affect the order of evaluation of operations ’%&’, ’%|’, ’%ˆ ’ and ’%!’.

2.272. PREDTABLE() 391

2.272 predtable()

Usage:
predtable([keyword phrases] [,silent:T]) or predtable(T erm [,keyword

phrases] [,silent:T]), Term a CHARACTER scalar of the form " A.B. ...",
where A, B are factors in current GLM model, or term:k, where k is a
positive integer, and allowed keyword phrases seest:T, sep red:T,
estimate:F, wtdmeans:T or x:values as for glmtable().

Keywords: glm, anova

Usage
predtable() computes a table of fitted values (estimated ce ll expected
values) based on the computations of the most recent GLM (gen eralized
linear or linear model) command such as anova() or poisson() . The table
has a dimension for each factor in the model, in the order the v ariables
appear in the model. It is an error if there are no factors in th e
model. See glmtable() for a somewhat more general function.

predtable(seest:T) does the same, except the result is a str ucture with
two components, ’estimate’ and ’SEest’ containing the tabl e of fitted
values and their standard errors.

predtable(sepred:T) does the same, except the structure re sult has
components ’estimate’ and ’SEpred’, where SEpred contains standard
errors of prediction (usually sqrt(SEestˆ2 + MSE)) for each cell.

You can use both ’sepred:T’ and ’seest:T’ together, and can s uppress the
table of estimates with ’estimate:F’.

predtable(Term) returns an estimated table of marginal mea ns where the
margins are specified by Term.

Term must be a quoted string or CHARACTER scalar of the form
"Name1.Name2.Name3....", where Name1, Name2, ... are name s of factors in
the current GLM model.

When there are k factor names in Term, the value of predtable() is an
array with k dimensions (vector if k = 1, matrix if k = 2), with t he
dimensions ordered in the same order as in Term, not the order they
appear in the model if that is different.

predtable(Term, seest:T) does the same, but the result is a s tructure
with components ’estimate’ and ’SEest’, where SEest contai ns the
standard errors of the estimated marginal means.

You cannot use ’sepred:T’ with Term when Term specifies a mar ginal
table, that is, Term does not include all factors in the model .

predtable(term:k [,seest:T]) is essentially equivalent t o
predtable(TERMNAMES[k] [,seest:T]), computing the margi nal table
matching term k in the model.

You cannot use predtable(Term [,...]) after anova() with a b alanced

392 CHAPTER 2. MACANOVA HELP FILE

design unless Term includes all the factors in the model.

Examples
Examples:

Cmd> anova("y=a+b") # two-way ANOVA
Model used is y=a+b
WARNING: summaries are sequential

DF SS MS
CONSTANT 1 0.021986 0.021986
a 2 12.082 6.041
b 3 12.419 4.1397
ERROR1 24 39.977 1.6657

Cmd> predtable() # estimates of cell means
(1,1) 1.0316 0.23603 -0.43016 -1.3688
(2,1) 0.98354 0.18795 -0.47824 -1.4169
(3,1) 2.1081 1.3125 0.64631 -0.29238

Cmd> predtable(seest:T,sepred:T) #cell mean estimates an d SE’s
component: estimate
(1,1) 1.0316 0.23603 -0.43016 -1.3688
(2,1) 0.98354 0.18795 -0.47824 -1.4169
(3,1) 2.1081 1.3125 0.64631 -0.29238
component: SEest [SE of estimated cell mean]
(1,1) 1.2906 0.48563 0.58437 0.57713
(2,1) 1.4245 0.57943 0.4888 0.57981
(3,1) 1.4247 0.4894 0.56226 0.66824
component: SEpred [SE of prediction for cell]
(1,1) 1.8252 1.379 1.4168 1.4138
(2,1) 1.9222 1.4147 1.3801 1.4149
(3,1) 1.9223 1.3803 1.4078 1.4534

Cmd> predtable(a,seest:T) # marginal mean estimate and SE’ s
component: estimate
(1) -0.13284 -0.18092 0.94363
component: SEest
(1) 0.44971 0.5415 0.56229

Cmd> predtable(term:2) #second term is a
(1) -0.13284 -0.18092 0.94363

Keyword ’silent’
predtable(silent:T) and predtable(Term, silent:T) do the same, except
that certain advisory messages are suppressed. ’silent:T’ can be used
with any other keywords. The default value of ’silent’ is Fal se unless
the value of option’ ’warnings’ is False.

Behavior when there are variates in the model
The fitted values are by default computed with each variate s et to its
unweighted mean value and thus are what are sometimes called the
covariate adjusted cell means.

predtable(wtdmeans:T [,...]) does the same except it adjus ts cell fitted

2.272. PREDTABLE() 393

values to the weighted means of the variates. You can use wtdm eans:T
only when there are variates and when the previous GLM comman d used
weighted OLS (anova() or manova()). This option would be pro bably
appropriate when the weights were proportional to sample si zes.

predtable(x:Vals [,...]), where Vals is a REAL vector with l ength = the
number of variates (non-factors) in the model, does the same
computation, except it uses the elements of Vals instead of u nweighted
or weighted variate means. This option allows you to estimat e cell
means that are adjusted to any level of the covariates. Use of x:Vals
is an error if there are no variates in the current GLM model.

Relationship to glmtable()
predtable() and predtable(Term) are equivalent to glmtabl e(seest:F) and
glmtable(Term, seest:F). Usage of keywords ’seest’ and ’se pred’ is the
same as for glmtable().

Binomial responses
For GLM functions involving a binomial response variable (l ogistic(),
probit(), glmfit() with dist:"binomial"), the values comp uted are the
estimated probabilities p of "success" associated with eac h cell.

In this case, you can also use keyword phrase n:N, where N is a R EAL
variable, to specify the number of trials for each cell. N can be a
scalar, a vector whose length matches the size of the table, o r a matrix
or array whose dimensions match those of the table. The resul ting table
is a table of N * p.

Example:
Cmd> logistic("y=a+b",n:100); predtable(n:100)

Caveat about empty cells
Caution: When the marginal table for any term in the model con tains
empty cells, especially when a factor is nested in another wi th
different numbers of levels, the estimated means may not be w hat you
want.

Behavior with non linear model
After fitting a non-linear model by logistic(), probit(), p oisson(), or
glmfit(), when Term doesn’t contain all the factors in the mo del,
predtable(Term) first computes the estimated marginal tab le in the
linear scale (logit, probit, or log) and then transforms it b ack into
the scale of the response. This means that the computed margi nal table
is not the marginal means of the fitted table. For example, if b is a
factor with 3 levels, after logistic("y=a * b", n:40),
sum(predtable("a.b"))/3 is not the same as predtable("b") .

Limitation
When keyword phrase coefs:F was an argument on the most recen t GLM
command, predtable() is not available.

Cross references
See also topics anova(), anovapred(), glmpred(), glmtable (), regpred(),

394 CHAPTER 2. MACANOVA HELP FILE

modelinfo(), popmodel(), pushmodel(), ’glm’.

2.273 primefactors()

Usage:
primefactors(n [, max:T]), n an integer scalar or vector

Keywords: general

Usage
primefactors(n), where n is a positive integer < 2ˆ52 =
4503599627370496, returns a vector containing the prime fa ctors of n,
possibly with repetitions.

When n is a vector of positive integers <= 999999999999 = 10ˆ1 2 - 1,
primefactors(n) returns a structure with length(n) compon ents.
Component i is a vector containing the prime factors of n[i] a nd having
the numeric value of n[i] as its name. The reason for the small er range
of permissible values is because a component name can have at most 12
characters. Note: Because the component names are numeric a nd not
alphabetic, you must use a subscript to extract a component.

primefactors(n,max:T), where n is a positive integer scala r or vector
with n[i] < 2ˆ52 = 4503599627370496, returns an integer vect or of the
same length as n containing the maximum prime factors of each element of
n.

Examples
Examples:

Cmd> primefactors(64094231)
(1) 641 99991

Cmd> stuff <- primefactors(vector(3,15,64094231)); stuf f
component: 3
(1) 3
component: 15
(1) 3 5
component: 64094231
(1) 641 99991

Cmd> stuff[3] # stuff$64094231 is illegal
(1) 641 99991

Cmd> stuff[compnames(stuff) == "64094231"]
(1) 641 99991

Cmd> primefactors(64094231, max:T)
(1) 99991

Cross references

2.274. PRINT() 395

See also goodfactors().

2.274 print()

Usage:
print(a, b, ...[,format:Fmt or nsig:m, header:F, labels:F , notes:T,\

width:w, height:h, macroname:T, missing:missStr, name:s etName]\
[, file:fileName [,new:T]]]), Fmt, missStr, fileName, set Name
CHARACTER scalars, m > 0, w >= 30, h >= 12 integers

Keywords: output, missing values

Usage
print(a,b, ...) prints objects (variables, expressions, m acros) a, b,
.... By default the names ’a’, ’b’, ... are printed.

By default, print() formats REAL items using the format iden tified by
’format’ on getoptions() output. This normally is floating point with 5
significant digits. Type help(options:"format") for deta ils.

Cmd> print(PI,sqrt(2) * run(5))
PI:
(1) 3.1416
VECTOR:
(1) 1.4142 2.8284 4.2426 5.6569 7.0711

print() encloses macros and the elements of CHARACTER varia bles in
quotes (""). Any internal quotes are escaped with ’\’ (for ex ample
"\"Hello\"") and non-printable characters are printed as e scaped octal
integers (for example, "\033" or "\177").

Cmd> a <- vector("Charlie","Dog"); print(a)
a:
(1) "Charlie"
(2) "Dog"

print(Message), where Message is a single quoted string or C HARACTER
scalar, prints Message just as it is, without enclosing quot es and
without any internal quotes and non-printable characters e scaped.

Cmd> print("Charlie is a good dog!")
Charlie is a good dog!

print(Message, macroname:T) does the same, except that whe n executed in
a macro, " in macro XXXX" is appended to Message. This is usefu l for
printing messages in a macro.

You can modify the behavior of print using keywords ’format’ , ’nsig’,
’missing’, ’zero’, ’labels’, ’header’, and ’notes’. See be low.

When either of keywords ’format’ or ’nsig’ are used, print() is

396 CHAPTER 2. MACANOVA HELP FILE

identical to write() with the same arguments.

print() is particularly useful in macros and inside {...}.

Printing to a file
print(a,b,...,file:FileName [,new:T]) where FileName is a quoted string
or CHARACTER variable, writes the output to the specified fi le rather
than to the screen. With ’new:T’, any information in the file is
discarded before writing. Without ’new:T’, output is appen ded to the
end of the file.

When FileName is the variable CONSOLE or a CHARACTER variabl e whose
value is "CONSOLE", the output is written to the screen or out put window
rather than to a file.

Use of keywords
Keywords ’nsig’, ’format’, ’name’, ’header’, ’labels’, ’n otes’,
’missing’ and ’zero’ are all recognized and can appear more t han once.
They affect the printing of objects that follow them, until t hey are
changed except that a value for ’name’ is used only once. Any o f them
that follow all items to be printed are treated as coming befo re all
items. For example,

Cmd> print(x,nsig:5,y,nsig:10)
and

Cmd> print(nsig:10,x, nsig:5,y)
are equivalent.

Keywords ’file’ and ’new’ can appear only once, anywhere in t he argument
list.

Keywords ’nsig’ and ’format’
print(nsig:d,a,b,...) or print(a,b,...,nsig:d) prints n umbers with d
significant digits in floating point format with width d+7.

Cmd> print(PI,nsig:7)
PI:
(1) 3.141593

print(format:Fmt,a,b,...) or print(a,b,...,format:Fmt), where Fmt is a
quoted string or CHARACTER variable, prints numbers accord ing to
specifications given in Fmt.

Fmt must be of the form "w.df" or "fw.d" (fixed point) or "w.dg " "gw.d"
(floating point) where w (field width) and d (decimals or sig nificant
digits) are integers, for example "6.3f" or "g15.7". See bel ow for
details.

Cmd> print(1000 * PI,format:"12.6f") # fixed with 6 decimals
NUMBER:
(1) 3141.592654

Name header keywords
print(name:Name, a, b,...) prints a with the name specified by

2.274. PRINT() 397

quoted string or CHARACTER scalar Name on the header.

Name can be of unlimited length aiding the creation of inform ative
output.

Cmd> print(3 * log(640320)/sqrt(163), nsig:17,\
name:"3 * log(640320)/sqrt(163) is a good approximation to pi")

3* log(640320)/sqrt(163) is a good approximation to pi:
(1) 3.1415926535897931

The value of ’name’ is used for only one output variable; howe ver, you
can have several instances of name:Name, each affecting the next
variable output.

Alternatively, if the name is a legal MacAnova variable name no more
than 10 characters long you can use a keyword to specify the na me. For
example print(name:"Residuals", r) and print(Residuals: r) are
equivalent.

print(header:F,x,header:T,y,...,) prints x without and y with an
identifying name.

Cmd> print(PI,header:F)
(1) 3.1416

Keywords ’width’ and ’height’
print(a,b,...,width:w) temporarily sets option ’width’ t o w, an integer
>= 30. This affects how many items are printed per line.

print(a,b,...,height:h) temporarily set option ’height’ to h, an integer
>= 12. This affects the number of lines in any graphs being pri nted as
"dumb" plots and how often output will be paused in non-windo wed
versions.

Keyword ’labels’
By default, print() prints coordinate labels, if they exist , or the
index or indices of the first element in each line otherwise. See topic
’labels’. Use of ’labels:F’ suppresses printing of labels o r indices.
A later ’labels:T’ re-enables such printing.

Cmd> print(PI,labels:F) # leading index (1) suppressed
PI:

3.1416

Keyword ’notes’
Keyword phrase ’notes:T’ directs that any notes attached to variables
are printed above the values.

Cmd> Pi <- vector(PI,labels:"pi",notes:"Copy of variable PI")

Cmd> print(Pi,notes:T)
Pi:
Copy of variable PI

398 CHAPTER 2. MACANOVA HELP FILE

pi
3.1416

See topic ’notes’ for details on attached notes.

Keyword ’missing’
print(missing:MissStr1,a,b,...), where MissStr is a quot ed string or
CHARACTER variable such as "?" or "NA", specifies that all mi ssing
values are to be printed using MissStr. If ’missing’ is not us ed,
missing values are printed as "MISSING" (or using a differen t default if
you changed it by setoptions(); type help(options:"missin g")). Note
that this differs from the use of ’missing’ on matprint() and matwrite()
for which the value must be a REAL scalar.

Cmd> print(vector(PI,?,run(3)),missing:"NA")
VECTOR:
(1) 3.1416 NA 1 2 3

print(x,file:FileName,new:T,header:F,labels:F,missi ng:"?") writes x to
the file in a form that can be read by vecread().

Keyword ’zero’
print(zero:ZeroStr,a,b,...), where ZeroStr is a quoted st ring or
CHARACTER variable such as " ", "0" or "ZERO" specifies that z ero values
are to be printed using ZeroStr. If ’zero’ is not used, zero va lues are
printed using the same format as other numbers.

Cmd> print(PI * run(-2,2),zero:"Zero")
VECTOR:
(1) -6.2832 -3.1416 Zero 3.1416 6.2832

Details on value of ’format’ keyword
If Fmt is "w.df" or "fw.d" (fixed point), or "w.dg" or "gw.d" (floating
point), integer w specifies a field width of at least w charac ters. For
fixed point format, integer d is the number of digits that wil l follow
the decimal point. For floating point format, d is the number of
significant digits printed. If w is omitted (".3f" / "f.3" or ".7g" /
"g.7"), it is implicitly set to d+7 ("10.3f"/ "f10.3" or "14. 7g" /
"g14.7"). If w > 27, width = 27 is assumed and if d > 20, digits = 2 0
is assumed.

With fixed point output, trailing zeros are kept; for floati ng point
output they are trimmed off. For example, 10.30 is printed as
’10.30000’ with "8.5f" or "f8.5" format and as ’10.3’ with "8 .5g" or
"g8.5" format.

For floating point output, exponential form, 9.3e+07 for ex ample, is
used if required to represent the number.

You can change the default format for print() and matprint() by
setoptions() using keywords ’nsig’ or ’format’. See topics
’setoptions’, ’options’.

2.275. PRINTOPTIONS() 399

Examples
Examples:

print(nsig:5,a), print(format:"12.5g",a), and print(a, nsig:5),
are equivalent.

print(nsig:5,file:"myfile",a,new:T)
writes a to file "myfile", starting fresh.

Cmd> print("Quoted because > 1 argument",vector("a","Esc aped\1\2"))
STRING:
(1) "Quoted because > 1 argument"
VECTOR:
(1) "a"
(2) "Escaped\001\002"

Cmd> print("Not quoted because only 1 argument")
Not quoted because only 1 argument

Keywords that are not otherwised recognized are used to labe l output.
Keywords may have no more than 10 characters.

Cmd> print(run(5)) # no labeling keyword
VECTOR:
(1) 1 2 3 4 5

Cmd> print(one2five:run(5)) 3 with labelling keyword
one2five:
(1) 1 2 3 4 5

Cross references
See also topics ’options’, write(), matprint(), matwrite(), paste(),
error().

2.275 printoptions()

Usage:
printoptions()
printoptions(option1:T [,option2:T ...]), where option1 ,

option2, ... are option names

Keywords: control, general

Usage
printoptions(), with no arguments, prints the values of all options in
alphabetical order and in a more concise format than is used b y
print(getoptions()).

printoptions(option1:T [,option2:T ...]) prints the valu es of the named
options in a concise format. option1, option2, ... must be le gal options.

Examples
Examples:

400 CHAPTER 2. MACANOVA HELP FILE

Cmd> printoptions(format:T,minpvalue:T,seeds:T)
format = "11.5g"
minpvalue = 1e-08
seeds = 518084227 1327950740

Cmd> printoptions()
angles = "cycles"
batchecho = T
dumbplot = F
.
.
warnings = T
wformat = "16.9g"
width = 72

Cross references
See also getoptions(), setoptions(), ’options’.

2.276 probit()

Usage:
probit([Model], n:Denom [, print:F or silent:T, incr:T, of fsets:vec,\

pvals:T, maxiter:m, epsilon:eps, coefs:F]), Denom REAL sc alar or
vector > 0, vec a REAL vector, m an integer > 0, eps REAL > 0

Keywords: glm, regression, categorical data

Usage
probit(Model,n:Denom) computes a probit regression fit of the model
specified in the CHARACTER variable Model. If y is the respon se
variable in the model it must be a REAL vector with y[i] >= 0. De nom
must either be an REAL scalar >= max(y) or a REAL vector of the s ame
length as y with Denom[i] >= y[i]. Estimation is by maximum li kelihood
on the assumption that y[i] is binomial with Denom[i] trials (Denom
trials for scalar DENOM). If any y[i] or n[i] is not an integer a
warning message is printed.

To get the coefficients for a classic probit analysis, you sh ould
increase the estimated constant by 5.

probit(Model,n:Denom,...) is equivalent to glmfit(Model ,n:Denom,
dist:"binomial", link:"probit",...).

See topic ’models’ for information on specifying Model.

Side effect variables created
probit() sets the side effect variables RESIDUALS, WTDRESI DUALS, SS, DF,
HII, DEPVNAME, TERMNAMES, and STRMODEL. See topic ’glm’. Wi thout
keyword phrase ’inc:T’ (see below), TERMNAMES has value vec tor("","",
...,"Overall model","ERROR1"), DF has value vector(0,0,. ..,ModelDF,
ErrorDF) and SS has value vector(0,0,...,ModelDeviance,E rrorDeviance).

2.276. PROBIT() 401

Analysis of deviance
If, say, Model is "y=x1+x2", an iterative algorithm is used t o predict
invnor(E[y/Denom]) = probit(E[y/Denom]) - 5 as a linear fun ction of x1
and x2. A two line Analysis of Deviance table is printed. Line 1 is
the difference 2 * L(1) - 2 * L(0), where L(0) is the log likelihood for a
model with all coefficients 0 (all probabilities = 0.5) and L (1) is the
maximized log likelihood for the model fit. Line 2 is 2 * L(2) - 2 * L(1)
where L(2) is the maximized log likelihood under a model fitt ing one
parameter for every y[i]. Under appropriate assumptions, t he latter can
be used to test the goodness of fit of the model using a chi-squ ared
test.

Incremental fitting
probit(Model,n:Denom,inc:T) computes the full probit mod el and all
partial models -- only a constant term, the constant and the f irst term,
and so on. It prints an Analysis of Deviance table, with one li ne for
each term, representing a difference 2 * L(i) - 2 * L(i-1) where L(i) is the
maximumized log likely for a model including terms 1 through i, plus the
deviance of the complete model labeled as "ERROR1". Each lin e except
the last can be used in a chi-squared test to test the signific ance of
the term on the assumption that the true model includes no lat er terms.

Omitting model
If you omit Model (probit(,n:Denom ...)), the model from the most recent
GLM command such as poisson() or anova(), or the model in CHAR ACTER
variable STRMODEL is assumed.

Algorithm
Computations are carried out using iteratively reweighted least squares.

Problimit warning
If you get a warning message similar to the following

WARNING: problimit = 1e-08 was hit by probit() at least once
it usually indicates either the presence of an extreme outli er or a best
fitting model in which many of the probabilities are almost e xactly 0 or
1. The latter case may not represent any problem, since the fi tted
probabilities at these points will be 1e-8 or 1 - e-8. You can t ry
reducing the threshold using keyword ’problimit’ (see belo w), but you
will probably just get the message again.

Other keyword phrases
Keyword phrase Default Meaning

maxiter:m 50 Positive integer m is the maximum number of
iterations that will be allowed in fitting

epsilon:eps 1e-6 Small positive REAL specifying relative e rror
in objective function (2 * log likelihood)
required to end iteration

problimit:small 1e-8 Iteration is restricted so that no fit ted
probabilities are < small or > 1 - small. Value
of small must be between 1e-15 and 0.0001.

402 CHAPTER 2. MACANOVA HELP FILE

offsets:OffVec none Causes model to be fit to probit(p) to be
1* Offvec + Model, where OffVec is a REAL vector
the same length as response y. Note OffVec is
in probit units.

See topic ’glm_keys’ for information on keyword phrases pri nt:F,
silent:T, coefs:F

The default value for pvals can be changed by setoptions(pva ls:T). See
topics setoptions(), ’options’.

Examples on use of ’offsets’
Cmd> probit("y=x", n:15, offsets:3 * x, inc:T, pvals:T)

The P value associated with x can be used to test the hypothesi s H0:
beta1 = 3 in the model invnor(p) = beta0 + beta1 * x.

Cmd> probit("y=1", n:20, offsets:rep(invnor(.25),lengt h(y)),\
inc:T, pvals:T)

The P value associated with the CONSTANT term can be used to te st H0:
p = .25, assuming y contains a random sample from a binomial
distribution with n = 20.

2.277 prod()

Usage:
prod(x [,squeeze:T] [,silent:T,undefval:U]), x REAL or LO GICAL or a

structure with REAL or LOGICAL components, U a REAL scalar
prod(x, dimensions:J [,squeeze:T] [,silent:T,undefval: U]), vector of

positive integers J
prod(x, margins:K [,squeeze:F] [,silent:T,undefval:U]) , vector of

positive integers K
prod(x1,x2,... [,silent:T,undefval:U]), x1, x2, ... REAL or LOGICAL

vectors, all the same type.

Keywords: summary statistics

Usage
prod(x) computes the product of the elements of a REAL or LOGI CAL vector
x.

If x is LOGICAL, True is interpreted as 1 and False as 0 and henc e
prod(x) has value 1 if all elements of x are True and 0 if any is F alse.

If x is a m by n matrix, prod(x) computes a row vector (1 by n matr ix)
consisting of the product of the elements in each column of x.

If x is an array with dimensions n1, n2, n3, ..., y <- prod(x) co mputes
an array with dimensions 1, n2, n3, ... such that y[1,j,k,...] =
prod(x[i,j,k,...], i=1,...,n1). This is consistent with w hat happens
when x is a matrix. Note: MacAnova3.35 and earlier produced a result

2.277. PROD() 403

with dimensions n2, n3,

prod(x, squeeze:T) does the same, except the first dimensio n of the
result (of length 1) is squeezed out unless the result is a sca lar. In
particular, if x is a matrix, prod(x,squeeze:T) will be iden tical to
vector(prod(x)), and if x is an array, prod(x,squeeze:T) wi ll be
identical to array(prod(x),dim(x)[-1]).

prod(NULL) is NULL.

prod(a,b,c,...) is equivalent to prod(vector(a,b,c,...)) if a, b, c,
... are all vectors. They must all have the same type, REAL or L OGICAL
or be NULL. prod(NULL, NULL, ..., NULL) is NULL.

prod(x, silent:T) or prod(a,b,c,...,silent:T) does the sa me but
suppresses warning messages about MISSING values or overfl ows.

If all the elements of a vector x are MISSING, prod(x) is 1.0.

prod(x, undefval:U), where U is a REAL scalar does the same, e xcept the
returned value is U when all the elements of x are MISSING.

Structure argument
If x is a structure, prod(x) computes a structure, each of who se
components is prod() applied to that component of x.

Keyword ’dimensions’
prod(x, dimensions:J [,squeeze:T] [,silent:T] [undefval :U]) computes
products over the dimensions in J = vector(j1,j2,...,jn) wh ere j1, ...,
jn are distinct positive integers <= ndims(x). Without ’squ eeze:T’, the
result has the same number of dimensions as x, with dimension s j1, j2,
..., jn of length 1. With ’squeeze:T’, these dimensions are r emoved
from the result. The order of j1, j2, ... is ignored.

It is an error if max(J) > ndims(x) or if there are duplicate el ements
in J.

For example, if x is a matrix, prod(x, dimensions:2) compute s the row
products as a nrows(x) by 1 matrix and prod(x, dimensions:2, squeeze:T)
computes them as a one dimensional vector.

Keyword ’margins’
prod(x, margins:K [,squeeze:F] [,silent:T] [undefval:U]) computes
products over the dimensions not in K = vector(k1, k2, ..., km), where
k1, ..., km are distinct positive integers <= ndims(x). This computes
marginal products for the margins specified in K.

Without ’squeeze:F’, only the dimensions in K are retained i n the
result. Otherwise the other dimensions are retained but hav e length 1.
This is opposite from the default with ’dimensions:J’.

It is an error if max(K) > ndims(x) or if there are duplicate el ements
in K.

404 CHAPTER 2. MACANOVA HELP FILE

Example
Examples:

Cmd> x # matrix with labels
B1 B2

A1 18 15
A2 17 26
A3 18 19

Cmd> prod(x) # products down columns
B1 B2

(1) 5508 7410

Cmd> prod(x)/x # elements in row are products of other rows of x
B1 B2

A1 306 494
A2 324 285
A3 306 390

Cmd> prod(x,dimensions:2) # products accross rows
(1)

A1 270
A2 442
A3 342

Cmd> prod(x,margins:1) # same as a vector
A1 A2 A3

270 442 342

Cross references
See also topics sum(), ’NULL’.

2.278 propinterval()

Usage:
propinterval(x[,y],cover:fraction,[options])
propinterval(s1,n1[,s2,n2],cover:fraction,[options])
options can include upperb:T or lowerb:T, plus4:T|F.

Keywords: probabilities, descriptive statistics, comparisons

propinterval() computes a z-confidence interval for a popu lation
proportion or difference of population proportions, depen ding on
whether data for one or two variables are given as arguments. By
default, propinterval() computes a two-sided interval, bu t you may
choose one-sided alternatives by using one of lowerb:T or up perb:T.
Arguments may be either vectors of 0/1 data, or may be counts o f
successes and numbers of trials.

You specify the coverage rate via cover:value.

2.279. PROPTEST() 405

You may specify the Agresti "add 4" procedure via plus4:T. Th is
will add 2 successes and two failures (split among the two sam ples
for two-sample tests).

The output is a vector containing the estimate and interval b ounds.

2.279 proptest()

Usage:
proptest(x[,y],null:val,[upper:T or lower:T,contcor:T |F,pool:T|F])
proptest(s1,n1[,s2,n2],null:val,[upper:T or lower:T,c ontcor:T|F,pool:T|F])

Keywords: probabilities, descriptive statistics, comparisons

proptest() performs a one- or two-sample z-test for proport ions,
depending on whether data for one or two variables are given a s
arguments. Arguments may be either vectors of 0/1 data, or ma y be
counts of successes and numbers of trials. By default there i s
a two-tailed alternative, but you may choose one-sided alte rnatives
by using one of lowertail:T or uppertail:T.

You specify the null value via null:value. For a two-sample t est,
only null:0 is allowed.

Use of contcor:T will cause the p-value to be calculated with a
continuity correction.

For a two-sample test, you may specify that the variances be p ooled
or unpooled via pool:T or pool:F.

The output is a vector containing the z-statistic and the p-v alue.

2.280 pushmodel()

Usage:
pushmodel()
pushmodel(canpush:T)

Keywords: anova, glm, multivariate analysis, regression, residuals

Introduction
All GLM commands except screen(), for example regress() and anova(),
retain information (GLM information) internally for use by certain
functions such as coefs() and modelinfo() that provide resu lts from the
most recent GLM command. When a GLM command is run, informati on from
the previous GLM command, if any, is replaced. When the GLM co mmand is
in a macro, this may confuse the user who may expect that coefs (), say,
gives the same answer after the macro is used as before.

406 CHAPTER 2. MACANOVA HELP FILE

Commands pushmodel() and popmodel() allow a macro to save an d restore
the current GLM information.

pushmodel() saves the current GLM information so that it can
subsequently be restored by popmodel(). Until a new GLM comm and has
been run or GLM information has been restored by popmodel(), there is no
GLM information available to commands such as secoefs() and modelinfo().

After the next prompt following the use of pushmodel(), the a ctive model
before the first use of pushmodel() is restored (equivalent to an
automatic execution of popmodel(all:T)).

pushmodel() and popmodel() are intended to be used in macros . A macro
can run pushmodel() before a GLM command and then run popmode l() before
finishing to ensure that the current GLM information is not c hanged. Of
course, if the purpose of the macro is to change the informati on, it
should not use pushmodel() and popmodel().

The default maximum number of sets of GLM information that ca n be saved
is 2 (0 in limited memory DOS version). On versions allowing c ommand
line arguments you can change the default by ’-savemodels N’ where N >=
0 is an integer. See ’launching’.

Usage
pushmodel() saves the current GLM information from the most recent GLM
command. Until a subsequent GLM command or popmodel() has be en run, or
a new prompt is printed, no model information is available fo r retrieval
by functions like secoefs() and modelinfo(). You can use pop model() to
restore the saved GLM information.

It is an error if there is no current model to save or you have al ready
saved the maximum number of models (default is 2).

pushmodel(canpush:T) returns True if there is current GLM i nformation to
save and a place to put it and False otherwise. No GLM informat ion is
saved and the current GLM information, if any, is not changed .

Example
Here is the text of a macro aov() which returns the SS and DF of a n
analysis of variance without changing the current GLM infor mation or
side effect variables, if any.

if (pushmodel(canpush:T)){pushmodel()}
anova($1, silent:T)
@result <- structure(SS,DF)
if (popmodel(canpop:T)){popmodel()}
@result #will be returned as value of the macro

This might be used as follows"

Cmd> aov("y=a") # this won’t change GLM info or side effect va riables
component: SS

2.281. PUTASCII() 407

CONSTANT a ERROR1
3.8646 0.021371 4.8536

component: DF
CONSTANT a ERROR1

1 2 7

Cross references
See also popmodel(), modelinfo(), coefs(), secoefs(), con trast(),
’macros’.

2.281 putascii()

Usage:
putascii(vec [,keep:T]), vec a vector of integers > 0 and <= 2 55
putascii(vec, file:fileName [, new:T])

Keywords: output, character variables

Usage
putascii(Vec) prints the characters corresponding to the e lements of the
vector Vec, considered as ASCII codes. All the codes must be i ntegers
between 1 and 255, inclusive. For example, putascii(run(64 ,126)) prints
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]ˆ_‘abcdefghijklmnopqr stuvwxyz{|}˜

putascii(Vec1,Vec2,...) is equivalent to putascii(vecto r(Vec1,Vec2,
...)), if Vec1, ..., are REAL vectors.

The primary use of putascii() is to send control sequences to a
terminal. See macro vt() for an example of its use. On all mach ines,
any leading 7’s are explicitly translated to beeps or bells. For
example

Cmd> putascii(vector(7,7,7,69,82,82,79,82))
rings the bell three times and prints ERROR.

getascii() is almost an inverse to putascii(), translating CHARACTER
variables to a vector of integers.

Writing to a file
putascii(Vec,file:FileName [,new:T]) or putascii(Vec1, Vec2, ...,
file:FileName [,new:T]), where FileName is a CHARACTER var iable or
quoted string, writes the ASCII codes on file FileName. If ne w:T is an
argument, any information in the file will be destroyed; oth erwise the
codes are added at the end of the file.

Keyword ’keep’
putascii(Vec,keep:T) or putascii(Vec1,Vec2,...,keep:T) returns a
CHARACTER variable whose characters have the ASCII codes. F or example,
putascii(run(4,8), keep:T) has value "\004\005\006\007\ 010". Use of
new:T with file:FileName is illegal.

Difference from makesymbols()

408 CHAPTER 2. MACANOVA HELP FILE

The usage putascii(Vec, keep:T) is somewhat similar to make symbols(Vec,
keep:T) since both translate ASCII codes to characters. The difference
is that putascii() returns a CHARACTER scalar with length(V ec)
characters while makesymbols() returns a CHARACTER vector of
length(Vec), with each element a single character. See make symbols()
for details.

Cross references
See also print(), write().

2.282 qr()

Usage:
qr(x [,pivot:T, ronly:T]), x a REAL matrix

Keywords: matrix algebra

Usage
qr(x) computes the elements of a QR decomposition of matrix x

The value returned is structure(qr:Qr, qraux:Qraux), wher e Qr is a REAL
vector of length P and Qraux is a REAL n by p matrix, as computed by
Linpack subroutine dqrdc. The elements of Qr on and above the diagonal
constitute the upper triangular matrix R of the QR decomposi tion, and
the remaining elements, together with the elements of Qraux contain
enough information to compute Q. No pivoting is performed wi th this
usage of qr().

qr(x,pivot:T) or simply qr(x,T) does the same computation, with possible
reordering of columns. The result is a structure(qr:Qr,qra ux:Qraux,
pivot:Pivot), where Pivot is a vector of length p containing the column
numbers in x corresponding to the successive columns of q and r.

qr(x,ronly:T) returns a p by p upper triangular matrix consi sting of the
R matrix in the QR decomposition, computed without pivoting . For
example, both parts of the QR decomposition can be computed b y

Cmd> R <- qr(x,ronly:T) ; Q <- x %/% R # x % * % solve(R)

The columns of Q are orthogonal and x - Q % * % R will be zero except for
rounding error.

Macro qrdcomp()
An alternative way to get the full QR decomposition is by macr o
qrdcomp() in macro file math.mac which uses the information in Qraux.
Type help(qrdcomp) for details.

Cross references
See also cholesky().

2.283. QUITTING 409

2.283 quitting

Usage:
quit or bye or end or stop or exit
quit(F) or bye(F) or end(F) or stop(F) or exit(F)

Keywords: general

Usage
To terminate a MacAnova run, type ’quit’. On a windowed versi on,
you will be asked if you want to save the workspace and any
command/output windows.

quit() or quit(T) has the same effect as ’quit’.

quit(F) means you want to quit unconditionally with no oppor tunity to
save the workspace or windows. On a version without Windows, it is no
different from quit(T).

It is an error for quit to be part of a compound command (enclos ed in
{...}) or for there to be anything other than a comment starti ng with
’#’ after it on the command line.

’stop’, ’end’, ’bye’ and ’exit’ mean the same as ’quit’.

Example
Example:

Cmd> quit # or bye or stop() or end(T), etc.

Quitting in windowed versions
In a windowed version, you can also select Quit on the File Men u.
You will be asked whether you wish to save the workspace or the
command/output window(s). On Mac OS 9, if you hold down the Op tion
key while selecting Quit or hitting Return after typing ’qui t’, you
quit unconditionally without a chance to save files.

Cross references
See also topic ’launching’.

2.284 rank()

Usage:
rank(x [,down:T, ties:"ignore" or "average" or "minimum"]), x REAL or

CHARACTER or a structure with all REAL or all CHARACTER compo nents.

Keywords: ordering

Usage
rank(x) computes the ranks of the data in variable x, the mini mum value
being assigned rank 1. In case of ties, the rank correspondin g to the
average of the ranks for the tied cases is computed. x can be RE AL or

410 CHAPTER 2. MACANOVA HELP FILE

CHARACTER.

When x is CHARACTER, x[i] is considered greater than x[j] if x [i]
follows x[j] in alphabetical order using the ASCII collatin g sequence.
See sort() for the explicit ordering of characters.

rank(x,down:T) does the same except that the data are ranked in
decreasing order, with rank 1 assigned to the maximum elemen t.

rank(x,ties:Method) or rank(x,ties:Method,down:T), whe re Method is one
of "average", "minimum" or "ignore" (or simply "a", "m" or "i "), treats
ties as described below. With REAL x, rank(x,ties:"average " [,down:T])
gives the same ranks as rank(x [,down:T]). When x is CHARACTE R, keyword
’ties’ is ignored and is assumed to have value "i".

rank(x [keywords]) has the same labels as x, if any.

Matrix, array, or structure argument
When x is a matrix, the result is a matrix each of whose columns
contains the ranks of the elements of the corresponding colu mn of x.

When x is an array with dimensions n1, n2, ..., the result is an array
of the same size and shape with all the elements with fixed val ues of
subscripts 2, 3, ... defining a "column" whose ranks are comp uted. An
array with dimension > 2 is always treated as an array and not a s a
matrix, even if there are at most two dimensions greater than 1.

It is also acceptable for x to be a structure, whose non-struc ture
components are all REAL or all CHARACTER. In that case, rank() returns
a structure of the same form, each of whose non-structure com ponents is
the result of applying rank() to the corresponding componen t of x.

MISSING values
When x is REAL and there are MISSING values in a column, their r ank is
also MISSING and the maximum rank of the non-missing values i s the
number of non-missing values.

Treatment of ties
Treatment of Ties with REAL Data

Suppose k elements in a vector (column) are tied, that is they all have
the same value and no other element has this value, and suppos e the
ranks these elements would have if their values were very sli ghtly
changed so as to break the ties while preserving other orderi ng would be
r, r+1, r+2, ..., r+k-1. The following describes the ranks co mputed for
the tied values for each of the three possible methods.

Value for ’ties’ Computed ranks
"average" or "a" (default) All ranks = (r+(r+1)+...+(r+k-1))/k =

r+(k-1)/2
"minimum" or "m" All ranks = r
"ignore" or "i" r, r+1, r+2, ..., r+k-1; which ranks go in

which position is unpredictable

2.285. RANKITS() 411

Examples
Examples:

Cmd> x <- vector(27,22,25,26,22,21,?,24) # 1 tie, 1 MISSING

Cmd> rank(x) # or rank(x,ties:"a")
WARNING: MISSING values in argument to rank
(1) 7 2.5 5 6 2.5
(6) 1 MISSING 4

Cmd> rank(x,down:T)
(1) 1 5.5 3 2 5.5
(6) 7 MISSING 4

Cmd> rank(x,ties:"m")
(1) 7 2 5 6 2
(6) 1 MISSING 4

Cmd> rank(x,ties:"m",down:T)
(1) 1 5 3 2 5
(6) 7 MISSING 4

Cmd> rank(x,ties:"i")
(1) 7 2 5 6 3
(6) 1 MISSING 4

In each example except the first, a warning message about MIS SING values
has been deleted.

Cross references
See also grade(), sort().

2.285 rankits()

Usage:
rankits(x [,ties:"ignore" or "average" or "minimum"]), x R EAL or a

structure with REAL components.
rankits(n:N), integer N > 0

Keywords: transformations, descriptive statistics, ordering

Usage
rankits(x) computes the vector of rankits (normal scores) f or data in
REAL vector x.

rankits(n:N), N a positive integer, is equivalent to rankit s(run(N)).

An important use is plot(rankits(x),x) which produces a ran kit or normal
scores plot of the values in x. What is computed is equivalent to

invnor((rank(x,ties:"ignore") - .375)/(n + .25))
where n is the number of non-MISSING values. The value corres ponding to
a MISSING value is MISSING.

412 CHAPTER 2. MACANOVA HELP FILE

rankits(x [keywords]) has the same labels as x, if any.

Handling of ties
rankits(x,ties:method), where method is "ignore", "avera ge", or
"minimum" (or "i", "a", "m") computes

invnor((rank(x,ties:method) - .375)/(n + .25))
See rank() for a detailed discussion of the three methods. It is hard
to think of a situation when you would want to use "minimum" wi th
rankits().

Matrix array or structure argument
When x is a matrix, the result is a matrix each of whose columns
contains the rankits for the corresponding column of x.

When x is an array, rankits(x) is an array of the same size and s hape
with all the elements with fixed values of subscripts 2, 3, .. . defining
a "column" whose rankits are computed. An array with dimensi on > 2 is
always treated as an array and not as a matrix, even if there ar e at
most two dimensions greater than 1.

It is also acceptable for x to be a structure, whose non-struc ture
components are all REAL. In that case, rankits() returns a st ructure of
the same form, each of whose non-structure components is the result of
applying rankits() to the corresponding component of x.

Example
Cmd> x <- vector(10.59,18.82,19.46,13.34,13.49)#ranks a re 1,4,5,2,3

Cmd> rankits(x)
(1) -1.1798 0.4972 1.1798 -0.4972 0

Cross references
See also halfnorm().

2.286 rational()

Usage:
rational(x, a, b) or rational(x, a) or rational(x,,b), x REA L or a

structure with REAL components, a and b REAL vectors

Keywords: transformations

Usage
rational(x,a,b) computes a rational function of the REAL ve ctor, matrix,
or array x, with coefficients for the numerator and denomina tor
polynomials in REAL vectors a and b. The result is REAL with th e same
size and shape as x.

The rational function computed is
(a[1] + a[2] * x + a[3] * xˆ2+ ...)/(b[1] + b[2] * x + b[3] * xˆ2+ ...) .

2.287. RBIN() 413

If a or b is omitted, it is construed to represent the constant 1. For
example, rational(x,a), rational(x,a,), and rational(x, a,1) are
equivalent and compute a polynomial in x, and rational(x,,b), and
rational(x,1,b) are equivalent and compute the reciprocal of a
polynomial in x.

x can also be a structure, all of whose non-structure compone nts are
REAL, in which case the result is a similar structure.

Example
An important use of rational() is in writing macros to comput e
mathematical functions that are not directly available in M acAnova but
which can be approximated by rational functions. For exampl e

Cmd> cumnor1 <- macro("@x <- $1; @posx <- @x > 0
@posx - (@posx - .5) * rational(abs(@x),1,\\

vector(1,.196854,.115194,.000355,.019527))ˆ4", dolla r:T)

creates macro cumnor1() which uses an approximation due to H astings to
cumpute cumulative normal probabilities. For more elabora te use, see
macros i0() and i1() in file Math.mac distributed with MacAn ova.

Cross references
See topics macro() and ’macros’.

2.287 rbin()

Usage:
rbin(N, n, p), N positive integer, n scalar or vector of posit ive

integers, p scalar or vector of probabilities.

Keywords: random numbers

Usage
rbin(N, n, p) returns a vector of N independent binomial pseu do-random
variables with sample size n and probability p. N must be a pos itive
integer.

n must be a positive integer scalar or a vector of N positive in tegers.
p must be a REAL scalar between 0 and 1 or a vector of N values bet ween
0 and 1. If n or p is a scalar, it is used for every element of the
result. Otherwise, n[i] and/or p[i] are used for the i-th ele ment of
the result.

If the random number generator has not been initialized by se tseeds(),
setoptions() or previous use of rbin(), rnorm(), rpoi() or r uni(), the
generator’s "seeds" will be initialized automatically usi ng the current
time and date, and their values will be printed out.

Use in generating other distributions

414 CHAPTER 2. MACANOVA HELP FILE

rbin() can be used to generate other random variables by usin g a random
vector as p and/or n. For example,

Cmd> y <- rbin(N, n, invbeta(runi(N),a, b)) # a, b > 0

will generate a pseudo-random beta-binomial sample variab les with
parameters n, a and b. See the User’s Guide for details.

Algorithm
The generation algorithm is adapted from Voratas Kachitvic hyanukul and
Bruce Schmeiser, "Binomial random variate generation", Co mmun.ACM, 31
(1988) 216-222, published as Algorithm 678, Trans. Math. So ftware 15,
394-397.

Cross references
See also topics setseeds(), getseeds(), setoptions(), rno rm(), rpoi(),
runi(), invbeta(), cumbin(), ’options’.

2.288 read()

Usage:
x <- read(FileName, setName or macroName [,quiet:T or F, ech o:T or F,\

printname:F,labels:Labels, silent:T, notfoundok:T, nof ileok:T,\
badkeyok:T, prompt:F]), fileName and setName CHARACTER sc alars;
FileName can also be CONSOLE or have the form string:charVal where
charVal is a CHARACTER scalar or vector.

Keywords: macros, input, files, missing values

Relationship to matread() and macroread()
read() can be used instead of either matread() and macroread (). It
recognizes the same keywords. In fact, the only difference f rom
matread() and macroread() is that matread() gives a warning message when
reading a macro and macroread() gives a warning message when reading a
data set. read() makes no such complaint. See matread() and
macroread() for details.

Cross references
See also topics getdata(), getmacros(), vecread(), readco ls(),
’matread_file’, ’macro_files’.

2.289. READCOLS() 415

2.289 readcols()

Usage:
readcols(FileName,name1,name2,...,namek[,keyword phr ases]). FileName a

quoted string or CHARACTER scalar, name1, ... quoted or unqu oted
variable names. FileName can also be CONSOLE or have the form
string:charVal where charVal is CLIPBOARD or other CHARACT ER scalar or
vector. Keyword phrases may ’realorchar:T’ or any vecread() keyword
phrases except startline:M

readcols(FileName,vector("name1",...,"namek")[,keyw ord phrases])
readcols(FileName[,keyword phrases]), the first line of t he file

containing names.

Keywords: input, files

Usage
readcols(FileName,name1,name2,...,namek) uses vecread () to read
numerical data from file FileName and puts the columns in var iables
name1, name2, ..., namek which be quoted or unquoted.

readcols(FileName,vector("name1",...,"namek")) is an a lternative usage.

The file should consist of k columns of numbers separated by s paces,
commas or tabs, with MISSING values indicated by ’?’ or ’.’. S ee topics
’vecread_file’ and vecread() for a complete description of the file
format, including ’skip’, ’skipthru’, ’go’, and ’stop’ cha racters.

For all usages, the number of variable names must divide the t otal
number of data values.

Variable names from file
readcols(FileName), with no variable names provided, does the same,
except that the names are taken from the first non-blank line of the
file, with data assumed to start on the next line. An informat ive
message about the variables created is printed.

Forms for filename
FileName can take two forms:

A quoted string or CHARACTER scalar whose value is the file na me. In
a version with windows, when FileName is "", you can select th e file
using a dialog box. A variant is keyword phrase file:FileNam e.

The keyword phrase string:CharVector, where CharVector is a CHARACTER
scalar or vector which is "read" instead of a file. When
length(CharVector) > 1, each element starts a new line. Any n ewline
characters ’\n’ terminate lines. In windowed versions, str ing:CLIPBOARD
can be useful. See vecread(), ’CLIPBOARD’.

Reading CHARACTER data
readcols(FileName,name1,name2,...,namek, bywords:T) a nd
readcols(FileName, bywords:T) do the same, except that CHA RACTER vectors
are created.

readcols(FileName,name1,name2,...,namek, realorchar: T) and

416 CHAPTER 2. MACANOVA HELP FILE

readcols(FileName, realorchar:T) do the same, except both REAL and
CHARACTER vectors may be created. If the first value in a colu mn is
readable as a number, the corresponding variable will be REA L; otherwise
the variable will be CHARACTER.

Other keywords
readcols() recognizes the same keyword phrases as vecread(), except
’startline:M’ and ’bylines:T’. These include skip:skipCh ar,
stop:stopChar, go:goChar, skipthru:skipthruChar, bypas s:m, quiet:T or F,
and echo:T or F. You can’t use ’bywords:T’, ’bychar:T’ or ’by fields:T’
with ’realorchar:T’. See vecread().

Examples
Examples:

Cmd> readcols("hald.txt",x1,x2,x3,x4,y)
Cmd> readcols(file:"hald.txt",vector("x1","x2","x3", "x4","y"))

both create variables, x1, x2, x3, x4 and y from the five colum ns of
data in hald.txt.

Cmd> readcols(string:"x y\n 1 2\n 7 9\n ? 4")
Cmd> readcols(string:vector("x y","1 2","7 9","? 4"))

both of which have the same effect as
Cmd> x <- vector(1,7,?); y <- vector(2,9,4)

Cross references
See also topics readdata(), vecread(), ’macros’.

2.290 readdata()

Usage:
readdata(filename,name1,...,namek [,factors:F or sort: F]

[,keyword phrases]), filename a CHARACTER scalar, name1,. .. names,
quoted or unquoted variable names

readdata(filename,vector("name1",...,"namek") [,fact ors:F or sort:F]
[,keyword phrases])

readdata(filename [,factors:F or sort:F] [,keyword phras es])

Keywords: input, files

Usage
readdata(FileName,name1,name2,...,namek) uses vecread () to read
one or more columns of data from file FileName, creating vari ables.
name1, name2, ..., namek. The variable names can be either qu oted
("weight") or unquoted (weight) but must be legal MacAnova n ames.

When the value of a variable in the first line of the data is not a
number, the values for that variable are read as CHARACTER da ta and then
turned into a factor, with factor levels maintaining the alp habetical
order of the CHARACTER values.

2.290. READDATA() 417

readdata(FileName,name1,...,sort:F) does the same excep t if any factors
are created, the factor levels are assigned in the order CHAR ACTER
values are encountered.

readdata(FileName,name1,...,factors:F) does the same ex cept a column
starting with a non-numerical word is not translated into a f actor but
is read as a CHARACTER vector.

readdata(FileName [,factors:F or sort:F]) does the same ex cept the names
for the variables are expected to be in the first line of the fi le.

For all usages, the number of variable names, whether given a s arguments
or taken from the first line of the file, must divide the total number
of data values.

Printed output
A line giving the name and type (REAL, factor or CHARACTER) is printed
for each variable read. If the variable is REAL and has MISSIN G values,
the number of MISSING values is also printed. Argument ’quie t:T’
suppresses this output.

Any line in the file starting with skip character ’#’ is autom atically
skipped and is echoed to output by default.

Relation to readcols()
readdata() is intended as a replacement for readcols(). It c an handle
files in which some data columns are non-numerical and can ge t variable
names from the first line of the file.

File format
The file should consist of k columns of "words" separated by s paces,
commas or tabs. A word is any set of consecutive characters no t
including a comma, space or tab.

A column whose first word is a number or MISSING (’?’, ’.’, ’ * ’ or ’NA’)
is read as a REAL vector. Any word in the column after the first which
is not readable as a number (for example 5a3) is read as MISSIN G.

When the first word in a column is not a number or a code for MISS ING,
the corresponding variable is a factor, by default, with a le vel for
each distinct word in the column. The factor has the original words in
the file as row labels. With ’factor:F’ as an argument, the co lumn is
read as a CHARACTER variable instead of a factor.

Forms for filename
FileName can take two forms:

A quoted string or CHARACTER scalar whose value is the file na me. In
a version with windows, when FileName is "", you can select th e file
using a dialog box. A variant is keyword phrase file:FileNam e.

The keyword phrase string:CharVector, where CharVector is a CHARACTER
scalar or vector which is "read" instead of a file. When

418 CHAPTER 2. MACANOVA HELP FILE

length(CharVector) > 1, each element starts a new line. Any n ewline
characters ’\n’ terminate lines. In windowed versions, str ing:CLIPBOARD
can be useful. See vecread(), ’CLIPBOARD’.

vecread() keywords
You can use most vecread() keywords ’quiet’, ’silent’, ’sto p’, ’skip’,
’skipthru’, ’go’, ’quiet’, ’echo’, and ’n’, but not ’bypass ’, ’bywords’,
’bylines’, ’bychars’, ’byfields’ and ’realorchar’. See to pic
’vecread_keys’.

Cross references
See also readcols(), vecread(), ’vecread_files’.

2.291 redo()

Usage:
redo() or redo(charVar) where charVar is CHARACTER scalar
REDO()

Keywords: control

Usage
redo() re-executes the previous line. It can be used in an exp ression
3* redo() or as an argument to a function (sqrt(redo())).

What redo() actually does is the following:
1. redo() creates a macro REDO from the entire preceding comm and line

which is automatically saved as variable LASTLINE
2. redo() then executes REDO, thus re-running the preceding command

line. Re-execution may not be exact. If the preceding line
consisted of several commands separated by semi-colons, th ey will
all be executed, but values that are not assigned will not be
printed, except for the final command. And even if the final
command in the preceding line is an assignment, its value may be
printed.

In later lines, just typing REDO() will re-execute this line (until a
subsequent use of redo()).

Caution: do not attempt to use redo() immediately following a line
containing redo() or REDO(), as this leads to uncontrolled r ecursion.

redo(charVar) also creates macro REDO and executes it, but t he contents
of REDO come from CHARACTER scalar charVAR rather than LASTL INE.

redo() is implemented as a pre-defined macro.

Examples
Examples:

Cmd> print(paste("Pi =",PI))
Pi = 3.1416

2.292. REGCOEFS() 419

Cmd> redo() # previous command repeated
Pi = 3.1416

Cmd> REDO() # redone command repeated
Pi = 3.1416

Cmd> pi <- PI # line ending in assignment

Cmd> redo() # previous line executed and value of assignment printed
(1) 3.1416

Cmd> pi <- PI ;; # note trailing ;; so last command is null

Cmd> redo() # previous line executed and nothing printed

Cmd>

Cross references
See also topics edit(), ’macros’, ’syntax’.

2.292 regcoefs()

Usage:
regcoefs(Model [,pvals:T] [,byvar:F]) or regcoefs([pval s:T] [,byvar:F]),

where Model is a CHARACTER scalar

Keywords: glm, anova, regression, confidence intervals

Usage
regcoefs(Model) returns a matrix with appropriately label ed rows and
columns of the regression coefficients, their standard err ors and
t-statistics from a least squares fit to the regression mode l specified
by Model. There can be no factors in Model. If Model is omitted , the
most recent GLM model is used.

regcoefs(Model,pvals:T) or regcoefs(pvals:T) also compu tes two-tail P
values corresponding to the t-statistics on the basis of Stu dent’s
t-distribution with degrees of freedom from the last elemen t of side
effect variable DF.

Because of the presence of row and column labels, after any GL M command
with a model without factors, typing regcoefs([pvals:T]) p roduces a
table similar to that produced by regress(). After non-line ar fits such
as logistic() or poisson(), the P-values will not necessari ly be
appropriate.

Multivarate response
If the response variable is multivariate, the result is a str ucture,
each of whose components is a labeled matrix of coefficients , standard
errors and t-statistics. regcoefs(Model,byvar:F) or regc oefs(byvar:F)

420 CHAPTER 2. MACANOVA HELP FILE

returns a single labeled matrix, with separate columns for t he
coefficients, standard errors, ... for each variable.

Cross references
See also topics ’glm’, regress(), secoefs().

2.293 regpred()

Usage:
regpred(vals [, silent:T]), vals a REAL vector or matrix.

Keywords: glm, regression

Usage
regpred(vals) computes the fitted (predicted) value, the s tandard error
of estimation, and the standard error of prediction for the c urrent
regression model when the X variables have values given by th e REAL
vector or matrix vals.

When there is only 1 variate in the model, vals is a scalar or a v ector
and the estimates and standard errors are computed for each e lement of
vals.

When the number of variates in the model is nvars > 1, vals must either
be a vector of length nvars containing data for a single case, or a m by
nvars matrix containing data for m cases. In the latter case, each
component of the result is a vector of length m. For example, a fter
regress("y=x1+x2+x3"), regpred(hconcat(x1,x2,x3)) com putes the predicted
values and standard errors for all cases in the data set.

The result is a structure with components ’estimate’, ’SEes t’, and
’SEpred’.

When the error degrees of freedom are 0, all standard errors a re set to
MISSING.

Caution: After anova(), manova() and regress(), standard e rrors are
computed using the final error mean square in the model. This may not
be appropriate with mixed models, including split plot desi gns.

Keywords
regpred(vals, silent:T) does the same except certain advis ory messages
are suppressed. The default value of ’silent’ is False unles s the value
of option’ ’warnings’ is False.

You can also use keyword phrases estimate:F, seest:F, sepre d:F and n:N.
See glmpred() for details.

When used
You can use regpred() after any GLM command as long as there ar e no

2.294. REGRESS() 421

factors in the model. The output has no SEpred component exce pt after
regress(), anova() or manova() or their weighted versions.

After anova(), manova() and regress(), regpred(vals) is eq uivalent to
glmpred(vals,sepred:T). After other GLM commands, regpre d(vals) is
equivalent to glmpred(vals).

Cross references
See also topics regress(), anova(), glmpred(), predtable(), glmtable(),
modelinfo(), popmodel(), pushmodel(), ’glm’, yhat().

2.294 regress()

Usage:
regress([Model] [,print:F or silent:T,pvals:T,coefs:F, marginal:T])

Keywords: glm, regression

Usage
regress(Model) performs a least squares fit of the regressi on model
given in the quoted string or CHARACTER variable Model. It pr ints out
the regression coefficients, their standard errors, and t s tatistics,
plus other summary statistics (see below). If option ’pvals ’ is True,
regress() also prints P values for each coefficient based on Student’s t
distribution. See subtopic ’options:"pvals"’.

No ANOVA table is printed by regress(). To see one, type ’anov a()’ as
the next GLM command after regress().

Examples
Examples (y, x, x1, x2, and x3 all REAL vectors of length 10):

regress("y = x") Simple linear regression of y on x
regress("y = x - 1") Linear regression through origin of

y on x
regress("y = {run(10)}") Simple linear regression of y on

vector(1,2,3,4,5,6,7,8,9,10)
regress("y = x1 + x2 + x3") 3 variable multiple regression of y

on x1, x2 and x3
regress("{sqrt(y)} = x + {xˆ2}") Quadratic polynomial regr ession of

sqrt(y) on x
regress("{sqrt(y)} = P2(x)") Same as preceding.

Keyword ’weights’
regress(Model,weights:Wts) performs a weighted least squ ares fit, using
REAL vector Wts as case weights. The elements of Wts must not b e
negative. The results are what you would get by multiplying b y
sqrt(Wts) the response vector and all independent variable s, including
the contant vector, and then doing a least squares fit. You ca n
abbreviate ’weights:Wts’ to ’wts:Wts’.

422 CHAPTER 2. MACANOVA HELP FILE

Model for regress()
Model is of the form "Response = Var1 + Var2 + ... + Vark", where
Response, Var1, ..., Vark are either variable names or have t he form
{expr}, where expr is a MacAnova expression. All variables o r evaluated
expressions must be REAL with the same number of rows. The var iables to
the right of ’=’ must be vectors or n by 1 matrices. If any right hand
side variable is actually a factor, it is treated as a quantit ative
variate whose values are the levels of the factor. The associ ated sum
of squares has only 1 degree of freedom regardless of the numb er of
levels of the factor.

Regression through origin
You specify regression through the origin by including "-1" in the
model. See also topic ’models’.

No model specified
regress() or regress(,weights:Wts) with no model specifie d computes a
least squares regression using the same model as was used by t he most
recent GLM command such as regress(), anova(), or poisson() . See topic
’glm’.

Printed output
Other printed output from regress() includes multiple R-sq uared, the
overall F-statistic for the model excluding the constant te rm, the mean
squared error and the Durbin Watson statistic.

Side effect variables created
regress() computes side effect variables RESIDUALS, HII, S S, DF,
DEPVNAME, TERMNAMES, STRMODEL, COEF, and XTXINV. When weights are used,
RESIDUALS = response - fit and WTDRESIDUALS = sqrt(Wts) * RESIDUALS is an
additional side effect variable. When an independent varia ble is of the
form {expr}, the corresponding element of TERMNAMES is "{ex pr}". See
topic ’glm’.

Use of coefs() or secoefs()
You can retrieve coefficients and/or their standard errors using coefs()
or secoefs().

Other Keywords
Keyword phrase Default Meaning

print:F T Suppress all output except warning and error
messages. Side effect variables are set.

silent:T F Suppress all output except error messages.
Side effect variables are set.

pvals:T F Print P values. Default is T when option pvals
is T (see subtopic ’options:"pvals"’)

marginal:T F Specifies that the elements of the side effect
variable SS are computed marginally. When none
of the X-variables are aliased, the computed SS
are equivalent to SAS Type III SS. See topic

2.295. REGRESSHELP() 423

’glm’ for details. SS will be printed by
anova() with no intervening GLM command.

Keyword phrase ’coefs:F’ is not legal with regress().

Cross references
See also anova().

2.295 regresshelp()

Usage:
regresshelp(topic1 [, topic2 ...] [,usage:T] [,scrollbac k:T])
regresshelp(topic, subtopic:Subtopics), CHARACTER scal ar or vector

Subtopics
regresshelp(topic1:Subtopics1 [,topic2:Subtopics2 ...])
regresshelp(key:Key), CHARACTER scalar Key
regresshelp(index:T [,scrollback:T])

Keywords: general, regression, confidence intervals, glm

Usage
regresshelp(Topic1 [, Topic2, ...]) prints help on topics T opic1,
Topic2, ... related to macros in file regress.mac. The help i s taken
from file regress.mac.

regresshelp(Topic1 [, Topic2, ...] , usage:T) prints usage information
related to these macros.

regresshelp(index:T) or simply regresshelp() prints an in dex of the
topics available using regresshelp(). Alternatively,
help(index:"regress") does the same thing.

regresshelp(Topic, subtopic:Subtopic), where Subtopic i s a CHARACTER
scalar or vector, prints subtopics of topic Topic. With subt opic:"?", a
list of subtopics is printed.

regresshelp(Topic1:Subtopics1 [,Topic2:Subtopics2], . ..), where
Suptopics1 and Subtopics2 are CHARACTER scalars or vectors , prints the
specified subtopics. You can’t use any other keywords with t his usage.

In all the first 4 of these usages, you can also include help() keyword
phrase ’scrollback:T’ as an argument to regresshelp(). In w indowed
versions, this directs the output/command window will be au tomatically
scrolled back to the start of the help output.

Keyword ’key’
regresshelp(key:key) where key is a quoted string or CHARAC TER scalar
lists all topics cross referenced under Key. regresshelp(k ey:"?")
prints a list of available cross reference keys for topics in the file.

regresshelp() is implemented as a predefined macro.

424 CHAPTER 2. MACANOVA HELP FILE

Cross references
See help() for information on direct use of help() to retriev e
information from regress.mac.

2.296 releigen()

Usage:
releigen(h,e [,maxit:N, nonconvok:T]), h and e symmetric R EAL matrices

with no MISSING values, e positive definite, integer N > 0

Keywords: matrix algebra

Usage
releigen(H,E) computes an eigenvector/eigenvalue decomp osition of the
symmetric matrix H relative to the symmetric positive defin ite matrix E.
Arguments H and E must both be p by p symmetric matrices with no MISSING
values.

The value returned is structure(values:Vals,vectors:Vec s), where Vals is
the length p vector of relative eigenvalues in decreasing or der and Vecs
is a p by p matrix whose columns are the relative eigenvectors .

If H and E are MANOVA hypothesis and error matrices, respecti vely, you
can use the relative eigenvalues to compute several standar d
multivariate hypothesis tests, and the elements of the rela tive
eigenvectors are the coefficients of the MANOVA canonical v ariables
associated with the hypothesis.

Properties of result
After

Cmd> releigs <- releigen(H,E) # H and E p by p

Cmd> v <- releigs$values; u <- releigs$vectors

u is a p by p matrix and v is a vector of length p with elements v[1] >=
v[2] >= ... >= v[p], such that

H %* % u = E %* % u %* % dmat(v)
u’ %* % H %* % u = dmat(v)
u’ %* % E %* % u = Ip = p by p identity matrix

On the vector level, this means
H %* % u[,j] = v[j] * E %* % u[,j], j = 1,...,p
u[,j]’ % * % H %* % u[,j] = v[j], j = 1,..,p
u[,j]’ % * % H %* % u[,k] = 0, j != k
u[,j]’ % * % E %* % u[,j] = 1, j = 1,..,p
u[,j]’ % * % E %* % u[,k] = 0, j != k

dmat(v) is the diagonal matrix with elements of v down the dia gonal.

Keywords ’maxit’ and ’nonconvok’

2.297. RELEIGENVALS() 425

See eigen() for information on keyword phrases ’maxit:N’ an d
’nonconvok:T’.

Cross references
See also det(), eigen(), eigenvals(), trideigen() and rele igenvals().

2.297 releigenvals()

Usage:
releigenvals(h,e [,maxit:N, nonconvok:T]), h and e symmet ric REAL

matrices with no MISSING values, e positive definite, integ er N > 0

Keywords: matrix algebra

Usage
releigenvals(H,E) computes the eigenvalues of the p by p sym metric
matrix h relative to the symmetric positive definite matrix E of the
same size.

The value returned is vector(v1,v2,...,vp), where vj are th e relative
eigenvalues with v1 >= v2 >= ... >= vp. See releigen() for a sum mary of
the properties of relative eigenvlues.

Keywords ’maxit’ and ’nonconvok’
See eigen() for information on keyword phrases ’maxit:N’ an d
’nonconvok:T’.

Cross references
See also det(), eigen(), eigenvals() and trideigen().

2.298 rename()

Usage:
rename(var, newName), where newName is an undefined variab le

Keywords: general, variables

Usage
rename(Var, Name) where Name is an undefined variable (no va lue has been
assigned to it) changes the name of Var to Name. Var may be an ex isting
variable, a constant such as 3.5, "hello", or T, or an express ion such
as ’sqrt(20)’ or ’3 * cos(x) + 4 * sin(x)’. When Var a constant or
expression, rename(Var, Name) is equivalent to Name <- Var. Unless Name
is a CHARACTER scalar (see below), it must not be a function or an
existing variable or macro. It is an error if variable Name ex ists,
unless it is the same variable as Var as in rename(x,x).

rename(Var, nameVar) where nameVar is a quoted string or sca lar

426 CHAPTER 2. MACANOVA HELP FILE

CHARACTER variable is equivalent to rename(Var, <<nameVar >>), that is
the new name is the value of nameVar. For example, rename(x, y) and
rename(x, "y") are equivalent. The value of nameVar must not be the
name of any existing variable, macro or function and must be a legal
name (see ’syntax’). "NULL", "T", and "F" are not legal names .

It is an error if Var is a locked variable; see lockvars(),
unlockvars(), islock() and variables:"locked_variables ".

Var must not be a function or a "special" variable such as CLIP BOARD,
SELECTION or GRAPHWINDOWS. See topics ’CLIPBOARD’, ’GRAPH WINDOWS’ and
’graph_assign’.

Alternative
You can achieve the same effect as rename(Var,Name) by

Cmd> Name <- Var; delete(Var)

However, if Var is not a constant or expression, doing it this way
entails the temporary existence in memory of two copies of Va r. If Var
is large, there may not be enough room in your workspace. The u se of
rename() avoids this problem. For this reason, in a macro tha t uses
another macro to compute a value, it may sometimes be helpful to use
rename() instead of assignment.

Examples
Examples:

Cmd> rename(PI, pi) # or rename(PI,"pi"), change name of PI t o pi

Cmd> e <- 10; rename(E, e) # is an error since e exists

Cmd> rename(sqrt(2),sqrt2) # same as sqrt2 <- sqrt(2)

The last example would be an error if sqrt2 is already a variab le.

Cross references
See also nameof(), compnames(), varnames()

2.299 rep()

Usage:
rep(x, n) or rep(x, repFac), where x is REAL, LOGICAL, or CHAR ACTER, and

n is an integer > 0 or repFac is a vector of integers >= 0

Keywords: combining variables, variables

Usage
rep(X, n), where n is a positive integer, replicates the valu es in X n
times to form a vector of length n * length(X). It is equivalent to
vector(X,X,X,...,X), where there are n repetitions of X. X m ust be a
REAL, LOGICAL or CHARACTER vector, matrix, or array.

2.300. REPLACESTR() 427

rep(X, 0) is legal an has value NULL.

rep(X, Repfac), where Repfac is a vector of integers with len gth(Repfac)
= length(X) and Repfac[i] >= 0, replicates the j-th element o f vector(X)
Repfac[j] times. The result has length length(X) * sum(Repfac). If every
element of Repfac is 0, the result is NULL.

Examples
Examples:

Cmd> rep(vector(1,3,5),4) # same as vector(1,3,5,1,3,5,1 ,3,5,1,3,5)
(1) 1 3 5 1 3
(6) 5 1 3 5 1

(11) 3 5

Cmd> rep(vector(7,6,5),vector(3,0,2)) # same as vector(7 ,7,7,5,5)
(1) 7 7 7 5 5

Cmd> a <- factor(rep(run(5),4)); b <- factor(rep(run(4),r ep(5,4)))

Cmd> print(a,b) # factors for 4 by 5 factorial design with no r eps
a:

(1) 1 2 3 4 5
(6) 1 2 3 4 5

(11) 1 2 3 4 5
(16) 1 2 3 4 5
b:

(1) 1 1 1 1 1
(6) 2 2 2 2 2

(11) 3 3 3 3 3
(16) 4 4 4 4 4

Cmd> rep(run(5), vector(1,2,3))# ERROR! (args have differ ent lengths)
ERROR: in rep(x,m), m must be scalar or a vector the same lengt h as x

Warning
WARNING: Because rep() is a function you cannot use the name ’ rep’ as a
variable name, say for a replication factor in a design. Use ’ Rep’ or
’reps’ instead.

Cross references
See also topics vector(), run(), ’models’, ’glm’.

2.300 replacestr()

Usage:
replacestr(source,old,new) replace first instance of old by new

in source, where all three are Character scalars
replacestr(source,old,new,T) replace all instances of ol d by new

in source, where all three are Character scalars

Keywords: CHARACTER variables

428 CHAPTER 2. MACANOVA HELP FILE

replacestr(source,old,new) works on three CHARACTER scal ar
variables. It replaces in source the first instance of the st ring
in old by the string in new. If old does not appear in source,
then source itself is returned.
replacestr(source,old,new,T) is similar, except that all instances
of old are replaced by new.

2.301 restore()

Usage:
restore(FileName [,delete:F, list:T, history:F, options :F,\

foreignok:T])

Keywords: files, general

Usage
restore(FileName) restores the workspace or variables pre viously put in
file FileName by save() or asciisave(), where FileName is a q uoted
string or CHARACTER variable. Unless option ’restoredel’ h as been set
to False (see subtopic ’options:"restoredel"’), all curre nt variables
are deleted before restoration. If a history of commands was saved by
using history:T on save() or asciisave(), it replaces the co rrent
history of recent commands.

In a version with windows, if FileName is "" you will be prompt ed for
the name of the file. Restore Workspace on the File menu in ver sions
with windows is equivalent to ’restore("")’.

Restoring a workspace may destroy any existing locked varia bles. See
topic ’variables:"locked_variables"’.

Variables not restored
Although variables HOME, DATAFILE, DATAPATHS, MACROFILES , HELPFILES and
HELPINDICES are saved by save() and asciisave(), they are no t restored
unless they do not currently exist.

These variables are used to find files containing macros, da ta and help
information. See topics adddatapath(), addmacrofile(), g etdata(),
getmacros(), ’macros’ and ’DATAPATHS’.

Any of these variables that are not restored become componen ts of
structure SAVEDNAMES with components HOME, DATAFILE, DATA PATHS,

If you want to restore DATAPATHS, say, you must follow restor e() by

Cmd> DATAPATHS <- SAVEDNAMES$DATAPATHS

or you can use macro restorenames():

Cmd> restorenames(DATAPATHS)

2.301. RESTORE() 429

To restore all these variables after restore(), use

Cmd> restorenames()

In addition, variable VERSION is not restored and is not save d in
SAVEDNAMES. Whether or not VERSION exists before restore() is run,
restore() sets it to a value appropriate to the MacAnova vers ion being
run.

These steps help ensure that the values of these variables pe rtains to
the computer and version you are actually using rather than t o
the computer and version used to create the workspace file. S ee topics
’files’, ’launching’.

Keyword ’delete’
restore(FileName, delete:F) does not delete existing vari ables before
restoring. However, a variable or macro with the same name as a
variable or macro in the file is replaced by the one in the file . If
option ’restoredel’ has been set to False, it may be overridd en by
delete:T.

Keyword ’history’
restore(FileName, history:F) suppresses restoring of any history of
recent commands that may have been saved. Use this if you want to
preserve the history of commands immediately preceding the restore()
command. This is not available in versions that do not save su ch a
history. See sethistory() and gethistory(). Note: a comman d history is
not saved on a save of selected variables.

Keyword ’options’
restore(FileName, options:F) suppresses restoring the va lues of options
in effect when the workspace file was created. Use this if you want to
preserve options currently in effect. See topics ’options’ ,
setoptions() and getoptions().

Note: option values are not saved on a save of selected variab les.

Keyword ’list’
restore(FileName [,delete:F], list:T) lists information on variables as
they are restored.

Restoring foreign binary files
It is normally an error when the file is a binary workspace fil e from an
incompatible computer, for example, restoring a Macintosh save file on
Windows.

restore(FileName, foreignok:T ...) makes it permissible t o try to
restore a binary workspace file from an incompatible comput er. When
necessary and possible, bytes in the internal representati on of numbers
are permuted so as to give them correct values. This is imposs ible if
either the number of bytes in either a double precision numbe r or a long
integer differ between the machines.

430 CHAPTER 2. MACANOVA HELP FILE

If you are planning to use a save workspace on a different type of
computer, it is safer to save it using asciisave().

Restoring GRAPHWINDOWS and options
Unless ’graphwind:F’ was used when the workspace file was cr eated,
special structure GRAPHWINDOWS is restored. In windowed ve rsions the
windows corresponding to its components are redrawn (see to pic
’GRAPHWINDOWS’). If the number of components saved is great er than the
number allowed in the version you are using, extra component s are
ignored. If the number is fewer, missing components are assu med to be
NULL.

Unless options:F is an argument to restore() or was an argume nt to
save() or asciisave() when the workspace file was created, v alues for
options such as ’nsig’, ’format’, and ’seeds’ will be restor ed to the
previous values at the time the save was done (see ’options’) .

There are a couple of exceptions.
’prompt’ is not restored when input is from a ’batch’ file; se e
batch()
’matchdelay’ is not restored when restoring a workspace sav ed on an
incompatible system.

Restoring private GLM information
If all:T was used when the file was created, then private info rmation
related to the most recent GLM command will be restored. With out this
information certain commands such as secoefs() do not work u ntil a GLM
command has been executed. See topic ’glm’.

Restoring old workspace files
Workspace files created by earlier versions of MacAnova for the same
computer can normally be restored correctly except that bin ary files
created by MacAnova2.4x on a Macintosh cannot be restored.

Cross references
See also topics asciisave(), save(), restorenames(), ’opt ions’, ’files’.

2.302 restorenames()

Usage:
restorenames()
restorenames(name1 [,name2, ...]), name1, name2, ... are a ny of these

variable names: HOME, DATAFILE, DATAPATHS, MACROFILES, HE LPFILES,
HELPINDICES

Keywords: files, general, structures

Usage
restore() does not overwrite certain variables containing information on
the location of data, macro and help files. These variables a re HOME,
DATAFILE, DATAPATHS, MACROFILES, HELPFILES and HELPINDICES. Instead,

2.303. RETURN 431

it creates a structure SAVEDNAMES containing the values of t hese
variables in the workspace file being restored. restorenam es() is
provided to make it easy to overwrite any or all of these varia bles
after restore().

restorenames() restores all the variables in SAVEDNAMES.

restorenames(name1 [, name2, ...]) restores just the named variables.
name1, name2, ... must be names of components of SAVEDNAMES, normally
HOME, DATAFILE, DATAPATHS, MACROFILES, HELPFILES and HELPINDICES.

Examples
Example:

Cmd> restore("workspace.030320")

Cmd> restorenames(MACROFILES, HELPFILES)

Cross references
See also restore(), save(), getdata(), getmacros(), addma crofile(),
adddatapath(), addhelpfile(), ’workspace’.

2.303 return

Usage:
return(x), x a variable or constant, only in a macro
return and return() are equivalent to return(NULL)

Keywords: control, syntax, macros

Description and usage
Syntax element ’return’ is used to leave a macro immediately , skipping
any following expressions or commands. It may be used only in the text
of a macro.

In a macro, when ’return(Value)’ is executed, the macro is im mediately
terminated and Value is returned as the macro value. Value ca n be any
constant, variable or expression. ’return(Value)’ must be followed by
’;’ or ’}’ or be at the end of a line.

In a macro, ’return()’ and ’return’, with no parentheses, ar e equivalent
to ’return(NULL)’.

Where ’return’ is used
’return(Value), ’return()’ and ’return’ are typically the last command
in the compound command (see topic ’syntax’) that follows ’i f(...)’,
’elseif(...)’ or ’else’ (see topic ’if’), or as the last comm and in a
macro.

’return’ may not be used in an evaluated string unless it is in a macro
invoked in that evaluated string. This is true even if the str ing being
evaluated is within a macro. See evaluate().

432 CHAPTER 2. MACANOVA HELP FILE

Example
Example:

Cmd> checkit <- macro("if($1==1){return(\"one\")}
if($1 == 2){return(\"two\")};return(\"not one or two\")")

Cmd> reply <- checkit(1); reply
(1) "one"

Cmd> reply <- checkit(3); reply
(1) "not one or two"

The final ’return(...)’ could be replaced simply by "not one or two",
since the default return value is the last expression or vari able in the
macro.

Cross references
See also macro(), ’macros’, ’macro_syntax’, ’break’, ’nex t’

2.304 reverse()

Usage:
reverse(x), x a vector or matrix.

Keywords: time series

Usage and examples
reverse(x) reverses the order of the rows of x, where x is a REA L,
LOGICAL or CHARACTER vector or matrix.

The result has the same size and type as x. When isvector(x) is True,
the result is a pure vector (ndims(x) = 1). Otherwise, the res ult has 2
dimensions.

Examples:
Cmd> reverse(vector(1,3,2,4,7))
(1) 7 4 2 3 1

Cmd> reverse(matrix(run(6),3))
(1,1) 3 6
(2,1) 2 5
(3,1) 1 4

Cmd> reverse(matrix(vector("A","B","C","D")))
(1) "D"
(2) "C"
(3) "B"
(4) "A"

2.305. RFT() 433

2.305 rft()

Usage:
rft(rx [,divbyT:T]), rx a REAL matrix

Keywords: time series, complex arithmetic

Usage
rft(rx) where rx is a REAL vector or matrix, computes the Herm itian form
of the complex discrete Fourier transform of each column of r x,
considered as a real series.

Any MISSING values in rx are replaced by 0 in computing the res ult and a
warning message is printed.

rft(rx,divbyt:T) does the same except the result is divided by the
number of rows of rx.

Inverse transform
hft(hconj(hx),divbyt:T) is the inverse of rft() in the sens e that rx and
hft(hconj(rft(rx)),divbyt:T) are equal except for roundi ng error.

Limitation on length
The largest prime factor of nrows(rx) must not exceed 29. You can use
primefactors() to find the maximum factor of nrows(rx) and g oodfactors()
to find a length >= nrows(rx) which has no prime factors > 29. I n
addition, the product of all the "unpaired" prime factors ca n’t be too
large. For example N = 3 * 5* 7* 11* 13* 17* Mˆ2 = 255255 * Mˆ2, where M is an
integer, breaks the algorithm and hence is not allowed.

Cross references
See also cft(), hft(), hconj(), primefactors(), goodfacto rs().

See topic ’complex’ for discussion of complex matrices in Ma cAnova.

See subtopic ’matrices:"complex_matrices" for a list of ma cros for
working with complex matrices.

2.306 rnorm()

Usage:
rnorm(n), n a positive integer

Keywords: random numbers

Usage
rnorm(N) generates a vector of N pseudo-random normals with mean 0 and
variance 1. N must be a positive integer.

If the random number generator has not been initialized by se tseeds(),

434 CHAPTER 2. MACANOVA HELP FILE

setoptions() or previous use of rbin(), rnorm(), rpoi() or r uni(), the
generator’s "seeds" will be initialized automatically usi ng the current
time and date, and their values will be printed out.

To generate a pseudo random sample from the normal distribut ion with
mean mu and standard deviation sigma do the following.

Cmd> y <- mu + sigma * rnorm(N) # sigma > 0 and mu REAL scalars

Cross references
See also topics setseeds(), getseeds(), setoptions(), rbi n(), rpoi(),
runi(), cumnor() and invnor(), subtopic ’options:"seeds" ’.

2.307 robust()

Usage:
robust([Model] [,print:F or silent:T, trunc:c, maxiter:m , epsilon:eps, \

fstats:T, pvals:T, marginal:T]), Model a CHARACTER scalar ,
c and eps positive REAL scalars, m a positive integer.

Keywords: glm, anova, regression

Usage
robust(Model) computes a robust linear fit of the model spec ified in the
quoted string or CHARACTER variable Model. An approximate a nalysis of
variance (ANOVA) table is printed, as well as a robust estima te of
sigma. In the case of normal errors with possible outliers ar ising from
contamination, the square of the estimated sigma is approxi mately
unbiased for the variance of the uncontaminated errors.

See topic ’models’ for information on specifying Model.

When Model is omitted (robust() or robust(,...), the most re cent GLM
model is assumed, or, if there have not been previous GLM comm ands, the
model specified in variable STRMODEL, if any.

Side effect variables created
Side effect variables created by robust() are DF, SS, HII, RE SIDUALS,
and WTDRESIDUALS. WTDRESIDUALS is not really weighted resi duals;
instead it is set to the vector of modified residuals
sigmahat * psi(residuals/sigmahat). See below for details.

Inference based on the ANOVA table should be used with cautio n.
Especially when there are cases with high leverage (large va lue of HII),
or when the ratio of model degrees of freedom to error degrees of
freedom is too large, the approximation can be misleading. I nterpret
with similar caution the results of secoefs() and contrast() after
robust().

Keyword ’trunc’, ’maxiter’ and ’epsilon’
Keyword phrase Default Meaning

trunc:c .75 Positive REAL c is used as a "truncation point"

2.307. ROBUST() 435

in the fitting algorithm. See discussion
below. The larger the value, the less
"robustifying."

maxiter:m 50 Positive integer m is the maximum number of
iterations that will be allowed in fitting

epsilon:eps 1e-6 Small positive REAL specifying relative e rror
in objective function required to end iteration

Other keywords
See topic ’glm_keys’ for information on keyword phrases ’pr int:F’,
’silent:T’, ’fstats:T’, ’pvals:T’ and ’marginal:T’. Any P values
printed by fstats:T and pvals:T are only approximate. Keywo rd phrase
’coefs:F’ is not legal.

The default values for fstats and pvals can be changed by
setoptions(fstats:T) and/or setoptions(pvals:T). See se toptions(),
options.

Algorithm used
The algorithm used is based on Sec. 7.8 of "Robust Statistics " (Wiley
1981) and Sec. 14 of "Robust Statistical Procedures" (SIAM 1 977), both
by Peter J. Huber. Coefficients and scale sigma are estimate d by
minimizing a certain function of sigma and the residuals r = y - fit
(Huber 1981, eq. 7.7.9 and 7.7.14).

Effectively the algorithm deemphasizes cases whose appare nt residual
r[i] satisfies abs(r[i]) > c * sigma, where c is a constant "truncation
point". The default value of c is .75 but it can be set by keywor d
’trunc’.

Contents of WTDRESIDUALS
After running robust(), WTDRESIDUALS contains the modifie d residuals
rmod = sigmahat * psi(rhat/sigmahat), where sigmahat is the estimated
scale, rhat is the vector of estimated residuals, and psi(z) = z when
abs(z) < c, psi(z) = c for z >=c, psi(z) = -c, z <= -c.

Contents of ANOVA table
Following a suggestion of Huber, the ANOVA table is computed from
pseudo-data obtained as fithat + K * rmod, where fithat = y - rhat is the
vector of estimated predicted values and K is a constant (see p. 40 of
Huber 1977). K = (1 + (k/n)(1-mu)/mu)/mu, where n is the sampl e size, k
is the number of model degrees of freedom, and mu = m/n where m i s the
number of non-truncated rhat[i], that is, which satisfy
abs(rhat[i]/sigmathat) < c. The robust estimate of sigma is
sqrt(mse/beta)/K, where mse is the error mean square from th e ANOVA
table and beta is a constant computable by beta = cumchi(cˆ2, 3) +
2* cˆ2 * (1 - cumnor(c)) = E[psi(zˆ2)] for N(0,1) z.

If you want ANOVA results with a different order of terms, you do not
need to redo robust(); you can use anova() with the pseudo-da ta in the
preceding paragraph as dependent variable. You can determi ne m needed

436 CHAPTER 2. MACANOVA HELP FILE

to compute K as the number of cases for which WTDRESIDUALS and RESIDUALS
are equal except for rounding error.

2.308 rotate()

Usage:
rotate(x, k), x a vector or matrix, k an integer.

Keywords: time series, combining variables

Usage
rotate(x, k) "rotates" by k rows each column of the REAL, LOGI CAL or
CHARACTER vector or matrix x. When k > 0, rows pushed down off t he end
are shifted to the start and when k < 0, rows pushed up before th e start
are moved to the end. k must be a single integer and is interpre ted
modulo nrows(x). For example, rotate(x,k) and rotate(x,k % % nrows(x))
are equivalent.

More explicitly, for -m < k < m, where m = nrows(x), rotate() mo ves rows
as follows:

0 <= k <= m-1 (down column shift) -(m-1) <= k <= 0 (up column shif t)
Row j -> Row j+k for j=1,...,m-k Row j -> Row j+k+m for j=1,..., -k
Row j -> Row j+k-m for j=m-k+1,...,m Row j -> Row j+k for j=-k+1 ,...,m

The result has the same size and type as x. When isvector(x) is True,
the result is a pure vector (ndims(x) = 1). Otherwise, the res ult has 2
dimensions.

Examples
Examples:

Cmd> rotate(vector(1,3,2,6,5,4),2)
(1) 5 4 1 3 2
(6) 6

Cmd> rotate(matrix(vector(1,3,2,7, 6,5,4,8),4), -2)
(1,1) 2 4
(2,1) 7 8
(3,1) 1 6
(4,1) 3 5

Cmd> rotate(vector("A","B","C","D"),-1)
(1) "B"
(2) "C"
(3) "D"
(4) "A"

Caution
Caution: Do not confuse rotate() with rotation() which does rotation of
factor loadings.

2.309. ROTATION() 437

2.309 rotation()

Usage:
rotation(loadings [, method:Method, kaiser:T, reorder:T ,

lambda:lam,verbose:T]), where loadings is a REAL matrix, l am >= 0 is a
real scalar and Method is a quoted string or CHARACTER scalar

Keywords: multivariate analysis

Usage
L <- rotation(Loadings) or L <- rotation(Loadings, method: "varimax")
sets L to a matrix derived by varimax "rotation" from Loading s. That
is, an orthogonal matrix R is found so that L = Loadings % * % R maximizes
a certain criterion.

Loadings must be a REAL matrix with no MISSING values and with
nrows(Loadings) >= ncols(Loadings). The result L is a REAL m atrix with
the same dimensions as Loadings.

rotation(Loadings, kaiser:T [,method:"varimax"]) does t he same except
Kaiser normalization is used. That is the rows of loadings ar e rescaled
to have norm 1 before rotation and then unscaled after rotati on.

rotation(Loadings, method:"quartimax" [, kaiser:T]) doe s the same except
the quartimax criterion is maximized.

rotation(Loadings, method:"equimax" [, kaiser:T]) does t he same except
the equimax criterion is maximized.

rotation(Loadings, method:"orthomax", lambda:lam [, kai ser:T]) where lam
>= is a REAL scalar does the same except the orthomax crition w ith
parameter lam is maximized. lam = 1, lam = 0 and lam =
ncols(Loadings)/2 correspond to varimax, quartimax and eq uimax rotation,
respectively.

rotation(Loadings, verbose:T [,method:Method ...]) prin ts the value of
the criterion before and after rotation.

rotation(Loadings, reorder:T [,method:Method ...]) does the same except
that after rotation each column is multiplied by +1 or -1 so th at the
column sum is positive, and the columns are reordered in decr easing
order of the column sums of squares.

Use with factor analysis
rotation() is designed to be used to rotate a factor analysis matrix of
loadings so as to achieve "simple structure."

It is usual to rotate not the loading matrix itself, but the lo ading
matrix scaled so that the row sums of squared loadings are con stant.
The rotated matrix is then rescaled to restore the original r ow sums of
squares. This is sometimes called Kaiser normalization and is
accomplished automaticall by using ’kaiser:T’ as an argume nt.

The rotated matrix has the form rotated_L = L % * % A, where A is m by m.

438 CHAPTER 2. MACANOVA HELP FILE

A can be recovered as
A <- solve(L’ % * % L, L’ % * % rotated_L)

Keywords ’epsilon’ and ’maxiter’
The algorithm used is iterative, using a default convergenc e criterion
of epsilon = .00001, and performing a maximum of 100 iteratio ns. These
values can be modified by including keyword phrases ’epsilo n:value’
and/or ’maxiter:n’, where value is a small positive number a nd n is a
positive integer.

Caution
Caution: Do not confuse rotation() with rotate() which shif ts the rows
of its first argument up or down, wrapping around the end.

2.310 round()

Usage:
round(x [, ndec]), x REAL or a structure with REAL components , ndec an

integer

Keywords: transformations

Usage
round(x) rounds the elements of the REAL variable x to the nea rest
integer, producing a vector, matrix, or array with the same s hape as x.

round(x,n) where n is an integer is equivalent to 10ˆ(-n) * round(x * 10ˆn).
If n > 0, this rounds to n decimal places. If n < 0, this rounds to the
nearest multiple of 10ˆabs(n). round(x,0) is equivalent to round(x).

Structure argument
If x is a structure, so is round(x) or round(x,n). If xi is the i -th
component of x, the i-th component of round(x) or round(x,n) is
round(xi) or round(xi,n).

Example
Example: round(3141.593,2) is 3141.59 and round(3141.593 ,-2) is 3100,
the nearest multiple of 100 = 10ˆ2.

CHARACTER argument
round(x, p) can also be used when x is a CHARACTER variable and p, if
present, is a quoted string or CHARACTER scalar or REAL scala r. The
result is a CHARACTER variable of the same shape as x describi ng the
transformation. For example, both round(vector("X1","X2 "),3) and
round(vector("X1","X2"),"3") return vector("round(X1, 3)","round(X2,3)").
Any element of x that is "" or starts with ’@’, ’(’, ’[’, ’{’, ’< ’, ’/’
or ’\’ is not modified. This can be useful for creating labels for a
transformed variable.

Cross references
See also topics floor(), ceiling(), ’structures’, ’labels ’.

2.311. ROWPLOT() 439

2.311 rowplot()

Usage:
rowplot(x [, graphics keyword phrases]), x a REAL matrix

Keywords: plotting

Usage and example
rowplot(x) makes an "interaction" plot of the data in the mat rix x. The
plotting positions are the column numbers and the values in x . Points
within each row are joined by lines. Any keywords useable in c hplot()
may follow x. rowplot() is implemented as a macro.

If option ’dumbplot’ has been set False (see subtopic
’options:"dumbplot"’), the plot will be a low resolution pl ot unless
’dumb:F’ is an argument.

You can use all the usual graphics keywords, including ’titl e’, ’xlab’,
’ylab’, and ’file’. See topics ’graphs’, ’graph_keys’, ’gr aph_border’
and ’graph_ticks’.

Example:
Cmd> rowplot(run(20)ˆ(.2 * run(5)’),\

title:"Xˆvector(.2, Xˆ.4, Xˆ.6, Xˆ.8, X)’")

Cross references
See also topic colplot().

2.312 rpoi()

Usage:
rpoi(n,lambda), n positive integer, lambda scalar >= 0 or no n-negative

vector of length n.

Keywords: random numbers

Usage
rpoi(N,lambda) generates a vector of N independent Poisson pseudo-random
variables with mean lambda. N must be a positive integer.

lambda must be a REAL scalar >= 0 or a REAL vector of length N wit h
lambda[i] >= 0. If lambda is a scalar, it is used for every elem ent of
the result. Otherwise, element of the result will be Poisson with mean
lambda[i].

Generating negative binomial
When used together with invgamma(), rpoi() can be used to gen erate

440 CHAPTER 2. MACANOVA HELP FILE

pseudo-random negative binomial random variables.

Cmd> y <- rpoi(N, m * invgamma(runi(N),alpha)) # m > 0, alpha > 0

will generate negative binomial random variables with shap e or index
alpha and mean alpha * m, with probabilities

p[y=x]={(1-m)ˆalpha} * alpha * (alpha+1)... * (alpha+x-1) * mˆx/x!, x=0,1,... .

Initializing
If the random number generator has not been initialized by se tseeds(),
setoptions() or previous use of rbin(), rnorm(), rpoi() or r uni(), the
generator’s "seeds" will be initialized automatically usi ng the current
time and date, and their values will be printed out.

Reference
The algorithm is based on C. D. Kemp and A. W. Kemp, Appl Statis t 40
(1991) 143-158.

Cross references
See also setseeds(), getseeds(), setoptions(), runi(), rn orm(), rbin(),
invgamma(), cumpoi(), subtopic ’options:"seeds"’.

2.313 rsample()

Usage:
y <- rsample(x,n) or y <- rsample(x,n,T), REAL vector or matr ix x,

positive integer n
y <- rsample(x,n,F) requires n <= nrows(x)

Keywords: random numbers

Purpose
rsample() is a macro you can use to select a random sample with or
without replacement from the rows of a REAL matrix or vector.

Usage
y <- rsample(x, n) and rsample(x, n, T) both select a random sa mple of
size n from the rows of REAL matrix x. n is a positive integer.
Sampling is * with * replacement.

y <- rsample(x, n, F) does the same, except that sampling is wi thout
replacement. It is an error if n > nrows(x).

In both usages, y will be a REAL vector of length n or a REAL n by
ncols(x) matrix.

Example
The following selects a random sample of size 5 drawn without
replacement from {1,2,...,20}:

Cmd> y <- rsample(run(20),5,F)

2.314. RSOLVE() 441

Cmd> y
(1) 11 10 8 3 18

Cross references
See also runi(), rnorm().

2.314 rsolve()

Usage:
rsolve(A, B [,quiet:T]), A a square REAL matrix, B a REAL matr ix,

nrows(A) = ncols(B).

Keywords: linear algebra

Usage
rsolve(a, b) computes the solution x to the system of linear e quations
x a = b, where a is a REAL square matrix and b is a REAL matrix with
ncols(b) = nrows(a). rsolve(a, b) produces the same result a s
solve(a’,b’)’, and is mathematically but not computationa lly equivalent
to b %* % solve(a).

If a is singular, an informative message is printed and the op eration
aborts.

MISSING values are not allowed in a or b.

When a has labels, the row and column labels of rsolve(a,b) ar e the row
labels of b and respectively. If b does not have labels, the ro wlabels
of solve(a,b) are rep("a", nrows(b). See topic ’labels’.

Expression b %/% a is equivalent to rsolve(a, b).

Keyword ’quiet’
Occasionally, "overflow" occurs during the computation. A ny values in
the result that are too large to be represented are replaced b y MISSING
and a WARNING message is printed. You can suppress the messag e by
including ’quiet:T’ as an argument. If you do, you should use
anymissing() to check the result for the presence of MISSING elements.

Cross references
See also solve(), swp().

2.315 run()

Usage:
run(first,last,incr) or run(first,last) or run(last)

442 CHAPTER 2. MACANOVA HELP FILE

Keywords: combining variables, variables

Usage
run(First,Last,Incr) will generate a sequence of numbers f rom First to
Last with step size given in Incr. The i-th number is computed as
First+(i-1) * Incr (unless it is very close to 0 or Last; see below). It
is an error if Incr is 0, unless First = Last.

run(First,Last) is the same as run(First,Last,1) if Last > F irst, and to
run(First,Last,-1) if Last < First.

run(n) does the same as run(1,n) if n is an integer. This is the most
common usage.

run(vector(First,Last,Incr)) is the same as run(First,La st,Incr). A
vector argument must be of length 3, so run(vector(First,La st)) is
illegal.

Values computed exactly
When Incr is (Last-First)/n, where n is an integer, there wil l be n+1
values, with the (n+1)-th being exactly Last, even if First+ n* Incr is
slightly less or greater than Last because of rounding error .

Similarly, if 0 is between First and Last and Incr is -First/n , the
(n+1)-th value will be exactly 0 even if First+n * Incr is not exactly 0
because of rounding error. In both situations, the value is r ounded to
the target value (Last or 0) if abs((First+n * Incr-target)) <
1e-15 * abs(Last-First).

2.316 runi()

Usage:
runi(n), n a positive integer

Keywords: random numbers

Usage
runi(count) generates a vector of count pseudo-random unif orms on the
interval 0 to 1.

If the random number generator has not been initialized by se tseeds(),
setoptions() or previous use of rbin(), rnorm(), rpoi() or r uni(), the
generator’s "seeds" will be initialized automatically usi ng the current
time and date, and their values will be printed out.

You can generate uniform random variables on the interval (a ,b), a < b
by

Cmd> x <- a + (b - a) * runi(n)

Discrete uniform generation
You can generate the discrete uniform distribution on the in tegers 1, 2,

2.317. SAMPLESIZE() 443

..., m by
Cmd> x <- ceiling(m * runi(n))

This is helpful when sampling with replacement from the rows of a data
vector of matrix.

Nonuniform random variable generation
When Q() is a macro or function computing the quantile functi on (inverse
cumulative distribution function) of a continuous random v ariable
(invnor() or invchi()) for example), Q(runi(n) [,paramete rs]) generates
a random sample from that distribution.

Cmd> invstu(runi(5),3) # Student’s t on 3 d.f.
(1) 0.43734 0.34297 0.054439 -0.0017229 -0.32894

Cmd> invF(runi(5),5,30) # F on 5 and 30 d.f.
(1) 0.45207 2.2247 0.52716 0.29218 1.506

The functions that you can use directly this way are invbeta(),
invchi(), invF(), invgamma(), invnor(), and invstu(). In p rinciple you
could also use invdunnett() and invstudrng(), but that is no t advisable
because they are so computationally intensive.

Cross references
See also topics setseeds(), getseeds(), setoptions(), rno rm(), rbin(),
rpoi(), subtopic ’options:"seeds"’

2.317 samplesize()

Usage:
samplesize(noncen,ngrp,alpha,Pwr[,design:"rbd"][,ma xn:N]), noncen > 0,

0 < alpha < 1, 0 < Pwr < 1, integers ngrp > 0, N > 0

Keywords: probabilities, glm, anova

Usage
samplesize(noncen,ngrp,alpha,Pwr) computes the group sa mple size (number
of replicates) required in a balanced one-way analysis of va riance
(completely randomized design with equal group sizes) of ng rp groups at
significance level alpha to achieve power Pwr.

Argument noncen is the noncentrality parameter and is inter preted as
sum(alphaˆ2)/sigmaˆ2, where alpha is a vector of treatment effects with
sum(alpha) = 0 and sigma is the error standard deviation.

If the required sample size exceeds 256, 256 is returned.

samplesize(muˆ2/sigmaˆ2,1,alpha,Pwr) returns the sampl e size required to
achieve power Pwr in a single-sample two-tail t-test of H0: m u = 0 when
the standard deviation is sigma.

444 CHAPTER 2. MACANOVA HELP FILE

Keywords ’design’ and ’maxn’
samplesize(noncen,ngrp,alpha,Pwr,design:"rbd") compu tes the number of
blocks required to achieve power Pwr in a randomized complet e block
design with ngrp >= 2 treatments.

samplesize(noncen,ngrp,alpha,Pwr [,design:"rbd"], max n:N), N > 0 an
integer, does the same, except if the required samples size e xceeds N, N
is returned.

Cross references
See also power() and power2().

2.318 save()

Usage:
save(FileName [,all:T, v335:T, v406:T, nulls:F, options: F,\

history:T, ascii:T])
save() repeats previous save() or asciisave()

Keywords: files, general, variables, null variables

Usage
save(FileName) saves the MacAnova "workspace", that is, al l the current
variables and option values, in a file with name given in the q uoted
string or CHARACTER variable FileName. The file will be in a b inary
format that is specific to the type of computer. The workspac e can be
recovered later by restore(). See topics ’files’, ’workspa ce’,
restore().

save(FileName,ascii:T) is equivalent to asciisave(FileN ame), that is,
the file written will be an ASCII text file instead of a binary file.
This option can be used together with others described below .

In a version with windows, FileName can be "", in which case yo u will
be prompted for the file name.

Resaving in same file
save(), with no file name, saves the workspace in the same fil e as
specified in a previous asciisave() or save(). If the previo us save was
ASCII, so will be the current save. Moreover, if the previous save()
specified an obsolete format (see below), the same format wi ll be used,
unless explicitly changed. If there was no previous save() o r
asciisave(), omitting the file name is an error.

Partial save
save(FileName, var1, var2,) does a partial save, savin g only
variables or macros var1, var2, ... on the file. Any variable to be
saved that is specified in keyword form (example: save(File Name,
residuals:RESIDUALS)), will be restored having the keywor d name. Unless
the variables are saved using an obsolete format, when a part ial
save is restored, other variables are not affected. If an obs olete

2.318. SAVE() 445

format is used, other variables are normally deleted when th e file is
restored, unless keyword phrase delete:F is used on restore ().

Saving GRAPHWINDOWS
On all versions, a complete save, but not a partial save, norm ally saves
the special structure GRAPHWINDOWS (see topic ’GRAPHWINDO WS’) as part of
the workspace. When GRAPHWINDOWS is restored, windows corr esponding to
any GRAPH components are redrawn.

save(FileName, graphwind:F) saves the workspace without i ncluding
GRAPHWINDOWS.

Saving history of commands
A complete save (but not a partial save) normally saves the hi story.
When restore() recovers the information in the file, the sav ed history
list replaces the command history unless restore() keyword phrase
’delete:F’ is used.

save(FileName,history:F) saves the workspace without sav ing the command
history.

save(FileName,history:T) saves the workspace together wi th the command
history, even when the value of option ’savehistry’ is False (see topic
’options’:"savehistry"’). ’history:T’ is illegal on a par tial save.
See sethistory() and gethistory().

Saving options
save(FileName,options:F) suppresses saving the current v alues of
options, which normally occurs. When options:F is not used, restore()
resets options to the saved values, including random number seeds. See
setoptions(), getoptions().

You can use any of history:F, options:F and graphwind:F toge ther.

Save GLM private information
save(FileName,all:T) saves, in addition to the workspace, a variety of
information computed by the last GLM command. When this info rmation is
recovered by restore(), it becomes possible to use function s such as
secoefs() and modelinfo() to get information on the last GLM analysis
before the save.

This option is really useful only when you have just complete d a GLM
(generalized linear or linear model) computation (regress (), anova(),
poisson(), etc.) that took a long time to compute since it is u sually
sufficient just to repeate the GLM command when you restore t he
workspace. If the model was complex and had many cases, ’all: T’ can
greatly increase the size of the workspace file.

Keyword ’nulls’
save(FileName, nulls:F [, var ...]) does not save NULL varia bles. See
topic ’NULL’.

Other information saved

446 CHAPTER 2. MACANOVA HELP FILE

save() also saves the current time and date. These are report ed by
restore() when the workspace or variables are restored.

In addition, save() saves information about the computer Ma cAnova is
running on and the compiler it was compiled with, plus inform ation about
the internal representation of linear models. This informa tion is used
by restore() to determine if it is safe to restore variables. If you
are planning to restore the file on another computer or diffe rent
version of MacAnova, use asciisave().

Difference from asciisave()
save() differs from asciisave() in that asciisave() saves t he
information in the form of a "text" file, more or less human re adable,
that can be transferred between different types of computer s. Files
created by asciisave() are often bigger than the correspond ing file
created by save().

Why use save()
save() and asciisave() are useful when a session must be inte rrupted and
you don’t want to lose what you have done. On an unstable syste m or
when using MacAnova remotely over a noisy phone line, a usefu l insurance
measure is to save your current variables every few minutes. The
following creates a macro that makes this easy:

Cmd> snapshot <- macro("save(\"snapshot.sav\",all:T)")

Then simply typing ’snapshot()’ saves a copy of your workspa ce, options,
and internal variables related to GLMs on file snapshot.sav . They can
be restored by ’restore("snapshot.sav")’.

Examples
Examples:

Cmd> save("chckpnt.bin") # save entire workspace, but not G LM stuff
Cmd> save("chckpnt.bin",options:F,history:)#no histor y or options
Cmd> save("saveFile",all:T) # save everything, including GLM stuff
Cmd> asciisave("saveFile",x,y,residuals:RESIDUALS, v3 1:T)
Cmd> save("saveFile",x,y,residuals:RESIDUALS, v31:T, a scii:T)

The last two are identical and save only x, y, and RESIDUALS on ASCII
file saveFile readable by MacAnova 3.1. When restored, RESI DUALS will
be recreated with name ’residuals’.

Windowed versions
In windowed versions, Save Workspace on the File menu (Comma nd+K or
Ctrl+K) is equivalent to ’save()’, except that if there hasn ’t been a
previous save() or asciisave(), you are prompted for a file n ame using
the usual file navigation dialog box.

When you Quit from MacAnova, you are normally asked if you wan t to save
the workspace (only in windowed versions).

Compatibility of workspace files of earlier versions
There have been minor and major changes in workspace file for mat as
MacAnova has evolved. Generally when a change is made, older versions

2.319. SCALARS 447

of MacAnova are not able to restore files created using the ne w format.
For instance, workspace files written by version 3.36 or lat er which
contain NULL variables or variables with MISSING values can not be
restored by earlier versions.

If it is important for an earlier version of MacAnova to be abl e to
restore a workspace file created on the latest version, you c an specify
one of the obsolete formats by using keywords ’v24’, ’v31’, ’ v335’ or
’v406’.

save(FileName,v24:T [, var ...]) or save(FileName,old:T [, var ...])
saves in the format recognized by versions 2.4x and earlier o f MacAnova.
Keywords all and options are ignored and options are not save d.

save(FileName,v31:T [, var ...]) saves in the format recogn ized by
versions 3.0 and 3.1x of MacAnova.

save(FileName,v335:T [, var ...]) saves in the format recog nized by
version 3.35 of MacAnova. NULL variables are not saved.

save(FileName,v406:T [, var ...]) saves in the format used i n versions
later than 3.35 but earlier than 4.07. Information on ticks i n GRAPH
variables is not saved and there are other differences. Use v 406:T when
creating a workspace file that is to be read by MacAnova 4.06 o r
earlier.

Note: Prior to version 4.01, names starting with ’_’ were not permitted.
Variables with such names can be restored by earlier version s, but they
cannot be used.

Cross references
See also topics asciisave(), restore(), ’options’, ’files ’

2.319 scalars

Usage:
Create a scalar variable: x <- 3.1415927; c <- "Hi, I’m Frank" ; no <- F

Keywords: variables, syntax

Description
A scalar variable is a vector of length 1. It can be REAL, LOGIC AL or
CHARACTER. It consists of one item of information.

For practically all purposes, a matrix or array all of whose d imensions
are 1 (matrix(sqrt(2), 1), for example) is also considered t o be a
scalar variable.

Examples
You can create scalar variables in many ways. Here are some ex amples.

448 CHAPTER 2. MACANOVA HELP FILE

Cmd> sqrt2 <- sqrt(2); twopi <- 2 * PI # REAL

Cmd> bananas <- 7; cost <- prices[bananas] * 3.1 # REAL

Cmd> filename <- "babydata.txt"; today <- weekdays[5] # CHA RACTER

Cmd> fitmean <- F; expensive <- prices[bananas] > .49 # LOGIC AL

In the third example, "babydata.txt" is an example of what is often
called a quoted string - character information enclosed bet ween two
double quotation marks.

Cross references
See topics ’file_names’ for the use of CHARACTER scalars as f ile names.

See topics ’variables’, ’arithmetic’ and ’transformation s’ for more
information about the use of scalar variables.

2.320 screen()

Usage:
screen([Model] [, method:"cp" or "rsq" or "adjrsq", mbest: m, forced:fn,\

s2:mse, penalty:pen, keep:items]), m positive integer, fn vector of
positive integers, mse and pen positive REAL scalars, items CHARACTER
scalar or vector with elements "p", "cp", "rsq", "adjrsq", " model",
"intmodel" or "all".

Keywords: glm, regression

Usage
screen(Model) screens all the regression models based on on e or more of
the X variables given in the CHARACTER argument Model. The be st of
these models are printed, together with the values of Mallow ’s Cp =
RSS/MSE + 2* p - n, multiple Rˆ2 = coefficient of determination, and
adjusted Rˆ2 = 1 - (n-1) * (1-Rˆ2)/(n-p), where p is the number of
coefficients in the model, including the constant term.

In the definition of Cp, RSS is the residual sum of squares for a model
and MSE is either the residual mean square from the model usin g all the
variables or the value of optional keyword ’s2’. When option al keyword
’penalty’ is used, its value replaces 2 as multiplier of p in t he
definition of Cp. See below for details on ’s2’ and ’penalty’ .

By default, screen() finds the models with the 5 smallest val ues of
Mallow’s Cp statistic. This default can be changed by keywor ds ’method’
and ’mbest’; see below.

Model must not specify a model with no constant term. For exam ple,
screen("y=x1+x2+x3-1") is illegal. See topic ’models’ for information
on the form of Model.

2.320. SCREEN() 449

Keywords ’keep’ and ’print’
screen(Model, keep:Items) does the same, except that nothi ng is printed.
Instead information specified by CHARACTER scalar or vecto r Items is
returned as the value of screen(). See below for permissible values.

screen(model, keep:Items, print:T) both prints the result s and returns
those results specified by Items.

Permissible values of elements of Items:
"p" Number of coefficients fit including constant (interce pt)
"cp" Mallow’s Cp statistic
"rsq" Multiple Rˆ2
"adjrsq" Adjusted Rˆ2
"model" Models selected in the CHARACTER form expected by re gress()
"intmodel" Integer Matrix with each column containing the i ndices of

the variables in one of the selected models
"all" All of the above

The values produced by the first 5 of these are vectors with on e element
for every model selected; "intmodel" produces a matrix with one column
for every model selected and nv rows, where nv is the number of
independent variables in Model.

When more than one item is specified, they are returned as com ponents of
a structure with names as in this list.

Details on value
vector("y=x1","y=x1+x3+x4","y=x2+x3+x4","y=x1+x2"," y=x4") would be
an example of a CHARACTER vector that might be produced by kee p:"model".
For this case, if there are 4 variables in all in the obvious or der, the
"intmodel" value would be the matrix

[1 1 2 1 4]
[0 3 3 2 0]
[0 4 4 0 0]
[0 0 0 0 0]

Other Keywords
Keyword Type of value Default Meaning

method CHARACTER variable "cp" Criterion ("cp", "rsq", or
"adjrsq") for subset selection

mbest Positive integer 5 Number of subsets to be found

forced REAL Vector of positive none List of independent vari ables
integers or independent to be forced into all subsets
variable names

s2 Positive REAL number MSE Replacement for full model
MSE in computing Cp

penalty Positive REAL number 2 Multiplier of p in computing
Cp

450 CHAPTER 2. MACANOVA HELP FILE

print T or F print:T forces printing when
’keep’ is used.

Keyword ’silent’, ’fstats’, and ’pvals’ are illegal for scr een(), and
’print:F’ is illegal unless keyword ’keep’ is used.

Keyword ’method’
The value of keyword ’method’ determines the criterion to be used to
rank regressions.

Value Criterion Used What is better
"cp" Mallow’s Cp Smaller
"rsq" Multiple Rˆ2 Larger
"adjrsq" Adjusted Rˆ2 Larger

Keyword ’mbest’
The number of subset regressions computed is determined by t he value of
’mbest’.

With method:"adjrsq" or method:"cp", exactly mbest regres sions are
printed or returned.

With method:"rsq", for each possible number m, m = 1, 2, ..., n v, of
variables, screen() selects the mbest models with largest v alue of Rˆ2,
where nv is the number of variables in the model. Thus in this c ase, up
to (nv-1) * mbest + 1 models would be selected.

Keyword ’forced’
The value of ’forced’ should be a list of names of any variable s that
should be forced into the model. For instance, with forced:v ector("x1",
"x2"), all models examined would include x1 and x2. By defaul t, no
variables are forced. The value of ’forced’ can also be a vect or of
integers, say forced:vector(1,2).

Keywords ’penalty’ and ’s2’
The value of ’penalty’ is used to compute Cp = RSS/MSE + penalt y* p - n.
Larger values increase the "penalty" of including addition al variables
and tends to produce models with fewer variables. The defaul t value is
2.

The value of ’s2’ is the MSE to be used in computing Cp. If not
specified, the mean square error from the complete model is u sed.

Examples
Examples, all assuming Model is "y=x1+x2+x3+x4+x5+x6+x7"

Screen with defaults mbest = 5,method = "cp",and penalty = 2
Cmd> screen(Model)

Screen for 10 best models using adjusted Rˆ2 with variable x3 forced
into the model:

Cmd> screen(Model,mbest:10,forced:"x3",method:"adjrs q") # or forced:3

2.321. SECOEFS() 451

Screen using Cp over models with x6 forced in and penalty fact or of 3:
Cmd> screen(Model,forced:"x6",penalty:3)

Screen using defaults, saving p, cp, and the models, and prin ting
results:

Cmd> result <- screen(Model,keep:vector("p","cp","mode l"),print:T)

Cmd> regress(result$model[1]) # compute regression with b est model

Reference
screen() uses a branch and bound algorithm due to Furnival an d Wilson.
See their paper, Regression by Leaps and Bounds, Technometr ics 16 (1974)
499-511.

Cross references
See also regress() and anova().

2.321 secoefs()

Usage:
secoefs([Term] [, errorTerm:ErrorTerm, byterm:F, se:F or coefs:F,

silent:T]), Term a CHARACTER scalar, a positive integer, or a factor
or variate in the current GLM model, ErrorTerm a CHARACTER sc alar or
positive integer. byterm:F only when Term, se:F and coefs:F omitted

Keywords: glm, anova, regression, confidence intervals

Usage
secoefs(Term) returns the model effects or regression coef ficients and
their standard errors for the term specified in the CHARACTE R variable
Term. The result is a structure with components ’coefs’ and ’ se’.

The coefficients and standard errors pertain to the results of the most
recent GLM (generalized linear or linear model) command suc h as
regress(), anova(), or poisson().

When Term is a main effect term, the components are vectors. W hen it is
an interation term, the components are matrices or arrays wi th the
leftmost subscript corresponding to the leftmost factor in Term.

Caution: After anova(), manova() and regress(), standard e rrors are
computed using the final error mean square in the model. This may not
be appropriate with mixed models, including split plot desi gns.

Specifying the term
Term is usually a quoted string or CHARACTER variable such as "a.b"
which exactly matches a term in the most recent model, that is , "a.b" is
not the same as "b.a". An interaction term produces a matrix o r array
with the leftmost subscript corresponding to the leftmost f actor in
Term.

452 CHAPTER 2. MACANOVA HELP FILE

If any variables in Term originally specified in the form {ex pr}, where
expr is a MacAnova expression, you must include the enclosin g ’{’ and
’}’.

For a term which consists of a single factor or variate, Term c an be its
unquoted name.

Alternatively, Term can be a integer between 1 and the number of terms,
excluding the final error term. For example, unless the mode l contained
"-1", secoefs(1) gets the estimated intercept or grand mean and its
standard error.

No term specified
secoefs() (no Term specified) computes coefficients and st andard errors
for all terms in the model. The result is a structure with one
component for each term in the model, with each component its elf a
structure with components ’coefs’ and ’se’.

The names of the top level components in the result are taken f rom the
names of the terms, truncated if necessary to 12 characters. When
such truncation is neccessary, the result is also given labe ls which
contain the full component names. See topic ’labels’.

secoefs(byterm:F) is the same as secoefs() except that the r esulting
structure has two components, ’coefs’ and ’se’, each of whic h is a
structure with one component per term (unless there is only o ne term in
the model). In this case, the names of the bottom level compon ents are
taken from the possibly truncated names of the terms. When an y
truncation takes place, the full term names are also attache d as labels.

Keyword ’silent’
secoefs(Term, silent:T) and secoefs(silent:T) do the same , but certain
warning and advisory messages are suppressed. ’silent:T’ c an be used
with any other keywords. This feature is useful in a macro whe n warning
messages might confuse the user, or in a simulation. The defa ult value
of ’silent’ is False unless the value of option’ ’warnings’ i s False.

Suppressing coefficients or standard errors
secoefs(Term,coefs:F) and secoefs(coefs:F) (or secoefs(,coefs:F))
suppress the computation of the coefficients, returning a s tructure or
matrix containing only standard errors. secoefs(Term,se: F) and
secoefs(se:F) are equivalent to coefs(Term) and coefs(), r espectively.

You can compute a structure containint t-statistics for eve ry
coefficient by

Cmd> tt <- secoefs(se:F)/secoefs(coefs:F) #or coefs()/se coefs(coefs:F)

Alternatively, you could compute such a structure by
Cmd> @tmp <- secoefs(byterm:F); tt <- @tmp$coefs/@tmp$se

After manova()
secoefs(Term,Varno) or secoefs(,Varno) computes coeffic ients and
standard errors only for variable number Varno in the case of a

2.322. SELECT() 453

multivariate dependent variable. If present, Varno must be the second
argument and any keywords must follow it.

Specifying error term
For all forms, an optional keyword phrase argument errorter m:ErrTerm or
errorterm:ErrTermNo, where ErrTerm is a CHARACTER variabl e or quoted
string specifying a term in the model and ErrTermNo is a posit ive
integer, specifies that the MS from the indicated term is to b e used in
computing standard errors.

Confidence intervals
If tcrit is a critical value, say, invstu(1-alpha/2,errorD F), you can
compute the lower 1-alpha confidence limits for the coeffic ients

Cmd> @tmp <- secoefs(byterm:F);@tmp$coefs - tcrit * @tmp$se
and similarly for upper limits (replace - by +).

Example
After anova("y= a + b + a.b")

secoefs(a), secoefs("a"), or secoefs(1) will compute the m ain effect
coefficients and their standard errors for factor a

secoefs(a,coefs:F), secoefs("a",coefs:F), or secoefs(2 ,coefs:F) will
compute the standard errors of main effect coefficients

secoefs("a.b") or secoefs(4) will produce matrices of the a by b
interaction coefficients and their standard errors.

secoefs() will produce all coefficients and their standard errors in
a structure with components CONSTANT, a, b, and a.b.

secoefs(byterm:F) will produce all coefficients and their standard
errors in a structure with components coefs and se

This will produce the a by b interaction effects and their sta ndard
errors.

Limitations
Secoefs() does not work after fastanova(), ipf(), or screen (), or if
’coefs:F’ was an argument to the most recent GLM command.

Cross references
See also coefs(), contrast(), modelinfo(), popmodel(), pu shmodel().

2.322 select()

Usage:
select(k, x), k vector of positive integers or LOGICAL vecto r, x a

matrix.

Keywords: combining variables, variables

Usage
select(k, x) computes vector(x[1,k[1]],x[2,k[2]],...,x [n,k[n]]), where n
= nrows(k). For example, select(k,x)[i] is x[i,k[i]], the k [i]-th
element of the i-th row of x. The length of the result is nrows(k).

454 CHAPTER 2. MACANOVA HELP FILE

k must be a REAL vector of positive integers or a LOGICAL vecto r and x
must be a matrix with nrows(x) >= nrows(k) and ncols(x) >= max (k),

When k is a LOGICAL vector, False is translated to 1, and True i s
translated to 2. For example, when x is a matrix with two colum ns,
select() can be used to select column 1 or column 2 of x dependi ng on
whether k[i] is False or True. NOTE: This differs from home LO GICAL
subscripts are interpreted. See ’subscripts’

If k[i] is MISSING, select(k,x)[i] is MISSING when x is LOGIC AL or REAL
and is "" when x is a CHARACTER variable.

When x is REAL or LOGICAL and k has no MISSING values, select(k , x) is
equivalent to vector(x[hconcat(run(nrows(k)), k)]).

Cross references
See topic ’subscripts’.

2.323 sethistory()

Usage:
sethistory(lines), lines is a CHARACTER vector with length <= value of

option ’history’

Keywords: general

Usage
sethistory(Lines), where Lines is a CHARACTER vector, rese ts the
internal list of previous commands to Lines with Lines[1] th e earliest
command available. Subsequent keyboard or menu retrieval o f previous
commands will retrieve elements of Lines.

It is an error if length(Lines) > nHist, where nHist is the val ue of
option ’history’. See subtopic ’options:"history"’.

sethistory() is not implemented in the limited memory DOS ve rsion or in
any version that does not allow keyboard or menu retrieval of previous
commands.

Cross references
See gethistory() for an example using gethistory() and seth istory() to
maintain a history of commands executed between MacAnova se ssions.

2.324. SETLABELS() 455

2.324 setlabels()

Usage:
setlabels(x, labels [,silent:T]), x an existing scalar, ve ctor, matrix,

array or structure, labels a CHARACTER scalar or vector, a st ructure
with CHARACTER scalar or vector components, or NULL

Keywords: general, variables

Usage
setlabels(x, Labels) "attaches" coordinate or component l abels in Labels
to variable x. If x already has labels, they are replaced. Lab els must
a CHARACTER scalar or vector, a structure whose components a re CHARACTER
scalars or vectors, or NULL.

x must be an existing scalar, vector or array of any type, or a
structure.

When Labels is NULL, any existing labels for x are removed.

When x is a vector, Labels normally is a scalar or vector of row labels
for x. When x is a matrix or array, Labels is normally a structu re with
ncomps(Labels)) = ndims(x) with Labels[I] a scalar or vecto r used to
label dimension I of x.

setlabels(x, Labels, silent:T) does the same, except messa ges
concerning a mismatch in the number of vectors of labels prov ided are
suppressed.

Wrong number of labels
It is an error when the length of a non-scalar vector of labels for a
coordinate does not match the dimension of the coordinate. S ee topic
’labels’ for information on how scalar coordinate labels ar e
interpreted.

When Labels is a vector and ndims(x) > 1 or labels is a structur e with
ndims(x) > ncomps(Labels), the missing labels are all assum ed to be "@".

Conversely, when Labels is a structure and ncomps(Labels) > ndims(x),
the extra vectors of labels are ignored.

Cross references
See also topics ’labels’, getlabels(), haslabels().

2.325 setodometer()

Usage:
odometer <- setodometer([lower:L,] upper:U [,ndigits:M,] [,place:N]),

L and U integer scalars or vectors, integer M > 0, N >= 0
odometer <- setodometer(odometer, place:N), odometer a st ructure with

integer components ’digits’, ’lower’, ’upper’, ’place’
odometer <- setodometer(odometer [,step:n]), integer n, d efault 1

456 CHAPTER 2. MACANOVA HELP FILE

Keywords: general, macros

Description of an odometer
setodometer() is used to create or modify an "odometer". An o dometer is
a structure of the form

structure(digits:D, lower:L, upper:U, place:N)

where D is a vector of M integers and L and U are integer vectors of
length M or scalars. D, L and U satisfy L[i] <= D[i] <= U[i], whe re L
and U are interpreted as rep(L, M) and rep(U, M) when they are s calars.

See topics ’scalars’, ’vectors’ and ’structures’ for infor mation on
these types of variables.

See below for how to use setodometer() to create, set and adva nce an
odometer.

Details
In the following, when L and/or U are scalars, L[i] and U[i] sh ould be
interpreted as L and/or U (rep(L,M)[i] and/or rep(U,M)[i]) .

Note: L[i] = U[i] is permitted.

An odometer is modeled on the distance display in an automobi le, with
the M elements of D corresponding to the digits in the display . It
differs in that D[i] runs from L[i] to U[i] instead of from 0 to 9, and
the digits are in reverse order (D[1] is the least significan t, D[M] is
the most significant). N corresponds to the distance travel ed. When N
= 0, D = vector(L[1], L[2], ..., L[M]) (rep(L,M) when L is a sca lar).

Let I = D - L and let R = U - L + 1 (rep(U - L + 1, M) when U and L are
scalars) and define Size = prod(R).

When 0 <= N < Size, the elements of I are the ’digits’ of N in a mix ed
radix representation with radices R[i], in reverse order. F or example,
when M = 3, N = I[1] + I[2] * R[1] + I[3] * R[1] * R[2]. When L = 0 and U =
m-1 are scalars, the elements of I are the base m digits of N, in order
from least to most significant. When N < 0 or N >= Size, the elem ents
of I are the digits of N modulo Size (N - Size * floor(N/Size)).

Creating an odometer
O <- setodometer(lower:L, upper:U, ndigits:M) creates an o dometer O. M
> 0 must be an integer, and L and U must be integer scalars or vec tors
of length M, with a scalar L or U interpreted as rep(U,M) or rep (L,M).
L and U must satisfy L[i] <= U[i], R[i] = U[i] - L[i] + 1 < 2ˆ31, an d
Size = prod(R) < 2ˆ52. These limits may be different on some co mputer
systems.

Component ’digits’ is initialized to L (or rep(L,M) when L is a scalar).
Components ’lower’ and ’upper’ are initialized to L and U, re spectively,
and component ’place’ is initialized to 0.

2.325. SETODOMETER() 457

O <- setodometer(lower:L, upper:U), without ’ndigits:M’, is equivalent
to O <- setodometer(lower:L,upper:U,ndigits:max(length (L),length(U))).

O <- setodometer(upper:U [,ndigits:M]) is equivalent to O < -
setodometer(lower:0, upper:U [,ndigits:M]); that is, the default value
for ’lower’ is 0.

O <- setodometer([lower:L,] upper:U [,ndigits:M], place: N) does the
same, except O$place is set to N and O$digits is set to L + mixed radix
digits of N. N must satisfy 0 <= N < Size = prod(U-L+1).

Setting and advancing an odometer
O1 <- setodometer(O, place:N) is equivalent to O1 <-
odometer(lower:O$lower,upper:O$upper,ndigits:length (O$digits), place:N);
that is, it creates an odometer O1 with the same L and U as O, but at
place N.

O1 <- setodometer(O, step:n), where O is an odometer and n is a n
integer, creates an odometer O1 with O1$place = O$place + n. O 1$digits
is computed by stepping O$digits forward n steps when n >= 0, o r
backward by -n steps when n < 0. n must satisfy abs(n) < Size =
prod(U-L+1). When abs(n) is large, this may take some time si nce it is
computed as a sequence of single forward or backward steps.

O1 <- setodometer(O) is equivalent to O1 <- setodometer(O, s tep:1); that
is the odometer is advanced by 1.

When 0 <= O$place + n < Size, setodometer(O, step:n) is equiva lent to
setodometer(O, place:O$place + n), except that setodomete r(O, step:n)
can be much slower when abs(n) is large.

Examples
Examples:

Step through the various factor combinations of a 2ˆk design :
Cmd> counter <- setodometer(upper:1,ndigits:k) #lower is 0

Cmd> for(i,run(2ˆk)){
levels <- counter$digits
do something with levels
counter <- setodometer(counter);; # step by 1

}

Find hexadecimal representation
Cmd> N <- 9 + 3* 16 + 11 * 16ˆ2 + 15 * 16ˆ3; N
(1) 64313

Cmd> O <- setodometer(upper:15,ndigits:8,place:N); O # lo wer is 0
component: digits
(1) 9 3 11 15 0
(6) 0 0 0
component: lower
(1) 0

458 CHAPTER 2. MACANOVA HELP FILE

component: upper
(1) 15
component: place
(1) 64313

Cmd> letters <- vector("0","1","2","3","4","5","6","7" ,"8","9",\
"A","B","C","D","E","F")

Cmd> paste(letters[reverse(O$digits)+1],sep:"")
(1) "0000FB39"

Cmd> O <- setodometer(lower:1,upper:16,ndigits:8,place :N); O #lower 1
component: digits
(1) 10 4 12 16 1
(6) 1 1 1
component: lower
(1) 1
component: upper
(1) 16
component: place
(1) 64313

Cmd> paste(letters[reverse(O$digits)],sep:"") # +1 not n eeded now
(1) "0000FB39"

Macro to find binary bits of integer from most to least signif icant
Cmd> bits <- macro("@N <- argvalue($1,\"N\",\"pos int scal ar\")

@ndigits <- ceiling(log(@N+1)/log(2))
reverse(setodometer(upper:1,ndigits:@ndigits,place: @N)$digits)")

Cmd> bits(N)
(1) 1 1 1 1 1
(6) 0 1 1 0 0

(11) 1 1 1 0 0
(16) 1

Cross references
See also paste(), prod(), reverse(), max(), macro(), ’macr os’,
’macro_syntax’.

2.326 setoptions()

Usage:
setoptions(option1:value [,option2:value ...] [,badopt ok:T]) option1,

option2, ... option names
setoptions(str [,badoptok:T]), where str is of the form

structure(option1:value, ...)
Type ’usage(options)’ for a succinct list of all options and their

permissible values.

Keywords: control, missing values, output, random numbers

2.326. SETOPTIONS() 459

Usage
setoptions(keyword:value [,keyword:value, ...]) change s the values of
various items specified by the keywords.

Legal option names are ’angles’, ’batchecho’, ’dumbplot’, ’errors’,
’findmacros’, ’format’, ’fstats’, ’height’, ’inline’, ’l abelabove’,
’labelstyle’, ’maxlinelen’, ’maxwhile’, ’minpvalue’, ’m issing’, ’nsig’,
’prompt’, ’pvals’, ’quiet’, ’restoredel’, ’seeds’, ’upda te’,
’traceback’, ’warnings’, ’wformat’, and ’width’.

Option name ’lines’ is a synonym for ’height’ for compatibil ity with
previous versions.

Options ’history’ and ’savehistry’ (note spelling) are als o available
(see gethistory() and gethistory()).

On windowed versions, option ’scrollback’ is also legal.

In the Windows version, option ’keyboard’ is also legal.

On Mac OS 9, options ’font’ and ’fontsize’ are also legal.

See topic ’options’ for details on these options.

Keyword ’badoptok’
setoptions(keyword:value [,keyword:value, ...] , badopt ok:T) does the
same, except it is not an error is a non-existent or otherwise improper
option is specified. This feature is intended to provide bac kward
compatibility to macros making use of new options.

Structure argument
setoptions(Options [,badoptok:T]), where Options is a str ucture with
component names matching any or all of the legal option names , sets the
options from the component values. For example, if Options w as created
by ’Options <- getoptions()’, setoptions(Options) resets the options to
what they were at the time getoptions() was invoked. See also
getoptions().

Restoring default values for all options
setoptions(defaults:T) restores all the options to their d efault values.
It is an error if there is more than one argument. If a prompt wa s set
at start up, it is restored. When setoptions(defaults:T) oc curs in a
batch file, the current batch prompt is restored to what it wa s when the
batch file was opened, either the file name or the value of key word
’prompt’ on the batch() command. See batch().

Options menu on Mac OS 9
On Mac OS 9, you can use the Options menu to change most of the
options. This works by generating and executing an appropri ate
setoptions() command.

460 CHAPTER 2. MACANOVA HELP FILE

2.327 setseeds()

Usage:
setseeds(seed1,seed2) or setseeds(vector(seed1,seed2)), seed1 and seed2

non-negative integers <= 2147483399

Keywords: random numbers

Usage
setseeds(seed1,seed2) initializes the random number gene rator used by
runi(), rnorm(), rbin() and rpoi(). The seeds should be non- negative
integers <= 2147483399.

setseeds(seeds), where seeds is a vector of the form vector(seed1,
seed2), is equivalent to setseeds(seed1, seed2). In partic ular, any
time after setting seeds by seeds <- getseeds(), setseeds(s eeds)
restarts the generator to the state it was when you used getse eds().

If either seed is zero, the seeds are intialized with values g enerated
from the time of day; the seeds generated will normally be pri nted. You
can suppress the printing by setseeds(0,0,quiet:T).

Cross references
See also topics getseeds(), runi(), rnorm(), rpoi(), rbin() and
subtopic ’options:"seeds"’.

2.328 shapeof()

Usage:
shapeNames <- shapeof(arg1 [, arg2 ...] [,strict:T]), arg1 , arg2, ...

arbitrary variables, including macros and built-in functi ons.

Keywords: variables

Usage
shapename <- shapeof(arg), where arg is REAL, LOGICAL, CHAR ACTER or
LONG, sets shapename to one of "SCALAR", "VECTOR", "MATRIX" , or
"ARRAY", classifying the shape by the first of isscalar(arg),
isvector(arg), ismatrix(arg) or isarray(arg) to be true.

When arg is not REAL, LOGICAL, CHARACTER, or LONG, shapeof(a rg) returns
one of "STRUCTURE", "MACRO", "FUNCTION", "GRAPH", "UNDEFI NED" or "NULL"
just as does typeof(arg).

shapename <- shapeof(arg, strict:T) does the same, except " SCALAR" and
"VECTOR" are returned only when ndims(arg) = 1 and "MATRIX" i s returned
only when ndims(arg) = 2.

shapenames <- shapeof(arg1, arg2 ... [,strict:T]), where a rg1, arg2,
... are any variables, makes shapenames a CHARACTER vector w ith
length(shapenames) = number of arguments, with shapenames [i] the name of

2.329. SHELL() 461

the shape of argument i.

Examples
Examples:

Cmd> a <- sqrt(2); shapeof(a)
(1) "SCALAR"

Cmd> b <- matrix(run(4),4); shapeof(b)
(1) "VECTOR"

Cmd> shapeof(b,strict:T)
(1) "MATRIX"

Cmd> shapeof(run(4)) == shapeof(b) # compare shapes
(1) T

Cmd> shapeof(run(4),strict:T) == shapeof(b,strict:T) # c ompare shapes
(1) F

Cmd> shapeof(array(PI,1,1,1),help,NULL,T,cos,strict: T)
(1) "ARRAY"
(2) "MACRO"
(3) "NULL"
(4) "SCALAR"
(5) "FUNCTION"

Cross references
See also topics nameof(), typeof(), isarray(), ischar(), i sdefined(),
isfactor(), isfunction(), isgraph(), islogic(), ismacro (), ismatrix(),
isname(), isnull(), isnumber(), isreal(), isscalar(), is vector().

2.329 shell()

Usage:
shell(command), shell(command,keep:T) or shell(command ,interact:T),

command a quoted string or CHARACTER scalar.
!command immediately after the prompt

Keywords: control, general

Usage
shell(command) submits the CHARACTER vector or string comm and to the
operating system for execution. It is implemented in the Uni x/Linux,
Motif, and DOS versions but not on the Macintosh. It does not w ork in
Windows 3.1 or Windows 95 but may in Windows NT. Except in the l imited
memory DOS version (BCPP), the program run by command must no t expect
any input from the keyboard.

For example, in the Unix/Linux or Motif versions,
Cmd> shell("ls -l * .dat")

462 CHAPTER 2. MACANOVA HELP FILE

causes the output from the Unix/Linux command ’ls -l * .dat’ to be
printed, giving a full listing of all files in the current dir ectory
with names ending with ’.dat’. Under DOS, the same effect is o btained
by

Cmd> shell("dir * .dat").

Keyword ’interact’
shell(command, interact:T) does the same as shell(command) except that
you can interact with the program that is started up. This opt ion is
required if, for example, you are using shell() to run an edit or to
modify a file. In the limited memory DOS version (BCPP), you c an always
interact with the command. When in doubt as to whether a progr am
expects keyboard input, use interact:T.

Keyword ’keep’
shell(command, keep:T) runs the command in non-interactiv e mode and
returns its output as a CHARACTER vector, with each line of ou tput an
element. The command must not expect any input from the keybo ard. This
is not implemented in the limited memory DOS version (BCPP).

Example on Unix/Linux
Cmd> datafiles <-\

shell(paste("cd ",DATAPATHS[1],"; ls * .dat"), keep:T)
returns a vector of file names of the form * .dat in the directory whose
name is in DATAPATHS[1]. See topic ’DATAPATHS’.

Operating System Escapes
Somewhat simpler, but less powerful because it cannot be inc luded in a
macro, is the use of the ’escape’ character ’!’. In the Unix/L inux,
Motif and DOS versions, any line of input starting with ’!’ im mediately
after the prompt will be passed on to the operating system for execution
(without the ’!’). Specifically,

Cmd> !command to be run ...
is equivalent to

Cmd> shell("command to be run ...", interact:T).
For example,

Cmd> !ls -l * .dat
and

Cmd> shell("ls -l * .dat", interact:T)
are equivalent.

In a command line starting with ’!’, double quotes (’"’) and c urly
brackets (’{’ and ’}’) have no special significance. The onl y "special"
character is a backslash (’\’) and then only when it occurs at the end
of line to indicate that the command is continued on the next l ine.
Unlike the case when an ordinary line is continued with backs lash, a
trailing backslash is deleted and is not seen by the operatin g system.
Unbalanced quotes or brackets are ignored.

Under DOS, but not Unix/Linux, you can change default direct ories by,
for example,

Cmd> !cd b:\data # or shell("cd b:\\data")

2.330. SHOWPLOT() 463

Caution: If you want to execute in MacAnova a command that sta rts with
’!’ (for example !(x < y)), precede it with a space. For exampl e,

Cmd> !(x < y)
attempts to execute "(x < y)" as a shell command, probably cau sing an
error, while

Cmd> !(x < y) #note the extra space
is computed in MacAnova. Conversely,

Cmd> !ls -l * .dat
is an error, because a space has been typed before ’!’.

Comparison of versions
In the DOS extended memory version (DJGPP), shell(command) or
shell(command, keep:T) sometimes hangs. shell(command,i nteract:T) or
!command is more reliable.

In the Windows version, shell(command,interact:T) and !co mmand ignores
command and starts up DOS similar to selecting MS-DOS Prompt in the
Program Manager window.

In the Motif version, shell(command,interact:T) and !comm and can be
confusing: Output does not appear in the MacAnova command wi ndow, but in
the "parent" window from which MacAnova was started up, and a ny input
must be typed in parent window.

On a Macintosh, starting a line with ’!’ is an error.

2.330 showplot()

Usage:
showplot([Graph] [,graphics keyword phrases])

Keywords: plotting

Usage
showplot(Graph) redraws the graph whose information is enc apulated in
Graph, which must be a variable of type GRAPH. If Graph is omit ted,
GRAPH variable LASTPLOT is plotted instead.

If option ’dumbplot’ has been set False (see subtopic
’options:"dumbplot"’), the plot will be a low resolution pl ot unless
’dumb:F’ is an argument.

Graphics keywords
Keywords ’dumb’, ’xmin’, ’xmax’, ’ymin’, ’ymax’, ’logx’, ’ logy’, ’xlab’,
’ylab’, ’title’, ’xaxis’, ’yaxis’, ’borders’, ’ticks’, ’x ticks’,
’yticks’, ’xticklen’, ’yticklen’, ’xticklabs’, ’ytickla bs’, ’height’,
’width’, ’pause’, ’silent’ and ’notes’ may be used as for oth er plotting
commands. See topics ’graph_keys’, ’graph_border’ and ’gr aph_keys’.
This allows you to change the original labeling and limits, a s well as
modify tick mark placement and labelling and which borders o f the plot

464 CHAPTER 2. MACANOVA HELP FILE

are drawn.

Updating LASTPLOT
As all plotting commands, showplot() updates LASTPLOT to re flect the
graph being plotted. To suppress the creation or updating of LASTPLOT,
use keyword phrase ’keep:F’ as an argument. Occasionally wh en memory is
limited, it may be necessary to use keep:F to view the graph.

See topic ’graph_assign’ for information on another way to m ake plots.

See also plot(), chplot(), lineplot().

2.331 sin()

Usage:
sin(x [, degrees:T or radians:T or cycles:T]), x REAL or a str ucture

with REAL components x in radians (default), cycles, or degr ees as set
by option "angles" or the optional keyword.

Keywords: transformations

Usage
sin(x) computes the sines of the elements of x, where x is a REA L
scalar, vector, matrix or array. The result has the same shap e as x.

The argument is considered to be in units of radians, degrees or cycles
as determined by the value of option ’angles’. The default is radians.
See subtopic ’options:"angles"’.

sin(x, radians:T), sin(x, degrees:T), sin(x, cycles:T) in terpret x as in
the indicated units, regardless of the value of option ’angl es’.

If any element of x is MISSING or is too large (> 5000000 * PI radians in
absolute value), the corresponding element of the result is MISSING and
a warning message is printed.

Structure argument
When x is a structure, all of whose non-structure components are REAL,
sin(x [,UNITS:T]), where UNITS is one of ’radians’, ’degree s’ or
’cycles’, is a structure of the same shape and with the same co mponent
names as x with each non-structure component transformed by sin().

Cross references
See topic ’transformations’ for more information on sin(), including its
use with a CHARACTER argument.

2.332. SINH() 465

2.332 sinh()

Usage:
sinh(x), x REAL or a structure with REAL components

Keywords: transformations

Usage
sinh(x) returns the hyperbolic sine of the elements of x, whe n x is a
REAL scalar, vector, matrix or array. The result has the same shape as
x. In terms of other functions, sinh(x) = (exp(x) - exp(-x))/ 2.

If any element of x is MISSING or > 710.4758600739439 in absol ute value,
the corresponding element of sinh(x) is MISSING and a warnin g message is
printed.

When x is a structure, all of whose non-structure components are REAL,
sinh(x) is a structure of the same shape and with the same comp onent
names as x, with each non-structure component transformed b y sinh().

Cross references
See topic ’transformations’ for more information on sinh() .

2.333 solve()

Usage:
solve(A [,singok:T] [,quiet:T]), square REAL matrix A
solve(A, B [,singok:T] [,quiet:T]), square REAL matrix A, R EAL matrix B,

with nrows(B) = nrows(A).

Keywords: linear algebra

Usage
solve(a) computes the inverse of the square matrix a.

solve(a,b) computes the solution x to the linear equation a x = b, where
a is square and b is a REAL vector or matrix with the same number of
rows as a. solve(a,b) is mathematically, but not computatio nally, the
same as solve(a) % * % b.

For either usage, if a is singular, an informative message is printed
and the operation aborts.

MISSING values are not allowed in a or b.

Expression a %\% b is equivalent to solve(a, b).

Keyword ’singok’
solve(a, singok:T) and solve(a, b, singok:T) does the same, except when
a is singular, no message is printed and NULL is returned. Thi s allows,
for example, a macro to test whether a matrix is singular and t ake

466 CHAPTER 2. MACANOVA HELP FILE

corrective action.

Keyword ’quiet’
Occasionally, "overflow" occurs during the computation. A ny values in
the result that are too large to be represented are replaced b y MISSING
and a WARNING message is printed. You can suppress the messag e by
including ’quiet:T’ as an argument. If you do, you should use
anymissing() to check the result for the presence of MISSING elements.

Propagation of labels
If a has labels, the row and column labels of solve(a) are the c olumn
and row labels of a, respectively. If b is compatible, the row and
column labels of solve(a,b) are the column labels of a and b
respectively. If b does not have labels, the column labels of
solve(a,b) are rep("a", ncols(b). See topic ’labels’.

Cross references
See also topics rsolve(), swp(), qr(), ’matrices’.

2.334 sort()

Usage:
sort(x [,down:T]), x REAL or CHARACTER or a structure with al l REAL

or all CHARACTER components.

Keywords: ordering

Usage
sort(x) sorts the data in a REAL or CHARACTER vector x into asc ending
order.

sort(x, down:T) or simply sort(x,T) sorts the data in descen ding order.

If x is a matrix, sort(x) or sort(x,T) is a matrix each of whose columns
contains the ordered elements of the corresponding column o f x.

If x is an array, sort(x) or sort(x,T) is an array of the same si ze and
shape with all the elements with fixed values of subscripts 2 , 3,
... defining a "column" which is sorted. An array with dimens ion > 2 is
always treated as an array and not as a matrix, even if there ar e at
most two dimensions greater than 1.

With REAL data, any MISSING values in a column are sorted to th e end of
the column, regardless of the direction of the sort.

Sorting character data
With CHARACTER data, elements are sorted using the ASCII col lating
sequence in which most punctuation and all numerals sort ahe ad of upper
case letters which sort ahead of lower case letters. A space s orts
ahead of all printable characters. Here is the explicit orde ring
starting with space:

2.335. SPLIT() 467

!"#$%&’() * +,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]ˆ_
‘abcdefghijklmnopqrstuvwxyz{|}˜

Structure argument
It is also acceptable for x to be a structure, whose non-struc ture
components are all REAL or all CHARACTER. In that case, sort() returns
a structure of the same form, each of whose non-structure com ponents is
the result of applying sort() to the corresponding componen t of x.

Cross references
See also grade(), rank().

2.335 split()

Usage:
split(x,A [,compnames:CharVar ,silent:T]), x REAL, A a fac tor or vector

of integers or LOGICAL vector, CharVar a CHARACTER scalar or vector
split(x,bycols:T or byrows:T [,compnames:CharVar, silen t:T]), x a REAL

matrix

Keywords: combining variables, structures

Usage
split(Data,Factor) creates a structure by splitting Data a long its first
subscript into separate components according to the values of Factor all
of whose elements must be positive integers.

If N = max(Factor), the result has N components, some of which may be
empty. Thus, when the values in Factor are group or treatment numbers,
each component of the result consists of the data correspond ing to a
particular group or treatment. It is an error if N > 32767.

It is also acceptable for Factor to be a LOGICAL vector, in whi ch case
False and True correspond to factor levels 1 and 2, respectiv ely. For
example, split(y, x <= 0) would create a structure with two co mponents.

Data must be REAL or LOGICAL and the components of the result a re the
same type. Each component of the result will be a vector, matr ix or
array, depending on whether Data is a vector, matrix, or arra y. A
warning is printed if any component of the result contains no elements.
If Factor[i] is MISSING, all the corresponding data are omit ted. It is
an error for all the elements of Factor to be MISSING.

split(Data,Factor,silent:T) does the same, except warnin g messages about
missing values in Factor or empty components in the result ar e
suppressed.

Names of components
If Factor is a variable rather than an expression, say groups or
@groups, the components will be named ’groups1’, ’groups2’ , etc.

468 CHAPTER 2. MACANOVA HELP FILE

Similarly if Factor is specified in a keyword phrase such as
dose:rep(run(4),5), components will be named ’dose1’, ’do se2’, etc.

Keywords ’bycols’ and ’byrows’
split(Data,bycols:T) or simply split(Data) splits the dat a along the
last subscript, creating a structure with one component cor responding to
each value of the last subscript. The most important case is w hen Data
is a m by n matrix, in which case the result each of the n compone nts of
the result is a vector containing the data from a column of Dat a.
Components will be named ’col1’, ’col2’, If Data is a vec tor, the
result is a structure with a single component named ’col1’.

split(Data,byrows:T) splits the data along the first subsc ript, creating
a structure with one component corresponding to each value o f the first
subscript. For example, when Data is a m by n matrix, the resul t is a
structure with m components, each a row vector of size n (1 by n
matrix). Components will be named ’row1’, ’row2’,

Keyword ’compnames’
For all these usages, an additional argument of the form
compnames:CharVec, is recognized, where CharVec is a CHARA CTER vector.
The elements of CharVec are used as names for the components o f the
result, truncated to 12 characters if necessary, overridin g the naming
conventions just described. If length(CharVec) = 1, say "gr oup", it is
used as a "root" for forming names for the components of the fo rm
"group1", "group2", Otherwise length(CharVec) must m atch the
number of components of the result. It is an error if any eleme nt of
CharVec contains ’$’.

Use with boxplot()
An important use of split is in boxplot(split(y,groups)), w here y is a
REAL vector and groups is a factor. This produces parallel bo xplots of
the of the data in y corresponding to each level of groups. Sim ilarly,
when y is a REAL matrix, boxplot(split(y,bycols:T)) or simp ly
boxplot(split(y)), produces parallel box plots of the data in each
column of y.

Examples
Examples:

Cmd> split(run(4),variety:vector(1,2,1,2))
component: variety1
(1) 1 3
component: variety2
(1) 2 4

An equivalent command would be
Cmd> split(run(4),vector(1,2,1,2),compnames:"variety ")

Cmd> boxplot(split(y),ylab:"Column Number")
where y is a matrix, produces parallel boxplots of the column s of y.

Cross references
See also topics boxplot(), ’structures’.

2.336. SPOOL() 469

2.336 spool()

Usage:
spool(FileName [,new:T] [,everything:T or F])
spool() toggles spooling on and off.
spool(,new:T) restarts spooling on the same file
spool(,everything:T or F)

Keywords: output, files

Usage
spool(FileName) begins printing MacAnova input and output into the file
with name given in the CHARACTER variable FileName. If the na med file
already exists, the spooled output will be added at the end of the file,
thus allowing a cumulative record of several runs. Comments to annotate
what you have done may be added to input lines by preceding the m with
’#’. See topic ’comments’. In a version with windows, when Fi leName
is "", you will be prompted for a name.

Output to the screen or window that is suppressed because opt ion ’quiet’
has been set True, is not spooled to the file either.

spool() suspends spooling if spooling is currently in effec t and
restarts it on the same file if spooling was previously in eff ect but is
not now.

spool(FileName, new:T) restarts spooling at the beginning of the spool
file, destroying any lines previously spooled.

spool(, new:T) restarts or resumes spooling at the beginnin g of the most
recently used spool file, destroying any lines previously s pooled.

Keyword ’everything’
spool(FileName, everything:T [,new:T]) does the same, exc ept lines are
spooled even when output to the screen or window is suppresse d by option
’quiet’.

spool(, everything:T or F) allows or suppresses spooling of lines
suppressed by setoptions(quiet:T). It does not turn toggle spooling on
or off.

Menu selection
On a Mac OS 9, selecting item Spool Output to File on the File me nu is
equivalent to typing ’spool("")’. If a spool file name has pr eviously
been provided, the item is labeled either Suspend Spooling o r Resume
Spooling and is equivalent to ’spool()’. In both cases it fir st erases
everything after the prompt.

470 CHAPTER 2. MACANOVA HELP FILE

2.337 sqrt()

Usage:
sqrt(x), x REAL or a structure with REAL components

Keywords: transformations

Usage
sqrt(x) returns the square roots of the elements of x, when x i s a
REAL scalar, vector, matrix or array. The result has the same shape as
x.

If any element of x is MISSING, so is the corresponding elemen t of
sqrt(x). If any element of x < 0, the corresonding element of s qrt(x)
is MISSING. In both cases a warning message is printed.

When x is a structure, all of whose non-structure components are REAL,
sqrt(x) is a structure of the same shape and with the same comp onent
names as x, with each non-structure component transformed b y sqrt().

Cross references
See topic ’transformations’ for more information on sqrt() .

2.338 stemleaf()

Usage:
stemleaf(x [, nstems, outliers:F, depth:F, stats:T,\

title:"Your title"]), x a REAL vector

Keywords: descriptive statistics, plotting

Usage
stemleaf(var) prints a stem and leaf display of the data in RE AL vector
var. The number of stems depends on the number of non-missing values
(must be at least 2) and the number of lines on the screen, and t he
maximum number of leaves printed is determined by the screen width (see
subtopic ’options:"width"’). An asterisk as the last leaf o n a stem
indicates there has been truncation and some leaves have not been
printed.

stemleaf(nvar,nstems), nstems an integer > 1, selects the n umber of
stems to be as large as possible <= nstems.

The data are scaled by a power of 10 and rounded toward zero so a s to be
integers. Then the final digits are the leaves and the stems a re the
leftmost digits or 0. If two stems go with a value, they are lab eled,
for example, as ’2 * ’ and ’2.’), If 5 stems go on a value, they are
labeled, for example, as ’2 * ’, ’2t’, ’2f’, ’2s’, and ’2.’. A final line
specifies the unit of the leaf digit.

By default, outliers more than 1.5 IQR beyond the lower or upp er

2.339. STRCONCAT() 471

quartiles are listed separately and are not put on a stem, whe re IQR is
the inter-quartile range.

Depth column
By default, a "depth" column accumulating counts from each e nd is
printed. The depth for the stem that contains the median is th e number
of leaves on that stem enclosed in parenthese.

Keywords
With both forms additional keyword arguments are as follows :

outliers:F This suppresses the special treatment of outlie rs;
all values are put on stems

depth:F Suppresses printing the "depth" column.
stats:T Print the sample size, extremes and quartiles.
title:"Your title" Prints the specified CHARACTER variabl e before

display

Cross references
See also boxplot().

2.339 strconcat()

Usage:
strconcat(var1 [,var2,...,vark] [, KeyPhrases]), where v ar1, var2, ...

are arbitrary variables
KeyPhrases can be compnames:Names, labels:Labels, notes: Notes and

silent:T, where Names, Notes and Labels are CHARACTER scala rs or
vectors. Arguments var1, ... can also be keyword phrases wit h keyword
names other than ’compnames’, ’labels’, ’notes’ and ’silen t’.

Keywords: structures, combining variables

Usage
strconcat(a,b,c,...) creates a structure from variables o r structures a,
b, c,

strconcat() differs from structure() in that, when an argum ent is a
structure, its top level components become top level compon ents of the
result, while a structure argument to structure() becomes a single
component of the result. For example, suppose a and d are non- structure
variables. Then the value of strconcat(a, structure(b,c), d) is a
structure with 4 components, a, b, c, and d, while the value of
structure(a, structure(b,c),d) is a structure with 3 compo nents, the
second of which is itself a structure with 2 components.

The names of components derived from non-structure argumen ts are
determined similarly to the names of components of structur es created by
structure(), except that when varj is a keyword phrase, the k eyword name
is ignored when the argument is a structure.

Attaching labels or notes

472 CHAPTER 2. MACANOVA HELP FILE

You can attach a vector of labels to a structure Str, one eleme nt for
each top level component, by Str <- strconcat(Str, labels:C harVec),
where CharVec is either a CHARACTER scalar or a CHARACTER vec tor of
length ncomps(Str). When the structure is printed, the labe ls are used
instead of the component names. You remove labels by Str <-
strconcat(Str,labels:NULL). See topic ’labels’ for more i nformation.

str <- strconcat(a,b,...,notes:Notes), where Notes is a CH ARACTER scalar
or vector, attaches Notes to str. See topic ’notes’

When there is just one nonkeyword argument and it is a structu re, its
labels or notes, if any, are transferred to the output unless keywords
’labels’ and/or ’notes’ are arguments.

Other keywords
See structure() for information about keywords ’compnames ’, ’notes’ and
’silent’.

Example
Example: Build structure in a loop

Cmd> nterms <- dim(SS)[1];f <- structure(SS[1]/DF[1])
Cmd> for(i,2,nterms-1){f <- strconcat(f,SS[i]/DF[i]);; }
Cmd> f <- strconcat(f/(SS[nterms]/DF[nterms]),\

compnames:TERMNAMES[-nterms])
This produces a structure consisting of F-statistics with c omponents
having the names of the terms.

Cross references
See also topics ’structures’, structure(), compnames(), c hangestr(),
’keywords’.

2.340 stringplot()

Usage:
stringplot([Graph,] x,y, strings:charVec,[, add:T, grap hics keyword

phrases])
stringplot([Graph,] [x,y, strings:charVec],keys:str), str a structure

whose component names are graphics keywords

Keywords: plotting

Usage
stringplot(x,y,strings:charVec) draws a graph, drawing c harVec[i] at
position (x[i], y[i]). x and y must be REAL vectors and charVe c a
CHARACTER vector, all of the same length. This contrasts wit h the
behavior of other plotting functions (except addstrings()) which allow y
to be a matrix, and permit x to be a scalar or vector of length 2 c oding
equally spaced values.

It is not an error when x or y is NULL; a warning message is print ed and
no plotting occurs.

2.340. STRINGPLOT() 473

For backward compatibility with earlier versions, keyword ’strings’ can
be omitted (stringplot(x,y,charVec)).

If option ’dumbplot’ has been set False (see subtopic
’options:"dumbplot"’), the plot will be a low resolution pl ot unless
’dumb:F’ is an argument.

Justifying strings
By default, each string is written centered at (x[i], y[i]). However,
if ’justify:"l"’ or ’justify:"r"’ is an argument following charVec, each
string will be left or right justified.

Graphics keywords
Most of the usual graphics keywords may be used, including ’x min’,
’xmax’, ’ymin’, ’ymax’, ’logx’, ’logy’, ’xlab’, ’ylab’, ’t itle’,
’border’ and keywords related to ticks, but not ’symbols’, ’ lines’,
’linetype’, ’thickness’ or ’impulses’. See topic ’graph_k eys’.

In particular, stringplot() is most commonly used with add: T, in which
case the strings being drawn are added to the graph encapsula ted in
GRAPH variable LASTPLOT. With ’add:T’, stringplot() is equ ivalent to
addstrings().

Graph variable argument
stringplot(Graph,x,y,strings:charVec), displays GRAPH variable Graph,
adding the string or strings in charVec, and saves the modifi ed plot in
LASTPLOT. Graph is not changed (unless it is LASTPLOT).

Examples
The most usual use is when both x and y are REAL scalars and char Vec is
a quoted string or CHARACTER scalar to be added to a plot at coo rdinates
(x,y). A typical usage would be

Cmd> stringplot(110,20,strings:"Frequency 1 cycle/week ",\
justify:"l",add:T)

Alternatively you can use addstrings():
Cmd> addstrings(110,20,strings:"Frequency 1 cycle/week ", justify:"l")

Keywords ’keep’ and ’show’
stringplot(x,y,strings:charVec,keep:F) suppresses any change to
LASTPLOT.

stringplot(x,y,strings:charVec,show:F,add:T) suppres ses immediate
display of the modified graph but updates LASTPLOT. This is u seful when
you are building a complex graph in stages using addlines(), addchars(),
addpoints(), or stringplot(). When you are done, simply typ e
showplot(). You can’t use both show:F and keep:F.

Keyword ’keys’
stringplot([Graph,] keys:structure(x:x,y:y,strings:c harVec [other
keyword phrases])) is equivalent to stringplot([Graph,] x :x,y:y,
strings:charVec [other keyword phrases]). See topic ’grap h_keys’ for

474 CHAPTER 2. MACANOVA HELP FILE

details.

Cross references
See topic ’graph_assign’ for information on another way to m ake plots.

See topic ’graphs’ for general information on plots and on va riable
LASTPLOT. See topic ’graph_keys’ for information on keywor ds. See
topic ’graph_files’ for information on writing a graph to a f ile.

2.341 structure()

Usage:
structure(var1 [,var2,...,vark] [, KeyPhrases]), where v ar1, var2, ...

are arbitrary variables
KeyPhrases can be compnames:Name, labels:Labels, notes:N otes and

silent:T, where Names, Notes, and Labels are CHARACTER scal ars or
vectors. Arguments var1, ... can also be keyword phrases wit h keyword
names other than ’compnames’, ’labels’, ’notes’ and ’silen t’.

Keywords: structures, combining variables

Usage
structure(var1,var2,....,vark) creates a structure with components named
var1, var2, ..., vark. The values of the components are equal to var1,
etc.

structure() differs from strconcat() in that the any argume nt that is a
structure becomes a single component in the result, whereas strconcat()
splits it into its top level components, each of which become top level
components of the result.

Names of components
When varj is a keyword phrase of the form name:value, the comp onent is
named from the keyword. For example, when a, b, and c are varia bles,
structure(a,b,c) and structure(a:a,b:b,c:c) are equival ent. The names
should differ from the keyword names ’labels’, ’notes’, ’si lent’
and ’compnames’ recognized by structure(). See below for a w ork around.

When varj is a temporary variable, that is, a variable whose n ame starts
with ’@’, then the ’@’ is stripped off to create the name of the
component. For example, when @x is defined, structure(@x,. ..) is the
same as structure(x:@x,...).

If varj is an expression or function result, for example "3+4 " or "x’",
the component name will be NUMBER, LOGICAL, STRING, VECTOR, MATRIX,
ARRAY, STRUCTURE, MACRO, or GRAPH depending on the type and s hape of the
component.

structure(var1, var2, ..., compnames:Names), where Names is a CHARACTER
vector or scalar, forms component names from Names, whose el ements are
truncated to 12 characters, if necessary. These take preced ence over

2.341. STRUCTURE() 475

other names as described above. If Names is a scalar, say "Com p", it is
used as a root to create names of the form "Comp1", "Comp2",
Otherwise the number of elements in Names must match the numb er of
components in the output. This usage is particularly useful in
assigning names of 11 or 12 characters such as ’covariances" or
’factorloding’.

Legal component names
It is an error if any element of Names contains ’$’, a space or o ther
"invisible" character.

Attaching labels or notes
structure(var1, var2, ..., labels:Labels), where Labels i s a CHARACTER
vector or scalar, labels the components using Labels. If Lab els is a
vector, then its length must match the number of components. The labels
are printed instead of the component names on all output. See topic
’labels’. See strconcat() for information on how to add or re move
labels from an existing structure.

structure(var1, var2, ..., notes:Notes), where Notes is a C HARACTER
scalar or vector, attaches Notes as descriptive notes to the result.
See topic ’notes’.

Keyword ’silent’
You can suppress all warning messages by silent:T as in struc ture(x, y,
labels:vector("Height","Strength"), silent:T).

Order of arguments
Keywords compnames, labels, notes, and silent must follow a ll arguments
that are to be included in the output structure. If you want a
component with one of these names, either name it using keywo rd
’compnames’ or make sure it is not the last component in the re sult.
For example, to have a component ’labels’, use, say, structu re(1,"A",
compnames:vector("x","labels")) or structure(labels:" A", x:1).

Examples
Example: You can create a structure with components min and m ax by

Cmd> extremes <- structure(min:min(x), max:max(x))
by

Cmd> @min <- min(x);@max <- max(x); extremes <- structure(@ min,@max)
or by

Cmd> extremes <- structure(min(x),max(x),\
compnames:vector("min","max"))

In all three cases, to give a more complete labeling of the com ponents
you can include an argument like labels:vector("Minimum of x", "Maximum
of x") .

Cross references
See also topics strconcat() and ’structures’.

476 CHAPTER 2. MACANOVA HELP FILE

2.342 structures

Usage:
Create a structure:

Str <- structure(Name1:x,Name2:y,...[, compnames:Name])
Str <- strconcat(Name1:x,Name2:y,...[, compnames:Name])

Extract components of a structure:
Str$name or Str[J] or Str[[J]]

Number of components of a structure:
ncomps(Str)

Component names of a structure:
compnames(Str)

Test whether variable is a structure:
isstruc(x)

Modify a structure:
Str[J] <- x or Str[[J]] <- x, legal subscript vector J
Str[[i]][[J]] <- x, integer scalar i, legal subscript vecto r J
Str$a <- x, Str$a$b <- x, ...
Str <- changestr(Str,"compname",x), equiv. to Str$compna me <- x
Str <- changestr(Str,compname:x), same as preceding
Str <- changestr(Str,n,x), positive integer n <= ncomps(St r)+1
Str <- changestr(Str,-n), equivalent to Str <- Str[-n]

Keywords: structures, syntax, variables

Description of structure
A ’structure’ is made up of one or more named components, each of which
may itself be a variable or another structure.

A single component can be extracted by name using a ’$’. For ex ample,
if Stats is structure(mean:xbar, var:s_sq), then xbar <- St ats$mean and
s_sq <- Stats$var set xbar and s_sq to the values of component s ’mean’
and ’var’, respectively.

When a component of a structure is itself a structure, you can use a
chain of component names. For example, if structure Str has c omponent
’a’ which is a structure with component ’b’, Strab accesse s that
component. If Strab is itself a structure with component ’ c’,
Strab$c accesses that component

Creating a structure
Some functions and macros, for example secoefs(), describe () and
eigen(), return structures as their values.

You can use structure() and strconcat() to create a structur e with
specified components.

You can use strconcat() to combine the components in two or mo re
structures into one larger structure, optionally includin g additional
variables as comnponents.

You can use split(y, f), where y is a vector or matrix and f is a
factor, to create a structure whose j-th component consists of the rows
of y associated with level j of f. split(y) returns a structur e, each

2.342. STRUCTURES 477

of whose components is a column of y. split(y,byrows:T) retu rns a
structure, each of whose components is a row of y. See split() .

You can use changestr() to delete components from, replace c omponents
in, or add new components to an existing structure. See struc ture(),
strconcat() and changestr(). You can also modify an existin g structure
by assigning a variable to one or more components selected by a
subscript. See below.

vector(Str) "unpacks" a structure Str, returning all the el ements in its
non-structure components as a vector. All the non-structur e components
must be of the same type, REAL, CHARACTER or LOGICAL.

Functions used with structures
ncomps(Str) returns the number of (top level) components in structure
Str. See also ncomps().

compnames(Str) returns a CHARACTER vector of the names of th e (top
level) components in structure Str. See also compnames().

isstruc(x) returns True when x is a structure. More generall y,
isstruc(x1, x2, ...) returns a LOGICAL vector whose element s are True or
False depending on whether the corresponding argument is a s tructure.

equal(str1, str2) compares two structures, returning True only when all
their components and subcomponents are equal. See equal().

Assignment to components
Str[J] <- x, where J is a legal vector of subscripts and x is a
variable, often a structure with ncomps(x) = number of compo nents
selected by J, replaces elements of an existing structure St r. See
topics ’subscripts’ and ’assignment’.

Structure arguments to functions
Many functions accept structures as arguments, including d escribe(),
sum(), prod(), max(), and min(), and all the transformation s. Each
component of the result is obtained as the function of the cor responding
component argument. For example, sum(structure(x,y)) is t he same as
structure(x:sum(x),y:sum(y)).

Binary and unary operators with structures
Both binary (for example, +, * , %* %) and unary (-, +, !) operators
accept structures as operands. Most of these produce a struc ture of the
same shape as the argument(s) or operands(s). For example,
structure(a1,a2) % * % structure(b1,b2) = structure(a1 % * % b1,a2 %* % b2).

In addition, if one operand of a binary operation is a structu re and the
other is not, the result is a structure, each of whose compone nts is
computed by combining a component of the structure argument with the
other argument. For example, 3 * structure(a,b,c) is the same as
structure(a:3 * a,b:3 * b, c:3 * c), and structure(a,b) %C% c, is the same as
structure(a:a %C% c,b:b %C% c).

478 CHAPTER 2. MACANOVA HELP FILE

Note: You cannot use a structure as an operand to %/% or %\%. Se e
topic ’matrices’.

Extracting components
You can extract components of structure Str using subscript s instead of
a name. For example, if Stats is structure(mean:xbar, var:s _sq),
’Stats[1]’ and ’Stats[2]’ are equivalent to ’Stats$mean’ a nd
’Stats$var’, respectively.

If there are more than one component with the same name or if th e
structure name is not a legal variable name, this is the only w ay to
extract the component. For example Str <- structure(dim(x) [1],
dim(x)[2], sqrt(x)) creates a structure with three compone nts, named
NUMBER, NUMBER, and MATRIX, but Str$NUMBER retrieves only t he first
component and Str[2] must be used to retrieve the second.

Usually it is preferable to name components using keywords. For
example, Str <- structure(m:dim(x)[1],n:dim(x)[2],data :sqrt(x)) creates
a structure with components named ’m’, ’n’, and ’data’. You c an also
name components using keyword ’compnames’ on structure(), strconcat()
and split().

Str[NULL] is NULL. See topic ’NULL’.

More generally, in an expression of the form Str[J], J may be a vector
of positive integers, a vector of distinct negative integer s, or a
LOGICAL vector of length ncomps(Str). Str[J] is a structure whose
components are the components of Str selected by J in the same way
elements of a vector vec would be extracted by vec[J]. If J sel ects
only one component, Str[J] is that component. If J selects no
commponents (all F’s or a full set of negative values), STR[J] is NULL.
See topic ’subscripts’ for how such a vector of subscripts is
interpreted.

Alternative subscript form
An alternative way to extract components from a structure is Str[[J]],
using double square brackets. This is equivalent to Str[J] w hen Str is
a structure. However, when x is not a structure, the value of x [[1]] is
x, not x[1], and, if J != 1, x[[J]] is an error. This feature can be
useful in a macro when an argument can either be a non-structu re
variable or the first component of a structure.

Examples: When Stats is structure(mean:xbar, var:s_sq),
Stats[vector(2,1)] is equivalent to structure(var:Stats [2],
mean:Stats[1]), and Stats[vector(F,T)] is equivalent to S tats[2] or
Stats$var.

Replacing components
You can replace one or more components of a structure by assig ning to
subscripts. For example, if Stats is as above, Stats[2] <- ve ctor(1,3)
will replace component ’var’ by vector(3,10) without chang ing its name.
Stats[[2]] <- vector(1,3) has the same effect.

2.343. SUBSCRIPTS 479

You can also change a single named component by assignment. F or
example, if Stat is as above, Stats$var <- vector(1,3) is equ ivalent
to stats[2] <- vector(1,3).

You can change subcomponents at any depth <= 31 by assignment . For
example, x is structure(a:run(3),b:structure(A:1,B:2,C :3)), all of xbC
<- PI, x[[2]]$C <- PI, x$b[[3]] <- PI or x[[2]][[3]] <- PI are
equivalent.

See topic ’assignment’ for details on assignment to structu re
components.

You can use changestr() to modify a structure. See changestr () for
details.

2.343 subscripts

Usage:
Ordinary subscripts: x[13], y[2,vector(4,5)]
Negative subscripts: w[-vector(1,3,5)], z[-run(5),-1]
Logical subscripts: a[vector(T,T,F,F)], b[b < 0]

Keywords: syntax

Types of subscripts
Elements of vectors may be selected in several ways using a li st of
integer or LOGICAL subscripts inside of square brackets. Th e list must
be of one of three forms. In the examples, z is assumed to be
vector(1,7,4,9,6).

A list of one or more positive integers.
Examples: z[4] is 9 and z[vector(1,1,2,2,5,4)] is vector(1 ,1,7,7,6,9).

A list of negative subscripts. These indicate omission of th e absolute
values of the subscripts. If all subscripts are omitted the r esult is
NULL. See topic ’NULL’.

Examples: z[vector(-1, -3, -5)] is vector(7,9).
z[-run(5)] is NULL

A LOGICAL vector with the same length as the source vector. Th e value is
a vector with elements corresponding to values of True. If al l the
elements are False, the result is a NULL variable, with no ele ments.

Examples: z[z > 4] is z[vector(F,T,F,T,T)] = vector(7,9,6) .
z[z > 9] is z[vector(F,F,F,F,F)] = NULL

Erroneous use of subscripts
z[vector(1,2,?)] would be an error because MISSING values a re not
allowed as subscripts.

z[vector(-3,-4,-3)] would be an error because there are dup licate
negative subscripts.

480 CHAPTER 2. MACANOVA HELP FILE

z[vector(-1,2)] would be an error because there are both pos itive and
negative integers in the same vector of subscripts.

Use of subscripts with matrices and arrays
Elements of matrices may be accessed in an analogous manner t o vectors,
except that both dimensions must be specified, separated by a comma. An
empty row or column specification implies all rows or column s. Suppose

[1 4]
q is the matrix matrix(run(6),3) = [2 5] .

[3 6]

Then q[3,1] is 3, and both q[vector(1,3),2] and q[-2,2] are t he column
vector 4,6 with dimensions 2 and 1. q[3,] is the row vector 3,6 and
q[q[,1]>=2,] selects those rows of q for which column 1 is not less than
2, that is rows 2 and 3.

Elements of arrays may be accessed as for matrices, except th at you must
specify all subscripts. Again, an empty subscript specifie s all legal
values for that subscript.

With vectors, matrices or arrays, if any subscript is NULL or is
non-selecting (all False or a complete set of negative subsc ripts), the
result is a NULL variable.

Too many subscriupts
It is not an error to use more subscripts than there are dimens ions as
long as no extra subscript specifies an element greater than the first
for that dimension. Extra trailing empty subscripts are ign ored, so
that for example, run(5)[-1,] and run(5)[-1] are identical . Extra
subscripts that are 1 or T have the effect of increasing the nu mber of
dimensions.

For example, run(5)[-1,1] and run(5)[-1,T] are equivalent and result in
a 4 by 1 matrix instead of a vector of length 4, but run(5)[-1,2] is an
error. This is a useful feature when writing macros that may o perate on
vectors and matrices, or deal with both ANOVA and MANOVA SS. F or
example, SS[3,,] is equivalent to SS[3] after anova() and is also
meaningful after manova() when SS is a 3 dimensional array.

Too few subscripts
If a is a matrix or array, and i is a vector, then a[i] is equival ent to
vector(a)[i]. For example, matrix(vector(1,3,2,4,6,5), 2)[vector(1,2,6)]
yields vector(1,3,5).

Except in this case, it is an error when there are fewer subscr ipts than
dimensions.

Subscripted factor
When a is a factor and I is an appropriate vector of subscripts , a[I] is
a factor. For example, anova("{y[-1]} = {a[-1]}") carries o ut an
analysis of variance omitting the first case. See topics fac tor(),
anova() and ’models’. The "official" number of levels of a[I] is the

2.343. SUBSCRIPTS 481

same as for a, even when max(a[I]) < max(a).

Matrix and Array Subscripts
You can also use a matrix as a single subscript in square brack ets. If
x is a vector, matrix or array with ndim dimensions, and Sub is a nrows
by ndim matrix of positive integers, then x[Sub] is a vector o f length
nrows(Sub), whose i-th element x[Sub][i] is

x[Sub[i,1],Sub[i,2],...,Sub[i,ndim]]
For example, if x is n by n, x[hconcat(run(n),run(n))] is equ ivalent to
diag(x) and x[hconcat(run(n),run(n,1))] extracts the cro ss diagonal of
x. There can be no MISSING values in Sub.

More generally, if Sub is an array of positive integers whose last
dimension has length ndim, x[Sub] is an array with ndims(x[S ub]) =
ndims(Sub) - 1 with i,j,...,k-th element x[Sub][i,j,...,k] =

x[Sub[i,j,...,k,1],Sub[i,j,...,k,2],...,Sub[i,j,... ,k,ndim]].

See select() for a way to select a the k[i]-th element in the i- th row
of a matrix, when k is a vector of positive integers.

Use with structure
A structure may have a single scalar or vector subscript whic h selects
components of the structure in the same way a scalar or vector subscript
selects elements of a vector. See topic ’structures’.

Assignment to Subscripts
You can assign to subscripts as well as extract from them. For example,
if y is a matrix with at least 3 rows y[run(3),] <- 0 sets the fir st 3
rows of y to 0. y[-vector(run(5),run(16,20)),] <- ? sets row s 6 to 15
and beyond 20 to MISSING. A statement like ’y <- x[2,] <- 3’ set s row 2
of x to all 3’s and y to a row vector of 3’s with dim(y)[2] = dim(x)[2].

When y is a structure, y[J] <- x changes components of y. See su btopic
’assignment:"assignment_to_structure_components" for details.

Although you can use matrix subscripts in assignments to sub scripts, you
cannot use array subscripts where more than 2 dimensions exc eed 1.

Cross references
See topic ’assignment’ for details on assignment to subscri pts,
including assignment to subscripted components of a struct ure.

482 CHAPTER 2. MACANOVA HELP FILE

2.344 sum()

Usage:
sum(x [,squeeze:T] [,silent:T,undefval:U]), x REAL or LOG ICAL or a

structure with REAL or LOGICAL components, U a REAL scalar
sum(x, dimensions:J [,squeeze:T] [,silent:T,undefval:U]), vector of

positive integers J
sum(x, margins:K [,squeeze:F] [,silent:T,undefval:U]), vector of

positive integers K
sum(x1,x2,... [,silent:T,undefval:U]), x1, x2, ... REAL o r LOGICAL

vectors, all the same type.

Keywords: descriptive statistics

Usage
sum(x) computes the sum of the elements of a REAL or LOGICAL ve ctor x.

If x is LOGICAL, True is interpreted as 1.0 and False as 0.0 and sum(x)
is the number of elements of x that are True.

If x is a m by n matrix, sum(x) computes a row vector (1 by n matri x)
consisting of the sum of the elements in each column of x.

If x is an array with dimensions n1, n2, n3, ..., y <- sum(x) com putes
an array with dimensions 1, n2, n3, ... such that y[1,j,k,...] =
sum(x[i,j,k,...], i=1,...,n1). This is consistent with wh at happens
when x is a matrix. Note: MacAnova3.35 and earlier produced a result
with dimensions n2, n3,

sum(x, squeeze:T) does the same, except the first dimension of the
result (of length 1) is squeezed out unless the result is a sca lar. In
particular, if x is a matrix, sum(x,squeeze:T) will be ident ical to
vector(sum(x)), and if x is an array, sum(x,squeeze:T) will be identical
to array(sum(x),dim(x)[-1]).

sum(NULL) is NULL. See topic ’NULL’.

sum(a,b,c,...) is equivalent to sum(vector(a,b,c,...)) i f a, b, c,
... are all vectors. They must all have the same type, REAL or L OGICAL
or be NULL. sum(NULL, NULL, ..., NULL) is NULL.

sum(x, silent:T) or sum(a,b,c,...,silent:T) does the same but suppresses
warning messages about MISSING values or overflows.

If all the elements of a vector x are MISSING, sum(x) is 0.0.

sum(x, undefval:U), where U is a REAL scalar does the same, ex cept the
returned value is U when all the elements of x are MISSING.

Keyword ’dimensions’
sum(x, dimensions:J [,squeeze:T] [,silent:T] [,undefval :U]) sums over
the dimensions in J = vector(j1,j2,...,jn) where j1, ..., jn are
distinct positive integers <= ndims(x). Without ’squeeze: T’, the result
has the same number of dimensions as x, with dimensions j1, j2 , ..., jn

2.344. SUM() 483

of length 1. With ’squeeze:T’, these dimensions are removed from the
result. The order of j1, j2, ... is ignored.

It is an error if max(J) > ndims(x) or if there are duplicate el ements
in J.

For example, if x is a matrix, sum(x, dimensions:2) computes the row
sums as a nrows(x) by 1 matrix and sum(x, dimensions:2,squee ze:T)
computes them as a one dimensional vector.

Keyword ’margins’
sum(x, margins:K [,squeeze:F] [,silent:T] [,undefval:U]) sums over the
dimensions not in K = vector(k1, k2, ..., km), where k1, ..., k m are
distinct positive integers <= ndims(x). This computes marg inal totals
for the margins specified in K.

Without ’squeeze:F’, only the dimensions in K are retained i n the
result. Otherwise the other dimensions are retained but hav e length 1.
This is opposite from the default with ’dimensions:J’.

It is an error if max(K) > ndims(x) or if there are duplicate el ements
in K.

Structure argument
If x is a structure, sum(x [,dimensions:J or margins:K] [,sq ueeze:T or
F] [,silent:T] [,undefval:U]) computes a structure, each o f whose
components is sum() applied to that component of x. All the co mponents
of x be of the same type, REAL or LOGICAL.

Examples
Examples:
If x is a n by m matrix

Cmd> r <- x - sum(x)/sum(!ismissing(x))

computes the matrix of the residuals of x[i,j] from the colum n means.
When there are no MISSING values, divide by nrows(x)

If x is a n by 4 by 5 array,

Cmd r <- x - sum(x)/sum(!ismissing(x))

computes an array with r[i,j,k] = the residual of x[i,j,k] fr om the
mean of all x[i,j,k] with the same values for j and k. That is, i t
treats x analogously to a 4 by 5 array of vectors of length n. Se e
topic ’arithmetic’. When there are no MISSING values, divid e by
dim(x)[1].

If z is a vector of integers,

Cmd> sum(z == run(min(z),max(z))’)

computes a row vector giving the frequency distribution of t he values in

484 CHAPTER 2. MACANOVA HELP FILE

z.

Cmd> a # 2 by 2 by 3 array with labels
C1 C2 C3

A1 B1 9 5 7
B2 9 12 11

A2 B1 4 11 10
B2 11 15 9

Cmd> sum(a,dimensions:2) # sum over dimension 2; 2 by 1 by 3 re sult
C1 C2 C3

A1 (1) 18 17 18
A2 (1) 15 26 19

Cmd> sum(a,margins:vector(1,3),squeeze:F) # same as prec eding
C1 C2 C3

A1 (1) 18 17 18
A2 (1) 15 26 19

Cmd> sum(a,dimensions:2,squeeze:T) # sum over dim 2; 2 by 3 r esult
C1 C2 C3

A1 18 17 18
A2 15 26 19

Cmd> sum(a,margins:vector(1,3)) # same as preceding
C1 C2 C3

A1 18 17 18
A2 15 26 19

Cross references
See also prod(), tabs()

2.345 svd()

Usage:
svd(x [,left:T or F,right:T or F, all:T, maxit:N, nonconvok :T]), x a

REAL matrix, N > 0 an integer

Keywords: matrix algebra

Usage
svd() computes some or all of the parts (singular values, lef t singular
vectors and right singular vectors) of the singular value de composition
(SVD) of a matrix.

svd(x) computes the vector of singular values in order of dec reasing
size, of the m by n REAL matrix x. When m < n, the last n - m element s
of values are 0.

svd(x,left:T) computes the singular values and the m by n mat rix of
orthonormal left singular vectors in a structure with compo nents

2.345. SVD() 485

’values’ and ’leftvectors’. When m < n, the last n - m elements of
values are 0 as are the last n - m columns of leftvectors.

svd(x,right:T) computes the singular values and the orthog onal n by n
matrix of right singular vectors in a structure with compone nts ’values’
and ’rightvectors’. When m < n, the last n - m elements of value s are 0
and the last n - m columns of rightvectors are orthonormal vec tors
orthogonal to the first n columns, but are otherwise arbitra ry.

svd(x,all:T) and svd(x,left:T,right:T) both compute a str ucture with
components ’values’, ’leftvectors’, and ’rightvectors’

svd(x,all:T,vals:F) computes a structure with components ’leftvectors’
and ’rightvectors’ only. Other combinations of all:T and ot her keywords
are possible and do what you would expect.

Propagation of labels
If x has labels, the row labels of the matrices of left and righ t
singular vectors are the row and column labels of x, respecti vely. The
column labels are numerical. The vector of singular values i s
unlabelled. See topic ’labels’.

If l and r are the matrices of left and right singular vectors a nd s is
the vector of singular values then they satisfy (except for r ounding
error) l % * % dmat(s) % * % r’ = x and l %c% l = r %c% r = I-sub-m (when m
< n, only the upper left m by m block of l %c% l is I-sub-m).

Non-convergence
It is possible for the algorithm used by svd() not to converge , although
it rarely happens. When it happens, the message

ERROR: singular value algorithm in svd() did not converge
is printed. Keywords ’maxit’ and ’nonconvok’ may be helpful in this
situation.

svd(x [,keywords], maxit:N), where N > 0 is an integer, compu tes the
singular value decomposition, but sets the maximum number o f iterations
in the algorithm to N. The default value is 30. By using N > 30, t his
may allow you to compute the SVD.

svd(x [,keywords] ,nonconvok:T) does the same, except fail ure to
converge is not an error. When convergence does not occur, no message
printed and NULL is returned. You can use this in a macro to mak e it
possible to recover from failure to converge, perhaps by inv oking svd()
again using ’maxit’ to increase the number of iterations.

Cross references
See also eigen(), eigenvals(), releigen(), releigenvals().

486 CHAPTER 2. MACANOVA HELP FILE

2.346 swp()

Usage:
swp(x, n1 [, n2, ...] [, quiet:T, diag:d, tolerance:tol, kee pswept:T]),

x a REAL matrix, n1, n2, ... positive integers, or vectors of p ositive
integers, tol > 0 a REAL scalar, d a REAL vector with positive
elements

Keywords: matrix algebra, glm

Usage
swp(x,Cols) uses a form of the Beaton SWP operator on the REAL matrix x
to compute a REAL result of the same size. If x is m by n, Cols sho uld
be a vector whose elements are positive integers <= min(m,n) .

A single SWP of x on row and column k produces a matrix y of the sa me
size as x with

y[i,j] = x[i,j] - x[i,k]x[k,j]/x[k,k], for i and j not equal t o k
y[i,k] = x[i,k]/x[k,k], for i not equal to k
y[k,j] = -x[k,j]/x[k,k], for j not equal to k
y[k,k] = 1/x[k,k]

The element x[k,k] is sometimes called a "pivot".

swp(x,Cols) does successive SWPs of x on Cols[1], Cols[2], . .. rows and
columns. If, attempting to SWP row and column M, abs(pivot) i s found to
be too small in comparison with the abs(x[M,M]), the message

WARNING: tolerance failure pivoting column M; not swept
is printed and that SWP is skipped.

The threshold for finding tolerance failure may be modified by keyword
’tolerance’; see below.

If x is n by n and non-singular, swp(x,run(n)) computes the in verse of x
(it can fail for certain non-positive definite but invertib le matrices).

swp(x,Cols1, Cols2, ...), where Cols1, Cols2, ..., are vect ors of
positive integers is equivalent to swp(x,vector(Cols1, Co ls2, ...)).
For example, swp(cp,1,2,3,4) is equivalent to swp(cp,run(4)).

swp() can be very useful in regression and analysis of varian ce.

Keyword ’tolerance’
swp(x,Cols,...,tolerance:Tol), where Tol is a small REAL s calar does the
same, but Tol is used in the test for what constitutes a small p ivot.
Column M will be skipped if abs(pivot) < Tol * abs(x[M,M]), where pivot is
the value of x[M,M] just before a SWP of row and column M is atte mpted.

The default value of Tol is 10ˆ(-12).

Keywords ’quiet’ and ’diag’
swp(x,Cols,...,quiet:T) does the same, but no warning mess age is printed
when a too small pivot is found.

2.347. SYNTAX 487

swp(x,Cols,...,diag:d [,quiet:T]), where d is a REAL vecto r, does the
same, but the pivot for row and clumn M is compared with abs(d[M]) to
test whether a row and column will be swept. The length of d mus t
always be min(nrows(x), ncols(x)). This feature allows the sequence,
say,

Cmd> d <- diag(x); x1 <- swp(x,1); x1 <- swp(x1,2,diag:d)
to be completely equivalent to

Cmd> x1 <- swp(x,1,2)
Without diag:d, the comparison element for swp(x1,2) would be x1[2,2]
instead of x[2,2].

Keyword ’keepswept’
swp(x,Cols,..., keepswept:T [,tolerance:Tol, ,diag:d, q uiet:F]) does the
same, except that the result is a structure with components ’ matrix’ and
’sweptcols’. Component ’matrix’ is the swept version of x. C omponent
’sweptcols’ is a vector of integers, with abs(sweptcols[i]) the number
of the i-th row and column swept. sweptcols[i] < 0 if and only i f row
and column abs(sweptcols[i]) failed the tolerance check. N o warning
message is printed unless ’quiet:F’ is an argument.

The use of ’keepswept:T’ may allow you to compute a generaliz ed inverse
of a singular square matrix.

Cmd> tmp <- swp(a, run(nrows(a)), keepswept:T)

Cmd> b <- tmp$matrix; J <- (-tmp$sweptcols)[tmp$sweptcols < 0]

Cmd> if(!isnull(J)){b[J,] <- b[,J] <- 0;;}

Now, even if a is singular, a % * % b %* % a should be a within rounding
error and b % * % a %* % b should be b within rounding error.

Cross references
See also solve(), qr().

2.347 syntax

Keywords: syntax, control, general, character variables, logical
variables, variables, missing values, null variables

Commands and Statements
A MacAnova command or statement is a sequence of characters t yped in at
the keyboard followed by ’;’ or ’<cr>’ (the RETURN or ENTER ke y). The
first character should not be ’!’ unless it is a "shell escape " (see
shell()).

Typical commands or statements are ’x <- vector(1.2,3.1,5. 3,2.4)<cr>’
(assign the vector (1.2,3.1,5.3,2.4) to variable x), ’prin t(x)<cr>’
(print the value of variable x), ’regress("y=x1+x2+x3")<c r>’ (compute a
regression of variable y on variables x1, x2 and x3), or ’y <-

488 CHAPTER 2. MACANOVA HELP FILE

3* xˆ2<cr>’ (assign to variable y the value of 3 times x squared) .

You may put several commands or statements separated by ’;’ o n a single
line terminated by <cr>. An example would be

Cmd> regress("y=x"); plot(x,RESIDUALS)<cr>
When you press ’<cr>’, but not before, all the commands or sta tements in
the line are executed one after the other.

One type of statement consists solely of a number or an algebr aic
expression involving numbers or variable names. Examples a re ’17.3’,
’3 * y’, ’sqrt(4+cos(-1.32))’ and ’3 * log(640320)/sqrt(163)’. The only
effect of this type of statement is to print out the value. Thi s allows
MacAnova to be used as a symbolic calculator. Here are some ex amples:

Cmd> 17.3
(1) 17.3

Cmd> 3* log(640320)/sqrt(163)
(1) 3.1416

Cmd> 3* y
(1) 25.584 28.817 30.636

Cmd> "Hello!"
(1) "Hello!"

Below for brevity both commands and statements are usually j ust called
’commands’.

Side Effects of Commands
Some commands have "side effects" such as printing tables or creating
variables containing the results of computation. For examp le, although
anova() returns only a NULL value (see topic ’NULL’), it has s ide
effects, namely the printing of an analysis of variance tabl e and
creation of several named variables such as RESIDUALS, SS an d DF.

Variables
Data are stored in permanent or temporary "variables" with n ames of up
to 12 characters. Typical names might be ’x1’, ’data’, ’weig ht’ or
’time_of_day’.

The names of permanent variables start with a letter or ’_’, w hile the
names of temporary variables start with ’@’ followed by a let ter or
’_’. The remainder of a name consists of letter, digits or ’_’ . Names
are case sensitive (for example, ’residuals’ is a different name from
’Residuals’. Some variables are "invisible". See topic
’variables:"invisible"’.

Typically you will select names that are relevant to the prob lem such as
’weight’, ’residuals’, or ’depv’.

A name may not be the same as a command name. For instance, you c an’t
use ’rep’ as a variable name because there is a command ’rep’.

2.347. SYNTAX 489

Typing the name of a variable that is not "invisible" prints o ut its
value.

See topic ’variables’ for more details.

Command Line
The ’command line’ consists of all the commands that are exec uted by a
single <cr>. The command line follows the standard MacAnova prompt
"Cmd> ", and may, in fact be continued on several actual lines ; see
next paragraph.

When a command line becomes longer than one physical line, yo u can just
keep typing as the characters wrap around to the next line. Or , you
may continue a line by typing ’\<cr>’ and continuing on the ne xt line.
(Nonwindowed versions will issue a continuation prompt "Mo re> ".) If
the break is at the end of a command, you need to type ’;’ before
’\<cr>’.

Correcting mistakes
If you make a mistake, you may backspace to erase the error. On
windowed versions, you can move the cursor with the mouse at a ny time
to make corrections anywhere in the command line.

Compound Commands
A "compound command" is a sequence of one or more commands ins ide curly
brackets ’{’ and ’}’. For example

{i <- i+1; plot(x[,i],y[,i])}
is a compound command. Compound commands are used primarily with
control constructs such as ’if’, ’for’ and ’while’.

Once you have started typing a compound command by pressing ’ {’ the
command line is not executed by <cr> before you type a matchin g ’}’.
Below, ’{...}’ represents an arbitrary compound command.

In a compound command, you can type <cr> at any place where a se micolon
’;’ would be appropriate; the compound command will not be ex ecuted
until you have pressed <cr> after the closing ’}’.

You may nest compound commands ({...{...}...}). None of the m is
executed until you terminate the outermost compound comman d with ’}’ and
press <cr>.

A common mistake is to fail to terminate a compound command wi th ’}’.
MacAnova appears to be "hung up". Actually it is just waiting for you
to finish what you started. Until the compound command is com plete,
MacAnova has no way to recogonize that you are through typing the
command line. You can either type ’}<cr>’ or press the interr upt key
and start over.

MacAnova as a Language
The organization of MacAnova commands can be considered as a "functional
language," in the sense that the components of commands are f unctions or
operators which take arguments or operands as inputs and may compute

490 CHAPTER 2. MACANOVA HELP FILE

values as outputs.

The arguments of (inputs to) a named command or macro are sepa rated by
commas and enclosed in ’(’ and ’)’, as in ’print(x,y,z)’. Som e named
commands or macros require no arguments. In this case you jus t put ’()’
after the name, as in ’getoptions()’. In MacAnova documenta tion,
including help() output, a named command or macro is referre d to by its
name followed by ’()’, for example, ’log10()’ and ’getmacro s()’.

Values of commands and compound statements
All commands, including compound commands (see below) have a value. For
example, ’sqrt(3)’ has the value 1.73205080756888 and ’4 * atan(1)’ has
value 3.14159265358979.

Some commands such as print() and regress() have values whic h are NULL
(see topic ’NULL’). In addition, an explicitly empty comman d, ’;;’ or
’();’ has a NULL value. For obvious reasons, you can’t use com mands
with NULL values in algebraic expressions or comparisons or in other
contexts require data.

A named command that returns a non-NULL value is often referr ed to as a
"function."

A few functions (for example getseeds()) return an "invisib le" value
that can be assigned but is not automatically printed when it is not
assigned. See topic ’variables:"invisible"’.

The value of a compound command is the value of the last comman d in the
curly brackets. If its last command is empty (’;;’ or ’();’), a
compound statement has a NULL value. You can use a compound co mmand
which has a non-NULL value in an expression. For example,

Cmd> xbar <- {print(x); sum(x)}/n
prints x and computes xbar = sum(x)/n, because the value of ’{ ...}’ is
the value of ’sum(x)’.

Output from functions may be arithmetically combined (for e xample,
’cos(x) + 3 * sin(y)’) and the value of (output from) one function may be
an argument to (input for) another, (for example, ’cos(sqrt (x+y))’).

See also topics ’arithmetic’ and ’transformations’.

Conditional Execution and Looping
There are several syntax elements that you can use to control which
commands are executed and in what order. Here is a brief summa ry:

Conditional execution
if(Logical){...}
if(Logical){...}else{...}
if(Logical){...}elseif(Logical){...}else{...}

Looping
for(Var,Vector){...}
for(Var,start,end[,increment]){...}
while(Logical){...}

2.347. SYNTAX 491

Escaping from a loop
break, break n, breakall, breakif()

Skipping to the end of a loop
next, next n

Leaving a macro, possibly returning a value
return

Logical must be a LOGICAL scalar variable or expression such as ’i < 4’.
Vector must be a REAL vector and start, end and increment must be REAL
scalars. See below for types of data.

The first ’{’ following ’if(...)’, ’for(...)’, and ’while(...)’ must be
on the same line.

See topics ’if’, ’for’, ’while’, ’break’ and breakif() for m ore details.

Types of Data
There are several types of data, including REAL, LOGICAL, CH ARACTER,
GRAPH, STRUCTURE and NULL. In certain output, LOGICAL, CHAR ACTER, and
STRUCTURE are abbreviated as LOGIC, CHAR, and STRUC, respec tively.

REAL data
REAL data elements are numbers and can be entered from the key board,
read from a data file, or computed by arithmetic expressions ,
transformations and other functions or macros. You enter nu mbers as
integers without a decimal point (-321), as decimal numbers (31.4159),
or using exponential notation (7.2e+9 = 7.2 * 1000000000).

You can separate digits by ’_’ for clarity, but not after ’e’. Thus
123_456.789_1 is equivalent to 123456.7891. See topic ’num bers’ for
more information.

A missing value is represented by a special internal code nam ed MISSING.
When entering data at the keyboard, you enter a missing value as ’?’.
On output, a missing value usually printed as "MISSING" but y ou can
specify a different output coding, say "?", by setoptions(m issing:"?")
(see setoptions(), subtopic ’options:"missing"’).

Virtually all commands and operations pay at least token att ention to
MISSING, although at present nothing is done that is more com plicated
than omitting cases with MISSING or setting to MISSING a resu lt item
corresponding to a MISSING input item.

You can do arithmetic on REAL data using the arithmetic opera tors ’+’,
’-’, ’ * ’, ’ˆ’ or ’ ** ’, and ’%%’ (for example, a * (b + c)). See
topic ’arithmetic’.

You can compare REAL data items using comparison operators ’ <’, ’>’,
’==’, ’!=’, ’<=’, and ’>=’. Except for ’==’ and ’!=’, a compar ison with
a MISSING value yields a MISSING LOGICAL value. See topic ’lo gic’.

LOGICAL data
LOGICAL data have values limited to True, False and MISSING a nd are

492 CHAPTER 2. MACANOVA HELP FILE

entered and printed as ’T’ (True) or ’F’ (False). Comparison
expressions (for example ’a < 3’) generate LOGICAL data as va lues.
See topic ’logic’ for detailed information.

You can combine LOGICAL variables and expressions using log ical
operators ’&&’, ’||’ and ’!’. For example, ’(x > 3) && !(x > 5)’ has
value True if and only if both (x > 3) and (x <= 5) are True, that i s if
3 < x <= 5. Similarly, ’(x > 0) || (abs(x) == 3)’ has value True if and
only if x > 0 or |x| = 3 (or both).

You can use LOGICAL data in arithmetic expressions and compa risons, with
True and False being translated as 1 and 0, respectively. For example,
F* T is 0, 2 * T is 2, and F < T is True . Logical variables can also be
used in place of REAL variables as argument to some, but not al l
functions such as sum(), prod() and max().

CHARACTER data
A CHARACTER data element consists of a sequence of character s, that is
letters, numbers, punctuation or anything else that can be t yped. It is
sometimes called a "string." When entering CHARACTER data y ou must
enclose each string in double quotes as in

Cmd> greetings <- "Hello!"
The opening and closing double quotes are not part of the stri ng. You
include a double quote in a string by prefixing (’escaping’) it with
’\’. For example,

Cmd> a <- "He said, \"Hello\""
assigns the string ’He said, "Hello"’ to variable a. You can i nclude
characters ’\’, newline and tab by ’\\’, ’\n’ and ’\t’, respe ctively,
using a convention borrowed from Unix/Linux. For example,

Cmd> b <- "1\t2\t3"
assigns to b the string consisting of ’1’, ’2’, and ’3’ separa ted by tab
characters.

Importance of closing quote
Once you have started typing a CHARACTER string with ’"’, Mac Anova
interprets everything, including <cr>, up to the next (non- escaped) ’"’
as part of the string. It does not recognize the command line t o be
complete until you have typed the closing ’"’.

A common mistake is to forget to terminate a string with ’"’; M acAnova
appears to "hang", doing nothing. You need to type a closing ’ "’ and
terminate the line or press the interrupt key and start again .

Special characters in strings
You can include in a string any character, even one you cannot type
directly, using the so called escaped octal representation of its
internal (ASCII) code. For example, since 1 * 8 + 5 = 13, ’15’ is the
octal (base 8) representation of 13 and "\15" or "\015" is the character
(usually CR) with code 13. Similarly, because ’117’ is the oc tal
representation for 1 * 8* 8 + 1* 8 + 7 = 79, the ASCII code for ’O’, "\117"
is equivalent to "O". Also acceptable are escaped hexadecim al
representations of the form "\xmn", where m and n are hexadec imal digits
(0 - 9, and a - f or A - F). For example, "\117" and "\x4f" are both

2.347. SYNTAX 493

equal to "O" (4 * 16 + 15 = 79).

Comparison of character data
You can compare CHARACTER data items using comparison opera tors ’<’,
’>’, ’==’, ’!=’, ’<=’, and ’>=’. The ordering of letters is ba sed on
their ASCII representation with "A" < "B" < ... < "Z" < "a" < ... < "z".
For example, ’"A" < "B"’, ’"a" < "B"’ and ’"foo" == "bar"’ have values
True, False and False, respectively. See topic ’variables’ for more
detail.

Graph variables
A GRAPH variable encapsulate all the information needed to d raw a graph
or other plot. You can display the plot in GRAPH variable Grap hVar by
’showplot(graphVar)’. See topic ’graphs’ for more informa tion.

Structure variables
A structure is made up of one or more named data components tha t may be
of any type. See topic ’structures’ for details.

Null variables
A NULL variable contains no data. See topic ’NULL’ for detail s.

Assignment of values to variables
Assignment of Values to Variables

You assign values to a variable using the left pointing arrow ’<-’
made up of the two characters "less than" and "minus". For exa mple,
’foo <- 5’ assigns the value 5 to the variable foo. If foo did no t
previously exist, it is created; otherwise, its previous va lue is
discarded and foo is re-defined. An expression of the form ’x <- 3’,
say, is always interpreted as ’x <- 3’ rather than as ’x < -3’. I f you
want the latter, be sure to put a space before ’-3’.

You can string several assignments together. For example,
Cmd> a <- b <- 1

is interpreted from right to left, first assigning 1 to b and t hen
assigning the new value of b to a.

See topic ’assignment’ for information about the value of an assignment
statement, assignment to subscript-selected elements of a variable, and
assignments to components of a structure, and topic ’arithm etic’ about
arithmetic assignment operators <-+, <--, <- * , <-/, <-%% and <-ˆ.

Organization of Data
REAL, LOGICAL, or CHARACTER data may be organized as scalars , vectors,
matrices, or arrays. The transpose of a matrix or array x may b e typed
as x’ or as t(x). Matrix multiplication operators (applicab le only to
REAL data) are % * %, %c%, and %C%.

See also topics ’vectors’, ’matrices’, vector(), matrix() , array(),
dim(), ndims(), ismatrix(), nrows(), ncols(), ’transpose ’.

Data may have vectors of labels for each coordinate. In parti cular,
matrices may have row and column labels. Labels propagate th rough

494 CHAPTER 2. MACANOVA HELP FILE

operations and functions in a fairly sensible way. Labels ar e primarily
used in output . See topic ’labels’ for information.

Subscripts
You refer to an element or set of elements of a vector, matrix, or array
by using subscripts -- numbers or variables enclosed in squa re brackets
’[...]’ immediately following the variable name.

For example, ’x[3,4]’ is the element in row 3 and column 4 of ma trix x,
’x[vector(1,3,5),4]’ consists of rows 1, 3 and 5 of column 5 o f x,
’x[3,]’ is row 3 of x and ’x[,4]’ is column 4 of x.

You can assign values to subscripted elements, as in ’x[3,4] <- 17’ or
’x[3,] <- 5’. See topics ’matrices’, matrix(), array(), ’tr anspose’,
’subscripts’, ’assignment’.

When x is a structure, you can use x[[J]] in place of x[J]. When x is
not a structure, x[[1]] is the same as x and x[[J]] is illegal u nless J
= 1.

Combining Data Items
There are commands to combine several data items into a large r vector,
matrix, or structure. See vector(), hconcat(), vconcat(), structure(),
strconcat().

Keyword Phrases
Some command arguments can be "keyword phases" in the form
’keyword:value’. For example, on several commands that wri te numbers,
the argument ’nsig:8’ specifies that up to 8 significant dig its are to
be printed and ’format:"18.13g"’ specifies a format with wi dth 18 and 13
significant digits.

LOGICAL keyword phrases like ’keep:T’ or ’coefs:F’ are part icularly
common. These enable (T) or suppress (F) alternative action s of a
command. See topic ’keywords’ for details.

Indirect Reference to Variables and Constants
<<String>>, where String is a quoted string or CHARACTER var iable whose
value is the name of a variable, refers indirectly to that var iable. For
example, ’<<"cos">>(PI/4)’ and ’<<"E">>+3’ are equivalen t to ’cos(PI/4)’
and ’E+3’, and, after the command ’a <- vector("x1","x2","x 3")’ creates
a CHARACTER vector a, ’<<a[2]>> <- 3’ is equivalent to ’x2 <- 3 ’.

The following line creates variables x1, x2, and x3 from the c olumns of
matrix x.

Cmd> for(i,run(ncols(x))){<<paste("x",i,sep:"")>> <- x [,i];;}

See topics paste(), ’for’ and ’subscripts’.

Indirect reference works even with keywords and structure c omponent
names. For example, setoptions(<<"nsig">>:5) is equivale nt to
setoptions(nsig:5) and, when Str is a structure with a compo nent named

2.348. T() 495

’x’, Str$<<"x">> is equivalent to Str$x.

If String is "?", "T", "F", or "NULL", the value of <<String>> is
MISSING, True, False, or a NULL variable. If String represen ts a
number, <<String>> is the value of the number. For example
10* <<"-123.456">> has value -1234.56. If String represents a C HARACTER
scalar of the form "\"string without non-escaped quotes\"" , <<String>>
is equivalent to "string without non-escaped quotes". For e xample,
"ABCD" == <<"\"ABCD\"">> is True.

More generally, String can contain one or more MacAnova expr essions or
commands. The commands are executed and the value of <<Strin g>> is the
value of the last command in String. In this case, <<String>>
essentially does the same as evaluate(String). There are so me
restrictions on what commands can appear in String. See eval uate().

Cmd> <<"sqrt(2 * PI)">>
(1) 2.5066

On Mac OS 9, you can use Option+\ and Option+| instead of << and >>,
respectively.

Re-executing a Command Line
Just before MacAnova accepts a new command line, the immedia tely
preceding command line is saved as macro LASTLINE. This allo ws you to
re-execute the immediately preceding command line by typin g LASTLINE()
Alternatively, you can used pre-defined macro redo(): redo () makes a
copy of LASTLINE as macro REDO() and then executes REDO(). Yo u can
subsequently re-execute the same line one or more additiona l times by
typing REDO(). You cannot use redo() on two successive lines . See
topics ’macros’, redo().

On machines where macro edit() is defined, you can edit the im mediately
preceding line and re-execute the modified version by

Cmd> REDO <- edit(LASTLINE); REDO()
See topic edit().

Cross references
See also topics ’comments’, ’interrupt’, ’quitting’.

2.348 t()

Usage:
t(x) is same as x’, x a vector, matrix, array or structure
t(x,J), x an array or structure, and J a vector containing a pe rmutation

of run(p)

Keywords: matrix algebra, operations

Usage
t(x), where x is a vector, matrix, array or a structure, is equ ivalent
to x’. See topic ’transpose’.

496 CHAPTER 2. MACANOVA HELP FILE

y <- t(x, J), where x is an array with p dimensions and J is an int eger
vector containing a permutation of run(p), sets y to a copy of x with
the dimensions permuted. y is an array with dimensions dim(x)[J] and,
when I is a vector of p integers with 1 <= I[j] <= dim(x)[J[j]],

y[I[1],I[2],...,I[p]] = x[I[J[1]], I[J[2]],..., I[J[p]]].

For example, when x has three dimensions, and J = vector(3,1, 2),
dimension 1 of y is dimension 3 of x, dimension 2 of y is dimensi on 1 of
x, and dimension 3 of y is dimension 2 of x.

t(x,j1,j2,...,jk) is equivalent to t(x,vector(j1,j2,... ,jk)), where j1,
..., jk are scalars or vectors.

When p >= 2, t(x,run(p,1)) is equivalent to t(x) and x’. When p = 1,
t(x) and x’ are 2 dimensional with one row, but t(x,run(2,1)) is
illegal, since length(J) = 2 != ndims(x) = 1.

Structure argument
When x is a structure, all of whose non-structure components are arrays
with the same number of dimensions, t(x,J) is a structure of t he same
shape and with the same component names as x, with each non-st ructure
component a copy of the corresponding component of x with dim ensions
permuted.

Examples
Examples:

Cmd> x <- array(run(24),4,3,2) # x has dimensions 4, 3, 2

Cmd> y <- t(x,vector(3,1,2)) # y has dimensions 2, 4, 3

Cmd> i1 <- 2; i2 <- 2; i3 <- 3;vector(y[i1,i2,i3],x[i2,i3,i1])
(1) 22 22

Cmd> i1 <- 1; i2 <- 4; i3 <- 2;vector(y[i1,i2,i3],x[i2,i3,i1])
(1) 8 8

Cross references
See also topics array(), ’vectors’, ’matrices’, ’subscrip ts’.

2.349 t2int()

Usage:
t2int(x1,x2,Coverage [, pooled:F]), x1 and x2 REAL vectors or matrices

with ncols(x1) = ncols(x2), 0 < Coverage < 1

Keywords: probabilities, descriptive statistics, confidence inter-
vals

Coverage
t2int(x1,x2,Coverage), where x1 and x2 are REAL vectors, co mputes a (two

2.350. T2VAL() 497

sided) t confidence interval for mu1 - mu2 with confidence co efficient
Coverage, where mu1 is the population mean of the data in x1 an d mu2 is
the population mean of the data in x2. A pooled estimate of the
standard error of the difference is used. This assumes equal variances.

Coverage must be between zero and one. The value is a vector of length
2 giving the lower and upper endpoints of the interval.

t2int(x1,x2,Coverage,pooled:F) computes a confidence in terval for
mu1-mu2 based on the unpooled estimate sqrt(s1ˆ2/n1+s2ˆ2/ n2) of the
standard error and Satterthwaite’s approximate degrees of freedom. It
does not assume equal variances.

If there are any missing values, they are omitted from the com putation
and an informative message is printed

Matrix arguments
When x1 and x2 are REAL matrices with ncols(x1) = ncols(x2) = M ,
t2int(x1,x2,Coverage [,pooled:T]) computes confidence i ntervals for each
column. The result is a 2 by M matrix with the lower and upper li mits
in rows 1 and 2, respectively.

Cross references
See also tint(), tval(), and t2val().

2.350 t2val()

Usage:
t2val(x1,x2 [,df:T or pooled:F]), x1 and x2 REAL vectors or m atrices

with the same number of columns

Keywords: probabilities, descriptive statistics, comparisons

Usage
t2val(x1,x2) computes the two-sample Student’s t statisti c for testing
the null hypothesis that the data in REAL vectors x1 and x2 hav e the
same population means mu1 and mu2. The usual pooled estimate of
variance is used in computing the standard error of the diffe rence of
means. This assumes that the two variances are equal.

t2val(x1,x2,df:T) computes a structure with two component s, ’t’ and
’df’, containing the t-statistic and its degrees of freedom ,
respectively.

t2val(x1,x2,pooled:F) computes a structure with componen ts ’t’ and ’df’.
’t’ contains the t-statistic computed using the unpooled es timate
sqrt(s1ˆ2/n1 + s2ˆ2/n2) of the standard error of the differe nce of
means. ’df’ contains Satterthwaite’s approximate degrees of freedom. A
test of H0: mu1 = mu2 based on t and df does not assume the two
populations have the same variance.

498 CHAPTER 2. MACANOVA HELP FILE

When there are missing values, they are omitted from the comp utation and
an informative message is printed.

Testing H_0: mu1-mu2 = delta
When the null hypothesis is that mu1 - mu2 is some specific val ue other
than zero, say delta, then t2val(x1-delta,x2) will produce the correct t
value for that null hypothesis. For example, if delta is -3, u se
t2val(x1-(-3),x2 [,df:T or pooled:T]).

Matrix arguments
When x1 and x2 are REAL matrices with ncols(x1) = ncols(x2) = M , t2val()
computes two-sample t-statistics for each column separate ly.
t2val(x1,x2) returns a vector of length M. t2val(x1,x2,df: T) and
t2val(x1,x2,pooled:F) return a structure with components ’t’ and ’df’,
with each component a REAL vector of length M.

P values
P values may be computed using cumstu() or twotailt(), for ex ample, by

Cmd> result <- t2val(x1,x2,df:T);twotailt(result$t,res ult$df)
or

Cmd> result <- t2val(x1,x2,pooled:F);twotailt(result$t ,result$df)

Cross references
See also topics tval(), tint(), t2int(), cumstu(), and twot ailt().

2.351 tabs()

Usage:
tabs(y [,a,b,...] [, mean:T, var:T, covar:T, count:T or n:T , stddev:T,\

min:T, max:T, sum:T, prod:T]), y REAL vector or matrix, a, b,
... factors, LOGICAL or positive integer vectors

tabs(y [,a,b,...], all:T [,mean:F, var:F, ...] [,covar:T])
tabs(,a,b,...[,count:T or n:T])

Keywords: categorical data, descriptive statistics

Usage
tabs(y,a,b,c,...) computes summary statistics from data i n REAL vector
or matrix y for each "cell" defined by grouping variables a, b , c,
The values in a, b, c, ... must be positive integers < 32768, co nsidered
as category levels, or MISSING. In particular, a, b, c, ... ca n be
factors. See factor().

By default, the output is a structure with components ’mean’ containing
cell means, ’var’ containing cell variances, and ’count’ co ntaining cell
sample sizes, but this can be modified by keywords.

The values in each component, including ’count’, are based o n the
non-MISSING elements of y. When a cell has no non-MISSING val ues, the
count is 0 and any statistics computed are MISSING.

2.351. TABS() 499

When y has MISSING elements, a warning message is printed. Wh en a
factor has elements that are MISSING, the corresponding val ue of y is
ignored and a warning message is printed.

When there are nFact grouping variables and y is a vector or a m atrix
with 1 column, each component of the output is an array with nF act
dimensions. When y is a matrix with nv = ncols(y) > 1, each comp onent
is an array with nFact + 1 dimensions, the last of which is nv.

tabs(y,a,b,c,..., silent:T) does the same except warning m essages are
suppressed.

LOGICAL and CHARACTER factors
Any grouping variable can be a LOGICAL vector, with False and True
corresponding to levels 1 and 2, respectively. For example, tabs(y,
x1<=0, x2<=0) cross tabulates y according to the signs of x1 a nd x2.
See topic ’logic’.

When you want to cross tabulate data according to the values o f either
non-integer REAL or CHARACTER vectors, use pre-defined mac ro
makefactor() to create corresponding factors. See topic ma kefactor().

Dimensions of output
When grouping variables a, b, c, ... are simple vectors and no t factors
created by factor(), the length of each dimension is the maxi mum value
of the grouping variable.

When a grouping variable is a factor, the size of its dimensio n is the
"official" number of levels, even if the last level is empty, as can be
the case when it has the form f[J], where f is a factor and J is a
vector of subscripts. See subtopic ’subscripts:"subscrip ted_factor"’.

Use without factors
tabs(y), with no factor arguments, computes statistics for y as a whole.
Each component of the result is a scalar or a vector of length n cols(y).
This usage is similar to describe(y) except fewer statistic s are
computed and the sample size component is called ’count’ rat her than
’n’. See describe().

Use with no response argument
tabs(NULL,a,b,...) or tabs(,a,b,...), with no first argum ent, just
computes the counts in each cell, returning a vector, matrix or array.
See topic ’NULL’.

Controlling which quantities to compute
When one of the keyword phrases ’mean:T’, ’var:T’, ’count:T ’,
’stddev:T’, ’min:T’, ’max:T’, ’sum:T’, ’prod:T’ or ’covar :T’ is an
argument, tabs() returns a REAL vector, matrix or array cont aining the
means, variances, counts, standard deviations, minima, ma xima, sums,
products or covariance matrices of the values in each cell. W hen more
than one of these keyword phrases are arguments, the result i s a
structure with component names matching the keywords.

500 CHAPTER 2. MACANOVA HELP FILE

With ’covar:T’, there can be no MISSING values in y and the res ult or
component ’covar’ of the result is an array with nfact + 2 dime nsions,
the last two of which are both ncols(y).

Examples
Examples:

tabs(y,a,b,mean:T,var:T,count:T) is equivalent to tabs(y,a,b).
tabs(y,mean:T,var:T,count:T) is equivalent to tabs(y).
tabs(y,a,b,mean:T) computes only a matrix of cell means
tabs(y,a,b,mean:T,stddev:T,min:T,max:T) computes a 4 co mponent

structure of means, standard deviations and extremes for ea ch cell
tabs(y,a,b,sum:T,prod:T) computes a 2 component structur e whose

components are matrices of sums and products of all elements in
each cell

tabs(y,mean:T,stddev:T,silent:T) computes statistics f or y as a whole;
no warning message is printed when y has MISSING elements

tabs(y,a,b,mean:T,count:T,covar:T) computes 3 dimensio nal arrays of
cell counts and means and a 4 dimensional covariance matrix a rray

tabs(y,covar:T) computes the ncols(y) by ncols(y) covaria nce matrix.

Keyword ’all’
Alternatively, you can use keyword phrase ’all:T’ to comput e all
quantities except the covariance matrix for each cell. You c an suppress
specific computations by, for example, ’sum:F’ and ’prod:F ’, or force
computation of covariance matrices by ’covar:T’.

Example:
tabs(y,a,b,all:T,stddev:F,min:F,max:F,sum:F,prod:F) is equivalent
to tabs(y,a,b)

Keyword ’n’
You can use ’n:T’ and ’n:F’ instead of ’count:T’ and ’count:F ’.
However, with ’n:T’, the corresponding component of the res ult will
still be named ’count’.

When y is NULL or absent, only ’count:T’ or ’n:T’ are permitte d and at
least one factor is required.

2.352 tan()

Usage:
tan(x [, degrees:T or radians:T or cycles:T]), x REAL or a str ucture

with REAL components x in radians (default), cycles, or degr ees as set
by option "angles" or the optional keyword

Keywords: transformations

Usage
tan(x) computes the tangents of the elements of x, where x is a REAL
scalar, vector, matrix or array. The result has the same shap e as x.

2.353. TANH() 501

The argument is considered to be in units of radians, degrees or cycles
as determined by the value of option ’angles’. The default is radians.
See subtopic ’options:"angles"’.

tan(x, radians:T), tan(x, degrees:T), tan(x, cycles:T) in terpret x as in
the indicated units, regardless of the value of option ’angl es’.

When any element of x is MISSING or is too large (> 5000000 * PI radians
in absolute value), the corresponding element of tan(x) is M ISSING and a
warning message is printed.

When x is a structure, all of whose non-structure components are REAL,
tan(x [,UNITS:T]), where UNITS is one of ’radians’, ’degree s’ or
’cycles’, is a structure of the same shape and with the same co mponent
names as x with each non-structure component transformed by tan().

Cross references
See topic ’transformations’ for more information on tan(), including its
use with a CHARACTER argument.

2.353 tanh()

Usage:
tanh(x), x REAL or a structure with REAL components

Keywords: transformations

Usage
tanh(x) returns the hyperbolic sine of the elements of x, whe n x is a
REAL scalar, vector, matrix or array. The result has the same shape as
x. In terms of other functions, tanh(x) = (exp(x)-exp(-x))/
((exp(x)+exp(-x))

When any element of x is MISSING the corresponding element of tanh(x) is
MISSING and a warning message is printed.

When x is a structure, all of whose non-structure components are REAL,
tanh(x) is a structure of the same shape and with the same comp onent
names as x, with each non-structure component transformed b y tanh().

Cross references
See topic ’transformations’ for more information on tanh() .

2.354 tek()

Usage:
tek()

502 CHAPTER 2. MACANOVA HELP FILE

Keywords: plotting

Usage
tek() (no argument) puts your terminal in Tektronix 4014 emu lation mode
if you are running MacAnova on Unix/Linux through a terminal emulator
with this capability. The codes emitted are taken from
getoptions(tekset:T)[1]. See subtopic ’options:"tekset "’.

You normally don’t need tek() since MacAnova automatically switches into
Tektronix mode when a graph is drawn.

tek() is implemented as a pre-defined macro (Unix/Linux ver sions only).

Cross references
See also topics vt(), vtx(), plot(), chplot(), lineplot(), showplot().

2.355 tekx()

Usage:
texk()

Keywords: plotting

Usage
tekx() puts a Unix/Linux work station Xterm terminal emulat or in
Tektronix 4014 mode from vt100 mode. You don’t normally need tekx since
MacAnova recognizes when it is running in a Xterm environmen t (the value
of environmental variable $HOME is "xterm") and automatica lly switches
to Tektronix 4014 mode to draw a high resolution graph.

tekx is implemented as a pre-defined macro (Unix/Linux vers ions only)

Cross references
See also topics tek(), vt(), vtx(), ’graphs’, ’unix’.

2.356 time series

Keywords: time series

There are many MacAnova functions that are useful in time ser ies
analysis. In addition there are two files, tser.mac and arim a.mac,
containing macros for doing frequency domain and time domai n analyses.

Functions useful in time series analysis
Fast Fourier transforms (FFT) for Complex, Hermitian, and R eal series

cft(), hft(), rft()
Functions for working with complex and Hermitian series and Fourier
transforms

2.356. TIME SERIES 503

cconj(), creal(), cimag(), cpolar(), crect(), cprdc(), cp rdcj(),
cdivc(), cdivcj(), hconj(), hreal(), himag(), hpolar(), h rect(),
hprdh(), hprdhj(), hdivh(), hdivhj() cmplx(), ctoh(), hto c(),
unwind(), reverse(), padto(), rotate()

Autoregressive and moving average operators and their zero s
autoreg(), movavg(), polyroot()

Other functions
convolve(), partacf(), yulewalker()

Type, for example, ’usage(cft)’ or ’help(cft)’, to get a thu mbnail
sketch or a complete description of cft().

Macros for time series analysis
File tser.mac, distributed with MacAnova, contains the fol lowing macros:

arspectrum() Estimate spectrum of autoregression by solvi ng the Yule-
Walker equations

autocor() Compute autocorrelation function
autocov() Compute autocovariance function
burg() Estimate autoregression coefficients using Burg’s

algorithm and optionally compute the spectrum of the
fitted moddel

compfa() Compute smoothed modified periodograms and, opti onally,
cross periodograms, using cosine tapering, with optional
detrending

compza() Compute the Fourier transform of a cosine tapered
series, optionally detrending

costaper() Compute a cosine taper with a specified amount of
tapering

crosscor() Compute auto and cross correlation function
crosscov() Compute auto and cross covariance or correlatio n

function
crsspectrum() Compute smoothed periodgrams and cross peri odogram with

no tapering or detrending
detrend() Remove a polynomial trend in equally spaced time
dpss() Compute discrete prolate spheroidal sequences
evalpoly() Evaluate a real polynomial of a complex variable
ffplot() Plot a frequency function against frequency
gettsmacros() Retrieves macros from tser.mac
multitaper() Compute multitaper spectrum estimates
spectrum() Compute smoothed periodograms with no tapering or

detrending
testnfreq() Test whether its argument has prime factors > 29
tsplot() Plot time series against time

These can be retrieved by, for example, getmacros(multitap er) or
multitaper <- macroread("tser.mac","multitaper").

In addition, there are several macros for working with compl ex matrices
in fully complex form. See subtopic ’matrices:"complex_ma trices"’ for a
list.

Help for macros in tser.mac
Help for these macros is available in file tser.hlp. You can g et help

504 CHAPTER 2. MACANOVA HELP FILE

on these macros using help(). If you know a macro is in tser.ma c, it
may be faster to use pre-defined macro tserhelp(). For examp le, to get
help on burg(), type tserhelp(burg). See topic tserhelp() f or details.
tserhelp() also can retrieve the following informational t opics from
tser.hlp:

bandwidth Comments about the bandwidth and EDF of spectrum
estimates

complex_data Information on representing complex data and series in
MacAnova

complex_fun Summary of MacAnova functions for working with complex
series

fourier Information concerning Fourier transforms
hermitian Information on complex series with Hermitian sym metry

See help() for information on direct use of help() to retriev e help
information from tser.hlp and arima.mac.

Macros in file arima.mac
File arima.mac, distributed with MacAnova, contains the fo llowing
macros:

acfarma() Compute autocovariance function of ARMA model
arima() Fit ARIMA model or linear regression with ARIMA erro rs

by unconditional least squares or MLE estimation
arimares() Compute residuals from ARIMA model; used by macr os

arima, hannriss, innovest.
hannriss() Fit an ARIMA model using the Hannan-Rissannen al gorithm
innovations() Compute the coefficients for one step predic tion in

terms of previous one-step prediction errors. Used by
macro innovest

innovest() Fit an ARIMA model using the innovations algorit hm
levmar() Fit a non-linear model by least squares using a form of

the Levenberg-Marquart algorithm
moveoutroots() Fix up coefficients for a MA or AR operator so that all

the zeros are outside the unit circle in the complex
plane

neg2logLarma() Compute -2log(L) from for ARIMA model with g iven
coefficients

nlreg() Fit a non-linear regression model by least squares.
rhatcovar() Compute variances and or covariances of sample

autocorrelations or the entire variance matrix of the
sample autocorrelation function using Bartlett’s
formula

rhatvar() Compute variances of sample auto correlations us ing
Bartlett’s formula

specarma() Compute spectrum of ARMA model

Help for macros in arima.mac
File arima.mac serves as its own help file from which the help topics
can be retrived either by help() or by pre-defined macro arim ahelp().
If you know a topic is in arima.mac, arimahelp() may be faster since it
searches only one file. To get help on, say, macro arima(), ty pe
arimahelp(arima) or help(arima). See arimahelp() for deta ils.

2.357. TINT() 505

See help() for information on direct use of help() to retriev e help
information from tser.hlp and arima.mac.

Cross references
See also topics ’macros’, macroread(), getmacros(), usage (),
macrousage().

2.357 tint()

Usage:
tint(x,Coverage), x a REAL vector or matrix, 0 < Coverage < 1 a REAL

scalar

Keywords: probabilities, descriptive statistics, confidence inter-
vals

Usage and example
tint(x,Coverage) computes a (two sided) t confidence inter val with
coverage rate Coverage for the population mean of the data in REAL
vector x. The result is vector(lowerLimit, upperLimit).

Coverage must be a REAL scalar between 0 and 1.

When x is a matrix with M columns, tint(x, Coverage) returns a 2 by M
matrix, with lower and upper limits in rows 1 and 2, respectiv ely.

When there are missing values, an informative message is pri nted.

Example:
Cmd> alpha <- .05; tint(x,1-alpha) # computes 95% conf. inte rval.

Cross references
See also tval(), t2val(), and t2int().

2.358 toclip()

Usage:
toclip(x [, missing:Code, format:Fmt, sep:C1, linesep:C2]), Code,

Fmt, C1, C2 quoted strings or CHARACTER scalars

Keywords: character variables, output

Usage
toclip(x) is equivalent to CLIPBOARD <- x and puts a possibly multi-
lined CHARACTER representation of x in special variable CLI PBOARD.

When x is REAL, you can use keywords ’sep’, ’missing’, ’lines ep’, and
’format’ that are permissible with paste(x,multiline:T,. ..).

506 CHAPTER 2. MACANOVA HELP FILE

In windowed versions, toclip() allows easy export of MacAno va data to
another application such as a spreadsheet. For example, if x is a
10 by 5 REAL matrix that you want to export to a spreadsheet, af ter
’toclip(x)’, you can select a 10 by 5 rectangle of cells in the
spreadsheet and select Paste in the Edit menu. When the targe t
application has special requirements for representing MIS SING or field
and line separators, you can use keywords to customize what g ets put
on the Clipboard.

Examples
Examples:

toclip(x,missing:"NA") and toclip(x,missing:"-99") put x in CLIPBOARD
with MISSING coded as NA and -99, respectively

toclip(x,sep:",",format:".10f") puts x in CLIPBOARD with elements
separated by commas and with 10 decimal places

toclip(x,linesep:":",sep:",") puts x in CLIPBOARD with el ements
separated by commas and rows separated by colons.

Cross references
See also topics ’CLIPBOARD’, fromclip(), paste(), cliprea ddata().

toclip() is implemented as a pre-defined macro.

2.359 toeplitz()

Usage:
toeplitz(x), x a REAL vector.

Keywords: matrix algebra

Usage
toeplitz(x) computes an n by n Toeplitz matrix from a REAL vec tor x of
length n. After a <- toeplitz(x), a is constant on the diagona ls with
a[i,j] == x[|i-j| + 1].

The primary use of toeplitz() is to create a covariance matri x from an
auto-correlation function. For example, if gamma0, gamma1 , ... are the
variance and first n-1 autocovariances of a stationary time series
{x[t]}, then toeplitz(vector(gamma0, gamma1, ...)) compu tes the n by n
covariance matrix of the vector vector(x[1], x[2], ..., x[n]), or indeed
of vector(x[1+k], x[2+k], ..., x[n+k]) for any integer k.

Cross references
See also partacf(), yulewalker().

2.360. TRACE() 507

2.360 trace()

Usage:
trace(x), x a REAL square matrix

Keywords: matrix algebra

Usage
trace(x) computes the so-called trace of REAL square matrix x, that is,
sum(diag(x)) = x[1,1]+x[2,2]+...+x[k,k], when x is k by k..

Cross references
See also topics ’matrices’, dmat(), diag(), det().

2.361 transformations

Usage:
List of available transformations. Argument x is REAL or str ucture with
REAL components. ’t’ => behavior depends on option ’angles’ . ’2’ => has
two argument variant.

Transformation Result for REAL scalar x
abs(x) |x| = absolute value of x
acos(x) t arccosine of x
asin(x) t arcsine of x
atan(x) t 2 arctangent of x
atanh(x) inverse hyperbolic tangent of x
ceiling(x) least integer >= x
cos(x) t cosine of x
cosh(x) hyperbolic cosine of x
digamma(x) digamma(x) = (d/dx)log(gamma(x))
exp(x) exp(x) = exponential function of x
floor(x) greatest integer <= x
lgamma(x) ln(gamma(x)) = log gamma function of x
log(x) ln(x) = base-e log(x) = natural logarithm of x
log10(x) base-10 log(x) = common log of x
log2(x) base-2 log(x) = log(x)/log(2)
polygamma(x) 2 digamma(x) and (d/dx)ˆn digamma(x)
round(x) 2 nearest integer to x
sin(x) t sine of x
sinh(x) hyperbolic sine of x
sqrt(x) square root of x
tan(x) t tangent of x
tanh(x) hyperbolic tangent of x

Keywords: transformations

Available transformations
Transformation are abs(x), acos(x), asin(x), atan(x) or at an(x,y),
atanh(x), ceiling(x), cos(x), cosh(x), digamma(x), exp(x), floor(x),
lgamma(x), log(x), log10(x), log2(x), polygamma(x) or pol ygamma(x,n),
round(x) or round(n,ndec), sin(x), sinh(x), sqrt(x), tan(x) and tanh(x)

508 CHAPTER 2. MACANOVA HELP FILE

where x (and y) are REAL variables or structures with REAL com ponents.
x can also be a CHARACTER variable (see below).

Type usage(transformations) for one line descriptions of w hat these
transformations compute. Type help(tranName), for exampl e help(cos) or
help(sqrt), for help on individual transformations.

Trigonometric functions and their inverses are affected by the value of
option ’angles’. See below and subtopic ’options:"angles" ’.

Vector, matrix, array, or structure argument
When x is a REAL vector, matrix or array, the result is REAL wit h the
same size and shape, with the elements of the result the trans formations
of the elements of x. For example, if x is a matrix, exp(x)[i,j] is
exp(x[i,j]).

When x is a structure, the result is a structure of the same sha pe and
with the same component names as x, whose components are the t ransformed
components of the argument. See topic ’structures’.

MISSING or out of range argument
When any element of x is MISSING or outside the range of validi ty for
the function (for instance, < 0 for sqrt()), the correspondi ng element
of the result is MISSING and a warning message is printed. See below
for more details.

Propagation of labels
When x or any components have labels, the result has the same l abels.
See topic ’labels’.

Trignometric Functions
For sin(), cos() and tan(), the elements of x are interpreted as being
in radians, cycles or degrees according to the value of optio n ’angles’
whose default value is "radians". Similarly, the values ret urned by
asin(), acos() and atan() are in the units specified by optio n ’angles’.
You can change the default by setoptions(angles:"degrees") or
setoptions(angles:"cycles"). See topic setoptions(), su btopic
’options:"angles"’.

All the trigonometric functions also allow one of ’degrees: T’,
’cycles:T’ and ’radians:T’ as an extra argument. These over ride the
units specified by option ’angles’. For example, sin(30, de grees:T)
always returns 0.5 and asin(0.5, degrees:T) always returns 30.

Illegal or too large arguments
When the argument to a function is illegal (for example, sqrt (-1) or
atanh(1.2)), a warning message is printed and the result is s et to
MISSING.

When the value of a function is too large to be represented in t he
computer (for example, sinh(-3000)), a message is printed a nd the result
is set to MISSING.

2.362. TRANSPOSE() 509

Because of significant loss of precision in computing trigo nmetric
functions of a large argument, the result of sin(x), cos(x) o r tan(x) is
MISSING when |x| >= 5000000 * PI radians (= 2500000 cycles = 900000000
degrees) and a warning message is printed.

When x > 4503599627370495 or x < -4503599627370495, floor(x) and
ceiling(x) are set to MISSING because of the impossibility o f exact
representation of integers beyond these limits. These limi ts may be
different on some computers.

CHARACTER argument
When the argument x to a transformation is a CHARACTER variab le, the
result is a CHARACTER variable of the same size and shape with elements
usually involving the transformation name and the elements of x.

Cmd> log10(vector("height","weight"))
(1) "log10(height)"
(2) "log10(weight)"

Any element of x that is "" or starts with ’@’, ’(’, ’[’, ’{’, ’< ’, ’/’
or ’\’ is not modified.

Cmd> log(vector("", "@[", "(1)"))
(1) ""
(2) "@["
(3) "(1)"

This also works with two argument transformations such as at an(x,y) and
round(x,p), as long as both arguments are CHARACTER (p can be a number
on round()).

Cmd> round("x","4") # round("x",4) works the same way
(1) "round(x,4)"

This feature can be useful in creating labels for transforme d data.

Cmd> logx <- matrix(log(x),labels:structure(getlabels(x,1),\
log(getlabels(x,2))))

This uses the row labels of x and transforms the column labels of x.

Cross references
See also topics ’arithmetic’, ’syntax’, atan(), hypot(), b oxcox(),
polygamma(), round(), ’structures’, rational(), labels, getlabels(),
matrix().

2.362 transpose()

Usage:
x’ or t(x), where x is a matrix

510 CHAPTER 2. MACANOVA HELP FILE

Keywords: matrix algebra, operations

Usage
x’ (x followed by a single quote or "prime") computes the tran spose of x
if x is a matrix, that is the matrix y with y[i,j] = x[j,i].

When x is a vector of length n, x’ is a 1 by n matrix, that is, a row
vector.

When x is an array with dimensions n1, n2, ..., nk, y <- x’ compu tes an
array y with dimensions nk, ..., n1 such that y[i1,...,ik] is
x[ik,...,i1]. When x is a generalized matrix (see ’matrices ’), so is
x’, and matrix(x)’ = matrix(x’).

t(x) is synonymous with x’.

Provided ndims(x) > 1, t(x,run(ndims(x),1)) is equivalent to t(x) and
x’. See also t().

Transposition with matrix multiplication
Instead of x’ % * % y and x %* % y’ you can use x %c% y and x %C% y,
respectively which use less internal memory. See topic ’mat rices’ for
more information on these matrix multiplication operators .

Structure argument
When x is a structure, each of whose components is REAL, LOGIC AL, or
CHARACTER, x’ computes a structure with the same shape and wi th the same
component names as x whose non-structure components are the transposes
of the corresponding components of x.

Cross references
See also topics array(), ’matrices’, ’subscripts’.

2.363 trideigen()

Usage:
trideigen(Diag, Subdiag [[, start] , end], values:F or vect ors:F),

Diag, Subdiag REAL vectors, start and end positive integers

Keywords: matrix algebra, time series

Usage
trideigen(Diag, Subdiag) computes the eigenvalues and eig envectors of
the symmetric tri-diagonal matrix with diagonal Diag and su b- and
super-diagonal Subdiag. Diag and Subdiag must be REAL vecto rs with
length(Subdiag) = n - 1 or length(Subdiag) = n, where n = lengt h(Diag).
In the latter case, Subdiag[1] is ignored. The result is a str ucture
with components ’values’ and ’vectors’, similar to eigen. T he
eigenvalues are returned in decreasing order.

2.364. TRILOWER() 511

trideigen(Diag, Subdiag, vectors:F) computes only the eig envalues,
returning a vector of length n.

trideigen(Diag, Subdiag, values:F) computes only the eige nvectors,
returning a n by n matrix.

Limiting number of eigenvalues computed
trideigen(Diag, Subdiag, start, end) computes the i-th eig envalues and
eigenvectors, for i = start, ..., end. trideigen(Diag, Subd iag) is
equivalent to trideigen(Diag, Subdiag, 1, length(Diag)).

trideigen(Diag, Subdiag, end) is eqivalent to trideigen(D iag, Subdiag,
1, end).

Application
Command trideigen() was added specifically to make it strai ghtforward to
compute discrete prolate spheroidal sequences (dpss) used in multi-taper
spectrum analysis. For these, if W is the desired width, the f ollowing
computes the first K dpss

d <- cos(2 * PI * W)* (.5 * run(-n+1,n-1,2))ˆ2
e <- .5 * run(0,n-1) * run(n,1)
dpssvecs <- trideigen(d,e,K,values:F)

Comparison with eigen()
The advantages of trideigen() over eigen() are (a) you do not need to
create the n by n tridiagonal matrix, and (b) you can obtain a s ubset of
the eigenvalues and eigenvectors.

Cross references
See also eigen(), releigen().

2.364 trilower()

Usage:
trilower(A), A a matrix

Keywords: matrix algebra, variables, combining variables

Usage
trilower(a) returns a matrix d of the same size and shape as a w ith
d[i,j] = a[i,j] for i >= j (on or below the diagonal) and d[i,j] = 0 for
i < j (above the diagonal). Variable a must be a matrix but need not be
square.

[1 5 9] [1 0 0]
For example, when a is [2 6 10] , trilower(a) is [2 6 0] .

[3 7 11] [3 7 11]
[4 8 12] [4 8 12]

When a has type CHARACTER, elements above the diagonal are se nt to empty
strings ("") instead of 0’s.

512 CHAPTER 2. MACANOVA HELP FILE

trilower(a,T) or trilower(a,pack:T) returns the lower tri angle (elements
a[i,j] with i >= j) of a in packed form. Matrix a must be square, that
is, nrows(a) = ncols(b). For example, when

[1 4 7]
a = [2 5 8] ,

[3 6 9]
trilower(a) is vector(1, 2, 5, 3, 6, 9).

Note: keyword ’square’ is not valid for trilower().

Cross references
See also triupper(), triunpack(), qr().

2.365 triunpack()

Usage:
triunpack(vec [, lower:T or upper:T]), vec a vector of lengt h p(p+1)/2

Keywords: matrix algebra, variables, combining variables

Usage
triunpack(v) creates a symmetric square matrix from vector v which
specifies the upper triangular part of the matrix, includin g the
diagonal. The length of v be of the form p * (p+1)/2, that is, it is a
’triangular number’ and the dimension of the result is p by p. For
example, triunpack(run(10)) produces the matrix

[1 2 4 7]
[2 3 5 8]
[4 5 6 9]
[7 8 9 10]

in which the upper triangle is filled column by column from ru n(10) and
the lower triangle is filled in symmetrically.

triunpack(v,upper:T) does the same, except the elements be low the
diagonal are set to 0.

triunpack(v,lower:T) returns triunpack(v,upper:T)’, wh ose elements above
the diagonal are 0.

When v is a CHARACTER vector, empty strings ("") are used inst ead of 0’s
in filling out the other half.

Example
Example:

Cmd> triunpack(run(10), upper:T)
and

Cmd> triunpack(run(10), lower:T)
produce

2.366. TRIUPPER() 513

[1 2 4 7] [1 0 0 0]
[0 3 5 8] [2 3 0 0]
[0 0 6 9] and [4 5 6 0] , respectively.
[0 0 0 10] [7 8 9 10]

Cross references
See also triupper(), trilower(), qr().

2.366 triupper()

Usage:
triupper(A [,pack:T]), A a matrix

Keywords: matrix algebra, variables, combining variables

Usage
triupper(a) returns a matrix d of the same size and shape as a w ith
d[i,j] = a[i,j] for i <= j (on or above the diagonal) and d[i,j] = 0 for
i > j (below diagonal). Variable a must be a matrix but need not be
square.

[1 5 9] [1 5 9]
For example, when a is [2 6 10] , triupper(a) is [0 6 10]

[3 7 11] [0 0 11]
[4 8 12] [0 0 0]

triupper(a,square:T) returns the m by m upper left block of t riupper(a),
where m = min(nrows(a),ncols(a)).

When a has type CHARACTER, elements below the diagonal are se nt to empty
strings ("") instead of 0’s.

Packed output
triupper(a,T) or triupper(a,pack:T) returns the upper tri angle (elements
a[i,j] with i <= j) of a in packed form. Matrix a must be square, that
is, nrows(a) = ncols(a). For example, when

[1 4 7]
a = [2 5 8]

[3 6 9]

triupper(a,pack:T) is vector(1, 4, 5, 7, 8, 9).

Cross references
See also trilower(), triunpack(), qr().

514 CHAPTER 2. MACANOVA HELP FILE

2.367 tserhelp()

Usage:
tserhelp(topic1 [, topic2 ...] [,usage:T] [,scrollback:T])
tserhelp(topic, subtopic:Subtopics), CHARACTER scalar o r vector

Subtopics
tserhelp(topic1:Subtopics1 [,topic2:Subtopics2 ...])
tserhelp(key:Key), CHARACTER scalar Key
tserhelp(index:T [,scrollback:T])

Keywords: general, time series

Usage
tserhelp(Topic1 [, Topic2, ...]) prints help on topics Topi c1, Topic2,
... related to macros in file tser.mac. The help is taken from file
tser.hlp.

tserhelp(Topic1 [, Topic2, ...], usage:T) prints usage inf ormation
related to these macros.

tserhelp(index:T) or simply tserhelp() prints an index of t he topics
available using tserhelp(). Alternatively, help(index:" tser") does
the same.

tserhelp(Topic, subtopic:Subtopic), where Subtopic is a C HARACTER scalar
or vector, prints subtopics of topic Topic. With subtopic:" ?", a list
of subtopics is printed.

tserhelp(Topic1:Subtopics1 [,Topic2:Subtopics2], ...) , where Suptopics1
and Subtopics2 are CHARACTER scalars or vectors, prints the specified
subtopics. You can’t use any other keywords with this usage.

In all the first 4 of these usages, you can also include help() keyword
phrase ’scrollback:T’ as an argument to tserhelp(). In wind owed
versions, this directs the output/command window will be au tomatically
scrolled back to the start of the help output.

Keyword ’key’
tserhelp(key:key) where key is a quoted string or CHARACTER scalar lists
all topics cross referenced under Key. tserhelp(key:"?") p rints a list
of available cross reference keys for topics in the file.

tserhelp() is implemented as a predefined macro.

Cross references
See help() for information on direct use of help() to retriev e
information from tser.hlp.

2.368. TINTERVAL() 515

2.368 tinterval()

Usage:
tinterval(x[,y],cover:fraction,[upper:T or lower:T, po ol:T|F])

Keywords: probabilities, descriptive statistics, comparisons

tinterval() computes a t-confidence interval for a populat ion mean
or difference of population means, depending on whether one or two
variables are given as arguments. By default, tinterval() c omputes
a two-sided interval, but you may choose one-sided alternat ives
by using one of lowerb:T or upperb:T.

You specify the coverage rate via cover:value. You may choos e pooled
or unpooled variances in two-sample tests via pool:T or pool :F.

The output is a vector containing the estimate and interval b ounds.

Because the variance of the data must be known, these interva ls are
rarely used in practical data analysis.

2.369 ttest()

Usage:
ttest(x[,y],(upper:T or lower:T), null:val [pooled:T|F])

Keywords: probabilities, descriptive statistics, comparisons

ttest() performs a one- or two-sample t-test, depending on w hether
one or two variables are given as arguments. By default there is
a two-tailed alternative, but you may choose one-sided alte rnatives
by using one of twotail:T, lowertail:T, or uppertail:T.
You specify the null value via null:value. For two-sample te sts,
you may choose to pool variances or not pool via pooled:T or po oled:F.

The output is a vector containing the statistic, the degrees of
freedom, and the p-value.

2.370 tval()

Usage:
tval(x [,df:T]), x a REAL vector or matrix

Keywords: probabilities, descriptive statistics, comparisons

Usage
tval(x) computes the Student’s t-statistic for testing the null

516 CHAPTER 2. MACANOVA HELP FILE

hypothesis that the data in REAL vector x have mean zero. When x is a
matrix, the results is a vector with the t-statistics for eac h column of
x.

tval(x,df:T) produces a structure with two components, ’t’ containing
the t-statistic and ’df’ containing the degrees of freedom. When x is a
matrix, each component is a vector of length ncols(x).

When x contains MISSING values, an informative message is pr inted.

Testing H_0:mu = delta
When the null hypothesis mean is something other than zero, s ay delta,
tval(x-delta) will produce the correct t value for that null hypothesis.
For example, to test H0: E[x] = 3, use tval(x-3).

P values
P values may be computed using cumstu() or twotailt(), for ex ample, by

Cmd> @result <- tval(x,df:T);twotailt(@result$t,@resul t$df)

Cross references
See also topics t2val(), tint(), t2int(), cumstu(), and two tailt().

2.371 twotailt()

Usage:
twotailt(tval, df), tval a REAL scalar, df > 0 REAL.

Keywords: probabilities, descriptive statistics, comparisons

Usage
twotailt(tval,df) computes the two tailed P value for a Stud ent’s t
value of tval with df degrees of freedom. It is implemented as a macro.

In the simplest usage, tval and df are REAL scalars with df > 0.
However, if one argument is a scalar, the other argument can b e a REAL
vector, matrix or array and the result has the same size and sh ape.
When both arguments are not scalars, they both must have the s ame size
and shape.

Cross references
See also cumstu().

2.372 typeof()

Usage:
typeNames <- typeof(arg1 [, arg2 ...]), arg1, arg2 ... arbit rary

variables, including macros and built-in functions.

2.373. UNIQUE() 517

Keywords: variables

Usage
typename <- typeof(arg), where arg is any variable includin g macro and
built-in function sets typename to the type of arg, "CHARACT ER",
"LOGIC", REAL", "STRUCTURE", "NULL", "MACRO", "FUNCTION" , "UNDEFINED" or
"GRAPH".

typenames <- typeof(arg1, arg2 ...), where arg1, arg2, ... a re any
variables, makes typenames a CHARACTER vector with length(typenames) =
number of arguments, with typenames[i] the name of the type o f argument
i.

Examples
Examples:

Cmd> a <- sqrt(2); typeof(a)
(1) "REAL"

Cmd> b <- "pi"; typeof(b)
(1) "CHARACTER"

Cmd> typeof(a) == typeof(b) # test equality of types
(1) F

Cmd> typeof(PI,T,"type",structure(PI,T),LASTPLOT,not avar,typeof,help)
(1) "REAL"
(2) "LOGICAL"
(3) "CHARACTER"
(4) "STRUCTURE"
(5) "GRAPH"
(6) "UNDEFINED"
(7) "FUNCTION"
(8) "MACRO"

Cross references
See also topics nameof(), shapeof(), isarray(), ischar(), isdefined(),
isfactor(), isfunction(), isgraph(), islogic(), ismacro (), ismatrix(),
isname(), isnull(), isnumber(), isreal(), isscalar(), is vector().

2.373 unique()

Usage:
unique(x [,index:T, fuzz:d, relative:T]), x REAL, LOGICAL or CHARACTER,

d >= 0 a REAL scalar

Keywords: ordering, variables

Usage
unique(x) computes a vector consisting of all the distinct n on-MISSING
values in the REAL, LOGICAL or CHARACTER vector, matrix, or a rray x.

518 CHAPTER 2. MACANOVA HELP FILE

When x is REAL or LOGICAL, it is an error when all its elements a re
MISSING. If x1 contains the same values of x in a different ord er,
unique(x1) will return the same values as unique(x), but pos sibly in a
different order.

Keyword ’index’
unique(x, index:T) computes a vector J of positive integers such that
x[J] is the same as unique(x). That is it finds the subscripts of the
unique non-missing elements of x.

Inexact matching
unique(x, fuzz:d [, index:T]), where x is REAL and d >= 0 is a RE AL
scalar does the same, except that, as x is scanned, x[j] is det ermined
to be different from x[i], 1 <= i < j only if abs(x[j] - x[i]) > d. The
numbers returned may depend on the ordering of values in x. Th at is,
for example, unique(x, fuzz:d) and unique(sort(x),fuzz:d) may return
different sets of numbers.

unique(x, fuzz:d, relative:T [, index:T]) does the same, ex cept x[j] is
determined to be different from x[i] only if abs(x[j] - x[i]) > D, where
D = d* (abs(x[j]) + abs(x[i])).

Examples
Examples:

Cmd> unique(vector(5,3,1,2,4,2,5,7,2,7))
(1) 5 3 1 2 4
(6) 7

Cmd> unique(vector(5.1,3,2.9,3.5,5,2.6), fuzz:.15)
(1) 5.1 3 3.5 2.6

Cmd> unique(sort(vector(5.1,3,2.9,3.5,5,2.6)), fuzz:. 15)#order differs
(1) 2.6 2.9 3.5 5

Cmd> x <- vector(run(3), run(3)+1e-4)

Cmd> unique(x,fuzz:4e-5)
(1) 1 2 3 1.0001 2.0001
(6) 3.0001

Cmd> unique(x,fuzz:4e-5,relative:T)
(1) 1 2 3 1.0001

Cmd> unique(vector(T,T,T,F,T))
(1) T F

Cmd> paste(unique(vector("B","C","A","B","D","A","A")))
(1) "B C A D"

Cmd> unique(vector("B","C","A","B","D","A","A"), inde x:T)
(1) 1 2 3 5

If x is a REAL or CHARACTER vector,

2.374. UNIX 519

Cmd> a <- factor(match(x,unique(x)))

computes a factor each level of which corresponds to a unique value of
vector x and

Cmd> a <- factor(match(x,sort(unique(x))))

does the same except the factor levels are in the same numeric al or
alphabetic order as the elements of x.

Cross references
See also factor(), match()..

2.374 unix

Keywords: general

Unix versions
Two Unix/Linux versions are distributed. One runs in the com mand or
shell window where it was launched (usually an xterm or equiv alent).
The other (the Carapace version) uses multiple command wind ows, high
resolution graphics windows, the mouse, menus, etc.

Features common to all Unix/Linux versions
Various command line arguments are recognized. These allow automatic
restoring of a workspace, suppressing the startup message, etc. See
topic ’launching’.

MacAnova recognizes options, file names and path names spec ified in
environmental variable MACANOVA. See topic ’customize’.

The startup file is Macanova.ini.txt in ˜/MyMacAnovaFiles unless
flag -f has been used on the command line (see ’launching’) or in
environmental variable MACANOVA. See topic ’customize’.

The size of variables is limited only by the amount of memory a nd disk
space available.

Unless you use command line option -home (see ’launching’) o r include
-home in environmental variable MACANOVA (see ’customize’), MacAnova
pre-defines CHARACTER variable HOME to contain the user’s h ome
directory. HOME is used to expand file names of the form "˜/pa th" by
substituting the value of HOME for ’˜’. This allows you to ref er to
files in your home directory such as stuff.data as "˜/stuff. data"
regardless of the current directory. When you redefine HOME , it changes
the expansion of "˜/". See topic ’files’.

File names starting with "˜name/" are expanded similarly to the shell.
That is, name is taken to be a Unix/Linux user name and "˜name" is
expanded to the path name of the home directory of that user. R edefining

520 CHAPTER 2. MACANOVA HELP FILE

HOME has no effect on this expansion. See topic ’files’.

Pre-defined variables DATAPATHS, and DATAPATH are initial ized with path
names that are installation dependent (see topic ’DATAPATH S’). You can
override these using options -path or -appdir on the command line (see
’launching’) or in environmental variable MACANOVA (see ’c ustomize’).

Non-Windowed Version
High resolution graphics are implemented by emitting codes appropriate
for plotting on a Tektronix 4014 graphics terminal. When thi s is not
appropriate, you are limited to displaying "dumb" plots and should use
setoptions(dumbplot:T). See topic setoptions(), subtopi c
’options:"dumbplot"’.

When MacAnova is running in an xterm, the graphics commands o pen a
pseudo Tektronix 4014 graphics window and draw in it, switch ing back to
the text window when <RETURN> is hit after the plot. Be aware t hat
certain vendor replacements for xterm (for example, hpterm and dterm)
don’t support Tektronix emulation. To use high resolution g raphics you
need to start up an xterm window.

You can execute Unix/Linux commands by prefixing the line wi th ’!’ in
the first position after the prompt or by using command shell ().
Keyword phrase keep:T on shell() is recognized. You must use keyword
phrase interact:T if the program being invoked expects any i nput from
you. A line of the form ’!command ... ’ is equivalent to
shell("command ...", interact:F). See shell().

A pre-defined macro edit() is available which allows you to e dit macros
and data from within MacAnova.

Key bindings
Depending on how it was compiled on a particular system, keyb oard line
editing and history may be available as implemented using th e GNU
Readline Library. If so, the default editing mode is based on Emacs.
You can customize key bindings by creating a special file nam ed
".inputrc" in your MyMacAnovaFiles directory. This will be read each
time MacAnova starts up. To enable editing based on Vi comman ds
instead of Emacs, put the following lines in this file:

set editing-mode vi
"k": previous-history
"j": next-history
"H": beginning-of-history
"G": end-of-history

On some systems a standard environmental variable INPUTRC i s defined and
keyboard bindings are taken from file $INPUTRC and not from . inputrc.
If that is the case and you want to customize key bindings, you will
need to define INPUTRC in your .profile or .cshrc file. For cs h, tcsh
or derivatives use

setenv INPUTRC $HOME/.inputrc
For sh, ksh, bash and other similar shells, use

export INPUTRC=$HOME/.inputrc

2.375. UNLOCKVARS() 521

History of previsous commands
When keyboard line editing is implemented, a "history" mech anism is also
available. A certain number (default is 100) of previous com mands are
saved. Using the emacs editing mode, you can scroll backward by
pressing Ctrl+P (possibly also an up-arrow key) and scroll f orward by
pressing Ctrl+N (down-arrow). Under the vi editing mode, th e
corresponding keys (when in vi command mode) are ’k’ amd ’j’. See
setoptions() for information on how to change the number of l ines saved.

As part of this facility you also may have so-called file name
completion. When you have partially typed a file name, press the Tab
key or press the Esc key twice and an attempt will be made to com plete
it. Press Tab twice or Esc four times and you will get a list of
possible completions. See Readline documentation for info rmation on
modifying key bindings using file .inputrc. If you want to us e the Tab
key as a regular key, but the following line in the .inputrc fi le:
"C-i": self-insert

Carapace Version
This version is compiled using the Carapace library which in turn uses
the WxWidgets library. It allows multiple command/output a nd high
resolution graphics windows and uses menus, dialogs, the mo use, and
so forth in the usual way. Commands are typed into the lower pa ne of
a command window, and output appears in the upper pane. Outpu t and
graphics windows can be printed and/or saved to files.

Text in a command window can be copied to the clipboard. Conte nt of
a graphics window can be copied to the clipboard as a bitmap. T he
MacAnova variable CLIPBOARD is connected to text on the clip board in
the sense that accessing CLIPBOARD returns a MacAnova strin g containing
the text content of the clipboard, and assigning to CLIPBOAR D writes
text to the clipboard.

Cross references
See topic ’carapace’ for details on the Carapace version.

2.375 unlockvars()

Usage:
unlockvars(a [,b,c...] [,silent:T]), a, b, c, arbitrary va riables

Keywords: general, variables

Usage
unlockvars(var1, var2, ...) marks variables var1, var2, .. . as being
unlocked variables so that they can be deleted or assigned to . A
warning message may be printed if a variable is not locked.

unlockvars(var1, var2, ..., silent:T) does the same except warning

522 CHAPTER 2. MACANOVA HELP FILE

messages are not printed. It is an error if any argument is an
expression or a function result.

Cross references
See also lockvars(), delete(), ’variables:"locked_varia bles"’

2.376 unwind()

Usage:
unwind(angleMat [, crit:Val]) where angleMat is REAL matri x and

.5 <= Val < 1

Keywords: time series, complex arithmetic

Usage
unwind(angleMat) attempts to eliminate or reduce disconti nuities (jumps
between rows) in each column of matrix angleMat, considered as being a
sequence of angles.

The assumed units of the angles are as specified by option ’an gles’
("radians", "degrees", or "cycles"). For example, if angle s are
measured in degrees, unwind(vector(350, 352, 359, 2, 1, 355)) is
vector(350, 352, 359, 362, 361, 355). See subtopic ’options :"angles"’.

The operation of unwind() is controlled by the value Val of a c riterion.
Let Jump = abs(angleMat[i,j] - angleMat[i-1,j]). Then when Jump >
Val * Cycle, where Cycle is 2 * pi radians, 360 degrees or 1 cycle,
angleMat[i,j] is increased or decreased by a multiple of Cyc le so as to
bring the change less than Val * Cycle . The default is Val = 0.75.

unwind(angleMat,crit:Val) uses Val for the unwinding crit erion. Val
must be between 0.5 and 1 cycles even when option ’angles’ has value
"radians" or "degrees".

Cross references
See also topics hpolar(), cpolar(), subtopic ’options:"an gles"’.

2.377 usage()

Usage:
usage(Topic [,allfiles:T]), topic a quoted or unquoted nam e of a help

topic
usage(Topic1, Topic2, ... [,allfiles:F])

Keywords: general

Usage
usage(Topic) gives short usage information on Topic, where Topic is a
function or command or one of the general information topics such as

2.378. USERFUNHELP() 523

’options’ or ’graph_keys’.

usage() works identically to help(), except it gives only a b rief
summary of the topic, instead of all the detail.

usage() returns an "invisible" LOGICAL scalar whose value i s True only
when at least one topic requested was found. The value may be a ssigned
or tested but will not be printed automatically. See topic
’variables:"invisible"’.

usage() scans the files NAMED in CHARACTER vector HELPFILES . If the
current help file is not named in HELPFILES, it is scanned fir st.

If there is only one topic (the usual case), usage() scans fil es until
it finds the topic. You can use ’allfiles:T’ as an argument to force it
to search all the files in HELPFILES.

usage(topic1, topic2, ...) does the same except that all the files are
searched for the topics. When you use ’allfiles:F’ as an argu ment, no
additional files are searched once a topic has been found in a file.

For many commands and macros, help(topic, subtopic:"usage ") provides
more complete usage information than does usage().

usage() is implemented as a macro which uses gethelp() and ge tusage() to
retrieve the information. Functions getusage() and gethel p() scan only
a single file.

History note
Prior to Version 4.12, getusage() was named usage() and ther e was no
macro named usage().

Cross references
See help(), getusage() and gethelp() for full details. See t opic
addhelpfile() for information on adding file names to HELPF ILES.

2.378 userfunhelp()

Usage:
userhelp(topic1 [, topic2 ...] [,usage:T] [,scrollback:T])
userhelp(topic, subtopic:Subtopics), CHARACTER scalar o r vector

Subtopics
userhelp(topic1:Subtopics1 [,topic2:Subtopics2 ...])
userhelp(key:Key), CHARACTER scalar Key
userhelp(index:T [,scrollback:T])

Keywords: general

Usage
userfunhelp(Topic1 [, Topic2, ...]) prints help on topics T opic1,
Topic2, ... related to user functions. The help is taken from file

524 CHAPTER 2. MACANOVA HELP FILE

userfun.mac.

userfunhelp(Topic1 [, Topic2, ...] , usage:T) prints usage information
related to these topics.

userfunhelp(index:T) or simply userfunhelp() prints an in dex of the
topics available using userfunhelp(). Alternatively
help(index:"userfun.hlp") does the same thing.

userfunhelp(Topic, subtopic:Subtopic), where Subtopic i s a CHARACTER
scalar or vector, prints subtopics of topic Topic. With subt opic:"?", a
list of subtopics is printed.

userfunhelp(Topic1:Subtopics1 [,Topic2:Subtopics2], . ..), where
Suptopics1 and Subtopics2 are CHARACTER scalars or vectors , prints the
specified subtopics. You can’t use any other keywords with t his usage.

In all the first 4 of these usages, you can also include help() keyword
phrase ’scrollback:T’ as an argument to userfunhelp(). In w indowed
versions, this directs the output/command window will be au tomatically
scrolled back to the start of the help output.

Keyword ’key’
userfunhelp(key:key) where key is a quoted string or CHARAC TER scalar
lists all topics cross referenced under Key. userfunhelp(k ey:"?")
prints a list of available cross reference keys for topics in the file.

userfunhelp() is implemented as a predefined macro.

Cross references
See help() for information on direct use of help() to retriev e
information from userfun.hlp.

2.379 user fun

Keywords: general, control, files

This topic is now in file userfun.hlp. Type
userfunhelp(user_fun)

It provides a brief introduction to the form of a user functio n (routine
compiled separately from MacAnova) that can be loaded by loa dUser() and
executed by User().

Some other useful entries in userfun.hlp are callback_fun a nd
arginfo_fun. Type

userfunhelp()
for a complete list of entries.

2.380. VARIABLES 525

2.380 variables

Keywords: syntax, variables, character variables, logical variables,
null variables

Variables and their names
Data are stored in named "variables" with names up to 12 chara cters
long.

Names are case sensitive (for example, ’residuals’ is a diff erent name
from ’Residuals’). You should avoid names in all capital let ters (for
example ’RESIDUALS’) because MacAnova uses some such names for special
purposes.

You should normally select names that are relevant to the pro blem such
as ’weight’, ’residuals’, or ’depv’.

Variables can be permanent (the variable remains accessibl e until you
delete it) or temporary (the variable is automatically dele ted at the
next prompt). Temporary variables are particularly useful in macros.
See topics macro() and ’macros’.

Permanent variables
Permanent variables have names that begin with a letter (a-z or A-Z) or
the character ’_’, followed by 0 or more letters, numerals or ’_’. For
example ’x12a’ and ’time_of_day’ are names of permanent var iables. The
use of variable names that start with ’_’ can lead to confusio n since
the variable is then "invisible" (see below).

Temporary variables
Temporary variables have names that start with ’@’ followed by a letter
or ’_’ and 0 or more letters, numerals or ’_’. Examples are ’@x 1a’ and
’@_Result. A variable whose name starts with ’@_’ is "invisi ble". All
temporary variables are automatically deleted each time a p rompt is
printed.

Invisible variables
"Invisible" variables have names that begin with ’_’ or ’@_’ . They
differ from "visible" variables in two ways. (i) Commands li st() and
listbrief() ignore invisible variables unless ’invis:T’ i s an argument
(see listbrief(), list()); and (ii) typing an invisible var iable’s name
does not result in the variable’s value being printed.

Special variables
A few variables are "special" and have non-standard propert ies.
Currently CLIPBOARD, GRAPHWINDOWS and SELECTION (GTK only) are the
only "special" variables. See topics ’CLIPBOARD’ and ’GRAP HWINDOWS’ for
details.

Locked variables
Locked variables are variables that cannot be deleted or ass igned to.
You can mark variables as being ’locked’ using lockvars(). Y ou can
unlock locked variables using unlockvars() and delete them using keyword
phrase ’lockedok:T’ on delete().

526 CHAPTER 2. MACANOVA HELP FILE

When you save your workspace (see save()), the locked status of each
variable is retained so that when you restore the workspace (see
restore()) a locked variable is still locked. However, lock ing a
variable does not protect it from being destroyed by restore ().

One situation when locking a variable might be helpful is whe n you have
computed a valuable result that took a long time and you want t o make
sure you don’t destroy it accidentally.

You cannot lock temporary variables or "special" variables .

Types of Variables
There are several types of variables, including REAL, LOGIC AL,
CHARACTER, GRAPH, STRUCTURE, MACRO and NULL. In certain out put,
LOGICAL, CHARACTER, and STRUCTURE are abbreviated as LOGIC , CHAR, and
STRUC, respectively.

Variables of type LONG can be created by asLong() but they exi st only
transiently, being "coerced" to equivalent REAL variables when assigned.
See asLong().

A REAL variable contains numerical data or the special value MISSING. A
LOGICAL variable contains data with values limited to True, False or
MISSING (see ’logic’). A CHARACTER variable contains data c onsisting of
character information. A LONG variable contains integer va lues between
-2147483647 and +2147483647 = 2ˆ31 - 1.

REAL, LOGICAL, CHARACTER or LONG variables may be scalars (c onsist of a
single data item; see ’scalars’), vectors (several data ite ms indexed by
a single subscript; see ’vectors’), matrices (data items in dexed by two
subscripts; see ’matrices’), or arrays (data items indexed by more than
two subscripts; see ’arrays’). See also topic ’subscripts’ .

A GRAPH variable encapsulates all the information needed to draw a
graph. See topic ’graphs’.

A STRUCTURE variable or simply a structure consists of named components
of data which may be of any type, including STRUCTURE. See top ic
’structures’.

A MACRO variable or simply a macro contains one or more MacAno va
commands to be executed together. See topics ’macros’, ’mac ro_syntax’,
macro().

A NULL variable contains no data of any sort. See topic ’NULL’ .

You can attach descriptive notes to variables, including GR APH variables
and macros. See topics ’notes’, attachnotes(), appendnote s(),
getnotes(), and hasnotes().

Coordinate Labels
REAL, LOGICAL and CHARACTER variables may have vectors of la bels for

2.381. VARNAMES() 527

each coordinate. In particular matrices may have row and col umn labels.
A structure may have labels for each component. Labels propa gate
through operations and functions in a fairly sensible way. L abels are
primarily used in output . See topic ’labels’ for details.

2.381 varnames()

Usage:
varnames(Model [,stripat:T,stripbrack:T]) where Model i s CHARACTER

scalar containing a GLM model
varnames([stripat:T,stripbrack:T]) is equivalent to var names(STRMODEL

[,stripat:T,stripbrack:T])

Keywords: variables, glm, character variables

Usage
varnames(Model) returns as a CHARACTER vector the name of th e response
variable followed by the names of the factors and variates in Model in
the order they first appear. Model should be a CHARACTER vari able or
quoted string.

Model must contain a legal GLM model, except that variables i n the model
need not be REAL or even be defined. Variables to evaluated "o n the
fly" are not evaluated and the expression is returned as the n ame
enclosed in {...}. See topic ’models’.

NOTE: This represents a change from earlier versions. Previ ously
varnames(Model) extracted the variable names without chec king the
validity of the model and did not handle expressions to be eva luated on
the fly correctly.

varnames(Model, stripbrack:T) does the same, except any na mes which are
expressions are not enclosed in {...}.

varnames(Model, stripat:T [,stripbrack:T]) does the same , except any
non-expression names which are temporary variables have th e leading ’@’
strippped off.

No model specified
varnames([keyword phrases]) without a model is equivalent to
varnames(STRMODEL [,keyword phrases]), returning a vecto r of the names
of the variables in STRMODEL. This is usually the model used b y the
most recent GLM (generalized linear or linear model) comman d such as
regress(), anova(), or poisson().

Examples
Cmd> varnames("{log(y)} = @x + {@xˆ2}")
(1) "{log(y)}"
(2) "@x"
(3) "{@xˆ2}"

528 CHAPTER 2. MACANOVA HELP FILE

Cmd> varnames("{log(y)} = @x + {@xˆ2}",stripat:T)
(1) "{log(y)}"
(2) "x"
(3) "{@xˆ2}"

Cmd> varnames("{log(y)} = @x + {@xˆ2}",stripbrack:T)
(1) "log(y)"
(2) "@x"
(3) "@xˆ2"

Cmd> varnames("{log(y)} = @x + {@xˆ2}",stripbrack:T,stri pat:T)
(1) "log(y)"
(2) "x"
(3) "@xˆ2"

Cross references
See also topics xvariables(), modelvars(), ’models’, comp names(),
nameof(), ’glm’.

2.382 vboxplot()

Usage:
vboxplot(x1,x2,...,xk [,vs:indv, boxsize:W] [,excludeM :T, boxtype:m,

symbols:outlierSyms, graphics keyword phrases]), x1,... ,xk REAL
vectors, indv REAL length k vector with no MISSING values, m > 0
integer, W REAL non-negative vector or scalar, outlierSyms CHARACTER
scalar or vector of length 2

vboxplot(Struc, [,vs:indv, boxsize:W] [,excludeM:T, box type:m,
symbols:outlierSyms, graphics keyword phrases]), Struc a structure
with k REAL vector components

Keywords: plotting, descriptive statistics

Usage
vboxplot(var1, var2, ... , vark [,graphics keyword phrases]) produces
vertically oriented parallel Tukey boxplots for the vector s var1 through
vark. It is identical with boxplot(var1, var2, ..., vark, ve rtical:T
[,graphics keyword phrases]).

vboxplot(Struc [,graphics keyword phrases]) produces ver tically oriented
parallel box plots for the components of structure Struc, al l of which
must be vectors. It is identical with boxplot(Struct, verti cal:T
[,graphics keyword phrases]).

You can use all the graphics keyword phrases that boxplot() r ecognizes.
Keyword ’symbols’ is interpreted differently from other pl otting
commands; see below.

Keyword ’symbols’
Keyword ’symbols’ has a different meaning from other plotti ng commands.
You use it to specify symbols for moderate outliers (beyond i nner fences

2.383. VCONCAT() 529

and inside outer fences) and extreme outliers (beyond outer fences).
The value of ’symbols’ must be a CHARACTER scalar or vector of length 2.

Cmd> vboxplot(x1, x2, x3, symbols:vector("\3", "\5"))

uses "\3" (square) as a symbol for moderate outliers and "\5" (triangle)
as a symbol for extreme outliers. When the value of ’symbols’ is a
scalar, the default symbol is used for extreme outliers.

Cross references
For more information including how to use split() to create a structure
argument, see boxplot().

2.383 vconcat()

Usage:
vconcat(a,b,c,... [,labels:structure(rowLabs,colLabs), silent:T]) where

a, b, c, ... matrices and rowLabs and colLabs are CHARACTER sc alars or
vectors

Keywords: combining variables, variables, null variables

Usage
vconcat(a,b,c,...) combines matrices a, b, c ... verticall y by
concatenating their columns.

All arguments must be of the same type, REAL, LOGICAL, or CHAR ACTER, and
have the same number of columns n. The result is a matrix of tha t type
with n columns and ma+mb+mc+... rows, where ma, mb, mc, ... ar e the
number of rows of a, b, c,

vconcat(a,b,...,labels:structure(rowLabs,colLabs) [, silent:T]) uses
CHARACTER scalars or vectors rowLabs and colLabs as row and c olumn
labels for the result. With silent:T, no warning is printed i f labels
are the wrong size. See topic ’labels’ for details.

Non matrix arguments
Any argument that is a vector of length m is considered to be a m by 1
matrix. In particular, if a is a vector of length m, vconcat(a) is a m
by 1 matrix.

An argument that is an array with only two dimensions not equa l to 1 is
considered to be a matrix (see ’matrices’). For example,

vconcat(array(run(6),1,3,2),array(run(7,14),4,1,2))
is equivalent to

vconcat(matrix(run(6),3),matrix(run(7,14),4))

Any argument of type NULL is ignored. When all arguments are N ULL, so
is the result.

Cross references

530 CHAPTER 2. MACANOVA HELP FILE

See also topics hconcat(), ’matrices’, ’vectors’.

2.384 vecread()

Usage:
vecread(FileName [keyword phrases]), FileName a CHARACTE R scalar, (REAL

data)
vecread(FileName, bywords:T [keyword phrases]) (CHARACT ER data)
vecread(FileName, bylines:T [keyword phrases]) (CHARACT ER data)
vecread(FileName, bychars:T [keyword phrases]) (CHARACT ER data)
Keyword phrases are: silent:T, quiet:F, echo:F or echo:T, p rompt:F,

printname:F, badkeyok:T, nofileok:T, stop:stopChar or go :goChar,
skip:skipChar, skipthru:skipthruChar, n:N, startline:M , bypass:P,
badvalue:val, byfields:T, stopChar, goChar, skipChar CHA RACTER scalars
consisting of one character, N > 0, M > 0, P >= 0 integers, val a R EAL
scalar or MISSING. See topic ’vecread_keys’.

FileName can also be CONSOLE or have the form string:charVal where
charVal is a CHARACTER scalar or vector.

Keywords: input, files

Introduction
This topic has sections on Reading REAL data, with examples, Reading
CHARACTER data, with examples, Reading a matrix with vecrea d(),
Controlling the lines to be read, Reading from a CHARACTER va riable, and
Reading the console or batch file.

Topics ’vecread_file’ and ’vecread_keys’ provide additio nal information
on file format and keyword use for vecread().

vecread() reads data from a text file sequentially, row by ro w, starting
at the beginning of the file, interpreting items as numerica l or
character data depending on keyword phrases.

General usage
The general usage of vecread() is

Cmd> Var <- vecread(FileName [,keyword phrases])

where FileName is a quoted string or a CHARACTER variable. In windowed
versions, when FileName is "", you are prompted to enter the f ile name
using a dialog box. Var becomes a REAL or CHARACTER vector or p ossibly
(with ’nofileok:T’) NULL.

Controlling the first line read
vecread(FileName [,keyword phrases], bypass:P), where P > 0 is an
integer, skips by all lines until P lines starting with the "s top
character" (default ’!’; see below) have been read. bypass: P can be
used with any other keyword phrases. Other keywords affecti ng which
lines are read have no effect until after the P-th line starti ng with
the stop character. This allows you to have several data sets in the

2.384. VECREAD() 531

same file, separated by lines starting with the stop charact er.

vecread(FileName [,keyword phrases], startline:M), wher e M > 0 is an
integer, completely ignores the first M-1 lines in the file (or after
the P-th line starting with the stop character with ’bypass: P’).
startline:M can be used with any other keyword phrases.

Reading REAL data
vecread(FileName) and vecread(FileName, byfields:T) rea d numbers from
the file with name FileName and return a REAL vector containi ng the
data.

Data of the form ’?’, ’??’, ’???’, ... as well as an isolated ’N A’,
period ’.’ or asterisk ’ * ’ are read as MISSING.

A number that is too large to be represented in the computer (f or
example, -3.1e10000) is read as MISSING.

Keyword ’byfields’
Reading REAL data without byfields:T or with byfields:F

The file should contain a sequence of numbers or missing valu e codes,
separated by tabs, spaces or single commas.

Unreadable items are skipped and an informative message is p rinted
once. Numbers are extracted from "words" like ’-1.2a5’ whic h is
interpreted as if it were ’-1.2 a 5’. Single commas between it ems are
ignored; a sequence of m commas is treated as m-1 unreadable i tems.

Reading REAL data with byfields:T
The file is interpreted as a sequence of possible empty "fiel ds"
separated by commas, spaces, tabs and ends of lines, with eac h field
becoming an element of the result. A field that is not a number or
missing value code is unreadable and is returned as MISSING. This
includes fields like ’-1.2a5’ that contain one or more digit s. Empty
fields, before a leading comma, after a trailing comma and be tween two
commas with no intervening visible characters, are returne d as MISSING.

Keyword ’badvalue’
vecread(FileName, badvalue:BadVal [,byfields:T]), wher e BadVal is a REAL
scalar or MISSING (?), returns a REAL vector with BadVal subs tituted for
every unreadable item. For example, when reading ’-1.2a5 17 ?’,
vecread(FileName, badvalue:-99) returns vector(-1.2,-9 9,5,17,?) and
vecread(FileName, byfields:T, badvalue:-99) returns vec tor(-99,17,?).
With byfields:T this enables you to distinguish between cod es for
MISSING and non-numeric items.

Reading REAL data examples
File "data1.txt" looks like the following:

Henry Male 67.3,10.5
Susan Female 59.2, ?

File "data2.txt" looks like the following (note the extra co mma):
Henry Male 67.3, 10.5

532 CHAPTER 2. MACANOVA HELP FILE

Susan Female 59.2, , ?

File "data3.txt" looks like the following (note digits in fi elds):
Henry Season_1 67.3,10.5
Susan Season_2 59.2, ?

vecread("data1.txt") returns vector(67.3,10.5,59.2,?) .

vecread("data1.txt",byfields:T) returns vector(?,?,67 .3,10.5,?,?,59.2,
?).

Both vecread("data1.txt", badvalue:-1) and vecread("dat a1.txt",
badvalue:-1,byfields:T) return vector(-1,-1,67.3, 10.5 ,-1,-1,59.2,?).

vecread("data2.txt", badvalue:-1) returns vector(-1,-1 ,67.3,10.5,-1,
-1,59.2,-1,?).

vecread("data2.txt", badvalue:-1,byfields:T) returns
vector(-1,-1,67.3, 10.5,-1,-1, 59.2,?,?).

vecread("data3.txt") returns vector(1,67.3,10.5,2,59. 2,?), extracting
1 and 2 from Season_1 and Season_2.

vecread("data3.txt",badvalue:-1) returns vector(-1,-1 ,1,67.3,10.5,-1,
-1,2,59.2,?).

vecread("data3.txt",byfields:T) returns vector(?,?,67 .3,10.5,?,?,59.2,
?), treating Season_1 and Season_2 as unreadable.

vecread("data3.txt", byfields:T, badvalue:-1) returns
vector(-1,-1,67.3, 10.5,-1,-1,59.2,?).

vecread(string:",1,,2,3,",byfields:T) returns vector(?,1,?,2,3,?)
(see topic ’vecread_keys’ for the use of ’string’).

Reading CHARACTER data
vecread(fileName, bywords:T), vecread(fileName, byline s:T) and
vecread(fileName, bychars:T) read CHARACTER data from a fi le. The
latter two can read data containing commas, spaces or tabs or other
"invisible" characters.

Keyword ’bywords’
vecread(FileName, bywords:T) returns a CHARACTER vector, each element of
which is a "word" from the file. For this usage, a word is a sequ ence
of printable non-blank characters, excluding commas. Word s are
separated by commas, or spaces, tabs or other "invisible" ch aracters.

Quotation marks (") are not special and are treated as any oth er visible
character that is not a comma.

An "empty" word, before a leading comma, after a trailing com ma, or
between successive commas with no intervening visible char acters, is
returned as the null string "".

2.384. VECREAD() 533

Keyword ’bylines’
vecread(fileName, bylines:T) returns a CHARACTER vector, each element of
which is an entire line read from file fileName. The lines do n ot
include an end-of-line character but do include any other "i nvisible"
or non-printing characters such as TABS.

Keyword ’bychars’
vecread(fileName, bychars:T) returns a CHARACTER vector, each element of
which is a single character read from file fileName, includi ng any
end-of-line characters (returned as "\n") or other invisib le characters.

Reading CHARACTER data examples
Here are more examples of reading the sample files used above to
illustrate reading REAL data:

vecread("data1.txt", bywords:T) returns vector("Henry" ,"Male",
"67.3","10.5","Susan","Female","59.2","?").

vecread("data2.txt", bywords:T) returns vector("Henry" ,"Male",
"67.3","10.5","Susan","Female","59.2","","?").

vecread("data1.txt", bylines:T) returns
vector("Henry Male 67.3,10.5", "Susan Female 59.2, ?").

vecread("data1.txt",bychars:T) returns vector("H","e" ,"n","r","y"," ",
" "," ","M","a","l","e"," "," "," ", "6","7",".","3",",", "1","0",".",
"5","\n","S","u","s","a","n"," "," ", " ","F","e","m"," a","l","e","
", "5","9",".","2",","," "," "," ","?", "\n")

vecread(string:",,a,b,", bywords:T) returns vector("", "","a","b","")
(see below for the use of ’string’).

The following creates macro isnumber that tests whether eac h "word" of
a CHARACTER scalar or vector represents a valid number:

Cmd> isnumber <- macro("@tmp <- paste(vecread(string:$1, bywords:T))
!ismissing(vecread(string:@tmp,badvalue:?,byfields: T))",\
dollars:T)

Then
isnumber("3.45") returns True, isnumber("3b45") returns False, and
isnumber("3.4 4.5 A") returns vector(T,T,F).

Reading a matrix with vecread()
When the file contains a data matrix consisting of n rows of da ta, each
of k items, you can read the data into a n by k matrix by

Cmd> x <- matrix(vecread(FileName [,byfields:T]),k)’
or, for CHARACTER data,

Cmd> x <- matrix(vecread(FileName, bywords:T),k)’

The transpose is needed because vecread() reads row by row, b ut matrices
are filled column by column.

534 CHAPTER 2. MACANOVA HELP FILE

If there are several matrices in a file, separated by lines st arting
with the stop character (default "!"), you can read the third one, say,
by

Cmd> x <- matrix(vecread(FileName, bypass:2), k)’

Controlling the lines to read
In addition to ’bypass:P’ and ’startline:M’, keyword phras es ’skip:C’,
’skipthru:C’, ’stop:C’ and ’go:C’ control which lines will be scanned
for data. In each case C is a single character such as "#" or "!" .
These are referred to as the "skip character", the "skipthru character",
the "stop character" and the "go character". Except for the s top
character, these have no effect until after the lines skippe d by
bypass:P and startline:M.

The default stop character is "!", whether reading numerica l or
CHARACTER data. That is, a ’!’ terminates scanning the file. There are
no defaults for the skip, skipthru or go characters.

Briefly, lines starting with the skip character are skipped , as are all
lines up to and including the first line starting with the ski pthru
character, and reading is terminated by the stop character o r a line
that does not start with the go character. When the skipthru c haracter
is "\n", reading will start after the first completely empty line. See
topic ’vecread_keys’ for details.

If ’!’ appears in the file as other than a stop character, you s hould
use ’stop:C’, where C is a character that does not occur in the file.
If the file consists solely of standard ASCII characters, ’s top:"\377"’
is a good choice.

With ’bylines:T’ and ’bychars:T’ and when skipping lines as controlled
by ’bypass:P’, the stop character is recognized only as the f irst
character in a line. With ’bywords:T’ or ’byfields:T’ it is r ecognized
only as the first character in a word or field. Otherwise it is
recognized at any position in a line.

When you use keyword phrase n:N (see above), reading is termi nated when
N items have been read. When a stop character is found or a line that
does not start with the go character is found before N items ha ve been
read, reading is stopped and a warning message is printed.

"Reading" from a CHARACTER variable
vecread(string:CharVar [, keywords]) where CharVar is a CH ARACTER scalar
or vector, does not read from a file. Instead, it "reads" Char Var as if
were a file. See topic ’vecread_keys’ for details.

Here is a particularly useful way to use keyword ’string’:

Cmd> x <- vecread(string:CLIPBOARD [,byfields:T])
and

Cmd> x <- vecread(string:CLIPBOARD,bywords:T)

2.384. VECREAD() 535

would read data from the special variable CLIPBOARD. In wind owed
versions, this would be taken from the Clipboard. Pre-defin ed macro
fromclip() makes use of this feature to read data on the Clipb oard. In
the GTK version, you can use special variable SELECTION in a s imilar way
to read the current X selection. See topic ’CLIPBOARD’.

Reading from the keyboard or batch file
vecread(CONSOLE [,keywords]) reads what you type rather th an a file. If
a variable CONSOLE exists, its value is ignored. In windowed versions,
a dialog box is displayed in which you enter data; in other ver sions,
you are prompted to type in the data. The prompt can be suppres sed by
’prompt:F’.

Data should be typed in one of the formats just described. To s top
input, type the stop character (default ’!’), followed by RE TURN, or, if
you provided a go character (see ’vecread_keys’), type a lin e starting
with any other character. In windowed versions, clicking on the "Done"
or "Cancel" button in the dialog box also ends input.

In a batch file vecread(CONSOLE [,...]) reads the immediate ly following
lines as the data file. For this usage it is essential that eit her a
stop character terminates the data or keyword phrase n:N lim its
number of items read. You will probably want to use ’prompt:F ’ in this
case. See also batch().

Other optional keywords phrases that may always be used
You can also specify the file name by ’file:FileName’, which need not be
the first argument. In addition, you can replace FileName by
’string:CharVar’, where CharVar is a CHARACTER scalar or ve ctor which is
"read" as if it were a file.

You can use keyword phrases ’echo:T’, ’quiet:T’, ’quiet:F’ , ’silent:T’
and ’printname:F’ to control what vecread() prints.

You can ignore duplicated or unrecognized keywords by ’badk eyok:T’.
This is useful in writing macros, since you can have a line lik e

@x <- vecread(string:@lines, stop:"$", badkeyok:T, $K)
without checking to see whether ’string’, ’stop’ or a non-ve cread
keyword is a macro argument and thus included when $K is expan ded. See
topics ’macros’ and ’macro_syntax’.

Keyword phrase ’nofileok:T’ instructs vecread() to return NULL instead
of aborting when it is unable to open a file. This is useful in w riting
robust macros that use vecread().

See topic ’vecread_keys’ for details on these keywords.

Cross references
See also topics readcols(), read(), matread(), macroread(), batch(),
’vecread_file’, ’vecread_keys’, ’files’, console(), ’ve ctors’.

536 CHAPTER 2. MACANOVA HELP FILE

2.385 vecread file

Keywords: variables, files, input, output

Introduction
This topic discusses the format of files vecread(), readcol s() and
readdata() can read. Such files are plain text files which co ntain only
REAL or CHARACTER data in unstructured format.

Macro readcols() uses vecread() to read a file. The only diff erence in
file format is that, when no variable names are provided to re adcols()
or readdata(), the first line of the file is interpreted as co ntaining
variable names.

See topic ’matread_file’ for information on the format of fi les to be
read by matread() and read().

See topic ’vecread_keys’ for information on vecread() keyw ords.

Multiple data sets in file
With the help of keyword ’bypass’ you can read one of several s ets of
data in the same file if the data sets are separated with lines
beginning with the "stop character" (default "!"; see ’vecr ead_keys’).
You can read the third set, say, by including ’bypass:2’ as an argument
to vecread() or readcols(). This discussion really describ es the lines
after the bypassed data.

Keyword ’bypass’ cannot be used with readdata().

REAL data in file
REAL data to be read by vecread(), readcols() and readdata() consist of
numbers and codes for MISSING, often on several lines. When t here are
several data items on a line, they are separated by spaces, ta bs or
commas. Any of ’?’, ’.’, ’ * ’ and ’NA’ code for MISSING. ’??’, ’???’,
... are treated as a single missing value.

Interpretation of extra commas and non-numeric "fields" (s equences of
characters that are not commas, spaces or tabs) depends on wh ether
’byfields:T’ is an argument to vecread() or readcols(). See topic
’vecread_keys’ for details.

readdata() always uses ’byfields:T’ in reading REAL data,.

What is done with items that are not numbers or missing value c odes
depends on whether ’badvalue:badv’ is an argument to vecrea d(),
readcols() or readdata(), where badv is a REAL scalar or MISS ING. See
topic ’vecread_keys’.

CHARACTER data in file
CHARACTER data to be read by vecread() or readcols() have no s pecial
format when ’bylines:T’ or ’bychars:T’ is an argument. When ’bywords:T’
is an argument, the file is interpreted as consisting of "wor ds"
separated by "white space" or commas. A word is a sequence of v isible
characters other than commas. An empty word, read as "", is as sumed

2.385. VECREAD FILE 537

before a leading comma, after a trailing comma or between two commas
enclosing no visible characters.

When all the data lines are at the start of the file and start wi th the
same character, for example ’%’, you can restrict reading to them by
including ’go:"%"’ as an argument to vecread() or readcols().

Since keywords ’bywords’, ’bychars’ and ’bylines’ are ille gal for
readdata(), it cannot be used for reading CHARACTER data;

Stop character
Data can be terminated by a "stop character" (default is ’!’) . With
’bychars:T’ and ’bylines:T’ this is recognized only as the f irst
character in a line.

You can change the stopping character by, say, ’stop:"$"’. S ee topic
’vecread_keys’ for details.

With readdata() or with ’byfields:T’ and ’bywords:T’ on vec read() or
readcols(), the stopping character must be at the start of a f ield or
word. In other situations, it can be anywhere in the file.

Skip character
Lines starting with a "skip character" specified by an argum ent of the
form, say, skip:"#" are skipped. See topic ’vecread_keys’ f or more
information.

The default skip character is ’#’. If you don’t want any skip
character, perhaps because there are lines in the file start ing with ’#’
that should be read, use ’skip:""’ as an argument (not with re addata()).

Writing a data file to be read by vecread()
You can write a file vecdata.txt of REAL data that vecread(),
readcols() and readdata() can read by

Cmd> print(x,new:T,file:"vecdata.txt",header:F,label s:F,missing:"?")

where x is a REAL vector or matrix. When x is a matrix, it is writ ten
row by row as readcols() expects. If you want it written colum n by
column, use x’ as an argument. You can specify the format or th e number
of significant digits by keywords ’format’ and ’nsig’. See p rint().

538 CHAPTER 2. MACANOVA HELP FILE

2.386 vecread keys

Usage:
List of keywords that can be used on vecread() or readcols().

Keyword Value
badkeyok T or F *
badvalue REAL scalar or MISSING
bychar T or F *
byfields T or F *
bylines T or F *
bypass Nonnegative integer
bywords T or F *
echo T or F
file CHARACTER scalar file name
go CHARACTER scalar with one character
n Positive integer
nofileok T or F *
printname T or F *
prompt T * or F
quiet T or F *
silent T or F *
skip CHARACTER scalar with one character, default "#"
skipthru CHARACTER scalar with one character
startline Positive integer
stop CHARACTER scalar with one character
string CHARACTER scalar or vector

* Default

Keywords: files, input, output

Introduction
This topic summarizes the use of keyword phrases as argument s to
vecread() which reads data items row by row from a text file. T ype
usage(vecread_keys) for a list of vecread() keywords. See a lso topics
vecread() and ’vecread_file’.

Some of the examples use keyword ’string’. See below for info rmation.

Keyword phrases specifying that CHARACTER data should be re ad
Keyword ’bywords’

bywords:T Read CHARACTER data by words
The file is interpreted as a sequence "words" or fields separ ated by
commas, or "invisible" characters (spaces, tab characters and ends of
lines). The result is a CHARACTER vector, each element of whi ch is a
word from the file.

Each word is empty or consists of a sequence of visible charac ters
that are not commas. An empty word occurs before a leading com ma,
after a trailing comma or between two commas with no interven ing
visible characters and is read as "". For example
vecread(string:",a ,, b,",bywords:T) returns vector("", "a","","b","")

Keyword ’bylines’
bylines:T Read CHARACTER data by lines

2.386. VECREAD KEYS 539

Each line read becomes a single element of a CHARACTER vector . The
line-separating character "\n" is not included. All other c haracters,
including commas and invisible characters are read. If no li ne starts
with the stopping character, the length of the result is the n umber of
lines in the file.

Keyword ’bychar’
bychar:T Read CHARACTER data as separate characters

Each character read, including commas, invisible characte rs and line
separating characters, is read as a single element. If no lin e starts
with the stopping character, the length of the result is the n umber of
characters in the file.

Keyword phrase specifying how REAL data will be read
Keyword ’byfields’

byfields:T REAL items read by "fields"
The file is interpreted as a sequence of "fields" separated b y commas
or "invisible" characters. The result is a REAL vector, each element
of which is derived from a field in the file.

A field is either empty or consists of a sequence of visible
characters that are not commas. An empty field occurs before a
leading comma, after a trailing comma or between two commas w ith no
intervening visible characters and is read as MISSING. A non -empty
field that is a well formed number (for example, -17, 3.14e73 or
2.7182818) is read as that number. If the number is too large t o be
represented in the computer (for example -3.1e3000), it is r ead as
MISSING. When a non-empty field is not a well formed number (f or
example 3.5a7 or Foo), it is read as badV when ’badvalue:badV ’ is an
argument, or as MISSING otherwise.

Keyword phrases specifying what to read
Keyword ’file’

file:FileName Read from file FileName
This is an alternate way to specify the file to be read. That is
vecread(file:FileName [,keyword phrases]) is equivalent to
vecread(FileName [,keyword phrases]). Filename must be a q uoted
string or CHARACTER scalar.

Keyword ’string’
string:CharVar "Read" from CHARACTER scalar or vector Char Var

CharVar is "read" as if it were a file whose contents are speci fied by
CharVar. Any instances of "\n" are treated as terminating a l ine.
When CharVar is a vector, each element is assumed to start a ne w line.

When CharVar is a CHARACTER vector, each element is read as fo r a
CHARACTER scalar, with each element starting with a new line . With
bychar:T, "" is inserted between each element of CharVar.

Examples: Suppose S1 is "12\n34" and S2 is vector("12","34").

vecread(string:S1 [,byfields:T]) and vecread(string:S2 [,byfields:T])
return vector(12,34).

540 CHAPTER 2. MACANOVA HELP FILE

vecread(string:S1, bywords:T or bylines:T) and vecread(s tring:S2,
bywords:T or bylines:T) return vector("12","34")

vecread(string:S1, bychars:T) returns vector("1","2"," \n","3","4")

vecread(string:S2, bychars:T) returns vector("1","2"," ","3","4")

Keyword ’n’
Keyword phrase limiting the number of items to be returned

n:N No more than N items to be returned
If fewer than N items are found before the stop character or th e end
of the file, a warning message is printed. N must be a positive
integer.

Keyword ’n’ is illegal as an argument to readdata().

Keyword phrases specifying which lines should be read as dat a.
Keyword ’stop’

stop:"$" Set stop character to ’$’ (default is "!")
Reading stops when a stop character is encountered. With ’by chars:T’
and ’bylines:T’, a stop characters is recognized only as the first
character in a line. With ’byfields:T’ and ’bywords:T’ it is
recognized only as the first character in a field or word.

For numerical data, the stop character can be any punctuatio n
character except ’+’, ’-’, ’,’, ’?’ or ’.’, that is, any of
!"#$%&’() * /:;<=>@[\]ˆ_‘{|}˜.

For CHARACTER data, the stop character can be any punctuatio n
character except ’,’, including ’+’, ’-’, ’?’ or ’.’.

For both numerical and CHARACTER data, the stop character ca n also be
a "non-ASCII" character (code >= 128 = octal 200 = hexadecima l 80)
such as "\200", "\377", "\x80" or "\xff", except when readin g from
CONSOLE. This might be called for when you want to ensure the w hole
file is read, and you know the file does not contain non-ASCII
characters.

Keyword ’bypass’
bypass:P Skips past P lines starting with stop character

When P > 0, nothing is read or echoed until P lines starting wit h
the stop character have been read. This allows you to read sev eral
sets of data on the same file provided they are separated by li nes
starting with the stop character. This takes precedence ove r all
other keywords that control which lines are read. ’bypass’ i s
illegal with readdata().

Keyword ’startline’
startline:M Sets the first line to be scanned.

Start reading on line M of the file, that is, the first M-1 line s are
ignored and never echoed. This takes precedence over all oth er
keywords except bypass that control which lines are read. St op,

2.386. VECREAD KEYS 541

skip, skipthru, and go characters are not recognized if they come
before line M. The default value for M is 1. With bypass:P, rea ding
starts on line M after the P-th line starting with the stop cha racter.

Keyword ’skipthru’
skipthru:"@" Set skipthru character to ’@’ (no default)

Lines up to and including the first line starting with the ski pthru
character are ignored. They may be echoed, depending on the v alues of
keywords ’echo’, ’quiet’ and ’silent’.

The skipthru character can be any character. When the skipth ru
character is "\n", reading starts after the first completel y "white"
line, that is, a line with no visible characters.

The skipthru character takes precedence over and can be the s ame as
the skip, stop or go characters. It is ignored until after the lines
skipped because of keywords ’bypass’ and ’startline’.

Keyword ’go’
go:"%" Set go character to ’%’ (no default)

Reading stops with the first line that does not start with the go
character. It is ignored until after the lines skipped becau se of
keywords ’bypass’ and ’startline’.

Keyword ’skip’
skip:"#" Set skip character to ’#’ (default is "#")

Lines starting with skip character are ignored (they may be e choed).

For numerical data, the allowable skip characters are the sa me as for
stop characters.

For CHARACTER data, any visible printing character, includ ing a comma,
may be a skip character.

When the skip character is the same as the stop character (for
example, stop:"#",skip:"#"), scanning will be stopped onl y if the stop
character occurs after the first character in a non-skipped line (for
example, by a line starting " #..." but not by "#...").

Keyword phrases controlling what is printed
Keyword ’quiet’

quiet:F Prints skipped lines, if any
The lines printed are those skipped because of the skip or ski pthru
characters, but not those skipped by ’bypass:P’ or ’startli ne:M’.

Keyword ’echo’
echo:T or F Control echoing of lines scanned.

With echo:T, all lines scanned, including lines skipped bec ause of the
skip or skipthru character, are echoed to output. With echo: F, the
only lines echoed are skipped lines with quiet:F.

When FileName is CONSOLE and the vecread() command is in a bat ch file,
data that is read is echoed to output unless echo:F is an argum ent.

542 CHAPTER 2. MACANOVA HELP FILE

This also happens in windowed versions even when not reading from a
batch file.

Keyword ’silent’
silent:T Suppress all warning messages and echoing

This is incompatible with echo:T or quiet:F.

Keyword ’printname’
printname:F Suppress printing the name of the file read

The default is printname:T except with string:CharVar.

Keyword ’prompt’
prompt:F Suppresses prompt when reading from CONSOLE

Keyword phrases related to anomalies
Keyword ’badkeyok’

badkeyok:T Ignore unrecognized or duplicate keywords
Without badkeyok:T, unrecognized or duplicate keywords ar e considered
errors. This feature is useful in a macro where a line like
@x <- vecread("data.txt",silent:T,badkeyok:T,$K) shoul d work,
even if the argument list to the macro includes keyword ’sile nt’ or
other keywords not recognized by vecread().

Keyword ’badvalue’
badvalue:badVal Replace unreadable REAL items by badVal

When reading REAL data with badvalue:badVal an argument, an y
unreadable items are replaced by badVal, which must be a REAL scalar
or MISSING. Without badvalue:badVal, unreadable items are replaced by
MISSING when ’byfields:T’ is an argument and are skipped oth erwise.

Keyword ’nofileok’
nofileok:T Failure to open the file is OK.

When a file can’t be opened, NULL is returned and no error mess age is
printed. Without nofileok:T, this is an error.

2.387 vector()

Usage:
vector(x1,x2,...,xk [,KeyPhrases]) where x1, x2, ... all h ave the same

type, REAL, LOGICAL, or CHARACTER, or are structures with co mponents
all of the same type

KeyPhrases can be labels:lab, notes:Notes and silent:T, wh ere labs and
Notes are CHARACTER scalars or vectors.

Keywords: variables, combining variables, character variables,
null variables

Usage
vector(x1, x2, ..., xk) combines scalars x1, x2, ... xk into a vector of
length k. For example, you can enter a small set of data by

Cmd> x <- vector(3.5, 9.6, 2.5, 2.3, 7.7, 2.6, 6.3, 6.5, 6.6, 4 .1)

2.387. VECTOR() 543

The arguments x1, x2, ..., xk can be REAL, LOGICAL or CHARACTE R and must
all have the same type. For example, you can create a CHARACTE R vector
by

Cmd> varNames <- vector("Length","Width", "Weight")

vector() is identical to cat(). However, cat() is a deprecat ed
function, that is, it will remain available for the immediat e future,
but at some time it may be disabled. Use vector() instead.

Non scalar arguments
Arguments may also be vectors. In that case vector(x1, x2,, xk)
combines all the arguments into a single vector. For example ,

Cmd> vector(run(3), run(3,1))
is equivalent to

Cmd> vector(1,2,3,3,2,1).

More generally, any or all of the arguments may be vectors, ma trices or
arrays, as long as they all have the same type. In that case,
vector(x1, x2,, xk) has the same effect as vector(vecto r(x1),
vector(x2),, vector(xk)), combining all the elements of its
arguments into one long vector. See the next paragraph for wh at
vector(x) does when x is a matrix or array.

vector(x) creates a vector from a matrix or array x by "unrave lling" it,
with the first subscript changing fastest, the second chang ing next
fastest, etc. Specifically, if the dimensions of x are n1, n2 , ..., nk,
vector(x) is a vector with length n1 * n2* ... * nk, with elements
x[1,1,...,1], x[2,1,...,1], ..., x[n1,1,...,1], x[1,2,. ..,1],
x[2,2,...,1], ..., x[n1,2,...,1], ..., x[1,3,...,1], ... ,
x[n1,n2,...,nk]. x may be REAL, LOGICAL, or CHARACTER.

Structure argument
When Str is a structure with n components, vector(Str) is a ve ctor
equivalent to vector(vector(Str[1]),...,vector(Str[n])), defined
recursively if any component is a structure. All the data com ponents
must be of the same type, REAL, LOGICAL or CHARACTER. This sho uld not
be confused with strconcat() which combines structures int o a larger
structure.

NULL argument
Any argument of type NULL is ignored. For example, vector(NU LL, a) or
vector(a, NULL) are equivalent to vector(a). When all argum ents to
vector() have type NULL, so does the result.

Attaching labels or notes
You can specify labels for the first (and only) dimension of t he result
using keyword ’labels’. See topic ’labels’ for details.

You can attach a CHARACTER vector of descriptive notes to the result
using keyword phrase ’notes:Notes’. See topic ’notes’ for d etails.

After
Cmd> y <- vector(x)

544 CHAPTER 2. MACANOVA HELP FILE

where x is already a vector, y will have the same coordinate la bels or
descriptive notes as x.

Cross references
See also topics ’vectors’, ’structures’.

2.388 vectors

Usage:
Create a vector: x <- vector(x1,x2, x3, ...)
Extract element(s) x[i], i an integer scalar or vector or LOG ICAL

vector

Keywords: variables, syntax

Description
A vector is an array with only one dimension, its length. It ca n be
thought of as just a list of one or more numbers (REAL vector), logical
values (LOGICAL vector) or strings (CHARACTER vector). You can’t mix
different types of data in a single vector. For that you need a
structure (see structure() and ’structures’).

The most usual way to create a vector is to use vector():

Examples
Cmd> x <- vector(1,3,2.5,6) # create REAL vector

Cmd> y <- vector("Hi","Lois") # create CHARACTER vector

Cmd> z <- vector(T,T,F,F,T) # create LOGICAL vector

Cmd> list(x,y,z) # all are vectors, having only 1 dimension
x REAL 4
y CHAR 2
z LOGIC 5

Vectors as matrices
Practically always, MacAnova commands treat a n by 1 matrix (column
vector) or a n by 1 by 1 ... by 1 array the same as a vector. For
example, if y is a n by p matrix, then factor(y[,3]) is legal, e ven
though factor() expects a vector as argument, because y[,3] has only one
column. Moreover, isvector(x) is True when x is a vector, a n b y 1
matrix, or a n by 1 by 1 ... by 1 array.

Conversely, in a context requiring a matrix, practically al ways MacAnova
treats a vector of length n as a n by 1 matrix.

Cross references
See also topics vector(), isvector(), factor(), ’matrices ’.

2.389. VT() 545

2.389 vt()

Usage:
vt()

Keywords: plotting

Usage
vt() (no argument) is designed to be used with a terminal emul ator
implementing both VT100 and Tektronix 4014 emulation. When running
MacAnova using such an terminal emulator, vt() automatical ly puts your
terminal in vt100 emulation mode using the character sequen ce obtained
by getoptions(tekset:T)[2]. See topic ’options’.

vt is normally not needed, since MacAnova should automatica lly switch
back to vt100 mode when a plot is finished if option ’tekset’ h as been
set appropriately. See subtopic ’options:"tekset"’.

vt is implemented as a pre-defined macro (Unix/Linux versio ns only).

See topic vtx() if you are running MacAnova in an Xterm window on a
workstation.

Cross references
See also tek(), plot(), chplot(), lineplot(), boxplot(), s howplot().

2.390 vtx()

Usage:
vtx()

Keywords: plotting

Usage
vtx() switches a Unix/Linux workstation Xterm terminal emu lator to vt100
mode from Tektronix 4014 mode. You don’t normally need vtx si nce
MacAnova recognizes when it is running in a Xterm environmen t (the value
of environmental variable $HOME is "xterm") and automatica lly switches
back to vt100 mode after drawing a high resolution graph.

vtx is implemented as a pre-defined macro (Unix/Linux versi ons only).

See also topics tek(), tekx(), vt(), ’graphs’, ’unix’.

2.391 while

Usage:
while(Logical){statement1;statement2;...;}

546 CHAPTER 2. MACANOVA HELP FILE

Keywords: syntax, control

Usage
while(Logical){statement1;statement2;....;} repeated ly executes the
statements enclosed in ’{’ and ’}’ as long as Logical has valu e True.
Logical should be a scalar LOGICAL variable or expression, b ut not a
constant expression. Unless the last statement in {...} is e mpty (’;;’
just before ’}’), its value may be printed on every repetitio n.

The opening ’{’ must be on the same line as ’while’ unless that line
terminates with ’\’.

To avoid "infinite" loops, a ’while’ loop will automaticall y terminate
after 1000 repetitions. This limit can be changed by option
’maxwhile’. After

Cmd> setoptions(maxwhile:10000)
a ’while’ loop will terminate after 10000 repetitions.

It is essential that one of the statements modify the variabl e(s) used
in the LOGICAL expression, or that a break or breakall statem ent is
used. Otherwise the loop will repeated until 1000 (or value r eset by
option ’maxwhile’) repetitions are completed.

A ’while’ statement does not have a value. Hence such constru cts as yyy
<- while(n > 0){...} or zzz + while(n > 0){...} are illegal.

Syntax elements ’break’, ’breakall; and ’next’
You can terminate a "while loop" prematurely using syntax el ements
’break’ and ’breakall’ or pre-defined macro breakif().

You can skip to the end of a "while loop" using syntax element ’ next’.
Be careful to modify the variable(s) used in the LOGICAL expr ession
before ’next’ so as to avoid an "infinite" loop.

Examples
Examples:

Cmd> @s <- 0;@n <- length(x);while(@n>0){\
@s <- @s+x[@n];@n <- @n-1;;};@s

This would print the sum of all the elements in x.

Cmd> ex <- macro("@x <- argvalue($1,\"x\",\"real nonmissi ng\")
@dims <- dim(@x);@x <- vector(@x)
@neg <- 1-2 * (@x<0);@x <- abs(@x);@eps <- 1e-12
@s <- @t <- @k <- 1
while(max(@t) > @eps * max(@s)){

@t <- (@x/@k) * @t
@s <- @s+@t;@k <- @k+1

}
array(@sˆ@neg,@dims)",dollars:T)

will create a macro ex() such that ex(x) computes exp(x) usin g a power

2.392. WORKSPACE 547

series, when x is a vector, matrix, or array. See topics
’macro_syntax’, argvalue(), macro() for information abou t writing
macros.

Cross references
See also topics ’for’, ’if’, ’break’, ’breakall’.

2.392 workspace

Usage:
The "workspace" consists of all MacAnova variables and macr os.
Saving the workspace to a file

save(fileName) saves whole workspace in binary format
save(fileName,var1 [,var2 ...]) saves variables in binary format
asciisave(fileName) saves whole workspace in text format
asciisave(fileName,var1 [,var2 ...]) saves variables in t ext format

Restoring the workspace from a file
restore(fileName [keywords])

Seeing contents of workspace
listbrief([var1, var2, ...] [keywords]) just lists names
list([var1, var2, ...] [keywords]) includes details

Keywords: general

Definition of workspace
The "workspace" consists of all MacAnova variables and macr os. These
include not only variables and macros explicitly created by you as you
use MacAnova, but all pre-defined macros such as hist(), pre -defined
variables such as PI and variables such as RESIDUALS created as
"side-effects" of MacAnova functions.

The workspace "resides" in memory (RAM) and not on disk. One
consequence is that when you quit MacAnova, your variables a re lost.
Before you quit you can save a copy of the workspace on disk usi ng
save() or asciisave(). In a later MacAnova session, you can u se
restore() to recover the workspace you saved. See save(), as ciisave()
and restore().

Cataloging your workspace
To get a catalog of everything in your workspace, type ’list()’ or
’listbrief()’. Using keyword phrases such as ’real:T’ or ’n rows:100’
you can restrict the catalog to variables of particular type s or sizes.
See list() and listbrief() for details.

Deleting items
Use delete() to remove items from your workspace. Be careful not to
delete something you want to keep since there is no "undelete "
function.

548 CHAPTER 2. MACANOVA HELP FILE

2.393 write()

Usage:
write(a, b, ...[,format:Fmt or nsig:m, header:F, labels:F , notes:T,\

width:w, height:h, macroname:T, missing:missStr, name:s etName]\
[, file:fileName [,new:T]]]), Fmt, missStr, fileName, set Name
CHARACTER scalars, m > 0, w >= 30, h >= 12 integers

Keywords: output, files

Usage
write(a, b, ...) prints objects (variables, expressions, m acros) a, b,
..., ordinarily retaining more decimal places than print() . By default,
write() formats REAL items using the format identified by ’w format’ on
getoptions() output. By default this specifies 9 significa nt digits in
floating point form but may be changed by setoptions().

Except for using a different default format, write() is iden tical with
print(), and recognizes the same keywords. It is provided as an easy
way to print results with more significant digits than does p rint(),
without having explicitly to specify a format. See print() f or a full
description of the various keywords and output.

Cmd> print(PI * run(5))
VECTOR:
(1) 3.1416 6.2832 9.4248 12.566 15.708

Cmd> write(PI * run(5))
VECTOR:
(1) 3.14159265 6.28318531 9.42477796
(4) 12.5663706 15.7079633

When either of keywords ’nsig’ or ’format’ are used, write() behaves
identically to print().

Cross references
See also topics setoptions(), matprint(), matwrite(), mac rowrite(),
’options’.

2.394 writedata()

Usage:
writedata(fileName,x1,x2,... [,missing:M] [, putNames: F] \

[,fieldwidth:w or format:fmt]), CHARACTER scalar fileNam e, vectors
x1, x2, ..., all with same length, CHARACTER scalars M, fmt,
integer w > 0

writedata(x1,x2,..., keep:T [,missing:M] [, putnames:F] \
[,fieldwidth:w or format:fmt])

Keywords: output

Introduction

2.394. WRITEDATA() 549

writedata() is a macro designed to write one or more data vect ors of
arbitrary as columns of a data file. By default, columns are h eaded by
the variable names so reading the file using readdata() shou ld restore
the variables. Optionally, writedata() can return a CHARAC TER scalar
containing an image of the file instead of writing it.

Usage
writedata(fileName,x1,x2,...) writes data vectors x1, x2 , ... as columns
in the file named by CHARACTER scalar fileName.

x1, x2, ... must be vectors of any type, REAL, LOGICAL or CHARA CTER. If
any vector is a factor and has row labels such that all cases wi th a
factor level have the same label, the row labels are written i nstead of
the factor levels.

REAL data are formatted using the current default format as r eturned
by getoptions(format:T), except that integer values are wr itten as
integers with no decimal point.

CHARACTER data is written right justified in a field whose wi dth is
taken from the default format.

LOGICAL data are translated to "T" or "F" and then written lik e
CHARACTER data.

MISSING values are written as "?" unless keyword ’missing’ p rovides
another string; see below.

If a data vector is specified by a keyword phrase (x1:X[,1], f or
example), the keyword is used as the vector name. For this usa ge, the
keyword may not be ’keep’, ’new’, ’fieldwidth’ or ’missing’ .

Any data already in the file is destroyed unless ’new:F’ is an
additional argument.

writedata(x1,x2,...,keep:T) acts similarly, except that no file is
written. Instead, what would be written is returned as a CHAR ACTER
scalar to be assigned to a variable or CLIPBOARD.

writedata(fileName, x1, x2, ..., missing:M) and writedata (x1, x2, ...,
keep:T,missing:M) do the same, except that CHARACTER scala r M (for
example, "NA" or " * ") is used instead of "?" for MISSING values.

By default, each column has the same width. You can suppress t his
behavior, so there is minimual space between columns, by key word
’format’; see below.

Keyword ’putnames’
writedata(fileName, x1, x2, ..., putnames:F) and writedat a(x1, x2, ...,
keep:T, putnames:F) do the same, except that no line of colum n headers
is written or returned.

Keywords ’format’ and ’fieldwidth’

550 CHAPTER 2. MACANOVA HELP FILE

When ’format:Fmt’ is an argument, REAL values are written us ing format
Fmt. Fmt must be a CHARACTER scalar which is a legal value for p rint()
keyword ’format’. For details, see subtopic
print:"details_on_format_keyword". If Fmt is of the form " w.dg" or
"w.df", where w and d are integers, each column will have widt h at least
w. If Fmt is of the form ".dg" or ".df", there will be minimal sp ace
between columns and columns will probably not be straight.

When fieldwidth:w is an argument, where w is a positive integ er, columns
will be w characters wide and the format will be "w.dg", where d =
max(w-7,0). You can’t use ’fieldwidth’ with ’format’.

Cross references
See also readdata(), clipwritedat(), print(), ’keywords’ , ’files’

2.395 wtanova()

Usage:
wtanova([Model] ,Wts [print:F or silent:T, coefs:F, pvals :T, fstats:T]),

Model a CHARACTER scalar, Wts a REAL vector.

Keywords: glm, anova

Usage
wtanova(Model,Wts) is equivalent to anova(Model,weights :Wts). See
anova() for details.

2.396 wtmanova()

Usage:
wtmanova([Model] ,Wts[,print:F or silent:T, coefs:F, pva ls:T, fstats:T,\

sssp:F or T]), Model a CHARACTER scalar, Wts a REAL vector.

Keywords: glm, anova

Usage
wtmanova(Model,Wts) is equivalent to manova(Model, weigh ts:Wts). See
manova() for details.

2.397 wtregress()

Usage:
wtregress([Model], Wts [, print:F or silent:T, pvals:T])

Model a CHARACTER scalar, Wts a REAL vector.

Keywords: glm, regression

2.398. XROWS() 551

Usage
wtregress(Model,Wts) is equivalent to regress(Model,wei ghts:Wts). See
regress() for details.

2.398 xrows()

Usage:
xrows(variates [,factors]), variates and factors REAL mat rices or

vectors or NULL.

Keywords: glm

Usage
xrows(Variates, Factors) computes rows of an X-variable (d esign) matrix
corresponding to variate values in Variates and factor leve ls in
Factors, using the information saved by the preceding GLM co mmand.

In the following, let nv = number of variates in the model and n f = the
number of factors in the model.

Variates should be either a REAL vector with length(Variate s) = nv, or a
REAL matrix with ncols(Variates) = nv. when nv = 0, Variates s hould be
NULL.

Factors should be either a REAL vector with length(Factors) = nf or a
REAL matrix with ncols(Factors) = nf. All the elements of Fac tors
should be positive integers not exceeding the maximim level for each
factor. When nf = 0, Factors should be NULL or should be omitte d
entirely.

Let nrowv be 1 if Variates is a vector and nrows(Variates) oth erwise,
and let nrowf be 1 if Factors is a vector and nrows(Factors) ot herwise.
Then if nrowv != nrowf, you must have either nrowv = 1 or nrowf = 1 and
the single row of Variates or Factors is used for every row of t he
output.

The result is a REAL matrix with max(nrowv, nrowf) rows. Each row
consists of the values of the X-variables (design matrix) co rresponding
to that row of Variates and Factors.

Examples
Examples:

After anova("y=x1+x2+a * b"), xrows(hconcat(x1,x2), hconcat(a,b)) is
equivalent to xvariables().

After regress("y=x1+x2"); xrows(x0) % * % COEF is equivalent to
regpred(x0,seest:F,sepred:F) where x0 is a matrix of value s for x1 and

x2.

Cross references
See also topics xvariables(), modelinfo(), regpred(), glm pred(), ’glm’.

552 CHAPTER 2. MACANOVA HELP FILE

2.399 xvariables()

Usage:
xvariables(Model [, missing:val]), Model a CHARACTER scal ar, val a REAL

scalar

Keywords: glm

Usage
xvariables(Model) returns the full design matrix (matrix o f X-variables)
associated with Model, including a column for the intercept (constant
term), if any. Model must be a scalar CHARACTER variable or qu oted
string.

See topic ’models’ for information on specifying Model.

xvariables() (without a model) does the same except it uses t he model
specified in STRMODEL which is usually the model used by the m ost recent
GLM (generalized linear or linear model) command such as reg ress(),
anova(), or poisson().

xvariables(Model, missing:val) and xvariables(missing: val), where val is
a REAL scalar, provides a value for cases with missing values .

Each variate in the model will appear as a column of the output .

Factors and interactions are translated to one or more "dumm y" variables
with values 1, 0, or -1, or to products of dummy variables or of dummy
variables and variates.

Any row in which the dependent variable or any factor or varia te is
MISSING is set entirely to 0, or, when ’missing:val’ is an arg ument, to
val. For example, xvariables(Model, missing:?) or
xvariables(missing:?) results in rows with missing data be ing set to
MISSING rather than to 0.

Use after regress()
Note: When no model is specified and the previous command was regress(),
xvariables() does not compute dummy variables associated w ith any
factors in the model, but treats them as if they were variates . Except
in this special case, the behavior of xvariables() differs s harply from
the behavior of modelvars() which retrieves factors and var iates
unchanged.

No factors in model
When there are no factors in the model, a regression of the dep endent
variable on the columns of xvariables()[,-1], that is, the r esult of
xvariables() excluding the constant column, should yield t he same
coefficients as does coefs() after regress(Model) or anova (Model).

With factors in model
When there are factors in the model, the regression coeffici ents in such
a regression will differ from those produced by coefs() afte r
anova(Model), although the fitted values and residuals wil l be the same.

2.400. YATES() 553

For example, following anova("y=a.x"), where a is a factor a nd x is a
variate, the coefficients from coefs("a.x") will be the slo pes in a
model fitting separate lines for each level of a, but with a co mmon
intercept. This is not the parametrization implicit in a reg ression of
y on the columns of xvariables[,-1].

Cross references
See also topics varnames(), modelvars(), modelinfo(), ’mo dels’.

2.400 yates()

Usage:
yates(x), x a REAL vector

Keywords: glm, anova

Usage
yates(x) performs Yates’ algorithm for the effects in a 2-se ries
factorial experiment. The argument x should be a REAL vector
(univariate case) or matrix (multivariate case) containin g the 2ˆk
observations in standard order, that is, the levels of the fi rst factor
changing most rapidly.

When x is a vector, the value is a vector of the (2ˆk)-1 effects in
standard order and divisor 2ˆ(k-1). For example, for a 2ˆ3 ex periment
with data vector(x111,x211,x121,x221,x112,x212,x122,x 222), the result is
vector(A, B, AB, C, AC, BC, ABC), where

A = (-x111 + x211 - x121 + x221 - x112 + x212 - x122 + x222)/4
B = (-x111 - x211 + x121 + x221 - x112 - x212 + x122 + x222)/4
AB = (+x111 - x211 - x121 + x221 + x112 - x212 - x122 + x222)/4

and so on. The mean, (x111+x211+x121+x221+x112+x212+x122 +x222)/8, is
not included.

In matrix notation, the k = 3 case can be expressed as
[A] [-1 1 -1 1 -1 1 -1 1] [x111]
[B] [-1 -1 1 1 -1 -1 1 1] [x211]
[AB] [1 -1 -1 1 1 -1 -1 1] [x121]
[C] = (1/4) [-1 -1 -1 -1 1 1 1 1] [x221]
[AC] [1 -1 1 -1 -1 1 -1 1] [x112]
[BC] [1 1 -1 -1 -1 -1 1 1] [x212]
[ABC] [-1 1 1 -1 1 -1 -1 1] [x122]

[x222]

When x is a matrix with m columns, the value is a (2ˆk) - 1 by m mat rix,
each column of which is the result of applying Yates’s algori thm to the
corresponding column of x.

554 CHAPTER 2. MACANOVA HELP FILE

2.401 yulewalker()

Usage:
yulewalker(vec [, inverse:T]), vec a REAL vector or matrix.

Keywords: time series

Usage
yulewalker(Rho) computes a REAL vector of autoregressive (AR)
coefficients phi[1], phi[2], ... phi[p] of a p-th order AR ti me series
whose autocorrelations r[1], r[2], ... r[p], are in REAL vec tor Rho,
where p = nrows(Rho). The values of phi satisfy the Yule-Walk er
equations rho[j] = sum(phi[k] * rho[j-k],j=1,...,p), k = 1,...,p, with
rho[0] = 1, rho[-j] = rho[j].

When Rho is a matrix, yulewalker(Rho) computes AR coefficie nts from each
column separately, that is, yulewalker(Rho)[,j] = yulewal ker(Rho[,j]), j
= 1,...,ncols(Rho). If Rho is a generalized matrix (at most t wo
dimensions >= 1), yulewalker(Rho) = yulewalker(matrix(Rh o)) (see
’matrices’, matrix()).

When any column of Rho is not a valid autocorrelation functio n, that is,
if the implied Toeplitz correlation matrix is not positive d efinite,
yulewalker() prints a warning message, sets the element in t he result
where the violation occurred to the most extreme value possi ble and any
subsequent elements to zero. For instance, yulewalker(vec tor(-.3,
-.9,.5)) returns the result vector(-.6, -1, 0).

Use in estimation of AR model
A typical usage is

Cmd> rhohat <- autocor(y, 10) # compute 1st 10 autocorrelati ons

Cmd> phihat <- yulewalker(rhohat)

phihat is a vector of length 10 containing the coefficients o f the
autoregressive series whose first 10 autocorrelations are the same as
rhohat. Thus yulewalker() provides a method-of-moments wa y to estimate
the parameters of an AR (autoregressive) model.

When time series y is in fact a normal stationary AR series of o rder
length(rhohat), these estimates are asymptotically equiv alent to maximum
likelihood estimates.

NOTE: autocor() is a macro in file tser.mac. Type help(autoc or) for
details.

Keyword ’inverse’
yulewalker(Phi,inverse:T) computes auto correlations co rresponding to
autoregressive coefficients in the columns of REAL vector o r matrix Phi.

Effectively yulewalker(Phi,inverse:T) is the inverse fun ction to
yulewalker() in that yulewalker(yulewalker(Rho),invers e:T) should the
same as Rho, except for rounding error.

2.402. ZINTERVAL() 555

One important usage is
Cmd> rho <- yulewalker(padto(Phi,n), inverse:T)

where n >= nrows(Phi). This computes the first n autocorrela tions of
the autoregressive series with autoregression coefficien ts in Phi.

Cross references
See also padto(), partacf(), toeplitz().

2.402 zinterval()

Usage:
zinterval(x[,y],cover:fraction,var:variance,[upper: T or lower:T])

Keywords: probabilities, descriptive statistics, comparisons

zinterval() computes a z-confidence interval for a populat ion mean
or difference of population means, depending on whether one or two
variables are given as arguments. By default, zinterval() c omputes
a two-sided interval, but you may choose one-sided alternat ives
by using one of lowerb:T or upperb:T.

You specify the coverage rate via cover:value. You specify t he
variance via var:variance. For a two-sample interval, you m ay specify
different variances by using a vector of length two.

The output is a vector containing the estimate and interval b ounds.

Because the variance of the data must be known, these interva ls are
rarely used in practical data analysis.

2.403 ztest()

Usage:
ztest(x[,y],null:val,var:variance,[upper:T or lower:T])

Keywords: probabilities, descriptive statistics, comparisons

ztest() performs a one- or two-sample z-test, depending on w hether
one or two variables are given as arguments. By default there is
a two-tailed alternative, but you may choose one-sided alte rnatives
by using one of lowertail:T or uppertail:T.

You specify the null value via null:value. You specify the
variance via var:variance. For a two-sample test, you may sp ecify

556 CHAPTER 2. MACANOVA HELP FILE

different variances by using a vector of length two.

The output is a vector containing the z-statistic and the p-v alue.

Because the variance of the data must be known, these tests ar e
rarely used in practical data analysis.

Chapter 3

Arima Macros Help File

This Chapter contains help for a set of macros doing least squares nonlinear fitting, in-
cluding fitting ARIMA models to time series by unconditional least squares, that are dis-
tributed with MacAnova in the file Arima.mac.txt. The material here is a reformatting of
the help in file Arima.mac.txt.

3.1 acfarma()

Usage:
acfarma(phi,theta [,lag:L][,nfreq:Nfreq][,arsign:Ars ign,\

masign:Masign]), REAL vectors phi, theta, positive intege r L, integer
Nfreq != 0, Arsign and Masign either +1 or -1

Keywords: arima models, time domain, autocovariance

Usage
Macro acfarma() computes the theoretical autocovariance f unction (ACVF)
of an ARMA time series with given coefficients and innovatio n variance
1.

gamma <- acfarma(phi, theta, lag:L), where phi and theta are REAL
vectors and L > 0 is an integer, returns the ACVF from 0 to L lags of
an ARMA time series with REAL coefficient vectors phi and the ta.
gamma[1] is the variance and gamma[h+1] is the lag h autocova riance, h
= 1, ..., L. The innovation variance is assumed to be 1.

To omit part of model, use phi = 0 or theta = 0.

’lag:L’ can be omitted, in which case the default value is L = 1 00.

You can make an "impulse" plot of the first 50 lags of the ACFV b y
Cmd> tsplot(acfarma(phi, theta, lag:50),0,impulse:T,li nes:F)

If you omit ’lines:F’, lines are drawn between successive va lues.

Sign conventions
The model assumed for series X is

557

558 CHAPTER 3. ARIMA MACROS HELP FILE

(1 + Arsign * sum(phi * Bˆrun(p)))X[t] =
(1 + Masign * sum(theta * Bˆrun(q)))Z[t].

where Arsign and Masign are either +1 or -1 and {Z[t]} is zero m ean
white noise with standard deviation 1.

The default value for Arsign is variable ARSIGN if it exists a nd -1
otherwise. The default value for Masign is variable MASIGN i f it exists
and -1 otherwise. Or you can include either or both keyword ph rases
’arsign:Arsign’ and ’masign:Masign’ as arguments. See top ic ’MASIGN’
for an explanation. If you want the convention used by Brockw ell and
Davis, you should do the following before you start your anal ysis

Cmd> MASIGN <- 1; ARSIGN <- -1

It is an error for ARSIGN, MASIGN or supplied values of Arsign and
Masign to be other than +1 or -1.

Keyword nfreq
acfarma() uses the fast discrete Fourier transform to compu te the ACVF.
The number of frequencies used is the smallest integer Nfreq >=
max(500,L+1) with no prime factors > 29. Or you can specify Nf req
by including nfreq:Nfreq as an argument, where Nfreq is non- zero
integer. When Nfreq < 0, abs(Nfreq) is used without further c hecking;
when Nfreq > 0 it is an error when Nfreq has a prime factor > 29.

Cross references
See also specarma(), tsplot().

3.2 arima()

Usage:
arima(y [,pdq:vector(p,d,q)] [,PDQ:vector(P,D,Q),seas onal:period]\

[,x:x,fitmean:T, start:b0,active:active,cast:n, cycle s:m,mle:T,\
mlecycles:m1, masign:Masign, arsign:Arsign, maxit:itma x, minit:itmin,\
crit:vector(numsig, nsigsq, delta), print:T,keep:T,qui et:T]),
REAL vector y, REAL variable x, nonnegative integers p, d, q, P, D, Q,
period > 1, cast, n, m, m1, REAL vector b0, LOGICAL vector acti ve with
length(active) = length(b0), Masign and Arsign +1 or -1, int egers
itmax, itmin, numsig, nsiqsq, REAL scalar delta >= 0

Keywords: arima models, time domain, nonlinear fitting

Usage
arima(y [,pdq:vector(p,d,q)] [,PDQ:vector(P,D,Q),seas onal:Period]),
where y is a REAL vector with no MISSING values and p, d, q, P, D, Q
are non-negative integers and Period > 1 is an integer, uses
unconditional least squares to estimate the parameters of a n
ARIMA(p,d,q)x(P,D,Q) time series model, with season lengt h Period.

When d = D = 0, a non-zero mean is fit; otherwise no mean is fit.

3.2. ARIMA() 559

Keyword ’seasonal’ is required when keyword ’PDQ’ is used.

arima(y, x:x [,pdq:vector(p,d,q)] [,PDQ:vector(P,D,Q), seasonal:Period])
does the same, except a linear regression with ARIMA errors o f y on the
columns of REAL matrix x is carried out. x must have no MISSING
elements and nrows(x) = nrows(y). It should not include a con stant
column.

arima(y [, x:x], pdq:pdq, PDQ:PDQ, mle:T) does the same, exc ept maximum
likelihood estimation is used instead of unconditional lea st squares.

You can use keywords ’minit’, ’maxit’, ’cast’, ’cycles’, an d ’mlecycles’
to control certain details of the estimation algorithm. See below for
more information.

You can use keywords ’masign’ and ’arsign’ or define variabl es MASIGN
and ARSIGN to control the sign conventions assumed for movin g average
and autoregressive coefficients. See below and topic ’MASI GN’ for
details.

Model coefficients
The model coefficients estimated include some or all of the f ollowing:

mu mean (of differenced data when d > 0 or D > 0)
beta vector of coefficients of columns of x, if any
phi vector of AR coefficients
theta vector of MA coefficients
phiS vector of seasonal AR coefficients
thetaS vector of seasonal MA coefficients.

They are grouped in a coefficient vector b = vector(mu, beta, phi,
theta, phiS, thetaS), omitting any coefficients not in the m odel.

You can provide starting values using keyword ’start’; see b elow.

To force inclusion of mu when d > 0 or D > 0, use ’fitmean:T’ as an
argument. To force exclusion of mu when d = D = 0, use ’fitmean: T’.
See below.

You can omit certain coefficients from being included in the estimation
algorithm using keyword ’active’; see below. This is useful when
fitting models using a subset of lags. Any starting values yo u provide
for them (non-zero starting value for mu) using ’start’ are n ot changed
but will be used in computing residuals.

When mu is in the model, but is not an active parameter, it is es timated
by the sample mean of the possibly differenced data unless a n on-zero
starting value is given.

Output
arima() prints a table of the estimated coefficients, their approximate
standard errors, t = coef/StdErr, and a nominal P-value base d on the t
distribution. It also prints the mean square error (MSE), it s degrees
of freedom (DF), -2 * log(L), where L = likelihood, a modification of

560 CHAPTER 3. ARIMA MACROS HELP FILE

Akaike’s information critirion (AICC), and the complete su m of squared
residuals, including backcast values, if any (RSS). Printi ng can be
suppressed by either quiet:T or keep:T; see below. Side effe ct
variables are always produced; see below.

DF = n - d - D * Period - (number of parameters being estimated). When mu
is estimated by a sample mean, it counts as a parameter, even i f it is
not active in the optimization (active[1] is false).

Side effect variables
arima() creates the following side effect variables

COEF = bhat = vector(muhat,betahat,phihat,thetahat,phiS hat,thetaShat),
omitting any coefficients not in the model. When coefficien t b[i]
is inactive (seek keyword ’active’ below), COEF[i] = the sta rting
value, if any, or 0.

ALLRESIDUALS = residuals from fitted model including incom plete and
backcast residuals

RESIDUALS = ALLRESIDUALS, omitting backcast and incomplet e residuals
RSS = sum(ALLRESIDUALSˆ2)
NEG2LOGL = -2* log(likelihood) assuming a Gaussian series. The likeli-

hood includes a factor of (2 * PI)ˆ((n-d-D * Period)/2)
NPAR = number of active parameters plus 1 for the mean if estim ated

as sample mean. The active parameters correspond to rows k of
XTXINV with XTXINV[k,k] != 0

JACOBIAN = REAL matrix of derivatives of ALLRESIDUALS with r espect to
active parameters.

XTXINV = analogue of solve(X’ % * % X) matrix in regression computed
from JACOBIAN, with rows and columns corresponding to inact ive
parameters set to 0

HII, REAL vector of leverages of length n - d - D * Period, computed
from JACOBIAN

GRADIENT = REAL gradient vector (approximation to to partia l
derivatives sum of squares or log likelihood with respect to the
coefficients) with an element for each active parameter

The innovation variances is estimated as MSE = RSS/(n-d-D * Period-NPAR).
MSE is used to compute estimated standard errors as
sqrt(MSE * diag(XTXINV))

Choosing starting values
When there is no seasonal part to the model and no omitted lags , you may
be able to speed convergence by finding starting values usin g macros
hannriss() or innovest() and providing them to arima() usin g keyword
’start’ (see below).

Difference from other programs
Other ARIMA estimation programs may differ in what is comput ed as the
estimated innovation variance. Two alternatives to MSE as c omputed by
arima() are sumˆ2(ALLRESIDUALS)/DF and
sum(ALLRESIDUALSˆ2)/(n-d-D * Period), the maximum likelihood estimate.

Programs also may differ in sign conventions used for the aut oregressive
and moving average coefficients. In arima(), the signs are d etermined

3.2. ARIMA() 561

either by variables MASIGN and ARSIGN (defaults are -1 and -1) or the
value of keywords ’arsign’ and ’masign’. See topic ’MASIGN’ .

Sign conventions
arima() allows you to choose among several conventions that have been
used for the signs of AR and MA coefficients. These are specif ied by
numbers Arsign and Masign with values +1 or -1. Either or both can be
set as values of keywords ’arsign’ and ’masign’; see below. I f not set
by ’arsign’, the default value for Arsign is the value of vari able
ARSIGN if it exists, or -1 otherwise. Similarly the default v alue for
Masign is MASIGN or -1. For details, see topic ’MASIGN’.

To use the Brockwell and Davis convention, before you start y our
analysis you should do the following:

Cmd> MASIGN <- 1; ARSIGN <- -1

See topic ’MASIGN’.

Other Optional Keyword Phrases
Keyword phrase Explanation
--- ------------------
fitmean:T or F Include mu in model when T, omit mu otherwise. D efault

is T with d = D = 0 and F otherwise. When d > 0 or D
> 0, mu is the mean of the differenced series

active:active LOGICAL vector with length(active) = npars = length(b)
where b = vector(mu, beta, phi, theta, phiS, thetaS).
When active[i] is F, b[i] is "inactive" and does not
change from its starting value. If you want to
estimate mu by the sample mean rather than least
squares or MLE, use active[1] = F and b0[1] = 0

start:b0 REAL vector b0 = vector(mu0, beta0, phi0, theta0,
phiS0, thetaS0) of starting values values for the
iteration. Default is rep(0,npar). b0 should include
values for "inactive" parameters. When the mean is in
the model, b0[1] = 0 is equivalent to b0[1] = sample
mean.

cast:nback Residuals will be computed by "backcasting" for nback
>= 0 time points before the start of the series

cycles:m m (non-negative integer) cycles of forecasting/
backcasting cycles used in computing residuals; default
m = 1.

masign:Masign Alters definition of MA parameters. Masign m ust be +1
or -1. As an example, a MA(2) model is

Y(t) = Z(t) + Masign * (theta[1] * Z(t-1) +
theta[2] * Z(t-2))

instead of
Y(t) = Z(t) - theta[1] * Z(t-1) - theta[2] * Z(t-2)

arsign:Arsign Alters definition of AR parameters. Arsign m ust be +1
or -1. As an example, an AR(2) model is

Y(t) = Z(t) - Arsign * phi[1] * Y(t-1) -
Arsign * phi[2] * Y(t-2)

instead of
Y(t) = Z(t) + phi[1] * Y(t-1) + phi[2] * Y(t-2)

562 CHAPTER 3. ARIMA MACROS HELP FILE

maxit:itmax Maximum number of iterations allowed (default 30, 0 is
ok). With mle:T, when itmax < 0, no iterations of
least squares fitting is done and up to abs(itmax)
iterations of MLE using sigmahat based on coefficients
in b0. When itmax = 0, no iteration is done at all,
but calculations are done using starting values.

minit:itmin Minimum number of iterations carried out (defa ult = 0)
crit:vector(numsig, nsigsq, delta)

Integer numsig >= 1 is the number of accurate digits
wanted in coefficients.
Integer nsiqsq >= 1 is the number of accurate digits
wanted in the residual sum of squares.
When delta > 0, iterations stop when the norm of the
gradient <= delta
Iteration terminates the first time any of these
criteria is met. When any of numsig, nsigsq or delta
are 0, that criterion is ignored.
Example: crit:vector(6,0,0) specifies iteration
continues until the relative change in all
coefficients is less than 1e-6.

print:T Partial results are printed at each iteration
keep:T arima() returns a structure as value (see below).
quiet:F No summary results are printed, although side effec t

variables are created. Default is F except with keep:T

Value returned
Without keyword phrase ’keep:T’, arima() returns NULL as va lue.

With keyword phrase ’keep:T’, arima() returns a structure w ith the
following components:

Name Contents
coefs vector(muhat,betahat,phihat,thetahat,phiShat,t hetaShat)

with coefficients not in the model omitted.
hessian NPAR by NPAR matrix JACOBIAN %c% JACOBIAN
gradient Same as GRADIANT
residuals Same as ALLRESIDUALS
nobs length(y) - d - D * Period
npar number of active parameters
pdq zero padded value of keyword ’pdq’ or rep(0,3)
PDQ zero padded value of keyword ’PDQ’ or rep(0,3)
seasonal value of keyword ’seasonal’ or 0
active logical vector the same length as coefs; active[i] is

True if and only if coefs[i] is an active parameter
iter Number of iterations to convergence or termination
iconv 0: not converged by any criterion

1: converged by relative coefficient change criterion
2: converged by relative RSS or log L change criterion
3: changed by norm of gradient criterion
4: could not further reduce RSS or -2logL

rss Same as RSS
neg2logL Same as NEG2LOGL
aicc Same as AICC

3.3. ARIMAHELP() 563

Cross references
See also hannriss(), innovest().

3.3 arimahelp()

Usage:
arimahelp(topic1 [, topic2 ...] [,usage:T] [,scrollback: T])
arimahelp(topic, subtopic:Subtopics), CHARACTER scalar or vector

Subtopics
arimahelp(topic1:Subtopics1 [,topic2:Subtopics2 ...])
arimahelp(key:Key), CHARACTER scalar Key
arimahelp(index:T [,scrollback:T])

Keywords: general

Usage
arimahelp(Topic1 [, Topic2, ...]) prints help on topics Top ic1, Topic2,
... related to macros in file arima.mac. The help is taken fro m file
arima.mac.

arimahelp(Topic1 [, Topic2, ...] , usage:T) prints usage in formation
related to these macros.

arimahelp(index:T) or simply arimahelp() prints an index o f the topics
available using arimahelp().

arimahelp(Topic, subtopic:Subtopic), where Subtopic is a CHARACTER
scalar or vector, prints subtopics of topic Topic. With subt opic:"?", a
list of subtopics is printed.

arimahelp(Topic1:Subtopics1 [,Topic2:Subtopics2], ...), where Suptopics1
and Subtopics2 are CHARACTER scalars or vectors, prints the specified
subtopics. You can’t use any other keywords with this usage.

In all the first 4 of these usages, you can also include help() keyword
phrase ’scrollback:T’ as an argument to arimahelp(). In win dowed
versions, this directs the output/command window will be au tomatically
scrolled back to the start of the help output.

arimahelp(key:key) where key is a quoted string or CHARACTE R scalar
lists all topics cross referenced under Key. arimahelp(key :"?") prints
a list of available cross reference keys for topics in the fil e.

arimahelp() is implemented as a predefined macro.

Cross reference
See help() for information on direct use of help() to retriev e
information from arima.mac.

564 CHAPTER 3. ARIMA MACROS HELP FILE

3.4 arimares()

Usage:
residuals <- arimares(b,x,y,params), REAL vectors b, y, RE AL

vector or matrix x, params = structure(pdq:vector(p,d,q),
PDQ:vector(P,D,Q),seasonal:n1,cast:n2,cycles:n3,fit mean:T or F
[,sigmahat:s]) integers >= 0 p, d, q, P, D, Q, n1, n2, n3,
integer seasonal > 0, REAL scalar sigmahat

Keywords: arima models, time domain, nonlinear fitting

Usage
residuals <- arimares(b,x,y,params) returns a REAL vector of residual
from a (p,d,q)x(P,D,Q) ARIMA model with specified coeffici ents. The
model may optionally have one or more linear predictors. Dep ending on
arguments it can do one or more forecast/backcast cycles to e stimate
past residuals. It is intended for use by other macros.

b = vector(mu,beta,phi,theta,phiS,thetaS) is a REAL vecto r of
coefficients. mu is the mean, beta is a vector of coefficient s of
linear predictors in the columns of x, phi, theta, phiS and th etaS are
vectors of AR, MA, seasonal AR and seasonal MA coefficients,
respectively. Any of mu, beta, ..., thetaS are NULL if they ar e not in
the model.

x is either 0 (no linear predictors) or a nrows(y) by k REAL mat rix of
linear predictors.

REAL vector y contains the time series being analyzed.

Argument params
params = structure(pdq:vector(p,d,q),PDQ:vector(P,D,Q),seasonal:n1,
cast:n2,cycles:m3,fitmean:T or F [,sigmahat:s]) defines the form of the
model and details about the algorithm used.

Value returned
The value is as follows

residual vector sigmahat is not provided
vector(sigmahat * sqrt(log(det)),residuals) sigmahat > 0
sqrt(log(det)) sigmahat < 0

ARIMA model
The ARIMA model is Phi(B) * PhiS(B) * ((1 - B)ˆd * (1 - B)ˆD * Y[t] - mu) =
mu + Theta(B) * ThetaS(B) * Z(t), where B is the backshift
operator. Here

Phi(z) = 1 - phi[1] * z - phi[2] * zˆ2 - ... - phi[p] * zˆp.
Theta(z) = 1 - theta[1] * z - theta[2] * zˆ2 - ... - theta[q] * zˆq
PhiS(z) = 1 - phiS[1] * zˆn1 - phiS[2] * zˆ(2 * n1) - ... - phi[P] * zˆ(P * n1)
ThetaS(z) = 1 - thetaS[1] * zˆn1 - thetaS[2] * zˆ(2 * n1) - ... -

theta[Q] * zˆ(Q * n1)

When there are k linear predictors, there is also an term X % * % beta on
the right, where X is an nrows(y) by k matrix matrix of linear
predictors with coefficient vector beta

3.5. ARSIGN 565

When another convention on the signs of the MA and/or AR coeff icients is
wanted, the calling macro must make the adjustment. That is, in the
notation used in describing arima, arimares() assumes Arsi gn = -1,
Masign = -1.

Details about argument params
The components of params are as follows:

p,d,q integers >= 0, AR order, difference, MA order
P,D,Q integers >= 0, seasonal AR order, seasonal difference ,

seasonal MA order
n1 integer > 1, length of seasonal
n2 integer >= - specifies how far to backcast
n3 integer >= 0 number of cycles of fore/backcasting
fitmean:T => mean will be fit
s REAL scalar, estimate of residual stddev. Its presence

signals that log(det(covariance matrix)) is to be
computed. If sigmahat < 0, this is all that arimares()
does, returning the scalar sqrt(log(det)).

length(b) should be p + q + (P + Q) * seasonal + 1 * fitmean +
ncols(x) * isscalar(x)

3.5 ARSIGN

Keywords: arima models

Description
Various macros, including arima(), hannriss(), innovest(),
neg2logLarma(), acfarma() and specarma(), allow for diffe rent sign
conventions in the definition of autoregression and moving average
coefficients. This is controlled by keywords ’arsign’ and ’ masign’
and/or scalar variables ARSIGN and MASIGN, all with values - 1 or +1.

Cross reference
See topic ’MASIGN’ for details.

3.6 detarma()

Usage:
detarma(phi, theta, n [,masign:Masign] [,arsign:Arsign] [,nfreq:Nfreq]),

non-MISSING REAL vectors phi and theta, positive integer ve ctor n,
Masign and Arsign +1 or -1, positive integer scalar Nfreq

Keywords: arima models

Introduction
Help is not complete but is taken from the comments associate d with
detarma().

566 CHAPTER 3. ARIMA MACROS HELP FILE

detarma() computes the determinant of the Toeplitz covaria nce associated
with ARMA process. At present it has no provision for seasona l
processes.

Usage
detarma(phi, theta, n [,masign:Masign] [,arsign:Arsign] [,nfreq:Nfreq])

phi non-MISSING REAL vector defining a causal AR operator
theta non-MISSING REAL vector defining a MA operator
n vector of positive integers
Masign and/or Arsign must be +1 or -1; they determine sign con ventions

for interpreting phi and theta. Type arimahelp(MASIGN)
for information.

Nfreq Number of frequencies used in DFT to compute ACFV. Defa ult
is the smallest integer >= 2 * max(max(n), 200) that has no
prime factors > 29

Value returned
The result is a REAL vector d, the same length as n, with d[i] =
det(Sigma(n[i])), where Sigma(n[i]) = Cov[(X(1),...,X(n [i]))] when X(t)
is ARMA with AR coefficients phi and MA coefficients theta

detarma() computes the autocovariance function as the inve rse Fourier
transform of the spectrum computed at nfreq frequencies. Fr om this it
computes that partial autocorrelations which are used, tog ether with the
variance to compute the determinant.

3.7 hannriss()

Usage:
hannriss(x, pdq:vector(p,d,q) [,degree:d1] [,maxlag:m] \

[,polish:T, cycles:nc] [,arsign:Arsign] [,masign:Masig n]), integers
p >= 0, d >= 0 q >= 0, m >= p + q, nc >= 0, d1, Arsign and Masign +1
or -1

Keywords: arima models, time domain, preliminary estimation

Usage
hannriss(x,pdq:vector(p,d,q)), where p >= 0, d >= 0 and q >= 0 are
integers computes preliminary estimates of ARIMA coeffici ents using the
Hannan-Rissanen method.

The first step computes yulewalker estimates based on m auto correlations
unless q = 0 when only p autocorrelations are used. The defaul t for m
is 20 + p + q.

Its value is structure(phi:phihat,theta:thetahat,xtxin v,rss:rss,nobs:n)

Keywords maxlag and degree
hannriss(x,pdq:vector(p,d,q),maxlag:m), integer m >= p + q, does the
same using m autocorrelations.

3.8. INNOVATIONS() 567

hannriss(x,pdq:vector(p,d,q),degree:d1 [,maxlag:m]) d oes the same,
except the possibly differenced data is detrended with a pol ynomial of
order d1. d1 < 0 means nothing is subtracted. The default for d 1 is 0
when d = 0 and -1 when d > 0.

Side effect variables
In addition to returning a value, hannriss() creates the fol lowing side
effect variables

COEF = vector(phihat,thetahat)
XTXINV = analogue of solve(X’ %c% X) matrix in regression
ALLRESIDUALS = residuals from fitted model including backc ast

residuals
RSS = sum(ALLRESIDUALSˆ2)
NEG2LOGL = -2* log(likelihood)
NPAR = p + q + degree1 + 1 = number of coefficients estimated

where degree1 = max(d1,-1).

Sign conventions
phi is defined so the autoregressive operator is Phi(B) = 1 +
Arsign * phi[1] * B + Arsign * phi[2] * Bˆ2 + ... + Arsign * phi[p] * Bˆp.

theta is defined so that the moving average operator is Theta (B) = 1 +
Masign * theta[1] * B + Masign * theta[2] * Bˆ2 + ... + Masign * theta[q] * Bˆq,
where B is the backshift operator.

The default values for Arsign and Masign are -1 and -1, but you may
change them by keyword phrases ’arsign:Arsign’ and ’masign :Masign’ or by
creating variables ARSIGN and/or MASIGN with values +1 or -1 . See topic
’MASIGNS’ for details.

Keywords polish and cycles
You can also include the following keyword phrases as argume nts

polish:T carry out one or more extra "polishing" steps that
should move the estimates closer to the unconditional
least squares estimates.

cycles:nc nc > 0 polishing cycles will be carried out; defaul t is 1

Limitation
There is currently no provision for seasonal ARIMAs

3.8 innovations()

Usage:
innovations(gamma [,lag:m] [,final:T]), REAL vector gamm a, integer m >

0

Keywords: arima models, time domain, preliminary estimation

Introduction
innovations() computes the "innovation" algorithm given o n p. 71 of

568 CHAPTER 3. ARIMA MACROS HELP FILE

Brockwell, and Davis, computing a M by M matrix containing
coefficients and prediction variances. It actually uses Ch olesky
decomposition rather than the algorithm as given in Brockwe ll and Davis.

Usage
innovations(gamma [,lag:M] [,final:T]), returns structu re(theta:Theta,
v:V) where Theta is a M by M REAL matrix and V is a vector of lengt h
M+1. gamma is either a REAL n by n covariance matrix or a REAL ve ctor
of length n containing an autocovariance function (ACVF). M < n is a
positive integer with default value n - 1.

When gamma is an ACFV, innovations(gamma [,lag:M]) is the sa me as
innovations(toeplitz(gamma) [,lag:M])

The result is not affected by variables MASIGN if it exists.

Definition
Suppose {X[1], X[2], ..., X[M+1]} is a sequence of random var iables
with covariance matrix gamma (toeplitz(gamma) in ACVF case).

Then Theta is the M by M matrix with the property that

Theta[j,j] * Z[j] + Theta[j,j-1] * Z[j-1] + ... + Theta[j,1] * Z[1]

is the best one step predictor of X[j+1] based on prediction
errors Z[1] = X[1], Z[2] = X[2] - Theta[1,1] * X[1], ..., Z[j] =
Theta[j-1,j-1] * Z[j-1]+Theta[j-1,j-2] * Z[j-2]+...+Theta[j-1,1] * Z[1].

Note that Z[j] could be expressed as a linear combination of X [j],
X[j-1], ..., X[1] so that the prediction is also the best pred iction of
X[j+1] as a linear combination of X[j], X[j-1], ..., X[1].

V is a length M+1 vector with V[1] = gamma[1,1] = Var[X[1]] and V[j+1]
= prediction error variance when X[j+1] is predicted using X [1], X[2],
..., X[j] (or Z[1], ..., Z[j]).

Keyword final
When final:T is an argument, the result is

structure(theta:vector(Theta[m,]), v:V[m+1])

Cross reference
See also innovest().

3.9. INNOVEST() 569

3.9 innovest()

Usage:
innovest(x,pdq:vector(p,d,q) [,maxlag:m] [,degree:deg ree]\

[,polish:T,cycles:nc] [,checkroots:F] [,silent:T] [,ar sign:Arsign]\
[,masign:Masign]), integers p>=0, d >= 0, q >= 0, maxlag >= p+ q,
degree, nc >= 1, Arsign and Masign = +1 or -1.

Value is structure(phi:phihat, theta:thetahat, xtxinv, n obs:n, npar,
rss:residSS, neg2logL:-2 * log(likelihood), aicc:AICC)

Keywords: arima models, time domain, preliminary estimation

Introduction
innovest() is a macro to compute the innovations preliminar y estimate of
coefficients for an ARIMA(p,d,q) time series as described o n pp 151-153
of Brockwell and Davis. Keywords ’arsign’ and ’masign’ allo w you to
specify the sign convention to be used in defining parameter s. See
below.

Usage
innovest(x, pdq:vector(p,d,q) [,maxlag:M]), where x is a R EAL vector
and p, d and q are nonnegative integers return a structure sum marizing
the results of the preliminary innovations estimates for an
ARIMA(p,d,q) model fit to x. M >= p + q is an integer with defaul t
value p + q + max(15, p + q). See below for the form of the results .

There is currently no provision for estimating seasonal ARI MA models

Side effect variables
innovest() creates the following side effect variables

COEF = vector(phihat,thetahat), the estimated AR and MA coe fficients
ALLRESIDUALS = residuals from fitted model including backc ast

residuals
RSS = sum(ALLRESIDUALSˆ2)
NEG2LOGL = -2* log(likelihood) using the estimates found
NPAR = p + q + degree + 1 = number of coefficients estimated

Optional keyword phrase arguments
There are several optional keyword phrases which affect wha t innovest()
does:

degree:d1 A polynomial trend of order d1 is removed (after
differencing when d > 0). Nothing is removed, not

even a mean, when d1 < 0. The default for d1 is
-d (mean removed when d = 0, nothing otherwise).

polish:T The estimates are adjusted by one or more cylcels
of an approximate iteration in the direction of the

least squares estimates.
cycles:nc nc > 0 an integer, default 1 is the number of

"polishing" cycles.
checkroots:F suppresses checking for stationarity and inv ertability
silent:T suppress warning messages
arsign:Arsign +1 or -1; alters definition of AR paramaters; see below
masign:Masign +1 or -1; alters definition of MA paramaters; see below

570 CHAPTER 3. ARIMA MACROS HELP FILE

Value returned
innovest() returns as value

structure(phi:phihat, theta:thetahat, nobs:n, xtxinv:x txinv,
npar:p+q+d1+1, rss:residSS, neg2logL:-2 * log(likelhihood),aicc:aicc)

phihat and thetahat are the estimated AR and MA coefficients (NULL when
p or q is 0).

xtxinv is NULL without polish:T or when p = q = 0, Otherwise xtx inv is
an analogue of the regression solve(X’ % * % X) derived from the final
polishing step. Its diagonal elements can be used to compute
approximate standard errors of the coefficients.

residSS = sum of squares of all residuals, including those ba ckcast.

The likelihood is the normal likelihood computed using back casting and
includes a factor of (2 * PI)ˆ(-n/2) and aicc is a modification of
Akaike’s information criteria (AIC).

Note that innovest() does not return a mean or other estimate s of
detrending parameters.

Check on operators
By default, estimated AR and MA coefficients are checked to s ee if they
define stationary (causal) and invertable operators, resp ectively. If
they do not, a warning message printed and any "polishing" cy cles (see
below) are suppressed and components rss, neg2logL and aicc of the
result are set to MISSING.

Sign conventions
See topic ’MASIGN’ for information on how Arsign (default -1 or the
value of ARSIGN if it exists) and Masign (default -1 or the val ue of
MASIGN if it exists) modify the definitions of the AR and MA pa rameters.

To use the convention used by Brockwell and Davis before you s tart the
analysis, you should use

Cmd> MASIGN <- 1; ARSIGN <- -1

The convention used by Box and Jenkins (the default) corresp onds to
Arsign = -1, Masign = -1.

Cross references
See also arima(), hannriss(), innovations().

3.10 MASIGN

Keywords: arima models

Sign conventions
Various macros, including arima(), hannriss(), innovest(),
neg2logLarma(), acfarma() and specarma(), allow for diffe rent sign

3.10. MASIGN 571

conventions in the definition of autoregression and moving average
coefficients. The convention to be used may be determined by keyword
phrases ’arsign:Arsign’ and ’masign:Masign’ or the values of variables
ARSIGN or MASIGN, when they exist.

Some functions and macros, including movavg(), autoreg(), polyroot(),
and moveoutroots() * always * use a sign convention equivalent to Arsign
= Masign = -1 and are * not * affected by keywords ’arsign’ and ’masign’
or the values of ARSIGN and MASIGN.

For the the affected macros, an ARMA model is assumed to have t he form
X[t] + Arsign * (phi[1] * X[t-1]+phi[2] * X[t-2]+...+phi[p] * X[t]) =

Z[t] + Masign * (theta[1] * Z[t-1]+theta[2] * Z[t-2]+...+theta[q] * Z[t-q])
where {Z[t]} is white noise.

Arsign is -1 or +1. Without ’arsign:Arsign’, the default val ue of
Arsign is the value of variable ARSIGN when it exists or -1 whe n it
does not.

Masign is -1 or +1. Without ’masign:Masign’, the default val ue of
Masign is the value of variable MASIGN when it exists or -1 whe n it
does not.

Examples of sign conventions
Examples for an ARMA(2,2) model with zero mean and AR coeffic ients phi
and MA coefficients theta.

For the defaults arsign:-1 and masign:-1, the model is
Y[t] = phi[1] * Y[t-1] + phi[2] * Y[t-1] +

Z[t] - theta[1] * Z[t-1] - theta[2] * Z[t-2]
With arsign:-1 and masign:1, the model is

Y[t] = phi[1] * Y[t-1] + phi[2] * Y[t-1] +
Z[t] + theta[1] * Z[t-1] + theta[2] * Z[t-2]

With arsign:1 and masign:-1, the model is
Y[t] = -phi[1] * Y[t-1] - phi[2] * Y[t-1] +

Z[t] - theta[1] * Z[t-1] - theta[2] * Z[t-2]
With arsign:1 and masign:1, the model is

Y[t] = -phi[1] * Y[t-1] - phi[2] * Y[t-1] +
Z[t] + theta[1] * Z[t-1] + theta[2] * Z[t-2]

Defaults
The convention used by Box and Jenkins and many others corres ponds to
Arsign = -1 and Masign = -1. This is the convention that is impl icit
in the definition of MacAnova functions autoreg(), movavg() and
polyroot(). These functions do not recognize ’arsign’ and ’ masign’ and
are not affected by the values of ARSIGN and MASIGN.

The convention used by Brockwell and Davis corresponds to Ar sign = -1
and Masign = +1. If you want results consistent with this conv ention
you should do the following before you start your work:

Cmd> MASIGN <- 1; ARSIGN <- -1

This is easier than using ’masign:1’ whenever you are using o ne of the

572 CHAPTER 3. ARIMA MACROS HELP FILE

affected macros.

Macros not affected by masign and arsign
Note that macros innovations() and arimares() are not affec ted by this
notation, but macros that use these compensate.

Cross references
See also autoreg(), movavg(), polyroot(), acfarma(), arim a(),
arimares(), hannriss(), innovest(), neg2logLarma(), spe carma().

3.11 moveoutroots()

Usage:
moveoutroots(theta), REAL vector theta

Keywords: time domain, arima models

Usage
moveoutroots(theta) where theta is a REAL vector defining t he
polynomial P(z) = 1 - sum(theta * zˆrun(n)), n = length(theta), returns a
new vector theta1 defining a new polynomial P1(z) of the same form which
has the same zeros as P(z) except that any zero z0 with |z0| < 1 i s
replaced by 1/z0.

Thus all the zeros of P1(z) are outside the unit circle in the c omplex
plane and moveoutroots(theta) are the coefficients of an in vertible MA
operator and, when no zero has modulus 1, the coefficients of a
stationary (causal) AR operator.

Equivalently, if Q(z) = zˆn - sum(theta * zˆrun(n-1,0)) and Q1(z) =
zˆn - sum(theta1 * zˆrun(n-1,0), any zero z0 of Q(z) with |z0| > 1 is
replaced by 1/z0.

Sign convention
moveoutroots assumes the sign convention used by Box and Jen kins and
implicit in movavg(), autoreg() and polyroot() (Arsign = -1 , Masign =
-1). When theta are MA coefficients using the sign conventio n of
Brockwell and Davis (Masign = +1), you should use moveoutroo ts(-theta).
See topic ’MASIGN’.

Examples
Examples:

Cmd> moveoutroots(2)
(1) 0.5

This is correct because 1 - 2 * z has zero .5 < 1 and 1 - .5 * z has zero 2
> 1.

Cmd> moveoutroots(vector(2,-1.25))
(1) 1.6 -0.8

3.12. NEG2LOGLARMA() 573

This is correct because 1 - 2 * z + 1.25 * zˆ2 has zeros z = .8 +- .4 * i with
|z| = sqrt(.8) = 0.89443 < 1 and 1 - 1.6 * z + .8 * zˆ2) has roots z =
(1+-.5 * i) = 1/(.8 -+ .4 * i) with |z| = sqrt(1.25) = 1.118 > 1.

Cross references
See polyroot(), movavg(), autoreg().

3.12 neg2logLarma()

Usage:
neg2logLarma(y,coefficients, [,x:x] [,pdq:vector(p,d, q)] \

[,PDQ:vector(P,D,Q),seasonal:s] [,fitmean:T or F] \
[,cast:m] [,cycles:ncyc] [,sigmasq:sigmasq] [,neg2logL :F],
[,residuals:T] [,logdet:T] [,sigmahatsq:T] [,all:T]
[,masign:1 or -1] [,arsign:1 or -1])
nonMISSING REAL vector y, optional nonMISSING REAL matrix x ,
integers p, d, q, P, D, Q, m, ncyc, >= 0, integer s > 0,
sigmasq REAL scalar > 0 or MISSING

Keywords: arima models, time domain

Introduction
Macro to compute -2 * log(L) and other quantities for an ARIMA model with
specified parameters. L is the likelihood or concentrated l ikelihood.

The calling sequence is very similar to that of arima(), exce pt you must
provide values of the coefficients and there are keywords wh ich specify
what is returned.

Usage and arguments
neg2logLarma(y,b, [,x:x], [pdq:vector(p,d,q)] \

[,PDQ:vector(P,D,Q),seasonal:s] [,fitmean:T or F] \
[, sigmasq:sigmasq] [,cast:m] [cycles:ncyc] [,neg2logL: F],
[,masign:Masign] [,arsign:Arsign]\
[,residuals:T] [,logdet:T] [,sigmahatsq:T] [,all:T])

y is a real nonmissing vector of length n (the response)
b = vector(mu, beta, phi, theta, phiS, thetaS) of coefficien ts (mu =

mean of mean difference, beta = slopes of linear predictors, phi =
non-seasonal AR coefficients, theta = non-seasonal MA coef ficients,
phiS = seasonal AR coefficients, thetaS = non-seasonal MA
coefficients). Any parts that are not needed are NULL or omit ted.

x = optional non-MISSING REAL matrix of linear predictors, w ith
nrows(x) = nrows(y)

p, d, q >= 0 are integers specifying the non-seasonal ARIMA co mponent
P, D, Q >= 0 are integers specifying the seasonal ARIMA compon ent
s > 1 an integer specifying the season length; required with a ny of P,

D or Q non-zero
fitmean:T means mu is in the model; fitmean:F means mu is not i n

model. The defualt is T when d = D = 0 and F otherwise

574 CHAPTER 3. ARIMA MACROS HELP FILE

sigmasq a REAL scalar, either MISSING or positive. If MISSIN G (the
default) the innovation variance is estimated and the "conc entrated"
log likelihood is computed. Otherwise, the log(L) is comput ed
assuming innovation variance sigmasq

m >= 0 and ncyc >= 0 are integers controlling backcasting in co mputing
residuals. See arima() and arimares() for more information .

Arsign and Masign must be +1 or -1 and control what sign conven tion is
used for coefficients. See topics ’MASIGN’ and ’ARSIGN’ for details.

Value returned
What is returned is controlled by keywords ’neg2logL’, ’res iduals’,
’logdet’, ’sigmahatsq’ and ’all’.

Keyword Value returned
neg2logL:T -2 * log(L). When sigmasq is MISSING, L is the

concentrated likelihood
residuals:T vector of residuals, including backcast ones
logdet:T log(det(Gamma)) where sigmasq * Gamma is covariance matrix
sigmahatsq:T The estimated innovation variance when sigma sq is MISSING

or sigmasq, otherwise
all:T Same neg2logL:T,residuals:T,logdet:T,sigmahatsq :T

If more than items is to be returned, the output is a structure with
the keywords as component names; if only one is T, the output i s a
scalar or vector. With all:T you can suppress a result by, say ,
’residuals:F’,

Examples
To get the concentrated likelihood for an ordinary ARMA(p,q) model, use

Cmd> result <- neg2logLarma(y,vector(mu,phi,theta), pdq :vector(p,0,q))

For an ARIMA model with d > 0 and zero mean differences, use
Cmd> result <- neg2logLarma(y,vector(phi,theta), pdq:ve ctor(p,d,q))

For a seasonal (p,q)x(P,Q) seasonal ARMA with no difference s and, say
quarterly data, use

Cmd> result <- neg2logLarma(y,vector(mu,phi,theta),\
pdq:vector(p,0,q),PDQ:vector(P,0,Q),season:4)

For a seasonal (p,d,q)x(P,D,Q) seasonal ARIMA with no diffe rences and,
say quarterly data, use

Cmd> result <- neg2logLarma(y,vector(phi,theta),\
pdq:vector(p,d,q),PDQ:vector(P,D,Q),season:4)

For an ARMA(p,q) model with mean that is cubic in time, try
Cmd> predictors <- (run(n) - (n+1)/2)ˆrun(0,3)’

Cmd> result <- neg2logLarma(y,vector(beta,phi,theta),x :predictors,\
pdq:vector(p,0,q), fit meanF) # beta a vector of length 4

Cross reference
Use arimahelp() to also see topic arima().

3.13. RHATCOVAR() 575

3.13 rhatcovar()

Usage:
rhatcovar(rho,i, j) or rhatcovar(rho,lag:L), REAL vector rho, integers

i > 0, j > 0, L > 0

Keywords: time domain, autocorrelation

Usage
rhatcovar(rho [,lag:L]), where rho is a REAL vector of auto-
correlations, computes n * Var[rhohat], where Var[rhohat] is the large
sample covariance matrix of the sample autocorrelation fun ction
rhohat, computed using Bartletts’ formula.

The result is a REAL L by L matrix. The default value of L is
(maximum lag for rho)/2.

When rho[1] == 1, rho[k] is assumed to contain the lag k-1 auto -
correlation; otherwise, rho[k] is assumed to contain the la g k
autocorrelation. Thus if gamma is a REAL vector containing t he
autocovariance function with gamma[1] = Var[X(t)], both
rhatvar(gamma/gamma[1]) and rhatvar(gamma[-1]/gamma[1]) return the same
result.

rhatcovar(rho,i,j) returns n * covar{rhohat(i),rhohat(j)}, that is,
rhatcovar(rho)[i,j].

Cross reference
See also rhatvar().

3.14 rhatvar()

Usage:
rhatvar(rho [,lag:L]), REAL vector of correlations rho, in teger L > 0

Keywords: time domain, autocorrelation

Usage
rhatvar(rho [,lag:L]), where rho is a REAL vector of autocor relations
computes the vector of n * (var(rhohat(1)),var(rhohat(2)),...,
var(rhohat(lag)) using Bartlett’s formula, where rhohat a re sample
autocorrelations from a series with ACF rho.

When rho[1] == 1, rho[k] is assumed to contain the lag k-1 auto -
correlation; otherwise, rho[k] is assumed to contain the la g k
autocorrelation. Thus if gamma is a REAL vector containing t he
autocovariance function with gamma[1] = Var[X(t)], both
rhatvar(gamma/gamma[1]) and rhatvar(gamma[-1]/gamma[1]) return the same
result.

The default value of L is (maximum lag for rho)/2

576 CHAPTER 3. ARIMA MACROS HELP FILE

Cross reference
See also rhatcovar().

3.15 specarma()

Usage:
specarma(phi ,theta [, nfreq:nf]), REAL vectors phi and the ta, integer

nf > 0

Keywords: frequency domain, time series, spectrum analysis

Usage
specarma(phi, theta [, nfreq:Nfreq]) computes the spectru m of an ARMA
time series with AR coefficients in phi and MA coefficients i n theta and
innovation variance 1.

phi and theta are REAL vectors with no MISSING values. To omit part of
the model, use phi = 0 or theta = 0

Nfreq must be a positive integer with no prime factors > 29.

The result is a vector of length nf containing the spectrum at
frequencies 0, 1/Nfreq, 2/Nfreq, ..., (Nfreq-1)/Nfreq cyc les per unit
time.

Without nfreq:Nfreq, when no positive integer scalar S exis ts, the
default is Nfreq = 400. When S does exist and is a positive inte ger
scalar, the default for Nfreq is S. It is an error if S has a prim e
factor > 29.

Sign conventions
You can use keyword phrases arsign:Arsign and masign:Masig n, where
Arsign and Masign are +1 or -1, to modify the interpretation o f the
coefficients in the ARMA model. The default for Arsign is var iable
ARSIGN if it exists or -1 if not. The default for Masign is vari able
MASIGN if it exists or -1 if not.

The ARMA model assumed is defined as
(1+Arsign * sum(phi * Bˆrun(p)))X[t] = (1+Masign * sum(theta * Bˆrun(q)))Z[t].

where B is the backshift operator and {Z[t]} is white noise wi th mean 0
and variance 1.

Arsign = -1 and Masign = -1 correspond to the convention used b y Box
and Jenkins, and Arsign = -1 and Masign = +1 correspond to the
convention used by Brockwell and Davis

Example
You can plot the spectrum for the ARMA model fit by arima() by

Cmd> result <- arima(y,pdq:vector(p,0,q), keep:T)

3.15. SPECARMA() 577

Cmd> ffplot(specarma(result$phi, result$theta))

Cross references
See also arima(), acfarma(), ffplot().

578 CHAPTER 3. ARIMA MACROS HELP FILE

Chapter 4

Design Macros Help File

This Chapter contains help for the set of design and analysis of experiments macros that
are distributed with MacAnova in the file Design.mac.txt. The material here is a refor-
matting of file Design.hlp.txt.

4.1 aberration2()

Usage:
aberration2(basis), REAL matrix basis of alias generators

Keywords: aliasing, design, factorial

aberration2(basis) computes the aberration for the fracti oned
two series design indicated by the basis matrix. The basis ma trix
should have elements 0 and 1 (or -1). The aberration is
returned as a vector of counts giving the number of aliases
of length j, for j up to the number of columns in basis.

4.2 aliases2()

Usage:
aliases2(basis [,effect:vec] [,length:j]), REAL matrix b asis of alias

generators, REAL vector vec of 0’s and 1’s, positive integer j

Keywords: aliasing, design, factorial

Usage
aliases2(basis) finds all aliases of I in a 2ˆ(k-p) fraction al factorial
and returns a CHARACTER vector of these aliases as its value. k must be
no larger than 25, and factors are labeled A, B, C, ..., H, J, .. . Z
(skipping I).

The p x k matrix basis contains the generators for the aliasin g, one row
for each generator and one column for each factor in the desig n. The

579

580 CHAPTER 4. DESIGN MACROS HELP FILE

elements in basis are 0, -1, or 1. A nonzero entry indicates th at a
factor is present in the generator for that row. The sign of a g enerator
is the product of the signs of the nonzero elements of the gene rator.
For example, 1 0 1 0 0 -1 means -ACF is a generator (alias of I).

If basis is a (column) vector, it is changed to a row vector (1 b y k
matrix) before proceding.

aliases2(basis,effect:vec) returns the aliases of vec, a v ector of k 0s
and 1s that specifies an effect.

aliases2(basis [,effect:vec],length:j) does the same but returns only
aliases of length j.

Examples:
Cmd> print(format:"2.0f",b) # Matrix b is 2x5, so 2ˆ(5-2) de sign
b:
(1,1) 1 1 1 0 0 [ABC is a generator]
(2,1) 0 0 1 1 -1 [-CDE is a generator]

Cmd> aliases2(b) # aliases of I
(1) "I"
(2) "ABC"
(3) "-CDE"
(4) "-ABDE"

Cmd> aliases2(b,length:3) # length 3 aliases of I
(1) "I"
(2) "ABC"
(3) "-CDE"

Cmd> aliases2(b,effect:vector(1,1,0,0,0)) # aliases of A B
(1) "AB"
(2) "C"
(3) "-ABCDE"
(4) "-DE"

Cross references
See also aliases3(), confound2(), choosedef2() and choose gen2().

4.3 aliases3()

Usage:
aliases3(basis[,effect:vec][,length:j]), REAL matrix b asis of alias

generators, REAL vector vec of 0’s, 1’s and 2’s, positive int eger j

Keywords: aliasing, design, factorial

Usage
aliases3(basis) finds all aliases of I in a 3ˆ(k-p) factiona l factorial
design and returns a CHARACTER vector of these aliases as its values. k

4.3. ALIASES3() 581

must be no larger than 25 and factors are labeled A, B, ..., H, J , ...,
Z (skipping I).

basis is p x k REAL matrix of 0s, 1s and 2s which contains the
generators for the aliasing, one row for each generator and o ne column
for each factor in the design. For example 1 0 2 0 0 1 means ACˆ2F is a
generator (alias of I).

If basis is a (column) vector, it is changed to a row vector (1 b y k
matrix) before proceding.

Keywords effect and length
aliases3(basis,effect:vec) returns the aliases of vec, a v ector of k 0s,
1s and 2s representing an effect. When vec:rep(0,k), the res ult is the
same as aliases3(basis).

aliases3(basis [,effect:vec] , length:j) returns only ali ases of length
j.

Examples:
Cmd> print(c,format:"2.0f") # Matrix c is 2x4, so 3ˆ(4-2)
c:
(1,1) 1 2 0 2 [A Bˆ2 Dˆ2 is a generator]
(2,1) 0 1 2 2 [B Cˆ2 Dˆ2 is a generator]

Cmd> aliases3(c) # all aliases of I
(1) "I"
(2) "Aˆ1 Bˆ2 Dˆ2 "
(3) "Aˆ1 Bˆ2 Dˆ2 "
(4) "Bˆ1 Cˆ2 Dˆ2 "
(5) "Aˆ1 Cˆ2 Dˆ1 "
(6) "Aˆ1 Bˆ1 Cˆ1 "
(7) "Bˆ1 Cˆ2 Dˆ2 "
(8) "Aˆ1 Bˆ1 Cˆ1 "
(9) "Aˆ1 Cˆ2 Dˆ1 "

Cmd> aliases3(c,effect:vector(1,1,0,0)) # aliases of Aˆ1 Bˆ1
(1) "Aˆ1 Bˆ1 "
(2) "Aˆ1 Dˆ1 "
(3) "Bˆ1 Dˆ2 "
(4) "Aˆ1 Bˆ2 Cˆ2 Dˆ2 "
(5) "Aˆ1 Bˆ2 Cˆ1 Dˆ2 "
(6) "Cˆ1 "
(7) "Aˆ1 Cˆ1 Dˆ1 "
(8) "Aˆ1 Bˆ1 Cˆ2 "
(9) "Bˆ1 Cˆ1 Dˆ2 "

Cross references
See also aliases2(), confound3()

582 CHAPTER 4. DESIGN MACROS HELP FILE

4.4 all3anova()

Usage:
all3anova(y, a, b, c [,s2:val]), REAL vector y, factors a, b, c of same

length as y, REAL scalar val > 0.

Keywords: anova

Usage
all3anova(y, a, b, c) fits all hierarchical 3 factor ANOVA mo dels. y
must be a REAL vector and a, b and c must be factors (created by
factor() or makefactor()) of the same length as y.

For each of the 18 models fit, all3anova() prints the followi ng, in
order of increasing C(p).

p Number of degrees of freedom in the model, including the
constant term

C(p) Mallow’s Cp statistic
Adj Rˆ2 Adjusted Rˆ2
Rˆ2 Unadjusted Rˆ2
Model The right hand side of the fitted model using the symbol s

a, b and c for the 3 factors

The estimate of variance used in computing C(p) is the error m ean square
from the model fitting all factors and their interactions (" y=a * b* c").
Thus this model must not fit perfectly (have zero residual su ms of
squares).

Keywords s2 and keep
all3anova(y, a, b, c, s2:v), where v > 0 is a REAL scalar does th e same,
except v is used in computing C(p) instead of the error mean sq uare from
the model fitting all factors and their interactions.

all3anova(y, a, b, c [, s2:v], keep:T) does the same except no thing is
printed. Instead a structure with the following component i s returned:

Component Contents
p Vector of integers containing p for all the models fit
cp REAL vector containing C(p) for all the models fit
adjrsq REAL vector containing adjusted Rˆ2 for all the model s fit
rsq REAL vector containing unadjusted Rˆ2 for all the models fit
model CHARACTER vector containing right hand side of each mo del fit

using a, b and c as factor names.
The models are in increasing order of C(p).

Keywords keep and print
all3anova(y, a, b, c, [, s2:v], keep:T, print:T) returns a st ructure and
prints results.

Cross references
See also all4anova() and screen().

4.5. ALL4ANOVA() 583

4.5 all4anova()

Usage:
all4anova(y, a, b, c, d [,s2:val]), REAL vector y, factors a, b, c, d

with same length as y, REAL scalar val > 0.

Keywords: anova

Usage
all4anova(y, a, b, c, d) fits all hierarchical 4 factor ANOVA models. y
must be a REAL vector and a, b, c and d must be factors (created b y
factor()) of the same length as y.

For each of the 166 models fit, all4anova() prints the follow ing, in
order of increasing C(p).

p Number of degrees of freedom in the model, including the
constant term

C(p) Mallows’ Cp statistic
Adj Rˆ2 Adjusted Rˆ2
Rˆ2 Unadjusted Rˆ2
Model The right hand side of the fitted model using the symbol s

a, b, c and d for the 4 factors

The estimate of variance used in computing C(p) is the error m ean square
from the model fitting all factors and their interactions (" y=a * b* c* d").
Thus this model must not fit perfectly (have zero residual su ms of
squares).

all4anova(y, a, b, c, d, s2:v), where v > 0 is a REAL scalar does the
same, except v is used in computing C(p) instead of the error m ean
square from the model fitting all factors and their interact ions.

all4anova(y, a, b, c, d [, s2:v], keep:T) does the same except nothing
is printed. Instead a structure with the following componen t is
returned:

Component Contents
p Vector of integers containing p for all the models fit
cp REAL vector containing C(p) for all the models fit
adjrsq REAL vector containing adjusted Rˆ2 for all the model s fit
rsq REAL vector containing unadjusted Rˆ2 for all the models fit
model CHARACTER vector containing right hand side of each mo del fit

using a, b and c as factor names.
The models are in order of increading C(p).

Keywords keep and print
all4anova(y, a, b, c, d, [, s2:v], keep:T, print:T) returns a structure
and prints results.

Cross references
See also all3anova() and screen().

584 CHAPTER 4. DESIGN MACROS HELP FILE

4.6 allaliases2()

Usage:
allaliases2(basis), REAL matrix basis of alias generators

Keywords: aliasing, design, factorial

Usage
allaliases2(basis) finds the full set of aliases in a 2ˆ(k-p) fractional
factorial and returns a CHARACTER vector of these aliases as its value.
k must be no larger than 25, and factors are labeled A, B, ..., H , J,
..., Z (skipping I).

The p x k matrix basis contains the generators for the aliasin g, one row
for each generator and one column for each factor in the desig n. The
elements in basis are 0, -1, or 1. A nonzero entry indicates th at a
factor is present in the generator for that row. The sign of a g enerator
is the product of the signs of the nonzero elements of the gene rator.
For example, 1 0 1 0 0 -1 means -ACF is a generator (alias of I).

Examples:
Cmd> print(b,format:"2.0f") # Matrix b is 2x5, so 2ˆ(5-2) de sign
b:
(1,1) 1 1 1 0 0 [ABC is a generator]
(2,1) 0 0 1 1 -1 [-CDE is a generator]

Cmd> allaliases2(b) # alias table
(1) "I = ABC = -CDE = -ABDE"
(2) "A = BC = -ACDE = -BDE"
(3) "B = AC = -BCDE = -ADE"
(4) "AB = C = -ABCDE = -DE"
(5) "D = ABCD = -CE = -ABE"
(6) "AD = BCD = -ACE = -BE"
(7) "BD = ACD = -BCE = -AE"
(8) "ABD = CD = -ABCE = -E"

4.7 boxcoxvec()

Usage:
boxcoxvec(Model [,powers:pow]), CHARACTER scalar Model, REAL vector pow
boxcoxvec(rhs_model,y[,powers:pow]), CHARACTER scalar rhs_model, REAL

vectors y and pow.

Keywords: anova, analysis

Usage
boxcoxvec(Model, powers:Pow), where Model is a CHARACTER s calar
specifying a GLM model of the form "y = Rhs", computes the erro r SS for
y transformed to the boxcox powers given in Pow. Example: Mod el =
"yield = x + a + b", where response yield is a REAL vector, x is a
variate and a and b are factors. For this model Rhs is "x + a + b".

4.7. BOXCOXVEC() 585

Any factors or variates in Rhs must have the same length as y. I n the
example, x, a, and b must all be the same length as yield.

If powers:Pow is omitted, the default is Pow = run(-1,2,.25)

For each power P in Pow, the model "{boxcox(y,P)} = RHS" is fit using
anova() and the error SS is saved. The value returned by boxco xvec()
is structure(power:Pow, SS:Ss), where Pow and Ss are vector s of powers
and error sums of squares.

boxcoxvec(Rhs,y [,powers:Pow]), where Rhs is a quoted stri ng or
CHARACTER, does the same as boxcoxvec("y = Rhs" [,powers:Po w]). This
somewhat clumsier usage is maintained for backward compati bility.

A power that minimizes the error SS may be chosen to transform the data
for analysis.

Examples:
Cmd> y <- rnorm(20);ey <- exp(y)
NOTE: random number seeds set to 59622139 and 172924584

Cmd> a <- factor(rep(run(5),4))

Cmd> boxcoxvec("ey = a") # default powers; or boxcoxvec("a" , ey)
component: power

(1) -1 -0.75 -0.5 -0.25 0
(6) 0.25 0.5 0.75 1 1.25

(11) 1.5 1.75 2
component: SS

(1) 179.93 72.889 34.971 21.487 17.979
(6) 20.624 31.191 58.929 131.81 332.94

(11) 915.71 2673 8140.8

Cmd> boxcoxvec("ey = a",powers:run(-.25,.25,1/16))#exp lore powers ˜= 0
component: power
(1) -0.25 -0.1875 -0.125 -0.0625 0
(6) 0.0625 0.125 0.1875 0.25
component: SS
(1) 21.487 19.938 18.875 18.236 17.979
(6) 18.083 18.544 19.38 20.624

Cmd> lineplot(boxcoxvec("ey = a"),title:"Resid SS vs Powe rs")#graph it

Cross references
See also boxcox(), lineplot(), ’models’.

586 CHAPTER 4. DESIGN MACROS HELP FILE

4.8 buildfactor()

Usage:
a <- buildfactor(jsub, dims, [,reverse:T]), integer jsub > 0, dims a

vector of positive integers, length(dims) >= jsub

Keywords: anova, factorial

Usage
fac_j <- buildfactor(j, dims) creates a factor correspondi ng to the
values of subscript j >= 1 for a balanced factorial design. di ms must
be a vector of positive integers with M = length(dims) >= j.

fac_j will be a factor with dims[j] levels, with N = length(fa c_j) =
prod(dims), the product of the elements of dims.

fac_j may be used in an ANOVA of a balanced factorial experime nt where
each case is identified by m <= M subscripts with the first cha nging
fastest and the last changing slowest, with subscript i runn ing from 1
to dims[i]. When m < M, there will be N/prod(dims[run(m)])
replications.

fac_j <- buildfactor(j, dims, reverse:T), does the same exc ept first
subscripts change slowest. buildfactor(j, dims, reverse: T) is
equivalent to buildfactor(M+1-j, reverse(dims)).

Example:
Cmd> dims <- vector(2,3,2,2)#for 2 x 3 x 2 in 2 reps

Cmd> fac_1 <- buildfactor(1,dims)

Cmd> fac_2 <- buildfactor(2,dims)

Cmd> fac_3 <- buildfactor(3,dims)

Cmd> print(fac_1,fac_2,fac_3,format:"1.0f")
fac_1:
(1) 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
fac_2:
(1) 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3
fac_3:
(1) 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2

Cmd> list(fac_1,fac_2,fac_3)
fac_1 REAL 24 FACTOR with 2 levels
fac_2 REAL 24 FACTOR with 3 levels
fac_3 REAL 24 FACTOR with 2 levels

These factors could be used in analysis of two replicates of a 2 by 3 by
2 design in standard order, say by anova("y=fac_1+fac_2+fa c_3").

Cmd> print(buildfactor(2,dims,reverse:T),format:"1.0 f")
VECTOR:
(1) 1 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2 2 2 2 3 3 3 3

4.9. CHOOSEDEF2() 587

Compare this with fac_2 above.

Cross references
See also factor(), makefactor(), rep()

4.9 choosedef2()

Usage:
choosedef2(k,p, all:T or tries:m), k, p, m > 0 integer scalar s

Keywords: confounding, design, factorial

Usage
choosedef2(k, p, all:T) searches all potential defining co ntrasts to
find a set for a 2ˆk factorial design in 2ˆp blocks. k must be an
integer between 1 and 32 and p an integer < k.

choosedef2(k,p,tries:m) does the same, except only m rando m sets of
defining contrasts are searched.

In both cases, the defining contrasts for the minimum aberra tion design
among those searched is returned.

The return value is
structure(generators:bestgen, aberration:aber, basis: genmat).

bestgen is a CHARACTER vector of length p with the names such a s "ABDF"
of the defining contrasts in the set chosen.

aber is a vector of k integers >= 0 with ab[i] containing the nu mber
of contrast with i letters that are confounded with "I".

genmat is a p by k matrix with entries 0 and 1, one row for each el ement
of bestgen. genmat[i,j] is 1 if and only if factor j is bestgen [i].
For example, if bestgen[i] is "ABDF", genmat[i,] is vector(1,1,0,1,0,1
[,...])’. genmat can be used as an argument to aliases2() to d etermine
all the aliases of any contrast.

Cross references
See also aliases2() choosegen2(), confound2().

4.10 choosegen2()

Usage:
choosegen2(k,p, all:T [,res:r]), positive integers k, p, r .
choosegen2(k,p, tries:m [,res:r]), positive integers k, p , m, and r.

588 CHAPTER 4. DESIGN MACROS HELP FILE

Keywords: aliasing, design, factorial

Usage
choosegen2(k,p,all:T) , where k, p and r are positive intege rs, searches
all potential sets of generators for a 2ˆ(k-p) fractional fa ctorial
design. It returns information on a generator with maximum r esolution.

choosegen2(k,p, tries:m), where m > 0 is an integer, does the same,
except it searches only m randomly selected sets of generato rs.

choosegen2(k,p,all:T,res:r) and choosegen2(k,p,tries: m,res:r), where r
is a positive integer, do the same, except they stop the searc h at the
first design of resolution r. If none is found, they return in formation
on a set having the highest resolution found.

Value returned
The value returned is

structure(resolution:bestres,generators:bestgen,abe rration:aber,\
basis:genmat)

Integer bestres > 0 is the best resolution found.

bestgen is a CHARACTER vector of length p with the names such a s "ABDF"
of the defining contrasts in the set chosen.

aber is a vector of k integers >= 0 with ab[i] containing the nu mber
of contrast with i letters that are confounded with "I".

genmat is a p by k matrix with entries 0 and 1, one row for each el ement
of bestgen. genmat[i,j] is 1 if and only if factor j is bestgen [i].
For example, if bestgen[i] is "ABDF", genmat[i,] is vector(1,1,0,1,0,1
[,...])’. genmat can be used as an argument to aliases2() to d etermine
all the aliases of any contrast.

Examples:
Cmd> choosegen2(5,2,all:T) # find best resolution
component: resolution
(1) 3
component: generators
(1) "ABCD"
(2) "BCE"
component: aberration
(1) 0 0 2 1 0
component: basis
(1,1) 1 1 1 1 0
(2,1) 0 1 1 0 1

Cmd> choosegen2(5,2,all:T,res:4) # try to find 4 (we won’t)
component: resolution
(1) 3
component: generators
(1) "ABCD"
(2) "BCE"
component: aberration

4.11. CONFOUND2() 589

(1) 0 0 2 1 0
component: basis
(1,1) 1 1 1 1 0
(2,1) 0 1 1 0 1

Cmd> # look for 2ˆ(9-4) resol. 4, just make 1000 tries, since\
there are lots of combinations to explore

Cmd> choosegen2(9,4,tries:1000,res:4)# look for 2ˆ(9-4) resol. 4
component: resolution
(1) 4
component: generators
(1) "CDEF"
(2) "BDEG"
(3) "ABCEH"
(4) "BCDJ"
component: aberration
(1) 0 0 0 7 7
(6) 0 0 0 1
component: basis
(1,1) 0 0 1 1 1
(1,6) 1 0 0 0
(2,1) 0 1 0 1 1
(2,6) 0 1 0 0
(3,1) 1 1 1 0 1
(3,6) 0 0 1 0
(4,1) 0 1 1 1 0
(4,6) 0 0 0 1

Cross references
See also aliases2(), choosedef2(), confound2().

4.11 confound2()

Usage:
confound2(basis), REAL matrix basis containing confoundi ng generators

Keywords: confounding, design, factorial

Usage
confound2(basis) confounds a two series factorial into blo cks based on
the generators given in the matrix basis. Results are return ed in a
structure with component names ’block1’, ’block2’, etc. Ea ch component
has a CHARACTER vector of factor/level combinations for tha t block.

The p x k matrix basis contains the generators for the confoun ding, one
row for each generator and one column for each factor in the de sign.
The elements in basis are 0 or 1. A nonzero entry indicates tha t a
factor is present in the generator for that row.

590 CHAPTER 4. DESIGN MACROS HELP FILE

Examples:
Cmd> # Matrix d is 2x4 (2 generators so 4 blocks of size 4)

Cmd> print(d,format:"2.0f")
d:
(1,1) 1 1 0 0 [AB is a generator]
(2,1) 0 1 1 1 [BCD is a generator]

Cmd> confound2(d)
component: block1
(1) "(1)"
(2) "abc"
(3) "abd"
(4) "cd"
component: block2
(1) "a"
(2) "bc"
(3) "bd"
(4) "acd"
component: block3
(1) "ab"
(2) "c"
(3) "d"
(4) "abcd"
component: block4
(1) "b"
(2) "ac"
(3) "ad"
(4) "bcd"

Cross references
See also aliases2(), choosegen2(), choosedef2().

4.12 confound3()

Usage:
confound3(basis), REAL matrix basis containing confoundi ng generators

Keywords: confounding, design, factorial

Usage
confound3(basis) confounds a three series factorial into b locks based on
the generators given in the matrix basis. Results are return ed in a
structure with component names ’block1’, ’block2’, etc. Ea ch component
has a CHARACTER vector of factor/level combinations for tha t block.

The p x k matrix basis contains the generators for the confoun ding, one
row for each generator and one column for each factor in the de sign.
The elements in basis are 0, 1, or 2, indicating the exponent o f each
factor in the generator.

4.13. DOCONFOUND2() 591

Example:
Cmd> print(e,format:"2.0f")# Matrix e is 1x2 (one generato r in a 3ˆ2)
e:
(1,1) 1 2 [Aˆ1 Bˆ2 is a generator]

Cmd> confound3(e)
component: block1
(1) "00"
(2) "11"
(3) "22"
component: block2
(1) "10"
(2) "21"
(3) "02"
component: block3
(1) "20"
(2) "01"
(3) "12"

Cross references
See also aliases3(), confound2()

4.13 doconfound2()

Usage:
doconfound2(p:fctrs,k:blcks or cfdout:str or basis:mat [,confeff:T]\

[,aber:T] [,assign:T]) fctrs and blocks positive integer
scalars, str the output from choosedef2, mat a basis
matrix for confounding

Keywords: confounding, design, factorial

doconfound2() is a front end combining many of the tasks of co nfound2(),
choosedef2(), and aberration2(). There are two sorts of arg uments:
those that determine the design, and those that determine wh at is
printed. All arguments are keyword phrases.

To determine the design, you may enter p and k, or cfdout, or ba sis.
Using p and k says to create a new design in 2ˆp treatments (p fa ctors)
with 2ˆk blocks. The other options use a previously created d esign,
either cfdout, the output from a previous usage of choosedef 2(), or
basis, a k by p matrix of 0’s and 1’s indicating the defining co ntrasts
for the design.

The remaining three arguments determine what is printed:
confeff:T Print all confounded effects
aber:T Print the number of confounded effects by word length
assign:T Print the assignment of treatments to blocks.

See also: choosedef2(), aberration2(), confound2().

592 CHAPTER 4. DESIGN MACROS HELP FILE

4.14 doff2()

Usage:
doff2(p:fctrs,k:blcks or alout:str or basis:mat [,Ialias es:T]\

[,allalias:T] [,aber:T] [,showfrac:T] [random:T])
fctrs and blocks positive integer scalars, str the

output from choosegen2, mat a basis matrix for
aliasing

Keywords: aliasing, design, factorial

doff2() is a front end combining many of the tasks of aliases2 (),
choosegen2(), and aberration2(). There are two sorts of arg uments:
those that determine the design, and those that determine wh at is
printed. All arguments are keyword phrases.

To determine the design, you may enter p and k, or alout, or bas is.
Using p and k says to create a new 2ˆ(k-p) design. The other opt ions
use a previously created design, either alout, the output fr om a
previous usage of choosegen2(), or basis, a k by p matrix of 0’ s
and 1’s indicating the generators for the design. The phrase
random:T means to choose a random fraction from the family de termined
by the generators.

The remaining four arguments determine what is printed:
Ialiases:T Print the aliases of I
allalias:T Print all aliases
aber:T Print the number of confounded effects by word length
showfrac:T Print the treatments in the fraction.

See also: choosegen2(), aberration2(), aliases2(), allal iases2().

4.15 ems()

Usage:
ems(Model,randomvars[,marg:T] [,restrict:F] [,nonhier :T] [,keep:T]\

[,print:T]), CHARACTER scalar model, CHARACTER vector ran domvars

Keywords: anova, analysis, factorial

Usage
ems(Model,Randomvars) computes the expected mean squares for the terms
in the ANOVA for the model given in CHARACTER scalar Model. Ra ndomvars
is a CHARACTER vector specifying the names of factors in the m odel which
are random. Randomvars can also be REAL with integer element s
specifying the index of a factor in the model. If there are no r andom
factors, Randomvars should be NULL.

4.15. EMS() 593

In this default use, ems() computes sequential (Type I) sums of squares
for the the restricted (mixed effects add to zero across fixe d factors)
model, prints these expected means squares for each term, an d returns no
value. Contributions from random terms are shown as multipl es of the
variance component (for example, 16V(a.b)); contribution s from fixed
terms are shown as a multiple of a quadratic function for the t erm, for
example, 32Q(c). In a balanced design, the Q() function is th e sum of
the squared coefficients divided by degrees of freedom, for example,
sum(cˆ2)/(K-1). In an unbalanced situation, Q(c) is a more c omplicated
quantity defined using matrix algebra.

See below for the use of keywords to change the action of ems() .

ems() works only for factors -- no variates are allowed in the model.

ems() works for both balanced and unbalanced data.

Details
ems() assumes that if a factor first appears in an interactio n, then
that factor is nested in the other terms of the interaction. F or
example, if the first appearance of factor c is in the term a.b .c, then
c is assumed nested in the a.b combinations. This nesting is a ssumed in
the remainder of the model. That is, continuing the example, if there
is a later term c.d, it will be interpreted as a.b.c.d even tho ugh
a.b.c.d is not specifically in the model.

When a term contains the first appearance in the model of more than one
factor, ems() assumes that the new factors are merged to make a single
factor, whose number of levels is the product of the numbers o f levels
in the factors being merged. For example, if the first appear ance of
factors b and c with 5 and 3 levels, respectively is in the term a.b.c,
then b and c together are considered a single factor with 15 le vels.
This grouping is assumed in the remainder of the model. That i s,
continuing the example, if there is a later term c.d, it will b e
interpreted as b.c.d even though b.c.d is not specifically i n the model.
This grouped factor is interpreted as random if any of the fac tors in
the group is random.

ems() uses the "synthesis" method of Hartley, as explained i n 10.5.2 of
R. R. Hocking (1985), The Analysis of Linear Models, Brooks/ Cole,
Belmont, CA.

Examples
The examples below are based on balanced two factor and three factor
models with a total of 64 responses. All factors have 2 levels so two
factor and three factor models have 16 and 8 replications, re spectively.
In some examples, one of the responses is set to MISSING to des troy
balance.

A fully nested model, with c fixed and both d and e random.
Cmd> ems("y=c/d/e",vector("d","e"))
EMS(CONSTANT) = V(ERROR1) + 8V(c.d.e) + 16V(c.d) + 64Q(CONS TANT)
EMS(c) = V(ERROR1) + 8V(c.d.e) + 16V(c.d) + 32Q(c)

594 CHAPTER 4. DESIGN MACROS HELP FILE

EMS(c.d) = V(ERROR1) + 8V(c.d.e) + 16V(c.d)
EMS(c.d.e) = V(ERROR1) + 8V(c.d.e)
EMS(ERROR1) = V(ERROR1)

A 3 factor crossed model, with c and d fixed, e random.
Cmd> ems("y=c * d* e",3) # e is factor 3
EMS(CONSTANT) = V(ERROR1) + 32V(e) + 64Q(CONSTANT)
EMS(c) = V(ERROR1) + 16V(c.e) + 32Q(c)
EMS(d) = V(ERROR1) + 16V(d.e) + 32Q(d)
EMS(c.d) = V(ERROR1) + 8V(c.d.e) + 16Q(c.d)
EMS(e) = V(ERROR1) + 32V(e)
EMS(c.e) = V(ERROR1) + 16V(c.e)
EMS(d.e) = V(ERROR1) + 16V(d.e)
EMS(c.d.e) = V(ERROR1) + 8V(c.d.e)
EMS(ERROR1) = V(ERROR1)

A 2 factor crossed model with unbalanced data, c fixed and d ra ndom
Cmd> y1 <- y[1]; y[1] <- ? # make data unbalanced

Cmd> ems("y=c * d",2) # d is factor 2
EMS(CONSTANT) = V(ERROR1) + 0.0080645V(c.d) + 31.508V(d) +

0.0079365Q(c) + 63Q(CONSTANT)
EMS(c) = V(ERROR1) + 15.746V(c.d) + 0.0081925V(d) + 31.492Q (c)
EMS(d) = V(ERROR1) + 0.0042316V(c.d) + 31.484V(d)
EMS(c.d) = V(ERROR1) + 15.742V(c.d)
EMS(ERROR1) = V(ERROR1)

Use of Keywords to change the action of ems().
ems(Model,Randomvars,keep:T) suppresses printed output but returns a
structure (described below) containing the results. If you want the
printed output too, use keep:T,print:T.

ems(Model,Randomvars,marg:T) computes expected mean squ ares based on
adjusted (Type III) sums of squares.

ems(Model,Randomvars,restrict:F) computes expected mea n squares assuming
no marginal restrictions on any random effects in the model t hat have
two or more dimensions. Thus, for example, when the model is
"y=c+D+c.D", where c is fixed and D is random, it is not assume d that
the c.D effects sum to zero for each level of D.

ems(Model,Randomvars,nonhier:T) computes expected mean squares for an
analysis of variance that does not enforce the usual MacAnov a hierarchy
assumptions. That is, for example, model "y=a+b+c+a.b.c" d oes not imply
that the two-way interaction degrees of freedom are part of t he "a.b.c"
term. You cannot use anova() to compute such an analysis alth ough it
can be done (if you know how) using swp().

These keywords can be used together. For example, ems(Model ,Randomvars,
marg:T,restrict:F) provides answers equivalent to the EMS in SAS PROC
GLM.

More examples

4.15. EMS() 595

These examples still assume y[1] is MISSING.
Cmd> ems("y=c * d",2,marg:T) # crossed with d random
EMS(CONSTANT) = V(ERROR1) + 31.475V(d) + 62.951Q(CONSTANT)
EMS(c) = V(ERROR1) + 15.742V(c.d) + 31.475Q(c)
EMS(d) = V(ERROR1) + 31.475V(d)
EMS(c.d) = V(ERROR1) + 15.742V(c.d)
EMS(ERROR1) = V(ERROR1)

Cmd> ems("y=c * d",2,restrict:F) # crossed with d random
EMS(CONSTANT) = V(ERROR1) + 15.762V(c.d) + 31.508V(d) + 0.0 079365Q(c)

+ 63Q(CONSTANT)
EMS(c) = V(ERROR1) + 15.754V(c.d) + 0.0081925V(d) + 31.492Q (c)
EMS(d) = V(ERROR1) + 15.746V(c.d) + 31.484V(d)
EMS(c.d) = V(ERROR1) + 15.738V(c.d)
EMS(ERROR1) = V(ERROR1)

Cmd> ems("y=c * d",2,marg:T,restrict:F) # same as SAS PROC GLM
EMS(CONSTANT) = V(ERROR1) + 15.738V(c.d) + 31.475V(d) + 62. 951Q(CONSTANT)
EMS(c) = V(ERROR1) + 15.738V(c.d) + 31.475Q(c)
EMS(d) = V(ERROR1) + 15.738V(c.d) + 31.475V(d)
EMS(c.d) = V(ERROR1) + 15.738V(c.d)
EMS(ERROR1) = V(ERROR1)

Cmd> y[1] <- y1 # restore value for y[1] to regain balance

Cmd> ems("y=c * d+e+c.d.e",3)
EMS(CONSTANT) = V(ERROR1) + 32V(e) + 64Q(CONSTANT)
EMS(c) = V(ERROR1) + 8V(c.d.e) + 32Q(c)
EMS(d) = V(ERROR1) + 8V(c.d.e) + 32Q(d)
EMS(c.d) = V(ERROR1) + 8V(c.d.e) + 16Q(c.d)
EMS(e) = V(ERROR1) + 32V(e)
EMS(c.d.e) = V(ERROR1) + 8V(c.d.e)
EMS(ERROR1) = V(ERROR1)

Cmd> ems("y=c * d+e+c.d.e",3,nonhier:T)
EMS(CONSTANT) = V(ERROR1) + 32V(e) + 64Q(CONSTANT)
EMS(c) = V(ERROR1) + 32Q(c)
EMS(d) = V(ERROR1) + 32Q(d)
EMS(c.d) = V(ERROR1) + 8V(c.d.e) + 16Q(c.d)
EMS(e) = V(ERROR1) + 32V(e)
EMS(c.d.e) = V(ERROR1) + 8V(c.d.e)
EMS(ERROR1) = V(ERROR1)

Note that ’nonhier:T’ makes the c.d.e term disappear from th e EMS for
the fixed terms; compare with the default hierarchical mode l that
precedes it.

Structure returned with keep:T
When ’keep:T’ is an argument, the structure returned has com ponents
’df’, ’ss’, ’termnames’, ’coefs’, and ’rterms’.
Component Description

df REAL Vector of degrees of freedom for all terms in model
ss REAL Vector of sums of squares for all terms in model

596 CHAPTER 4. DESIGN MACROS HELP FILE

termnames CHARACTER vector of labels for each term
coefs REAL matrix with coefs[i,j] the coefficient for term j in

the EMS of term i
rterms LOGICAL vector with T indicating that a term is random .

Components ss and df are just those computed from a MacAnova a nova()
command (possibly with marg:T as needed), and may not be in co nformance
with the model as used by ems() for the following reasons:
1. anova() computes only hierarchical models, while you may specify

nonhierarchical models in ems() by using nonhier:T.
2. ems() enforces nesting and grouping. If b first appears in a.b then

b is nested in a and any appearance of b in a later term implies t he
presence of a. anova() does no such enforcing. For example, i n
"y=a+a.b+c+b.c", b.c would be interpreted by ems() as a.b.c while
anova() would not include a.b.c in the model. If b and c first
appear together, then "y=b.c+d+c.d" is interpreted in ems() as
"y=b.c+d+b.c.d".

Examples
These examples assume a 2ˆ2 design in 16 replicates:

Cmd> ems("y=c * d",2)
EMS(CONSTANT) = V(ERROR1) + 32V(d) + 64Q(CONSTANT)
EMS(c) = V(ERROR1) + 16V(c.d) + 32Q(c)
EMS(d) = V(ERROR1) + 32V(d)
EMS(c.d) = V(ERROR1) + 16V(c.d)
EMS(ERROR1) = V(ERROR1)

Cmd> ems("y=c * d",2,keep:T)
component: df
(1) 1 1 1 1 60
component: ss
(1) 0.76155 0.036871 0.31116 1.623 56.318
component: termnames
(1) "CONSTANT"
(2) "c"
(3) "d"
(4) "c.d"
(5) "ERROR1"
component: coefs
(1,1) 64 0 32 0 1
(2,1) 0 32 0 16 1
(3,1) 0 0 32 0 1
(4,1) 0 0 0 16 1
(5,1) 0 0 0 0 1
component: rterms
(1) F F T T

4.16. FFDESIGN2() 597

4.16 ffdesign2()

Usage:
ffdesign2(basis), integer matrix basis containing confou nding generators

Keywords: design, aliasing, factorial

Usage
ffdesign2(basis) finds the set of factor/level combinatio ns used in the
2ˆ(k-p) fractional factorial corresponding to the given ge nerators. The
result is a CHARACTER vector giving the factor/level combin ations.

The p x k matrix basis contains the generators for the aliasin g, one row
for each generator and one column for each factor in the desig n. The
elements in basis are 0, -1, or 1. A nonzero entry indicates th at a
factor is present in the generator for that row. The sign of a g enerator
is the product of the signs of the nonzero elements of the gene rator.
For example, 1 0 1 0 0 -1 means -ACF is a generator (alias of I).

Examples:
Cmd> print(b, format:"2.0f") # Matrix b is 2x5, so 2ˆ(5-2) de sign
b:
(1,1) 1 1 1 0 0 [ABC is a generator]
(2,1) 0 0 1 1 -1 [-CDE is a generator]

Cmd> ffdesign2(b)
(1) "ce"
(2) "a"
(3) "b"
(4) "abce"
(5) "dc"
(6) "ade"
(7) "bde"
(8) "abdc"

4.17 findncp()

Usage:
findncp(means,nis,sigma2) means a REAL vector, nis a vecto r of positive
integers, sigma2 a positive REAL; means and nis must be the sa me length.

Keywords: design

Usage
findncp(means,nis,sigma2) computes the noncentrality fo r the F-test in
the one-way anova testing the null hypothesis of no treatmen t
differences when the means, sample sizes, and error varianc e are as
given. Arguments means and nis must be vectors of the same len gth
(one element for each treatment). Argument nis must be posti ve
integers and sigma2 must be a postive REAL.

598 CHAPTER 4. DESIGN MACROS HELP FILE

Examples
Here we have three treatment groups with means 2.2, 2.8, and 3 .1, and
sample sizes 2, 2, and 8 respectively. The error variance is 2 , and
the noncentrality parameter is found to be .66

Cmd> findncp(vector(2.2,2.8,3.1),vector(2,2,8),2)
(1) 0.66

4.18 findpower()

Usage:
findpower(means,nis,sigma2,alpha) means a REAL vector, n is a vector of
positive integers, sigma2 and alpha positive REALs; means a nd nis must
be the same length and alpha must be less than 1.
findpower(ncp,df1,df2,alpha), all positive scalars.

Keywords: design

Usage
findpower(means,nis,sigma2,alpha) computes the power fo r the F-test in
the one-way anova testing the null hypothesis of no treatmen t
differences when the means, sample sizes, error variance, a nd type 1
error rate are as given. Arguments means and nis must be vecto rs of the
same length (one element for each treatment). Argument nis m ust be
postive integers; sigma2 must be a postive REAL, and alpha mu st be
between 0 and 1.

findpower(means,nis,sigma2,alpha,rcb:T) computes the p ower for the same
set up considered to be a randomized complete block. This req uires that
all groups have the same sample size.

findpower(ncp,df1,df2,alpha) is a synonym for power2(ncp ,df1,df2,alpha)

Examples
Here we have three treatment groups with means 2.2, 2.8, and 3 .1, and
sample sizes 2, 2, and 8 respectively. The error variance is 2 and
the type 1 error rate is .05; power is found to be .088

Cmd> findpower(vector(2.2,2.8,3.1),vector(2,2,8),2,. 05)
(1) 0.087928

Instead suppose that we had 40 observations in each treatmen t, then the
power is .73

Cmd> findpower(vector(2.2,2.8,3.1),vector(40,40,40), 2,.05)
(1) 0.72816

4.19. FINDSAMPSIZE() 599

4.19 findsampsize()

Usage:
findsampsize(means,sigma2,alpha,pow[,rcb:T,prop:pro pvec])
means a REAL vector, sigma2, alpha, and pow positive REALs; a lpha
and pow must be less than 1. Elements of propvec must be positi ve,
and means and propvec must be the same length. Cannot use rcb:
and prop: together.
findsampsize(ncp1,ngrps,alpha,pow[,rcb:T]) all argume nts positive
scalars; ngrps is integer.

Keywords: design

Usage
findsampsize(means,sigma2,alpha,pow) computes the mini mum sample size
for the power of the F-test in the one-way anova testing the nu ll
hypothesis of no treatment differences to be at least pow whe n the
means, sample sizes, and error variance are as given. Argume nt sigma2
must be positive; alpha and pow must be between 0 and 1. This us age
assumes that the sample sizes will be equal. The result is a st ructure
with components for the sample sizes and the achieved power.

findsampsize(ncp1,ngrps,alpha,pow) computes the minimu m sample size
for the power of the F-test in the one-way anova testing the nu ll
hypothesis of no treatment differences to be at least pow whe n the
n=1 noncentrality parameter, number of groups, and error va riance
are as given. ncp1 must be positive. This usage assumes that t he
sample sizes will be equal. The result is a structure with
components for the sample sizes and the achieved power.

Examples
Here we have three treatment groups with means 2.2, 2.8, and 3 .1, the
error variance is 2, the type 1 error rate is .05, and the minim um
acceptable power is .7; the required sample size is 38

Cmd> findsampsize(vector(2.2,2.8,3.1),2,.05,.7)
component: nis
(1) 38 38 38
component: power
(1) 0.7039

Here we have three groups with a noncentrality of .21, the typ e 1
error is .05, and the minimum power is .7, then

Cmd> findsampsize(.21,3,.05,.7)
component: nis
(1) 38 38 38
component: power
(1) 0.7039

(This is just the previous example.)

Keyword prop
The additional keyword argument prop:propvec may also be us ed. propvec
must be a vector of positive reals the same length as means. In this
usage, findsampsize() will find a vector of sample sizes tha t achieves

600 CHAPTER 4. DESIGN MACROS HELP FILE

the desired power but is (nearly) proportional to propvec.

Examples
Here we have three treatment groups with means 2.2, 2.8, and 3 .1, the
error variance is 2, the type 1 error rate is .05, and the minim um
acceptable power is .7; we also require that the sample sizes be in
proportion 1:1:4

Cmd> findsampsize(vector(2.2,2.8,3.1),2,.05,.7,prop: vector(1,1,4))
component: nis
(1) 24 24 94
component: power
(1) 0.70055

Keyword rcb
The keyword argument rcb:T is used to indicate that the error df
should be computed as for a randomized complete block. This w ill
usually increase the needed sample size (all other paramete rs held
constant, although the whole point of blocking is to reduce t he error
variance).

Examples
Here we have three treatment groups with means 2.2, 2.8, and 3 .1, the
error variance is 2, the type 1 error rate is .05, and the minim um
acceptable power is .7; we also require an RCB design.

Cmd> findsampsize(vector(2.2,2.8,3.1),2,.05,.7,rcb:T)
component: nis
(1) 39 39 39
component: power
(1) 0.71011

4.20 interactplot()

Usage:
interactplot(y,a [,b,c ...] [errors:T or errors:x,pool:T |F,errorvar:v]

[graphics keywords]), y a REAL vector, a, b, c, ... vectors of positive
integers the same length as y, x and v positive scalars.

interactplot(means [errors:T or errors:x,errormat:s] [g raphics
keywords]), means a REAL matrix or array,x a positive scalar , s a
positive matrix the same shape as means.

interactplot(a [,b,c ...],frommodel:T,[errors:T or erro rs:x] [graphics
keywords]), a, b, c, ... factors in the current model, x a posi tive
scalar.

Keywords: factorial, plots

Usage_with_data
interactplot(y,a [,b,c ...] [graphics keywords]) makes an interaction
plot of the marginal means of REAL vector y for all combinatio ns of
variables a, b, c, The variables a, b, ... must be vectors of

4.20. INTERACTPLOT() 601

positive integers the same length as y.

The levels of variable a will be put on the horizontal axis and separate
lines drawn for each combination of variables values of b, c, When
a is the only factor argument, only one line is drawn. Lines ar e
numbered lb.lc.ld ... with lx denotine the level of factor x.

Usage_with_means
interactplot(means [graphics keywords]) where means is a R EAL matrix or
array will make an interaction plot with the first dimension of means on
the horizontal axis, and separate lines for each combinatio n of the
other dimensions. The lines are numbered 1, 2, 3, ... with the last
dimension varying slowest. interactplot(tabs(y,a,b,mea ns:T)) makes the
same plot as interactplot(y,a,b).

Usage_with_models
interactplot(a[,b,c ...],frommodel:T [graphics keyword s]) makes an
interaction plot of the least squares means of the term a.b.c ...
from the most recent glm model. This is similar to doing a plot of
the matrix glmtable(a,b,c,estimate:T,seest:F). NOTE: be cause this
usage involves glmtable(), it will not work for balanced ano va()
models unless unbal:T was used as an argument.

Usage_with_errors
Use of the argument errors:T or errors:x cause interactplot to draw
error bars around each mean (and slightly offset the horizon tal
plotting positions). errors:T is equivalent to errors:2, m eaning
that the bars should be plus or minus two standard errors. err ors:x
will plot bars that are plus or minus x standard errors.

When errors:T is used with frommodel:T, errors for the LS mea ns are
determined from the model via glmtable().

When errors:T is used with a matrix of means, you must specify the
standard errors via errormat:s, where s is a real matrix of th e same
shape as the means.

When errors:T is used with data and splitting factors, the st andard
errors are computed as the square root of a variance divided b y the
number of data elements in each mean. By default, a separate v ariance
is estimated from the data used for each mean. Use of pool:T po ols
all of the variance estimates into a single estimate of varia nce.
Use of errorvar:v causes v to be used as the variance for all me ans,
regardless of the variability in the data.

Graphics keywords
In both usages, any graphics keywords will be passed to funct ion
chplot() which actually makes the plot. In particular, for e xample,

Cmd> interactplot(y,a,b,symbols:vector("B1","B2","B3 "),\
xticklabs:vector("A1","A2","A3","A4"))

will label the curves B1, B2 and B3 instead of 1, 2 and 3 and the

602 CHAPTER 4. DESIGN MACROS HELP FILE

horizontal axis location A1, A2, A3 and A4.

4.21 interblock()

Usage:
interblock(y,block,trt,[contrast:coefs])

Keywords: analysis, anova

Usage
interblock(y,block,trt,[contrast:coefs]) does recover y of interblock
information in an incomplete block design, where y is the vec tor of
responses, block is the factor of block levels, trt is the fac tor of
treatment levels, and coefs is an optional vector of contras t
coefficients (it must be the same length as the number of leve ls of
trt). If no contrast is specified, the output is the intra-bl ock,
inter-block, and combined estimates of treatment effects a nd their
standard errors. If a contrast is specified, the output is th e
intra-block, inter-block, and combined estimates of the co ntrast with
their standard errors.

Example:

Cmd> y<-vector(19,17,11,6,26,23,21,19,28,20,7,20,17, 26,19,15,23,31,\
20,26,31,16,23,21,13,7,20,20,24,19,17,6,29,14,24,21)

Cmd> session<-factor(1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6 ,6,6,7,7,7,8,8,\
8,9,9,9,10,10,10,11,11,11,12,12,12)

Cmd> trt<-factor(1,2,3,4,5,6,7,8,9,1,4,7,2,5,8,3,6,9 ,1,5,9,2,6,7,3,4,\
8,1,6,8,2,4,9,3,5,7)

Cmd> interblock(y,session,trt)
intra est intra se inter est inter se combined est combined se

0.33333 0.49414 0.33333 0.91174 0.33333 0.43443
-2.2222 0.49414 -4 0.91174 -2.6259 0.43443
-6.2222 0.49414 -6 0.91174 -6.1718 0.43443
-12.889 0.49414 -13 0.91174 -12.914 0.43443

5.8889 0.49414 6.6667 0.91174 6.0655 0.43443
3.5556 0.49414 4.6667 0.91174 3.8078 0.43443
1.6667 0.49414 0.33333 0.91174 1.3639 0.43443

-0.22222 0.49414 8.8818e-16 0.91174 -0.17177 0.43443
10.111 0.49414 11 0.91174 10.313 0.43443

Cmd> cfs<-vector(.25,.25,.25,.25,-.25,-.25,-.25,-.25 ,0)

Cmd> interblock(y,session,trt,contrast:cfs)
estimate se

intra -7.9722 0.3706
inter -8.5833 0.68381

4.22. MIXED() 603

combined -8.111 0.32583

4.22 mixed()

Usage:
mixed(Model,randomvars[,marg:T] [,restrict:F] [,nonhi er:T] [,useneg:T]\

[,keepmixed:T]), CHARACTER scalar model, CHARACTER vecto r randomvars
mixed(emsResult [,useneg:T] [,keepmixed:T]), emsResult a structure

returned by ems() with keep:T

Keywords: anova, analysis, random effects, factorial

Usage
mixed(Model, randomvars) computes and prints an "ANOVA" ta ble
appropriate for the model and random factors given in CHARAC TER scalar
Model and CHARACTER vector randomvars. These arguments are exactly the
same as for ems(). You can also use ems() keywords ’marg’, ’re strict’
and ’nonhier’.

mixed(emsResult), where emsResult has been computed by ems Result <-
ems(Model, randomvars [,...],keep:T), does the same.

mixed(Model, randvars [,...], keepmixed:T) returns the ta ble as an
matrix with appropriately labelled rows and columns but doe s not print
it.

The anova table has one row for each term in the model and the fo llowing
seven columns.

Col. 1 Label for term
Col. 2 DF = degrees of freedom for term
Col. 3 MS = mean square for term (numerator of F)
Col. 4 Error DF = degrees of freedom for appropriate error ter m
Col. 5 Error MS = mean square for appropriate error term

(denominator of F)
Col. 6 F = F-statistic = MS/(Error MS)
Col. 7 P value = tail probability for F test

With keepmixed:T, the matrix returned consists of columns 2 through 7 of
the table, with column 1 used to label rows.

Description of numerator and denominator MS
Numerator and denominator MS’s are linear combinations of m ean squares
whose expectations differ only by a multiple of the variance component
associated with the line. When the numerator or denominator is not a
simple ANOVA mean square, its degrees of freedom are found us ing the
Satterthwaite approximation.

By default, only linear combinations of mean squares with po sitive
coefficients are used. This means that the numerator for a te rm may be
the sum of the mean square for the term and one or more mean squa res
from other terms. If the keyword useneg:T is used, then the nu merator

604 CHAPTER 4. DESIGN MACROS HELP FILE

for a term will be the mean square for that term, and denominat ors may
contain differences as well as sums of mean squares.

Example:
Three populations, all crosses between 4 males and 4 females in each
population with six offspring from each mating randomly ass igned to
three environments. Male and female are random. First the si mple
ANOVA.

Cmd> anova("y=(pop+m.pop+f.pop+m.f.pop) * env")
Model used is y=(pop+m.pop+f.pop+m.f.pop) * env

DF SS MS
CONSTANT 1 5.4299 5.4299
pop 2 2091.4 1045.7
pop.m 9 112.5 12.5
pop.f 9 370.02 41.113
pop.m.f 27 56.774 2.1027
env 2 206.15 103.08
pop.env 4 0.16527 0.041316
pop.m.env 18 3.4185 0.18992
pop.f.env 18 8.2354 0.45752
pop.m.f.env 54 17.117 0.31698
ERROR1 144 30.448 0.21144

Now compute the expected mean squares, and keep the ems() out put.

Cmd> emsstuff<-ems("y=(pop+m.pop+f.pop+m.f.pop) * env",vector("m","f"),
keep:T,print:T)

EMS(CONSTANT) = V(ERROR1) + 6V(pop.m.f) + 24V(pop.f) + 24V(pop.m) +
288Q(CONSTANT)

EMS(pop) = V(ERROR1) + 6V(pop.m.f) + 24V(pop.f) + 24V(pop.m) + 96Q(pop)
EMS(pop.m) = V(ERROR1) + 6V(pop.m.f) + 24V(pop.m)
EMS(pop.f) = V(ERROR1) + 6V(pop.m.f) + 24V(pop.f)
EMS(pop.m.f) = V(ERROR1) + 6V(pop.m.f)
EMS(env) = V(ERROR1) + 2V(pop.m.f.env) + 8V(pop.f.env) +

8V(pop.m.env) + 96Q(env)
EMS(pop.env) = V(ERROR1) + 2V(pop.m.f.env) + 8V(pop.f.env) +

8V(pop.m.env) + 32Q(pop.env)
EMS(pop.m.env) = V(ERROR1) + 2V(pop.m.f.env) + 8V(pop.m.e nv)
EMS(pop.f.env) = V(ERROR1) + 2V(pop.m.f.env) + 8V(pop.f.e nv)
EMS(pop.m.f.env) = V(ERROR1) + 2V(pop.m.f.env)
EMS(ERROR1) = V(ERROR1)

Now use mixed().

Cmd> mixed(emsstuff)
DF MS Error DF Error MS F P value

CONSTANT 1.914 7.533 14.01 53.61 0.1405 0.8617
pop 2.008 1048 14.01 53.61 19.54 8.745e-05
pop.m 9 12.5 27 2.103 5.945 0.0001412
pop.f 9 41.11 27 2.103 19.55 1.242e-09
pop.m.f 27 2.103 144 0.2114 9.945 0
env 2.012 103.4 30.75 0.6474 159.7 0

4.23. PAIRWISE() 605

pop.env 56.12 0.3583 30.75 0.6474 0.5534 0.9729
pop.m.env 18 0.1899 54 0.317 0.5991 0.8844
pop.f.env 18 0.4575 54 0.317 1.443 0.1496
pop.m.f.env 54 0.317 144 0.2114 1.499 0.03044
ERROR1 144 0.2114 0 0 MISSING MISSING

The test for environment should be
(MS(env)+MS(m.f.env))/(MS(m.env)+MS(f.env)) = (103.08 +.32)/(.190+.458) =
(103.4)/(.6474) = 159.7 as reported in the table.

Cross references
See also ems(), reml().

4.23 pairwise()

Usage:
pairwise(factorname,lev [,method:T] [,error:term]), CH ARACTER scalar

factorname, positive REAL scalar lev < 1, positive integer o r
CHARACTER scalar term, keyword phrase method:T one of ’lsd: T’,
’bsd:T’, ’snk:T’, ’hsd:T’, ’regwb:T’, or ’regwr:T’

pairwise(factorname,critval:val), positive REAL scalar val

Keywords: anova, analysis

Usage
pairwise(factorname,siglevel) prints a summary of all pai red comparisons
between the levels of the factor given in factorname at the le vel of
significance siglevel. Comparisons are done using the Bonf erroni
method. factorname must be a CHARACTER scalar or quoted stri ng naming a
factor in the current GLM model and siglevel must be a REAL sca lar
between 0 and 1. It is an error if there is no current GLM model o r if
the current GLM model does not contain the named factor.

Methods
pairwise(factorname,siglevel,METHOD:T), where METHOD: T is one of
’bsd:T’, ’lsd:T’, ’snk:T’, ’hsd:T’, ’regwb:T’, or ’regwr: T’, does the
same, except METHOD specifies the multiple comparison meth od to be used.

METHOD Description
bsd Bonferroni method (the default)
lsd Least significant difference method
hsd Tukey’s honestly significant difference or Studentize d

range method
snk Student-Newman-Keuls method
regwb Step down Bonferroni using REGW tail probabilities
regwrs Step down Studentized range using REGW tail probabil ities

The REGW tail probabilities were proposed in papers by Ryan, Einot and
Gabriel, and Welsch.

Keyword critval
pairwise(factorname,critval:val) does the same, except i t uses val as

606 CHAPTER 4. DESIGN MACROS HELP FILE

the critical value for a t-test between the levels of factorn ame rather
than a computed cutoff.

Examples:
After anova("y=trt"),

Cmd> pairwise("trt",.01,hsd:T)
does paired comparisons between the levels of trt at signfic ance .01
using the HSD method.

Cmd> pairwise("trt",\
critval:invstudrng("trt",1 - .01, max(trt), DF[3])/sqrt (2))

does the same, directly computing the HSD critical value. Se e
invstudrng().

pairwise() prints only a summary of the results and returns n o value.
The printed output consists of one row for each level of the te rm,
sorted from smallest to largest effect, giving the "underli nes"
identifying effects that are not significantly different, level number,
and effect.

Error mean square
By default, the error mean square used in the comparison test s is taken
from the last error term of the current model (the last line of the
ANOVA table). You may specify a different error term with key word
phrase error:term. term must be a CHARACTER scalar or positi ve integer
which specifies the name or number of the line in the ANOVA tab le to be
used as the error mean square. Examples are ’error:4’ (use li ne 4 as
error term) or ’error:"a.b.c"’ (use the ABC interaction as e rror term).

Use of contrast()
The contrast() command is used to make each comparison. In pa rticular
this implies that the comparisons are adjusted for any other terms in
the model and that there should be no missing degrees of freed om in the
factor.

Examples:
Cmd> anova("y=a")
Model used is y=a

DF SS MS
CONSTANT 1 15.082 15.082
a 4 67.535 16.884
ERROR1 15 20.132 1.3421

Cmd> pairwise("a",.05,hsd:T) #hsd method
| 5 -1.86
| | 2 -1.18
| | 4 -1.15

| | 3 1.13
| 1 3.07

Cmd> pairwise("a",.05,lsd:T) #lsd w/ alpha=.05
| 5 -1.86
| 2 -1.18

4.24. QUADMAX() 607

| 4 -1.15
3 1.13
1 3.07

Cmd> pairwise("a",critval:2.13) #lsd w/ alpha=.05 a diffe rent way
| 5 -1.86
| 2 -1.18
| 4 -1.15

3 1.13
1 3.07

4.24 quadmax()

Usage:
quadmax(A,b [,eq:eqmat] [,gte:gtemat] [,ckbounds:F]), s quare REAL matrix

A, REAL vector b with nrows(b) = nrows(A), REAL matrices eqma t and
gtemat with ncols(eqmat) = ncols(gtemat) = nrows(A) + 1,

Keywords: analysis

Usage
quadmax(A,b) finds the x that maximizes x’Ax + b’x; if the pro blem is
unbounded then quadmax() returns an error. A is a p by p REAL ma trix
and b is a p by 1 REAL vector.

quadmax(A,b,eq:eqmat) does the same, except that eqmat is a q by p+1
REAL matrix that specifies q linear constraints on z. eqmat i s the
partitioned matrix [Q y], where Q is q by p and y is q by 1 and the
solution is constrained to satisfy Qx = y. If the constrained problem
is unbounded, then quadmax() returns an error. If the constr aints
cannot be met, then quadmax() returns NULL.

quadmax(A,b,gte:gtemat) does the same except that gtemat i s a g by p+1
REAL matrix specifying linear inequality constraints on th e solution.
gtemat is the partitioned matrix [G z], where G is g by p and z is g by
1 and the solution is constrained to satisfy Gx >= z elementwi se. If
the constrained problem is unbounded, then quadmax() retur ns an error.
If constraints cannot be met, then quadmax() returns NULL.

You can use both eq:eqmat and gte:gtemat to specify both equa lity and
inequality constraints.

Example
Suppose in a three variable mixture problem you have the equa lity
constraint that the sum of the x’s is 1 and each element of x is a t
least .05. Then you can use quadmax(A,b,eq:eqmat,gte:gtem at)

[1 0 0 .05]
where eqmat = [1 1 1 1] and gtemat = [0 1 0 .05]

[0 0 1 .05]

Keyword ckbounds

608 CHAPTER 4. DESIGN MACROS HELP FILE

quadmax(A,b [,eq:eqmat] [,gte:gtemat], ckbounds:F) does the same but
there is no test for the solution being unbounded. This can
substantially decrease the computational time when you kno w the problem
is bounded. This is the case, for example, in a problem where t he range
of the x’s is totally bounded by inequality constraints, or i n a problem
where x’Ax is known to have a unique maximum (A has all negativ e
eigenvalues). However, ckbounds:F should not be used when y ou do not
know there is a bounded solution.

Algorithm
The algorithm used by quadmax() can be described as intellig ent brute
force and will probably be overwhelmed by too many constrain ts. When
you are sure the problem has a bounded solution, be sure to use keyword
phrase ckbounds:F.

4.25 randsign()

Usage:
randsign(diffs [,trials:n]), REAL vector diffs, positive integer n

Keywords: permutation test, analysis

Usage
randsign(diffs) computes sum(s_i * diffs_i) for all 2ˆlength(diffs)
possible combinations of signs s_i and returns these as a REA L vector.

randsign(diffs,trials:n) samples from the distribution o f sum(s_i *
diffs_i) based on n sets of random signs. This is appropriate when
diffs is long, as 2ˆlength(diffs) grows quickly!!

You can use the results of randsign to compute p-values for th e
randomization equivalent of the paired t-test by finding th e fraction of
the total differences based on random signs as extreme or mor e extreme
than the observed total difference for the two groups.

Examples:
Cmd> x1 <- vector(1,4,2,4,6,3,7) # data set 1

Cmd> x2 <- vector(3,5,3,6,2,9,8) # data set 2

Cmd> diffs <- x2-x1

Cmd> diffs # the differences
(1) 2 1 1 2 -4
(6) 6 1

Cmd> sum(diffs) # observed total difference
(1) 9

Cmd> out <- randsign(diffs) # all differences with random si gns

4.26. RANDT2() 609

Cmd> stemleaf(out)
1 -1s|7
4 -1f|555
9 -1t|33333

16 -1 * |1111111
24 -0.|99999999
32 -0s|77777777
41 -0f|555555555
52 -0t|33333333333
64 -0 * |111111111111
64 +0 * |111111111111
52 +0t|33333333333
41 +0f|555555555
32 +0s|77777777
24 +0.|99999999
16 1* |1111111

9 1t|33333
4 1f|555
1 1s|7

1* |1 represents 11 Leaf digit unit = 1

Cmd> sum(out >= 9)/128 # one sided randomization p-value
(1) 0.1875

Cross references
See also randt(), randt2().

4.26 randt2()

Usage:
randt2(y1, y2 [,trials:n]), REAL vectors y1 and y2, positiv e integer n

Keywords: permutation test, analysis

Usage
randt2(y1, y2) computes all possible values of xbar_1 - xbar _2 where
xbar_1 is the mean of a subset of size M = length(y1) from vecto r(y1,y2)
and xbar_2 is the mean of the length(y2) remaining elements. y1 and y2
must be REAL vectors. If there are MISSING values in y1 or y2, t hey are
immediately deleted and a warning message printed.

The returned value is a vector containing all the difference s.

Thus randt2() produces the permutation distribution for a t est of
equality of means based on the differences of the means of y1 a nd y2.

randt2(x1, x2, trials:N) does the same except it randomly sa mples N
values from the permutation distribution of ybar_1 - ybar_2 .

610 CHAPTER 4. DESIGN MACROS HELP FILE

Computing P-values
You can use the results of randt2 to compute p-values for the
randomization equivalent of the two sample t-test by findin g the
fraction of the differences as extreme or more extreme than t he observed
difference for the two groups. You may need to be a little care ful in
making the comparison because there may not be an exact match of the
observed difference of means and the values returned by rand t2 because
of minor differences in rounding .

Examples:
Cmd> y1 <- vector(6.5,6,7.1,7.1,3.5,6.1) # group 1 data

Cmd> y2 <- vector(3.9,4.9,2.1,7.7,4.9) # group 2 data

Cmd> d <- sum(y1)/6 - sum(y2)/5; d # difference of means
(1) 1.35

Cmd> out <- randt2(y1,y2)

Cmd> length(out) # how many are there?
(1) 462

Cmd> sum(round(out - d,12) >= 0)/462 #one-sided permutatio n P-value
(1) 0.20996

Cross references
See also randsign(), randt().

4.27 randt()

Usage:
randt(dvec, m [,trials:n]), REAL vector dvec, positive int eger n

Keywords: permutation test, analysis

Usage
randt(dvec,m) computes xbar_1 - xbar_2 for all combination s with m data
values from dvec in group 1 and the remainder in group 2. The re turned
value is a vector containing all the differences. dvec must b e a REAL
vector with no MISSING values and integer m > 0 with m < length(dvec).

randt(dvec,m,trials:n) samples from the distribution of x bar_1 - xbar_2
using n independent sets of random assignments to the groups .

Computing P-values
You can use the results of randt() to compute p-values for the
randomization equivalent of the two sample t-test by findin g the
fraction of the differences as extreme or more extreme than t he observed
difference for the two groups. You may need to be a little care ful in

4.28. REML() 611

making the comparison because there may not be an exact match of the
observed difference of means and the values returned by rand t() because
of minor differences in rounding .

Examples:
Cmd> y1 <- vector(6.5,6,7.1,7.1,3.5,6.1) # group 1 data

Cmd> y2 <- vector(3.9,4.9,2.1,7.7,4.9) # group 2 data

Cmd> d <- sum(y1)/6 - sum(y2)/5; d # difference of means
(1) 1.35

Cmd> out <- randt2(vector(y1,y2), length(y1))

Cmd> length(out) # how many are there?
(1) 462

Cmd> sum(round(out - d,12) >= 0)/462 #one-sided permutatio n P-value
(1) 0.20996

Cmd> stemleaf(out) # how do they look
3 -2.|665

12 -2 * |222200000
37 -1.|8888888887766666666665555
83 -1 * |4444444433333322222222222222111111110000000000

151 -0.|99999999998888888888888888877777777777777777 66666666666555 *
(81) -0 * |44444444444444444443333333333333333333222222222222 21111111 *

230 +0 * |00000000000011111111111111111111122222222222222222 23333333 *
154 +0.|55555555555555555666666666666666666777777777 78888888889999 *

86 1* |00000000000011111111111112222222333333333444444444
36 1.|5555556666667778889999
14 2* |0000001334444

1 2.|8

Cross references
See also randsign(), randt2().

4.28 reml()

Usage:
reml(Model,random:Randomvars,Z:Zmatrices,[,restrict :F,nonhier:T,marg:T,

maxiter:k,usemle:T,retV:T,tolerance:x])

Keywords: analysis

Usage
reml(Model,random:Randomvars) performs a restricted max imum likelihood
analysis for the model given in CHARACTER scalar Model. Rand omvars
is a CHARACTER vector specifying the names of factors in the m odel which
are random. Randomvars can also be REAL with integer element s
specifying the index of a factor in the model.

612 CHAPTER 4. DESIGN MACROS HELP FILE

reml(Model,Z:Zmatrices) performs a restricted maximum li kelihood
analysis for the model given in CHARACTER scalar Model plus a dditional
random terms specified via Z. Zmatrices is a CHARACTER vecto r
specifying the names of matrices, each of which has the same n umber of
rows as the response in the model is long. If Z is vector("Z1", "Z2"),
then random terms of the form Z1 * gamma1 + Z2* gamma2 are added to the
model, where gamma1 and gamma2 are iid normal vectors with va riances
phi1 and phi2 respectively.

At least one of random: or Z: should be used, and if there are no
random factors, Randomvars should be NULL.

The return value of reml() is a structure with the following c omponents:
theta: estimates of the fixed effects

phi: estimates of the variance components
thetavar: variance matrix of the fixed effects

phivar: variance matrix of the variance components
phidf: equivalent degrees of freedom for the variance compo nents
gamma: estimates (predictions) of random effects

gammavar: variances of predictions of random effects
L: REML log likelihood
V: optional component giving the estimate covariance of the

data

Any variates in the model must be fixed effects.

Assumptions
reml() assumes that if a factor first appears in an interacti on, then
that factor is nested in the other terms of the interaction. F or
example, if the first appearance of factor c is in the term a.b .c, then
c is assumed nested in the a.b combinations. This nesting is a ssumed in
the remainder of the model. That is, continuing the example, if there
is a later term c.d, it will be interpreted as a.b.c.d even tho ugh
a.b.c.d is not specifically in the model.

reml() works for both balanced and unbalanced data.

Keywords restrict and nonhier
reml(Model,Randomvars,restrict:F) performs the REML ana lysis assuming
no marginal restrictions on the random effects in the model.

reml(Model,Randomvars,nonhier:T) performs the REML anal ysis for an
analysis of variance that does not enforce the usual MacAnov a hierarchy
assumptions.

That is, for example, model "y=a+b+c+a.b.c" does not imply
that the two-way interaction degrees of freedom are part of t he "a.b.c"
term. You cannot use anova() to compute such an analysis alth ough it
can be done (if you know how) using swp().

Keywords usemle, tolerance and maxiter
reml(Model,Randomvars,usemle:T) performs a maximum like lihood analysis

4.29. RSCANON() 613

instead of the REML analysis.

reml(Model,Randomvars,tolerance:value) uses value as a t olerance for
determining singularity and convergence (default is 1e-10).

reml(Model,Randomvars,maxiter:value) uses value as the m aximum number of
iterations in the fitting process (default is 60).

reml(Model,random:vars,retV:T) returns the estimated co variance
of the data in a component named V.

Cross references
See also mixed().

4.29 rscanon()

Usage:
rscanon(y,x1,x2,...,xk [,block:var1,block:var2,...]) , REAL vectors y,

x1, ...,xk, factors var1, var2, ...; all should have the same number
of rows.

Keywords: analysis

Usage
rscanon(y,x1,x2,...,xk) performs the canonical analysis for the
quadratic response surface model with response y and predic tors x1,
... , xk. y and x1 through xk must be REAL vectors of the same len gth.

The result is a structure with components ’b0’, ’b’, ’B’, ’x0 ’, ’y0’,
’H’, and ’lambda’, giving the intercept, linear coefficien ts, the
quadratic/ cross product coefficient matrix, the stationa ry point, the
predicted response at the stationary point, the matrix of ca nonical
directions, and the eigenvalues, respectively.

If the design was blocked, you can specify the blocking facto rs using
one or more keyword phrases of the form ’block:var’, where va r is a
factor. For example, if the design was blocked by factors dat e and
analyst, you might use

Cmd> rscanon(yield,time,temperature,block:date,block :analyst).
The output is the same as before, but is block adjusted.

Examples:
Cmd> #data from example 16-2 of Montgomery

Cmd> x1 <- vector(-1,-1,1,1,0,0,0,0,0,1.414,-1.414,0,0)

Cmd> x2 <- vector(-1,1,-1,1,0,0,0,0,0,0,0,1.414,-1.414)

Cmd> y <- vector(76.5,77.0,78.0,79.5,79.9,80.3,80.0,79 .7,\
79.8,78.4,75.6,78.5,77.0)

614 CHAPTER 4. DESIGN MACROS HELP FILE

Cmd> rscanon(y,x1,x2)
component: b0
(1) 79.94
component: b
(1) 0.99505 0.5152
component: B
(1,1) -1.3764 0.125
(2,1) 0.125 -1.0013
component: x0
(1) 0.38923 0.30585
component: y0
(1) 80.212
component: H
(1,1) 0.28972 0.95711
(2,1) 0.95711 -0.28972
component: lambda
(1) -0.9635 -1.4143

4.30 sidebyside()

Usage:
sidebyside([termlaby:y,labels:c,rescale:tf,showcons t:tf,boxcut:int])

Keywords: plots

Usage
sidebyside() produces a side-by-side plot of the effects an d residuals
of the current model; there must be an active model. A side-by -side
plot plots the effects for each term against the term number, showing
the relative sizes of the effects. When there are many effect s or
residuals, a boxplot is made instead of showing individual e ffects.
There are no required arguments, but the following argument s alter
the plot; in addition, any graphics arguments are passed thr ough.

Keywords
Optional keyword phrase arguments are

termlaby:real Specify y-value for term labels. This can be a
single value or a vector of length equal to number
of terms.

labels:charvector Specify your own term labels.
rescale:logic Should effects be divided by their standard e rrors.

Default is F. This uses the standard errors as
reported by secoefs() and may not be correct for
all mixed models (secoefs() depends on terms
labeled ERRORX). Residuals are divided by root
MSE.

showconst:logic Should the coefficient of the CONSTANT be s hown?
Default is F.

boxcut:integer Cutoff for using a boxplot for a term instead of
plotting individual effects. Default is 20.

4.31. STDORDLABELS() 615

Example:
Cmd> y <- vector(9,13,12,43,48,57,60,65,70,77,70,91,\

15,13,20,66,58,73,75,78,90,97,108,99)
Cmd> acid<-factor(rep(run(2),rep(12,2)))
Cmd> style<-factor(rep(rep(run(4),rep(3,4)),2))
Cmd> anova("y=acid * style",silent:T)
Cmd> sidebyside() #default plot
Cmd> # specify term locations and labels
Cmd> sidebyside(termlaby:vector(-50,-40,-30,-20),\

labels:vector("a","b","c","d"),boxcut:30)
Cmd> # show the constant and rescale
Cmd> sidebyside(dumb:T,showconst:T,rescale:T)

4.31 stdordlabels()

Usage:
stdordlabels(k:count or letters:word) count an integer an d word
a character scalar

Keywords: factorial

stdordlabels(k:count) produces a character vector of term labels
for count factors in standard order. For example, stdordlab els(k:3)
produces "A","B","AB","C","AC","BC","ABC".

stdordlabels(letters:word) splits character scalar word up into
its component letters and uses these letters as a factor labe ls.

No more than 15 factors are allowed.

4.32 typeIIIss()

Usage:
typeIIIss(model), obsolete, use anova(model,marginal:T)

Keywords:

typeIIIss(model) is obsolete, use anova(model,marginal: T) instead.

4.33 varcomp()

Usage:
varcomp(model,randomvars [,marg:T] [,restrict:F] [,non hier:T]),

CHARACTER scalar model, CHARACTER vector randomvars
varcomp(emsResult), emsResult a structure returned by ems () with keep:T.

616 CHAPTER 4. DESIGN MACROS HELP FILE

Keywords: anova, analysis, random effects, factorial

Usage
varcomp(model, randomvars) computes the "ANOVA" estimate s of the
variances of random effects in mixed effects analysis of var iance as
well as estimates of their standard errors. model is a CHARAC TER scalar
or a quoted string specifying an ANOVA model and randomvars i s a
CHARACTER vector of the names of some or all of the factors in t he
model. You can also use keyword phrases marg:T, restrict:F a nd
nonhier:T exactly as for macro ems().

varcomp(emsResult), where emsResult is computed as ems(mo del,
randomvars, keep:T) does the same.

The estimates are linear combinations of mean squares for ra ndom
effects. They are unbiased but may be negative.

The value of varcomp() is a matrix with one row for each random term and
two columns giving the estimated variance component and its standard
error.

Keyword marg
varcomp(model, randomvars, marg:T) and varcomp(emsResul t, marg:T) do the
same but use linear combinations of "marginal" EMS, that is t he EMS for
each term is computed after adjusting for all other terms in t he model.

varcomp() assumes that the EMS for random terms have no contr ibutions
from fixed factors. This is true for balanced data and may be
guaranteed in general by using marg:T.

Example:
Three populations, all crosses between 4 males and 4 females in each
population with six offspring from each mating randomly ass igned to
three environments. Male and female are random. First the si mple
ANOVA.

Cmd> anova("y=(pop+m.pop+f.pop+m.f.pop) * env")
Model used is y=(pop+m.pop+f.pop+m.f.pop) * env

DF SS MS
CONSTANT 1 5.4299 5.4299
pop 2 2091.4 1045.7
pop.m 9 112.5 12.5
pop.f 9 370.02 41.113
pop.m.f 27 56.774 2.1027
env 2 206.15 103.08
pop.env 4 0.16527 0.041316
pop.m.env 18 3.4185 0.18992
pop.f.env 18 8.2354 0.45752
pop.m.f.env 54 17.117 0.31698
ERROR1 144 30.448 0.21144

Now compute the expected mean squares, and keep the ems() out put.

4.34. YATESPLOT() 617

Cmd> emsstuff<-ems("y=(pop+m.pop+f.pop+m.f.pop) * env",vector("m","f"),
keep:T,print:T)

EMS(CONSTANT) = V(ERROR1) + 6V(pop.m.f) + 24V(pop.f) + 24V(pop.m) +
288Q(CONSTANT)

EMS(pop) = V(ERROR1) + 6V(pop.m.f) + 24V(pop.f) + 24V(pop.m) + 96Q(pop)
EMS(pop.m) = V(ERROR1) + 6V(pop.m.f) + 24V(pop.m)
EMS(pop.f) = V(ERROR1) + 6V(pop.m.f) + 24V(pop.f)
EMS(pop.m.f) = V(ERROR1) + 6V(pop.m.f)
EMS(env) = V(ERROR1) + 2V(pop.m.f.env) + 8V(pop.f.env) +

8V(pop.m.env) + 96Q(env)
EMS(pop.env) = V(ERROR1) + 2V(pop.m.f.env) + 8V(pop.f.env) +

8V(pop.m.env) + 32Q(pop.env)
EMS(pop.m.env) = V(ERROR1) + 2V(pop.m.f.env) + 8V(pop.m.e nv)
EMS(pop.f.env) = V(ERROR1) + 2V(pop.m.f.env) + 8V(pop.f.e nv)
EMS(pop.m.f.env) = V(ERROR1) + 2V(pop.m.f.env)
EMS(ERROR1) = V(ERROR1)

From the EMS, we see than (MS(pop.m.f.env)-MS(ERROR1))/2 i s an unbiased
estimate of V(m.f.env); here, we have (.31698 - .21144)/2 = . 05277.
Similarly, (MS(pop.f.env)-MS(pop.m.f.env))/8 is an unbi ased estimate of
V(f.env); here we have (.45752 - .31698)/8 = .01757. varcomp ()
automates these calculations, as well as providing the stan dard error.

Cmd> varcomp(emsstuff)
Estimate SE

pop.m 0.43323 0.24668
pop.f 1.6254 0.80788
pop.m.f 0.31521 0.095472
pop.m.env -0.015883 0.010989
pop.f.env 0.017568 0.020532
pop.m.f.env 0.052766 0.032948
ERROR1 0.21144 0.024919

Note that variance component estimates can be negative; var comp() does
not truncate the estimates at 0. We would get the same output f rom the
following command.

Cmd> varcomp("y=(pop+m.pop+f.pop+m.f.pop) * env",vector("m","f"))

Cross references
See also ems(), mixed().

4.34 yatesplot()

Usage:
yatesplot(data,[,fullnorm:T] [,letters:word]),

data real with length a power of 2, word a character scalar of
letters to label factors

Keywords: analysis, factorial, plots

618 CHAPTER 4. DESIGN MACROS HELP FILE

yatesplot(y) computes the factorial effects for data y from a
two series design stored in standard order. It then makes a
half-normal plot of the effects labelling the terms with lab els
A, B, AB, C, and so on.

yatesplot(y,fullnorm:T) does the same, except that it norm al scores
plot instead of a half-normal plot.

yatesplot(y[,fullnorm:T],letters:word) where word is a c haracter
scalar such as "DEFG" will make the full- or half-normal plot , but
will label the terms with letters taken from the word, for exa mple,
D, E, DE, F, and so on. The number of letters in the word must
match the number of factors in y.

If there are more than 10 factors, the effects are not labelle d.

Chapter 5

Graphics Macros Help File

This Chapter contains help for the set of macros related to graphics that are distributed
with MacAnova in the file Graphics.mac.txt. The material here is a reformatting of the
help in file Graphics.mac.txt.

5.1 bargraph()

Usage:
bargraph(edges,y [,save:T] [,draw:T] [,graphics keyword phrases]), REAL

vectors edges and y, length(edges) <= 2 or = length(y) + 1
bargraph(vector(firstedge [,secondedge]), y, [,save:T] [,draw:T] ...),

firstedge < secondedge REAL scalars, default for secondedg e =
firstedge + 1

bargraph(x,y,widths [,save:T] [,draw:T] ...), REAL vecto rs x, y with
same length and width a positive vector of same length as x or a
positive scalar, interpreted as rep(widths,nrows(x)

Keywords: bar graphs

Usage
bargraph(edges, y [,graphics keyword phrases]) draws a bar graph with
touching bars and bar heights y. Arguments edges and y are REA L vectors
with edges[j+1] - edges[j] > 0 and length(edges) = length(y) + 1. Bar j
has height y[j] and boundaries edges[j] and edges[j+1].

The graphics keyword may include ’xlab’, ’ylab’, ’title’, k eywords
having to do with tick marks and so on.

bargraph(vector(edge1, edge2), y [,graphics keyword phra ses]), where
edge1 < edge2 are REAL scalars does the same except the bar edg es are
edge1, edge1 + width, ...,edge1 + length(y) * width, where width = edge1 -
edge1.

bargraph(edge1, y [, ...]) is the same a bargraph(vector(ed ge1,edge1+1),
y, ...).

bargraph(x, y, w [,...]) draws a bar graph with bars centered at x,

619

620 CHAPTER 5. GRAPHICS MACROS HELP FILE

with heights y and widths w. x, y and w must be REAL vectors with no
MISSING values and nrows(x) = nrows(y), and w vector of the sa me length
or a scalar equivalent to rep(w,nrows(x)).

Keyword keep
bargraph(edges,y, keep:T [,draw:T] [,graphics keyword ph rases]) or
bargraph(x,y,w, keep:T [,draw:T] [,graphics keyword phra ses])
returns

structure(x:xvals, y:yvals [,graphics keyword phrases], lines:T)
where xvals and yvals are REAL vectors such that lineplot(xv als,yvals)
would draw the bars. With draw:T, the graph also is drawn.

The structure can be assigned to GRAPHWINDOWS[j] to draw the bar graph
in window j or used with panelplot() to draw the bar graph in a p anel
graph (see topics panelplot() and ’panel_graphs’).

Cross references
See also hist(), lineplot(), ’graph_keys’.

5.2 boxplot5num()

Usage:
boxplot5num(x [,names:Names][,excludeM:T] [,keep:T] \

[,graphics keyword phrases]), x a REAL vector or a structure with
REAL vector components, Names a CHARACTER scalar or vector

Keywords: distribution graphs

boxplot5num(x), where x is a REAL vector or a structure whose components
are REAL vectors, draws a simplified boxplot of a vector or si de-by-side
simplified boxplots of the components of x. These reflect on ly the 5
number summary (minimum, lower quartile, median, upper qua rtile and
maximum) and display no information on outliers.

The upper and lower quartiles are the medians of the upper and lower
halves of the data as computed by describe(). When the sample size is
odd, the median is included in both halves unless the value of option
’excludeM’ is True. See setoptions() and keyword ’excludeM ’ below.

The plot drawn is based on what is presented in David S. Moore, The
Basic Practice of Statistics. To replicate plots in the book , you
should set option ’excludeM’ to True or use keyword phrase ’e xcludeM:T’
as an argument. See below.

boxplot5num(x,names:Names), where Names is a CHARACTER sc alar or
vector, does the same, except Names is used to label the boxes . If
Names is a scalar, say "School ", the plots will be labelled "S chool 1",
"School 2",... . If Names is vector, than x must be a structure with
ncomps(x) = length(Names).

boxplot5num(x,excludeM:T [,names:Names]), does the same except the

5.3. COLPLOT() 621

quartiles are computed as the medians of the lower and upper h alves

* excluding * the median. This matches the definition in Moore’s book.

boxplot5num(x, keep:T [,excludeM:T, names:Names]) does t he same, but
also returns a vector or structure containing the 5 number su mmaries
(Min, Q1, Median, Q3, Max) for each box plot drawn.

You can also use most of the usual graphics keywords such as ’t itle’,
’ylab’, ’show’, and ’window’.

Cross references
See also boxplot() and vboxplot() which draw more elaborate boxplots.

5.3 colplot()

Usage:
colplot(x [, graphics keyword phrases]), x a REAL matrix

Keywords: line graphs, interaction graphs

colplot(x) makes an "interaction" plot of the data in the REA L matrix x.
The plotting positions are the row numbers and the values in x . Points
within each column are joined by lines. Any keywords useable in chplot
may follow x.

When option ’dumbplot’ has been set False (see options), the plot will
be a low resolution plot unless ’dumb:F’ is an argument.

See topic ’graph_keys’, ’graph_border’ and ’graph_ticks’ for information
on other keywords that can be used with colplot().

Example:
Cmd> colplot(run(20)ˆ(.2 * run(5)’),xlab:"X",\

title:"Xˆ.2, Xˆ.4, Xˆ.6, Xˆ.8, X")

colplot() is implemented as a pre-defined macro.

Cross reference
See also topic rowplot().

5.4 contour()

Usage:
contour(x,y,vals,level [,checkargs] [,keyword phrases]), REAL vectors x,

y, REAL scalar level, all with no MISSING, REAL matrix vals, o ptional
LOGICAL scalar checkargs

Keywords: contour graphs

622 CHAPTER 5. GRAPHICS MACROS HELP FILE

contour(x,y,vals,level) determines coordinates of a poly gonal curve
(curve made up of line segments) that approximates a contour of constant
height of a surface whose height at (x[i], y[i]) is vals[i,j] .

x and y must be REAL vectors of unique non-MISSING values. val s must
be a REAL nrows(x) by nrows(y) matrix, which may have MISSING elements.
level must be a non-MISSING REAL scalar, preferably between the extreme
values in vals. Most commonly, vals[i,j] = F(x[i],y[j]) for some
function F(x,y) of two variables. When the surface is not def ined or
is infinite at (x[i],y[j]), vals[i,j] should be MISSING.

contour(x,y,vals,levels,T) does the same, except that the arguments are
not checked for correctness. In particular, x and y are assum ed to be
increasing order, which is not ordinarily required. This us age is
designed for use in macro contourplot() which has already ch ecked
arguments and reordered x and y before calling contour().

The value returned is structure(x:xc, y:yc, level:level). When level
is outside the range of vals, xc and yc are both NULL. Otherwis e xc
and yc are REAL vectors of the same length. The points (xc[k], yc[k]), k
= 1,..., nrows(xc), are either intersections of the contour with
gridlines, or (MISSING,MISSING). When a contour consists o f two or
more disjoint curves, they are separated by MISSING in both x c and yc.

contour(x,y,vals,level, graphics keyword phrases) does t he same except
the result is structure(x:xc, y:yc, level:level, graphics keyword
phrases) in which all the keyword phrases in the argument are appended
to the result.

Example:
Cmd> curve <- contour(x,y,vals,level,title:"Sample cont our curve")

Cmd> if(!isnull(curve$x)){
lineplot(keys:curve)

}

During execution of contour(), x, y and vals are copied to inv isible
arrays __X__, __Y__ and __F__, respectively and macro _Foll ow() traces
out the contour, keeping status information in invisible ma trix __MET__.
__X__, __Y__, __F__ and __MET__ are deleted before contour() is
finished.

Credits
Contour and associated macros are based on Fortran routines by Dan
LaLiberte, implementing methods in Crane, C.M.(1972), Con tour plotting
algorithm, ’The Computer Journal’, Vol. 15, pp. 382-384 and Cottafava,
G., Andle Moli, G. (1969). Automatic Contour Map, ’Comm. ACM ’, Vol. 12,
pp. 386-391.

Cross reference
See also contourplot().

5.5. CONTOURPLOT() 623

5.5 contourplot()

Usage:
contourplot(x,y,vals,levels [,label:T] [,linefrom:T] [,draw:F]\

[,save:T] [,graphics keywords]), REAL vectors x, y, levels , with
no MISSING values, REAL matrix vals

Keywords: contour graphs

contourplot(x,y,vals,levels [,graphics keywords]) draw s unlabelled
contours of a surface whose height z is known at points on a rec tangular
grid defined by REAL vectors x and y. The desired contour leve ls are
defined by REAL vector levels. The height at (x[i],z[j]) is z =
vals[i,j].

The values of x and y must be distinct and non-MISSING.

vals must be a nrows(x) by nrows(y) REAL matrix and may have MI SSING
elements. Most commonly, vals[i,j] = F(x[i],y[j]) for some function
F(x,y) of two variables. If the surface is not defined or is in finite
at (x[i],y[j]), vals[i,j] should be MISSING.

You can use most of the usual graphics keywords such as ’xlab’ , ’ylab’,
’title’, ’add’ and ’show’. In particular, you can use ’linet ype’ to
control the type of line drawn. See topic ’graph_keys’.

contourplot(x,y,vals,levels, label:T [,graphics keywor ds]) does the same
except that you use the mouse to position labels for each cont our line
that was actually drawn (some levels may be outside the minim um and
maximum values in vals). A simple algorithm is used to find th e contour
line whose level is nearest the interpolated value at the poi nt you
click. Then this level is printed at that point. You can end la belling
by pressing ’q’ when the crosshairs are in the graphics windo w.

contourplot(x,y,vals,levels, linefrom:T [,graphics key words]) is another
way to label points. You use the mouse to draw a line starting a t the
contour and ending where the label is then printed.

contour uses macro findcontours() to locate and label conto urs. You can
use findcontours() directly to label contours in a contour p lot that was
previously drawn.

Keyword save
result <- contourplot(x,y,vals,levels,save:T [,other ke ywords]) sets
result to structure(Contour_1:comp1,Contour_2:comp2 .. .). Component I
of result is structure(x:xvals, y:yvals,level:levels[I]). When
level[I] is outside the range of values, xvals and yvals are N ULL.
Otherwise they are the x- and y-values defining the intersec tions of the
contour with gridlines.

You could use this returned structure to add the same contour curves to
another graph. The following example might be appropriate w hen the
contours were those of an estimated bivariate density funct ion based on
a bivariate sample hconcat(xvals, yvals), where xvals and y vals are REAL

624 CHAPTER 5. GRAPHICS MACROS HELP FILE

vectors.

Cmd> chplot(xvals, yvals, symbols:"\7",show:F) #scatter plot of sample

Cmd> for(i,1,levels){
@comp <- result[i]
if (!isnull(@comp$x)){

lineplot(keys:strconcat(@comp,add:T,show:F))
}

}

Cmd> showplot(xmin:?,ymin:?,xmax:?,ymax:?) # display th e plot

Keyword draw
In place of ’save:T’ you could use ’draw:F’. With both ’save: T’ and
’draw:T’ the contours are both drawn and returned in a struct ure.

contourplot() requires macros contour(), findcontour() a nd _Follow().
They are read in automatically if necessary and possible.

Cross references
See also contour() and findcontour().

5.6 ellipse()

Usage:
ellipse(K, Q [,x0] [,npoints:m] [method:j] [,draw:T] \

[,graphics keyword phrases]), REAL scalar K > 0, 2 by 2
positive definite symmetric REAL matrix Q, REAL vector x0 or length
2, integer j, 1 <= j <= 3

Keywords: shapes, line graphs

You can use ellipse() to compute and optionally draw an ellip se with
shape defined by a specified positive definite matrix and ce ntered at a
specified point

ellipse(K, Q [,x0] [,graphics keywords]) computes xvals an d yvals, the
x- and y-coordinates of points on the ellipse defined by the e quation

(x - x0)’ % * % solve(Q) % * % (x - x0) = Kˆ2
The value returned is structure(x:xvals,y:yvals [,graphi cs keywords]).

K > 0 must be a REAL scalar and Q must be a 2 by 2 REAL positive
definite symmetric matrix. If x0 is an argument, it must be a R EAL
vector of length 2. Otherwise, rep(0,2) is used for x0.

The ellipse can be plotted by
Cmd> result <- ellipse(K, Q [,x0] [,graphics keywords])

Cmd> lineplot(keys:result)

5.7. FINDCONTOUR() 625

ellipse(K, Q [,x0], draw:T [,graphics keywords]) draws the ellipse
directly and doesn’t return the coordinates as a value. If th e ellipse
is to be added to an existing graph, include add:T as an argume nt.

Keyword npoints
ellipse(K, Q [,x0], npoints:m ...) computes m + 1 points on th e
ellipse, with the first and last being identical. The defaul t value
for m is 200.

Keyword method
There are several ways to select points on an ellipse. Macro e llipse()
allows you to use any of three methods.

ellipse(K, Q [,x0], method:k ...), where 1 <= k <= 3, does the s ame,
except the way xvals and yvals are computed depends on k (defa ult is k
= 3).

All three methods compute unit vectors u(theta) for m+1 equa lly
spaced values of theta from 0 to 360 degrees, where

u(theta) = vector(cos(theta), sin(theta))

Method 1 (Pure polar coordinates):
x(theta) = x0 + K * u(theta)/r1(theta),

r1(theta) = sqrt(u(theta)’ % * % solve(Q) % * % u(theta))
Method 2

x(theta) = x0 + K * Q %* % u(theta)/r2(theta), where
r2(theta) = sqrt(u(theta)’ % * % Q %* % u(theta))

Method 3 (default)
x(theta) = x0 + K * cholesky(Q)’ % * % u(theta)

The default method (3) seems to do the best job, but you may wan t to
try one of the others to see if they produce a better looking el lipse.

Cross references
See also ’graph_keys’, lineplot(), cholesky(), solve(), ’ matrices’

5.7 findcontour()

Usage:
info <- findcontour(x,y,vals,levels [,linefrom:T]), REA L vectors x, y,

and levels, all with no MISSING values, REAL matrix vals

Keywords: contour graphs

After drawing a contour plot of a surface by contourplot() or plotting
the results from repeated calls to contour(), you can use fin dcontour()
to identify contours with the mouse so that they can be labele d with the
contour level.

info <- findcontour(x,y,vals,levels) attempts to identif y the contour
line (level curve) nearest the point (x0,y0) you select usin g the mouse.

626 CHAPTER 5. GRAPHICS MACROS HELP FILE

x and y are non-MISSING REAL vectors defining a grid of points and
levels is a non-MISSING vector defining the levels of contou rs in the
plots.

vals is a nrows(x) by nrows(y) REAL matrix, possibly with MIS SING
values, of surface heights with vals[i,j] = height of the sur face at
(x[i],y[i]). If the surface is not defined or is infinite at
(x[i],y[j]), vals[i,j] should be MISSING.

Normally, findcontour(x,y,vals,levels) is used after con tourplot(x,y,
vals,levels).

info is set to structure(x:x0, y:y0, value:val0, level:lev el0), where
(x0, y0) is the point selected, val0 is the interpolated heig ht of the
surface at (x0,y0), and level0 is the element of levels close st to
val0. If the point selected is close to a contour, level0 shou ld be
the level of the contour. If the point selected is in the recta ngle
defined by x[i], x[i+1] and y[j], y[j+1] and v[i,j], v[i+1,j], v[i,j+1]
and v[i+1,j+1] are all MISSING, val0 and level0 will both be M ISSING.

You can label a contour by

Cmd> info <- findcontour(x,y,vals,levels)

Cmd> addstrings(info$x,info$y,paste(info$level,forma t:".3f"))

info <- findcontour(x,y,vals,levels,linefrom:T) does th e same except you
use Mouse() to define a line to be drawn from a contour to a labe l.
First select a point (x0,y0) close to the contour and then the point
(x1,y1) where the label should be.

With linefrom:T, info is set to structure(x:vector(x0,x1) ,
y:vector(y0,y1), value:val0, level:level0) where val0 is the
interpolated surface height at (x0,y0) and level0 is the con tour level
nearest to val0.

You can label a contour by

Cmd> info <- findcontour(x,y,vals,levels,linefrom:T)

Cmd> addlines(info$x,info$y, show:F)

Cmd> addstrings(info$x[2],info$y[2],paste(info$level ,format:".3f")

You can avoid direct use of findcontour() by using ’label:T’ on
contourplot(). This results in findcontour() being called once for
every contour actually drawn, omitting contours whose leve ls are outside
the range of val.

Cross references
See also contourplot(), contour(), Mouse().

5.8. GRAPHICSHELP() 627

5.8 graphicshelp()

Usage:
graphicshelp(topic1 [, topic2 ...] [,usage:T])
graphicshelp(index:T)

Keywords: general

graphicshelp(topicname) prints help on a topic related to f ile
graphics.mac. Usually topicname is the name of a macro in the file.

When quoted, topicname may contain "wildcard" characters " * " and "?".
You can also use help keyword ’key’. See help() for details.

graphicshelp(topicname1, topicname2, ...) prints help on more than one
topic.

graphicshelp(topicname1 [, topicname2 ...], usage:T) pri nts just a brief
summary of usage for the each topic.

5.9 hist()

Usage:
hist(x [, nbars] [,keyword phrases]), REAL vector x, intege r nbars >= 2
hist(x, vector(anchor,width) [,keyword phrases]), ancho r REAL scalar,

width > 0 scalar
hist(x, edges [,keyword phrases]), edges REAL vector with i ncreasing

elements
Keyword phrases are relfreq:T, freq:T, leftendin:T, outsi deok:T, draw:T,

save:T plus most graphics keywords

Keywords: distribution graphs, bar graphs

hist(x, nbars) draws a histogram of the data in REAL vector x u sing with
nbars equal-width bars which include all data. The bar edges are not
"neat". For example, 1,1.5,2,2.5,3.0, ... are "neat", 2.71 ,3.82, 4.93,
6.04, ... are not "neat".

The default bar heights are in the so called "density scale" w ith height
= (M/N)/W, where M is the number of values in a bar with width W a nd N
is the number of non-MISSING values in x. This choice makes th e total
area of the bars = 1. You can use keywords ’freq’ and ’relfreq’ (see
below) to get other bar heights.

A value x is included in bar i when L[i] < x <= R[i], where L and R a re
vectors of the left and right edges of the bars.

hist(x, nbars, leftendin:T) does the same, except a value x i s included
in bar i when L[i] <= x < R[i]. ’leftendin:T’ can be used with an y
variant of hist() arguments and other keywords.

628 CHAPTER 5. GRAPHICS MACROS HELP FILE

hist(x, nbars, freq:T) and hist(x, nbars, relfreq:T) do the same except
that bar heights are frequencies (M) or relative frequencie s (M/N) with
no adjustment for bar width. ’freq:T’ and ’relfreq:T’ can be used with
any variant of hist() arguments.

hist(x [,keyword phrases]) does the same using floor(log2(N)) + 1 bars.

hist(x, vector(anchor, width) [,keyword phrases]) does th e same, except
the edges of the bars are of the form anchor + j * width, with the lowest
and highest bar edges chosen to include all the data.

hist(x, Edges [,keyword phrases]) draws a histogram whose b ar boundaries
are the elements of REAL vector Edges with length(Edges) > 2 a nd
satisfying Edges[i] < Edges[i+1]. The number of bars is nbar s =
length(Edges) - 1. A warning message is printed when bar widt hs are
not all equal and ’relfreq:T’ or ’freq:T’ is an argument.

Keyword outsideok
It is normally an error when extreme data values are outside t he bars
defined by Edges. Without ’leftendin:T’ this occurs when mi n(x) <=
Edges[1] or max(x) > Edges[nbars+1]. With ’leftendin:T’, t his occurs
when min(x) < Edges[1] or max(x) >= Edges[nbars+1].

hist(x, Edges, outsideok:T) does the same, except it is not a n error
when some extreme values are outside the bars defined by Edge s. When
values are outside, a warning message is printed.

All of the usual plotting related keywords, including ’dumb ’, ’xlab’,
’ylab’, and ’title’, may be used with hist(). See also topics ’graphs’,
’graph_keys’, ’graph_borders’ and ’graph_files’.

Keyword save
result <- hist(x [, bar info] [,hist keywords] [,graphics ke ywords],
save:T) returns structure(x:xvals, y:yvals, line:T [,gra phics keywords])
instead of drawing the histogram. REAL vectors xvals and yva ls are
such that lineplot(xvals,yvals) draws the histogram. You c an force the
histogram to be drawn by also including ’draw:T’ as an argume nt.

Keyword keys
An alternate way to specify keyword values is to create a stru cture
keyValues of keyword values and use ’keys:keyValues’ as the only keyword
phrase argument. For example

Cmd> keyvals <- structure(xlab:"Bone length",relfreq:T, \
title:"Bone histogram", ylab:"Relative frequency",save :T)

Cmd> stuff <- hist(bones,vector(0,.25),keys:keyvals)

does the same as
Cmd> stuff <- hist(bones,vector(0,.25),xlab:"Bone lengt h",relfreq:T,\

title:"Bone histogram", ylab:"Relative frequency",save :T)

Cross reference

5.10. NEWS 629

See also topic panelhist().

5.10 news

Usage:

Keywords: general

011109 Fixed bugs in contour() and _Follow() which caused co ntour()
to fail to find certain contours.

010327 Fixed bug in boxplot5num() and made the value of optio n
’excludeM’ the default for keyword ’excludeM’.

Added keyword phrase ’printname:F’ to all invocations of ge tmacros.

010216 Enhancements to piechart: p can be row or column vecto r; change
in default labels

010125 New keyword phrases on macro boxplot5num():
names:Names provides labels for boxplots to be put in margin
keep:T returns 5 number summaries after drawing boxplots.
excludeM:F includes median in upper and lower halves when co mputing

quartiles.

5.11 panelhist()

Usage:
panelhist(x, edges or nbars, pos:k or pos:vector(r,c), hst rips:h,\

vstrips:v [,label:lab] [,hist keyword phrases]\
[,graphics keyword phrases]), REAL vectors x and edges, pos itive
integers k, r, c, h and v, CHARACTER scalar lab

Keywords: panel graphs, bar graphs

panelhist(x, nbars, pos:position, hstrips:h, vstrips:v) draws a
histogram with nbars equal width bars in a pane of an h by v pane l
graph, an rectangular array of small graphs, where h and v are positive
integers. See topic ’panel_graphs’.

When position is of the form vector(r, c) where 1 <= r <= h and 1 < = c
<= v are integers, the histogram is drawn in row r and column c. When
position = n, with positive integer n <= h * v, the histogram is drawn in
pane n, counting across rows starting in row 1.

panelhist(x, vector(anchor,w), pos:position, hstrips:h , vstrips:v
[,label:lab]) does the same, except the bars all have width w , with the

630 CHAPTER 5. GRAPHICS MACROS HELP FILE

edges all of the form anchor + j * w, where j is an integer. For
example, vector(-.5, 1) specifies unit width bars centered on integers.

panelhist(x, edges, pos:position, hstrips:h, vstrips:v [,label:lab])
does the same, except the edges of the bars are taken from the e lements
of REAL vector edges. They must be in strictly increasing ord er.

With all usages, you can include keyword phrases ’freq:T’, ’ relfreq:T’,
’leftendin:T’ and ’outsideok:T’ as used with macro hist(). See topic
hist()

Keyword label
With all usages you can include ’label:lab’, where lab is a CH ARACTER
scalar. After the histogram is drawn you then use the mouse to specify
a place where lab should be added to the graph.

Graphics keywords
You can use graphics keywords ’window’, ’show’, ’title’, ’x lab’, ’ylab’,
’add’, ’yaxis’, ’xmin’, ’xmax’, ymin’, and ’ymax’ plus keyw ords having
to do with files. See topic ’graph_keys’. With show:T, label :lab is
ignored.

You should use ’add:T’ when drawing in a pane in an existing pa nel
graph.

You cannot use graphics keywords ’lines’, ’linetype’, ’imp ulse’,
’thickness’, ’xaxis’, ’logx’, and ’logy’ and keywords havi ng to do with
tick marks.

Example:
Cmd> irisdata <- matread("macanova.dat","irisdata") #Fi sher data

Cmd> # column 1 is variety number; columsn 2 - 5 are data

Cmd> colnames <- vector("SepLen","SepWid","PetLen","Pe tWid")

Cmd> plotmatrix(irisdata[,-1],name:"Iris Data",diagla bs:F, show:F,\
symbols:vector("\21","\22","\23")[irisdata[,1]], lab els:colnames)

Cmd> for(i,1,4) { # add 16 bar histograms to diagonal
panelhist(irisdata[,i+1],16,pos:rep(i,2),hstrips:4, vstrips:4,\
add:T,show:i==4) }

This uses plotmatrix() to create a scatter plot matrix of the Fisher
iris data, and then adds histograms of each variable to the di agonal,
displaying the plot only when the last histogram has been dra wn.

Cross references
See also plotmatrix(), panelplot(), hist(), ’graph_keys’ .

5.12. PANELPLOT() 631

5.12 panelplot()

Usage:
panelplot(x,y, pos:k or pos:vector(i,j), hstrips:h, vstr ips:v,\

[label:structure(labx,laby)] [,graphics keyword phrase s]), k, i, j,
h, v > 0 integers, labx, laby CHARACTER scalars

panelplot(x,y, keys:structure(keyword phrases)

Keywords: panel graphs

Usage
panelplot(x,y,pos:position,hstrips:h,vstrips:v [,gra phics keywords])
plots REAL vector y against REAL vector x in a pane of a "panel g raph",
an h by v array of small graphs, where h and v are positive integ ers.
See topic ’panel_graphs’ for information about such graphs .

When position is of the form vector(r, c) where 1 <= r <= h and 1 < = c
<= v are integers, the graph is drawn in the pane in row (horizo ntal
strip) r and column (vertical strip) c. When position = n, wit h
integer n satisfying 1 <= n <= h * v, the graph is drawn in pane n,
counting across rows starting in row 1 and row 1.

When nrows(x) <= 2, x is "expanded" to a vector of equally spac ed
spaced as happens with plot(), lineplot() and most other gra phing
commands. Otherwise, nrows(x) = nrows(y) is required.

panelplot() differs from plot() and most other other graphi c commands,
in that y can have only one column. Another difference is that the
graph has no tick marks or other information about actual val ues except
possibly the x- or y-axis.

Graphics keywords
Legal graphics keywords are ’symbols’, ’add’, ’window’, ’s how’,
’title’, ’xlab’, ’ylab’, ’xmin’, ’xmax’, ’ymin’, ’ymax’, ’ xaxis’,
’yaxis’, ’lines’, ’linetype’, ’impulses’ and keywords hav ing to do with
files. ’title’, ’xlab’ and ’ylab’ apply to the panel graph as a whole,
not to the pane being drawn.

You should use ’add:T’ when drawing a pane in an existing pane l graph.

If you use ’symbols’, you should probably choose small symbo ls, ASCII
codes 7 and 9 - 24 ("\7" and "\11" - "\30" or "\07" and "\x09\ -
"\x18". The default is symbols:"\7" (dot) except with lines :T, when
the default is "".

You may not use graphics keywords ’logx’, ’logy’ or any keywo rds
having to do with tick marks.

Keyword labels
panelplot(x,y,pos:position,hstrips:h,vstrips:v,labe ls:vector(labsx,
labsy) [,graphics keywords]), where labsx and labsy are CHA RACTER
scalars, allows you interactively to position a label of the form
paste(labsy,"vs",labsx) on the graph. ’labels’ is ignored with keyword
phrase ’nolabels:F’ or graphics keyword phrase ’show:F’.

632 CHAPTER 5. GRAPHICS MACROS HELP FILE

Example:
Cmd> irisdata <- matread("macanova.dat","irisdata") #Fi sher data

Cmd> # col 1 is variety number, 2 - 5 are data

Cmd> colnames <- vector("SepLen","SepWid","PetLen","Pe tWid")

Cmd> first <- T;for (i,1,4){
for (j,1,4) {

if (i != j) {
panelplot(y[,i],y[,j], pos:vector(i,j),hstrips:4,vst rips:4,\

title:"Scatter plot matrix of Fisher Iris data",\
symbols:vector("\21","\22","\23")[irisdata[,1]],\
show:F,add:!first)

first <- F
}

}
}

Cmd> showplot()

This plots every column of the Fisher iris data against every other in
a 4 by 4 panel graph similar to that produced by plotmatrix().

Cross references
See also topics plotmatrix(), ’graphics’, ’graph_keys’, p lot(),
lineplot(), chplot().

5.13 panel graphs

Usage:
panelplot(x,y,...) draw a plot in a pane of a panel graph
panelhist(x,...) draw a histogram in a pane of a panel graph
plotmatrix(x [,y], ...) draw a panel graph containing a scat ter plot

matrix
plotpanes(x, y, ...) draw a panel graph containing plots of c olumns

of y against the corresponding column of x.

Keywords: panel graphs

Description
A panel graph is a rectagular array of "panes", each of which m ay
contain a small graph. The small graphs lack tick marks and an y
information as to the actual values plotted other than axes (x = 0
and/or y = 0 lines).

A panel graph consists of h horizontal strips (rows) and v ver tical
strips (columns).

A panel graph is scaled so the left edge is the line x = 0, the bot tom

5.14. PIECHART() 633

edge is the line y = 0, the right edge is the line x = v and the top
edge is the line y = h.

x and y values for each plot are transformed by
x -> (x - (max(x)+min(x))/2)/(1.05 * (max(x)-min(x)))

and
y -> (y - (max(y)+min(y))/2)/(1.05 * (max(y)-min(y)))

and then centered in a pane. This leaves a little space betwee n
the plotted points and the edges of the pane.

Panel graph macos
There are several macros that draw panel graphs.

panelplot(x,y,...) draw a plot in a pane of a panel graph
panelhist(x,...) draw a histogram in a pane of a panel graph
plotmatrix(x [,y], ...) draw a panel graph containing a scat ter plot

matrix
plotpanes(x, y, ...) draw a panel graph containing plots of e ach

column of y against the corresponding column
of x.

Each has its own help entry.

Keywords hstrips and vstrips
Keyword phrase ’hstrips:h,vstrips:v’ are required on pane lhist() and
panelplot() and are optional on plotmatrix() and plotpanes ().

Graphics keywords
These macros recognize most of the usual graphics keywords s uch as
’title’, ’xlab’, ’show’ and ’window’. Exceptions include ’ logx’,
’logy’ and any keywords having to do with tickmarks.

When using panelplot() or panelhist() to add a plot to an exis ting panel
graph, you must use ’add:T’.

When graphics keywords ’xmin’, ’ymin’, ’xmin’ or ’xmax’ are used as
arguments to macros drawing panel graphs, their values repl ace the
extremes of x and/or y in scaling data and values outside the l imits
are omitted.

Cross references
See also plotmatrix(), plotpanes(), panelhist() and panel plot().

5.14 piechart()

Usage:
piechart(p [,start:p0] [,labels:labs] [,rlab:r1 [, rval: r2]\

[, xwidth:w] [,graphics keyword phrases]), REAL vector p wi th p[i] >=
0, p0 >= 0, REAL scalar, CHARACTER vector labs, REAL scalars r 1 > 0,
r2 > 0, w > 0

Keywords: distribution graphs

634 CHAPTER 5. GRAPHICS MACROS HELP FILE

Usage
piechart(p) draws a pie chart of data in REAL vector p which sh ould
have no MISSING values and satisfy min(p) >= 0. The chart is dr awn in
a circle with radius 1.

Usually p is a vector of proportions (sum(p) = 1) or percentag es
(sum(p) = 100), but this is not required. What is actually dra wn is a
pie chart with sector angles computed from the proportions p 1 =
p/sum(p). The angle defining sector I of the pie chart, going
clockwise around the circle is 360 * p1[I] degrees. By default, the
starting edge of sector 1 is vertical. Each sector is is label led by
sector number, from 1 to nrows(p).

There several optional keywords.

Optional Keywords
start

piechart(p, start:p0 [,other keywords]) where p0 is a REAL s calar
draws a pie chart with the starting sector edge located p0 of a cycle
(abs(p0) <= 1) or p0 percent of a cycle (abs(p0) > 1) around the
circle from the vertical. For instance, with p0 = .25 or 25, th e
starting sector edge is 90 degrees clockwise from the vertic al.
’start’ can be used with other keywords.

labels
piechart(p, labels:labs [,other keywords]), where labs is a CHARACTER
vector with length(labs) = length(p), labels sector I with l abs[I].
You can suppress sector labelling with labels:"".

rlab
piechart(p, rlab:r1 [,labels:labs] [,other keywords]) pu ts sector
labels at radius r1 > 0 from the pie center. Usually r1 < 1. The
default radius is .9.

rval
piechart(p, rval:r2 [,other keywords]), prints p[I] at rad ius r2 > 0
in sector I, I = 1, ..., length(p). Usually r2 < 1. This allows y ou
to label sectors both with a descriptive tag and the value of t he
data.

xwidth
piechart(p, xwidth:w [other keywords]) includes ’xmin:-w /2,xmax:w/2’
in the argument list of the plotting commands that draw the pi e
chart. You need to use ’xwidth’ only when the plot without it l ooks
like an ellipse instead of a circle. The default is ’xwidth:3 .2’.

You can also use many of the usual graphics keywords like ’xla b’,
’ylab’, ’title’ and ’window’. See topic ’graph_keys’.

Adding labels
If you don’t like the default labeling, you may be able to use M ouse()
and addstrings() to position labels more to your liking. See Mouse()
and addstrings().

5.15. PLOTMATRIX() 635

5.15 plotmatrix()

Usage:
plotmatrix(x [, symbols:syms] [,bottomup:T] [,upper:T or lower:T]\

[,hstrip:h] [,vstrip:v] [,labels:labsx or nolabels:T] \
[,diaglabs:F] [,name:xname] [,graphics keyword phrases]),
x REAL matrix, ncols(x) > 1, CHARACTER scalar or vector labsx ,
CHARACTER scalar xname

plotmatrix(x, y [, symbols:syms] [,bottomup:T] [,hstrip: h] [,vstrip:v]\
[,labels:structure(labsx,labsy) or nolabels:T]\
[,names:vector(xname,yname)] [,graphics keyword phrase s]), x, y REAL
matrices with same number of rows, labsx and labsx CHARACTER scalars
or vectors, xname and yname CHARACTER scalars

For both usages, h > 0, v > 0 are integers, syms is a CHARACTER or
non-negative integer vector

Keywords: multivariate graphs, panel graphs

Usage
plotmatrix(x) makes scatter plots of every column of REAL ma trix x
against every other column in the panes of a panel graph (see t opic
’panel_graphs’). When x has nx columns, the plot is a nx by nx a rray
of panes, with no graphs on the diagonals.

When x has labels (see topic ’labels’), the column labels are printed
in the diagonal boxes. Otherwise, "X1", "X2",... are used as labels.
Column numbers increase down the y axis and across the x axis.

Keywords diaglabels, upper and lower
plotmatrix(x, diaglabels:F) does the same except the label s are in
the margins rather than the diagonals.

plotmatrix(x, upper:T) and plotmatrix(x lower:T) do the sa me except
only the plots in the upper or lower triangle of the display ar e drawn
in a nx-1 by nx array of plots. Labels are put in the margins. Yo u
can’t use both ’upper:T’ and ’lower:T’.

Two matrix arguments
plotmatrix(x,y), where x and y are REAL matrices with the sam e number
of rows and nx and ny columns, makes a similar plot of every col umn of
y against every column of x in a ny by nx array of small plots.
Column labels of x and/or y (default "X1","X2",... and "Y1", "Y2",...)
are printed in the margins.

plotmatrix(x,y) differs from plotpanes(x,y) in that the la tter plots
column j of y only against column j of x, and not all against all
columns of x.

Keyword symbols
plotmatrix(x [,y], symbols:syms ...), where syms is a CHARA CTER scalar

636 CHAPTER 5. GRAPHICS MACROS HELP FILE

or vector or an integer scalar or vector with values between 0 and 999
uses ’syms’ as plotting symbols similarly to chplot(). The d efault
plotting symbols are "\7", the code for a dot. Small plotting symbols
(ascii codes 7 and 17 - 24, that is, "\7’ and "\21" - "\30") are
recommended. ’symbols:syms’ can be used with any other keyw ords.

Keyword bottomup
plotmatrix(x [,y], bottomup:T ...) does the same, except th at column
numbers increase up the y axis. ’bottomup:T’ can be used with any
other keywords.

Keywords labels and nolabels
plotmatrix(x [,y], labels:labs ...) does the same, except c olumn
labels are taken from labs. With just x, labs should be a CHARA CTER
scalar or vector labsx. With x and y, labs should be structure (labsx,
labsy), where labsx and labsy are CHARACTER scalars or vecto rs.
When labsx or labsy are scalars, they are expanded by appendi ng "1",
"2", When they are vectors, their length must match the n umber
of columns of x and y.

plotmatrix(x [,y], nolabels:T ...) does the same except no v ariable
labels are added to the plot.

plotmatrix(x [,y], name:Name ...), does the same, except th at
CHARACTER variable Name is used in constructing a title and a xis
labels. With just x, Name should a scalar; with x and y, Name sh ould
be a vector of length 2.

Keywords hstrip and vstrip
plotmatrix(x [,y], hstrip:h, vstrip:v ...) does the same, e xcept that
the overall array of small plots will be h by v, where h and v are
positive integers. It is an error if h or v is too small to allow all
plots.

Graphics keywords
You can use many of the usual graphics keywords phrases with
plotmatrix(), including ’symbols’, ’window’, ’show’, ’ti tle’, ’xlab’,
’ylab’, ’xaxis’, ’yaxis’, ’lines’, ’linetype’ and keyword s related to
files. See topic ’graph_keys’. Values for ’xmin’, ’xmax’, ’ ymin’ and
’ymax’ may be vectors with lengths matching the appropriate number of
columns.

You cannot use keywords ’add’, ’logx’, ’logy’, ’impulses’, and keywords
related to tick marks.

Example:
Cmd> irisdata <- matread("macanova.dat","irisdata") #Fi sher data

Cmd> # col 1 is variety number, 2 - 5 are data

Cmd> colnames <- vector("SepLen","SepWid","PetLen","Pe tWid")

Cmd> plotmatrix(irisdata[,-1],lower:T,name:"Iris Data ",\

5.16. PLOTPANES() 637

symbols:vector("\21","\22","\23")[irisdata[,1]], lab els:colnames)

Cmd> plotmatrix(irisdata[,run(2,3)],irisdata[,run(4, 5)],bottomup:T,\
symbols:vector("\21","\22","\23")[irisdata[,1]],\
names:vector("Iris Cols 1,2","Iris Cols 3,4"),\
labels:structure(colnames[run(2)],colnames[-run(2)]))

Cross references
See also topics ’graphs’, plot(), lineplot(), chplot().

5.16 plotpanes()

Usage:
plotpanes(x,y [,addlabels:T, labels:structure(labsx,l absy)]\

[,names:vector(xname,yname)] [,hstrips:h, vstrips:v]\
[,graphics keyword phrases]), x and y REAL vectors or matric es,
labsx, labsy CHARACTER scalars or vectors, xname,yname CHA RACTER
scalars, h > 0, v > 0 integers.

Keywords: panel graphs, line graphs

Usage
plotpanes(x, y) draws a panel graph (see topic ’panel_graph s’) whose
panes contain reduced size plots of each column of REAL vecto r or
matrix y against the corresponding column of REAL vector or m atrix x.
If neither x and y are vectors, ncols(x) = ncols(y) is require d. If
one, say x, is a vector and the other (y) is a matrix, the each co lumn
of y is plotted against x.

The plots are arranged in a h by v array of panes where either h = v or
h = v - 1.

Each pane is drawn using macro panelplot().

plotpanes(x,y) differs from plotmatrix(x,y) in that the pl otpanes()
plots column j of y only against column j of x, and not all again st all
columns of x.

Graphics keywords
You can use most of the standard standard graphics keywords e xcept
’add’, ’logx’, ’logy’ and any keywords having to do with tick marks.
In particular, you can use ’symbols’, ’window’, ’show’, ’ti tle’,
’xlab’, ’ylab’, ’xmin’, ’xmax’, ’ymin’, ’ymax’, ’xaxis’, ’ yaxis’,
’lines’, ’linetype’, ’impulses’ and keywords having to do w ith files.
See topic ’graph_keys’.

The default value of ’symbols’ is "\007" = "\x07" (dot), exce pt with
lines:T, when no symbols are drawn. Small characters, code 9 ("\011"
or "\x09") through 24 ("\030" or "\x18") are recommended.

There are no labelled ticks on the small graphs. If either or b oth of

638 CHAPTER 5. GRAPHICS MACROS HELP FILE

the x-axis or y-axis are within the limits of the data, they ar e drawn
unless suppressed by xaxis:F or yaxis:F.

Equally spaced x values
If nrows(x) <= 2 and differs from nrows(y), each plot has equa lly
spaced x-values starting with x[1,] and incrementing by x[2 ,] (by 1 if
nrows(x) = 1), just as happens with standard plotting comman ds such as
plot(), lineplot() and chplot().

Keywords hstrips and vstrips
plotpanes(x,y,hstrips:h, vstrips:v), h > 0, v > 0 integers, does the
same except the array of plots is h by v. h and v must satisfy h * v >=
max(ncols(x),ncols(y)). If just one of ’hstrips’ and ’vstr ips’ is
provided, the value for the other is selected large enough to hold all
plots. ’hstrips’ and ’vstrips’ can be used with any other key words.

Keyword names
plotpanes(x, y, names:vector(xname,yname)), where xname and yname are
CHARACTER scalars, does the same, with xname and yname used t o generate
the graph title and labels for the x and y axes. ’names’ can be u sed
with any other keywords. If you use keywords ’title’, ’xlab’ or
’ylab’, their values take precedence over labels generated from xname
and yname.

Keywords labels and addlabels
plotpanes(x, y, labels:structure(labsx, labsy)), where l absx and labsy
are CHARACTER scalars or vectors, enables interactive addi tion of
labels to each plot. If labsx or labsy is a vector, it must have
length max(ncols(x), ncols(y)). If either is a scalar, it is expanded
to a vector by appending "1", "2", The labels generated f or
positioning using Mouse() are of the form paste(labsy[i]," vs",labsx[i]).
Thus, labs(structure("X","Y")) generates labels "Y1 vs X1 ", "Y2 vs X2",
... .

plotpanes(x,y,addlabels:T) is another way to specify labe ls. Column
labels of x and/or y, if they exist, are used for labsx and labs y.
When column labels do not exist, labsx and/or labsy are assum ed to be
"X" and "Y", repectively. With ’addlabels:F’, the value of ’ labels’,
if any, is ignored.

With ’show:F’ the values of ’labels’ and ’addlabels’, if any , are
ignored.

Keywords xmin, xmax, ymin and ymax
The values of any of ’xmin’, ’xmax’, ’ymin’ or ’ymax’ can eith er be
scalars to be used in every small graph, or vectors with lengt h
matching ncols(x) or ncols(y). As usual, MISSING means the e xtreme is
to be determined from the data

Example:
Cmd> irisdata <- matread("macanova.dat","irisdata") #Fi sher data

Cmd> # col 1 is variety number, 2 - 5 are data

5.17. PLOTRESIDS() 639

Cmd> colnames <- vector("SepLen","SepWid","PetLen","Pe tWid")

Cmd> plotpanes(1,irisdata[,-1], names:vector("Index", "Iris data"),\
labels:structure("Index",colnames),\
symbols:vector("\21","\22","\23")[irisdata[,1]])

This creates a 2 by 2 panel plot containing plots of all variab les
against the observation number.

Cross references
See also topics plotmatrix(), panelplot(), panelhist(), ’ graphs’,
’graph_keys’, plot(), lineplot(), chplot().

5.17 plotresids()

Usage:
plotresids(type,plots[plot options]) type one of "raw"," scaled",
"standardized", or "studentized", plots one or more of "yha t",
"rankits","index".

Keywords: Residual graphs

plotresids does residual plots with an alternate front end f rom
that provided by resvsrankits, resvsyhat, resvsindex.

There are two required arguments. The first is the residual t ype
as a character scalar and can be one of "raw", "scaled",
"standardized", or "studentized". Scaled residuals have b een divided
by the root MSE, standardized are divided by ((1-HII)MSE)ˆ. 5, and
studentized are outlier-t style.

The second argument is a character scalar or vector that tell s which
plots to make. The components can be one or more of "yhat",
"rankits", or "index" for plotting versus fitted values, no rmal scores,
or case numbers. Finally, you can add plotting keywords.

5.18 rowplot()

Usage:
rowplot(x [, graphics keyword phrases]), x a REAL matrix

Keywords: line graphs, interaction graphs

Usage
rowplot(x) makes an "interaction" plot of the data in the mat rix x. The
plotting positions are the column numbers and the values in x . Points
within each row are joined by lines. Any keywords useable in c hplot may

640 CHAPTER 5. GRAPHICS MACROS HELP FILE

follow x. Rowplot is implemented as a pre-defined macro.

If option ’dumbplot’ has been set False (see options), the pl ot will be
a low resolution plot unless ’dumb:F’ is an argument.

You can use all the usual graphics keywords, including ’titl e’, ’xlab’,
’ylab’, and ’file’. See topics ’graphs’, ’graph_keys’, ’gr aph_border’
and ’graph_ticks’.

Example:
Cmd> rowplot(run(20)ˆ(.2 * run(5)’),\

title:"Xˆvector(.2, Xˆ.4, Xˆ.6, Xˆ.8, X)’")

Cross reference
See also topic colplot().

5.19 sampcdf()

Usage:
sampcdf(x [,quiet:T, keep:T, draw:T] [,graphics keywords]), x REAL

vector with no MISSING elements

Keywords: distribution graphs, line graphs

sampcdf(x [,graphics keywords]), where x is a REAL vector, d raws the
sample cumulative distribution function (CDF) of x. The gra phics
keywords may include ’xlab’, ’ylab’, ’title’, ’linetype’, ’show’ and
’keep’. See topic ’graph_keys’. Any MISSING elements are re moved

sampcdf(x, quiet:T [,graphics keywords]) does the same exc ept any
warning messages are suppressed.

sampcdf(x, save:T [,graphics keywords]) doesn’t draw the C DF. Instead
it returns as value

structure(x:xvals,y:yvals [,graphics keywords],lines: T),
where xvals and yvals are REAL vectors defining the lines mak ing up the
CDF. Note that any graphics keyword phrases that are argumen ts are
components of the structure.

sampcdf(x, save:T, draw:T [,graphics keywords]) both draw s the CDF and
returns a structure.

Example:
Both

Cmd> sampcdf(x, xlab:"Bunny weight",\
title:"Sample CDF of Bunny Weights", wind:1)

and
Cmd> GRAPHWINDOWS[1] <- sampcdf(x, save:T, xlab:"Bunny we ight",\

title:"Sample CDF of Bunny Weights")

will draw a sample CDF in graphics window 1.

5.20. VBOXPLOT() 641

5.20 vboxplot()

Usage:
vboxplot(x1,x2,...,xk [, graphics keyword phrases]), arg uments REAL

vectors
vboxplot(Struc, [, graphics keyword phrases]), Struc a str ucture with

REAL vector components

Keywords: distribution graphs

Usage
vboxplot(var1, var2, ... , vark [,graphics keyword phrases]) produces
vertically oriented parallel Tukey boxplots for the vector s var1 through
vark. It is identical with boxplot(var1, var2, ..., vark, ve rtical:T
[,graphics keyword phrases]).

vboxplot(Struc [,graphics keyword phrases]) produces ver tically oriented
parallel box plots for the components of structure Struc, al l of which
must be vectors. It is identical with boxplot(Struct, verti cal:T
[,graphics keyword phrases]).

You can use all the graphics keyword phrases phrases that box plot()
recognizes.

For more information including how to use split() to create a structure
argument, see boxplot().

642 CHAPTER 5. GRAPHICS MACROS HELP FILE

Chapter 6

Mathematical Macros Help File

This Chapter contains help for the set of macros that do optimization, special functions,
series manipulations, and other mathematical operations that are distributed with MacAnova
in the file Math.mac.txt. The material here is a reformatting of the help in file Math.mac.txt.

6.1 bfs()

Usage:
bfs(x0, fun [,params:params] [, goldsteps:ngold] [, maxit :maxiter]\

[,minit:miniter] [,criteria:vector(nsigx,nsigfun,dgr ad)]\
[printwhen:d1] [,recordwhen:d2]), REAL vector x0, macro
fun(x,i [,params]), integers ngold > 0, maxiter >= 0, minite r > 0,
nsigx, nsigfun, d1 >= 0, d2 >= 0, dgrad REAL scalar

Keywords: minimize, quasi-newton, variable metric

Introduction
Macro bfs() uses the Broyden-Fletcher-Shanno variable met ric algorithm
to minimize a function iteratively. A golden mean line searc h is made
at each step. See Dahlquist and Bjorck, Numerical methods, P rentice
Hall, 1974, p. 443.

bfs() is a "front-end" to macro minimizer() which it calls wi th
all the arguments to bfs() plus argument ’method:"bfs"’.

Usage
result <- bfs(x0, fun [, params] [,optional keywords]) comp utes the
minimum of a real function F(x1,x2,...,xk) starting the Bro yden-
Fletcher-Shanno iteration at x = x0 = vector(x01,x02,...,x 0k),
a REAL vector with no MISSING elements.

See minimizer() for details on the arguments, keywords and t he value.

Cross references
See also mnimizer(), dfp(), broyden(), and neldermead()

643

644 CHAPTER 6. MATHEMATICAL MACROS HELP FILE

6.2 binom()

Usage:
binom(n,k), REAL n and k with non negative elements. If both a re non-

scalars, they must have the same dimensions

Keywords: binomial coefficients, integers

Usage
binom(n,k), where n >= 0 and k >= 0 are REAL scalars with n >= k re turns
a binomial coefficient. n and k need not be integers, but when they are
binom(n,k) returns n!/(k! * (n-k)!) as an exact integer. Otherwise it
returns gamma(n+1)/(gamma(k+1) * gamma(n-k+1)), where gamma(x) is the
Gamma function.

When just one of n and k is a scalar, binom(n,k) returns a REAL v ector,
matrix or array consisting of binomial coefficients comput ed from the
scalar and each of the elements of the other argument.

When neither n or k is a scalar, both must have exactly the same
dimensions and the result is an array with the same dimesions
consisting of of binomial coefficients computed from corre sponding
elements of n and k.

Examples:
Cmd> binom(4,run(0,4)) # vector(binom(4,0),...,binom(4 ,4))
(1) 1 4 6 4 1

Cmd> binom(run(3,7),3) # vector(binom(3,3),...,binom(7 ,3))
(1) 1 4 10 20 35

Cmd> binom(run(3,7),run(0,4)) # vector(binom(3,0),..., binom(7,4))
(1) 1 4 10 20 35

Cross reference
See also lgamma().

6.3 blockdmat()

Usage:
blockdmat(A1,A2,...,Ak), A1, A2, ... matrices, all of the s ame type,

REAL, LOGICAL or CHARACTER

Keywords: matrices

Usage
B <- blockdmat(A1,A2,...,Ak), where A1, A2, ..., Ak are matr ices,
creates a block diagonal matrix B with diagonal blocks A1, .. ., Ak. B
will have the same type as A1, ..., Ak which must all have the sa me
type. Elements of B outside the blocks are 0 , F or "", dependin g on
the type.

6.4. BROYDEN() 645

If Aj is mj by nj, j = 1,...,k, then B is m1 + m2 + ... + mk by n1 + n2
+ ... + nk.

Example: [1 1 1 0 0]
[1 1 1] [2 2] [1 1 1 0 0]

When A1 = [1 1 1], A2 = [2,2], then blockdmat(A1, A2) = [0 0 0 2 2]
[2,2] [0 0 0 2 2]

[0 0 0 2 2]

Cross references
See also dmat(), diag().

6.4 broyden()

Usage:
broyden(x0, fun [,params:params] [, maxit:maxiter] [,min it:miniter]\

[,criteria:vector(nsigx,nsigfun,dgrad)] [printwhen:d 1]\
[,recordwhen:d2]), REAL vector x0, macro fun(x,i [,params]), integers
ngold > 0, maxiter >= 0, miniter > 0, nsigx, nsigfun, d1 >= 0, d2 >=
0, dgrad REAL scalar

Keywords: minimize, quasi-newton, variable metric

Introduction
Macro broyden() minimizes a function iteratively using a va riable metric
algorithm due to Broyden. It has no linear search step. See Da hlquist
and Bjorck, Numerical methods, Prentice Hall, 1974, p. 443.

broyden() is a "front-end" to macro minimizer() which it cal ls with
all the arguments to minimizer() plus argument ’method:"br oyden"’.

Usage
result <- broyden(x0, fun [, params] [,optional keywords]) computes the
minimum of a real function F(x1,x2,...,xk) starting the Bro yden
iteration at x = x0 = vector(x01,x02,...,x0k), a REAL vector with no
MISSING elements.

See minimizer() for details on the arguments, keywords and t he value.
Keyword ’golden’ is ignored by broyden().

Cross references
See also minimizer() bfs(), dfp(), and neldermead().

6.5 cdiag()

Usage:
d <- cdiag(a), REAL matrix a representing the fully complex f orm of a

square complex matrix A

646 CHAPTER 6. MATHEMATICAL MACROS HELP FILE

Keywords: complex matrices, matrices

Usage
d <- cdiag(a), where a is a REAL matrix representing a square c omplex
matrix A in fully complex form.

d is a nrows(a) by 2 REAL matrix representing diag(A) in fully complex
form.

It is an error for A to not be square, that is for ncols(a) != 2 * nrows(a)
and ncols(a) != 2 * nrows(a) - 1.

Cross references
See also csubscr(), diag(), ’complex’.

6.6 ceigen()

Usage:
eigs <- ceigen(a), REAL matrix a representing the fully comp lex form of

a complex Hermitian matrix A (A’ = conj(A)). Result is
structure(values:vals, vectors:vecs)

Keywords: complex matrices, matrices

Usage
result <- ceigen(a) computes the real eigenvalues and compl ex eigen-
vectors of a complex matrix A with Hermitian symmetry (A’ = co nj(A)),
coded in fully complex form in REAL matrix a with no MISSING el ements.

result is structure(values:V, vectors:U). V is a length n ve ctor of
eigen- values where n = nrows(a). U is a n by 2 * n REAL matrix; columns
2* i-1 and 2 * i contain the real and imaginary parts of the i-th complex
eigenvector of A.

Caution
When A has duplicate eigenvalues, some of the eigenvectors c omputed may
be linearly dependent.

Example:
Cmd> a <- cmplx(matrix(vector(8,2,2,1),2),matrix(vecto r(0,-3,3,0),2))

Cmd> a # 2 by 2 Hermitian symmetric complex matrix
(1,1) 8 0 2 3
(2,1) 2 -3 1 0

Cmd> eigs <- ceigen(a)

Cmd> eigs
component: values
(1) 9.5249 -0.52494
component: vectors

6.7. CHEBCOEFS() 647

(1,1) -0.70598 -0.59149 -0.31138 -0.23405
(2,1) -0.37378 0.10967 0.86883 -0.30561

Cmd> cdivc(cmatmultc(a,eigs$vectors),eigs$vectors)
(1,1) 9.5249 6.4749e-16 -0.52494 -2.4739e-16
(2,1) 9.5249 -4.0029e-16 -0.52494 2.2808e-16

Cross references
See also cdivc(), cmatmultc(), eigen(), ’complex’.

6.7 chebcoefs()

Usage:
chebcoefs(vector(a0,a1,...,an)), a0, a1, ..., an non MISS ING REAL

scalars

Keywords: expansions, power series, orthogonal polynomials

Usage
Suppose Pn(x) = a0+a1 * x+ ... + an * xˆn is a polynomial in x of degree
n. Then Pn(x) has a unique expansion, Pn(x) = b0 + b1 * T1(x) + ... +
bn* Tn(x), where Tj(x) = the Chebyshev polynomial of degree j def ined
for -1 <= x <= 1 as Tj(x) = cos(j * acos(x)).

chebcoefs(vector(a0,a1,...,an)), where a0, a1, ..., an ar e non MISSING
REAL scalars returns vector(b0,b1,...,bn), where the b’s a re the
coefficients in the Chebyshev expansion.

Cross reference
See also topic invchebcoefs().

6.8 cjtranspose()

Usage:
b <- cjtranspose(a), REAL matrix a representing a complex ma trix A in

fully complex form. b is the transpose conj(A)’ in fully comp lex
form.

Keywords: complex matrices, matrices

Usage
b <- cjtranspose(a) is equivalent to b <- ctranspose(cconj(a)) and
computes the transpose of the complex conjugate of complex m atrix a in
fully complex form.

Cross references
See also ctranspose(), transpose(), cconj(), ’complex’.

648 CHAPTER 6. MATHEMATICAL MACROS HELP FILE

6.9 cmatmultc()

Usage:
c <- cmatmultc(a, b), a and b REAL matrices representing comp lex

matrices A and B in fully complex form, with nrows(b) =
floor((ncols(a) + 1)/2)

c <- cmatmultc(a, b, "%c%"), requires nrows(a) = nrows(b)
c <- cmatmultc(a, b, "%C%"), requires floor(ncols(a) + 1)/2) =

floor(ncols(b) + 1)/2

Keywords: complex matrices, matrices

Usage
c <- cmatmultc(a, b), computes the matrix product of REAL mat rices a and
b interpreted as complex matrices A and B in fully complex for m (real
parts in odd columns, imaginary parts in even).

The result c is a REAL matrix interpreted as the complex matri x A %* % B,
in fully complex form.

c <- matmultc(a, b, "% * %") does the same.

It is required that nrows(b) = floor((ncols(a) + 1)/2).

c <- cmatmultc(a, b, "%c%") does the same except the matrix pr oduct
is A %c% B = A’ %* % B and nrows(a) = nrows(b) is required.

c <- cmatmultc(a, b, "%C%") does the same except the matrix pr oduct
is A %C% A = A %* % B’ and floor((ncols(a)+1)/2) = floor((ncols(b)+1)/2)
is required.

Cross references
See also ’matrices’, ’complex’.

6.10 continfrac()

Usage:
continfrac(a, b), a and b REAL vectors or matrices with nrows (b) =

nrows(a) or nrows(b) = nrows(a) + 1

Keywords: continued fractions, special functions

Usage
continfrac(a,b), where a and b are REAL vectors with no MISSI NG
elements, and nrows(a) = nrows(b) = m, evaluates the continu ed
continued fraction a[1]/(b[1] + a[2]/(b[2] + a[3]/(b[3] + a [4]/... +
a[m]/b[m])).

continfrac(a,vector(b0, b)) returns b0 + continfrac(a,b) , when b0 is a
non MISSING real scalar.

a and b can also be matrices with the same shape. In that case,

6.11. CSOLVE() 649

continfrac(a,b) returns hconcat(continfrac(a[,1], b[,1]),...,
continfrac(a[,m], b[,m]).

If either a or b is a vectir and the other has more than 1 column, the
vector is used in each column of the result.

continfrac(a,vconcat(b0’,b)) returns b0 + continfact(a, b), where b0 is
is a vector of length ncols(b).

6.11 csolve()

Usage:
ainv <- csolve(a), REAL matrix a interpreted as a square comp lex matrix

in fully complex form

Keywords: complex matrices, matrices

Usage
ainv <- csolve(a) computes the complex inverse of REAL matri x a,
interpreted as a square complex matrix A in fully coplex form .

It is an error if A is singular.

Caution
It is possible but unlikely that csolve() will report that A i s singular
when that is not the case.

Example
Cmd> areal <- matrix(vector(0.57,-0.24,-0.33,-0.55),2)

Cmd> aimag <- matrix(vector(0.43,-0.08,-0.16,0.26),2)

Cmd> a <- cmplx(areal,aimag)

Cmd> ainv <- csolve(a)

Cmd> prd <- cmatmultc(ainv,a)

Cmd> creal(prd)
(1,1) 1 -2.7756e-17
(2,1) 3.4694e-17 1

Cmd> cimag(prd)
(1,1) 0 0
(2,1) 6.9389e-17 5.5511e-17

Cross references
See also cmplx(), cmatmultc(), creal(), cimag(), solve(), ’matrices’,
’complex’.

650 CHAPTER 6. MATHEMATICAL MACROS HELP FILE

6.12 csubscr()

Usage:
y <- csubscr(x,I), REAL matrix x containing complex matrix X in fully

complex form, legal REAL or LOGICAL subscript or NULL I
y <- csubscr(x,I,J), legal REAL or LOGICAL subscripts or NUL L, I and J

Keywords: complex matrices, matrices

Usage
csubscr() simulates subscript extraction from a complex ve ctor X or m by
n complex matrix X stored in REAL matrix x in fully complex for m (real
parts in odd columns, imaginary parts in even columns). The r esult y
contains a complex vector or matrix Y in fully complex form.

y <- csubscr(x,I) simulates Y <- X[I,] when I is a vector or Y <- X[I]
when I is a matrix with two columns. When I is empty or NULL, it
simulates Y <- X[].

y <- csubscr(x,I,J) simulates Y <- X[I,J]. When I is empty or N ULL it
simulates Y <- X[,J]; when J is empty or NULL it simulates Y <- X [I,].

y <- csubscr(x) is equivalent to cmplx(creal(x),cimag(y)) .

Caution
Unlike real subscripts you cannot assign to csubscr(x, I, J) .

Example
Example with 2 by 4 REAL a representing 2 by 2 complex A:

Cmd> creal(a) # real part
(1,1) 0.57 -0.33
(2,1) -0.24 -0.55

Cmd> cimag(a) # imaginary part
(1,1) 0.43 -0.16
(2,1) -0.08 0.26

Cmd> csubscr(a,1,2) # simulates A[1,2]
(1,1) -0.33 -0.16

Cmd> csubscr(a,hconcat(run(2),run(2))) # simulates cdia g(a)
(1,1) 0.57 0.43
(2,1) -0.55 0.26

Cmd> csubscr(a,,-1) # or csubscr(a,NULL,-1), simulates A[,-1]
(1,1) -0.33 -0.16
(2,1) -0.55 0.26

Cross references
See also cdiag(), ’complex’, ’subscripts’, creal(), cimag ().

6.13. CTRACE() 651

6.13 ctrace()

Usage:
b <- ctrace(a), REAL matrix a interpreted as a square complex matrix in

fully complex form.

Keywords: complex matrices, matrices

Usage
c <- ctrace(a) computes the complex trace of REAL matrix a, in terpreted
as a square complex matrix A in fully complex form. c has value
cmplx(trace(creal(a)),trace(cimag(a))). For A to be squr e, nrows(a)
must be floor((ncols(a)+1)/2).’

Example:
Cmd> areal <- matrix(vector(0.57,-0.24,-0.33,-0.55),2)

Cmd> aimag <- matrix(vector(0.43,-0.08,-0.16,0.26),2)

Cmd> ctrace(cmplx(areal,aimag))
(1,1) 0.02 0.69

Cmd> cmplx(trace(areal),trace(aimag)) # check
(1,1) 0.02 0.69

Cross references
See also trace(), cmplx(), ’complex’.

6.14 ctranspose()

Usage:
b <- ctranspose(a), REAL matrix a representing a complex mat rix in fully

complex form

Keywords: complex matrices, matrices

b <- ctranspose(a) computes the complex transpose of the com plex matrix
a in fully complex form. That is creal(b) = creal(a)’ and cima g(b) =
cimag(a)’.

Example
Cmd> areal <- matrix(vector(0.57,-0.24,-0.33,-0.55),2)

Cmd> aimag <- matrix(vector(0.43,-0.08,-0.16,0.26),2)

Cmd> a <- cmplx(areal,aimag)

Cmd> atrans <- ctranspose(a)

Cmd> creal(atrans) # transpose of areal
(1,1) 0.57 -0.24

652 CHAPTER 6. MATHEMATICAL MACROS HELP FILE

(2,1) -0.33 -0.55

Cmd> cimag(atrans) # transpose of aimag
(1,1) 0.43 -0.08
(2,1) -0.16 0.26

Cross references
See also cjtranspose(), ’complex’, ’transpose’.

6.15 dfp()

Usage:
dfp(x0, fun [,params:params] [, goldsteps:ngold] [, maxit :maxiter]\

[,minit:miniter] [,criteria:vector(nsigx,nsigfun,dgr ad)]\
[printwhen:d1] [,recordwhen:d2]), REAL vector x0, macro
fun(x,i [,params]), integers ngold > 0, maxiter >= 0, minite r > 0,
nsigx, nsigfun, d1 >= 0, d2 >= 0, dgrad REAL scalar

Keywords: minimize, quasi-newton, variable metric

Introduction
Macro dfp() uses the Davidon-Fletcher-Powell variable met ric algorithm
to minimize a function iteratively. A golden mean line searc h is made
at each step. See Dahlquist and Bjorck, Numerical methods, P rentice
Hall, 1974, p. 442.

dfp() is a "front-end" to macro minimizer() which it calls wi th
all the arguments to bfs() plus argument ’method:"dfp"’.

Usage
result <- dfp(x0, fun [, params] [,optional keywords]) comp utes the
minimum of a real function F(x1,x2,...,xk) starting the Dav idon-
Fletcher-Powell iteration at x = x0 = vector(x01,x02,...,x 0k),
a REAL vector with no MISSING elements.

See minimizer() for details on the arguments, keywords and t he value.

Cross references
See also minimizer(), bfs(), broyden(), and neldermead()

6.16 economize()

Usage:
economize(vector(a0,a1,...,an),m), a0, ..., an REAL scal ars, m > 0 an

integer scalar

Keywords: expansions, power series

Introduction

6.17. FACTORIAL() 653

Macro to "economize" a power series expansion on [-1, 1]

Suppose Fn(x) = a0 +a1 * x + a2 * xˆ2 + ... + an * xˆn is the n-th partial
sum of the Taylor series expansion of a function F(x) defined on an
interval I contained in (-1, 1). Then Fn(x) has a unique expan sion

Fn(x) = c0 + c1 * T1(x) + c2 * T2(x) + ... + cn * Tn(x)
where Tj(x) is the j-th Chebyshev polynomial defined as Tj(x) =
cos(acos(j * x)) for -1 <= x <= 1.

Usage
b <- economize(vector(a0,a1,...,an),m) computes b = vecto r(b0,b1,...,bm)
where

Bm(x) = b0 + b1 * x + b2 * xˆ2 + ... + bm * xˆm =
c0 + c1 * T1(x) + c2 * T2(x) + ... + cm * Tm(x)

is the Chebyshev series truncated at Tm.

When Fn(x) is a good approximation to F(x) on I, and, as is the c ase
with many functions, the coefficients c0, c1, ... converge t o 0 much
faster than do a0, a1, ..., Bm(x) with m << n, may be a good
polynomial approximation for F(x) on I.

6.17 factorial()

Usage:
factorial(x), x REAL

Keywords: special functions, integers

Usage
factorial(x) computes x! (x factorial), where x is a REAL sca lar,
vector, matrix or array. The result is the same size and shape as
as x. If any element is MISSING, <= -1 or such that x! is too larg e
to be computed, the corresponding element of the result is MI SSING.

Elements of x need not be integers. x! is computed as exp(lgam ma(x+1)),
except that if x is an integer <= 20 the value should be exact.

Cross references
See also binom() and lgamma().

6.18 factors()

Usage:
factors(vector(n1 [, n2, ...]), positive integer n1, n2, .. .

Keywords: prime factors

654 CHAPTER 6. MATHEMATICAL MACROS HELP FILE

Usage
factors(n), where n > 0 is an integer returns a REAL scalar or v ector
containing the prime factors of n.

result <- factors(N), where N = vector(n1,n2,...), integer s n1 > 0, n2 >
0, ..., sets result to structure(factor(n1), factor(n2), . ..), that is
result[j] contains the factors of N[j]. The name of componen t j is
’prime’ if N[j] is prime and ’composite’ otherwise.

Note: factors() has been superceded by function primefacto rs().

Example:
Cmd> write(factors(2ˆ2ˆrun(5) + 1),format:"10.0f")
STRUCTURE:
component: prime
(1) 5
component: prime
(1) 17
component: prime
(1) 257
component: prime
(1) 65537
component: composite
(1) 641 6700417

Cross references
See also printfactors() and primefactors().

6.19 i0()

Usage:
i0(x), x a REAL scalar, vector, matrix, array or structure of REAL

components.

Keywords: bessel functions, special functions

Usage
i0(x) computes values of I-sub-0(x), the modified Bessel fu nction of the
first kind, where x is a REAL scalar, vector, matrix or array. The
result is REAL of the same shape as x.

When x1, x2, ... are REAL, i0(structure(x1,x2,...)) return s
structure(i0(x1),i0(x2), ...)

i0 is based on equations 9.8.1 and 9.8.2 in Abramowitz & Stegu n,
Handbook of Mathematical functions.

Cross reference
See also i1().

6.20. I1() 655

6.20 i1()

Usage:
i1(x), x a REAL scalar, vector, matrix, array or structure of REAL

components.

Keywords: bessel functions, special functions

Usage
i1(x) computes values of I-sub-1(x), the modified Bessel fu nction of the
first kind, where x is a REAL scalar, vector, matrix or array. The
result is REAL of the same shape as x.

When x1, x2, ... are REAL, i1(structure(x1,x2,...)) return s
structure(i1(x1),i1(x2), ...)

i1 is based on equations 9.8.3 and 9.8.4 in Abramowitz & Stegu n,
Handbook of Mathematical functions.

Cross reference
See also i0().

6.21 invchebcoefs()

Usage:
invchebcoefs(vector(b0,b1,...,bn)), b0, b1, ... non MISS ING REAL

scalars

Keywords: expansions, power series

Usage
Suppose Pn(x) = b0+b1 * T1(x)+...+bn * Tn(x), where Tj(x) is the Chebyshev
polynomial of degree j, defined as Tj(x) = cos(j * acos(x)) for -1 <= x
<= 1. Then Pn(x) is a polynomial and can be expressed as Pn(x) =
a0+a1 * x+ ... + an * xˆn.

invchebcoefs(vector(b0,b1,...,bn)), where b0, ..., bn ar e non MISSING
real scalars, returns vector(a0,a1,...,an), the coeffici ents of the
powers of x of Pn(x).

Cross reference
See also topic chebcoefs().

6.22 invertseries()

Usage:
invertseries(a), REAL vector a with non-MISSING elements

Keywords: expansions, power series

656 CHAPTER 6. MATHEMATICAL MACROS HELP FILE

Usage
Suppose A(x) is a function with A(0) = 0 and with Taylor series a1* x +
a2* xˆ2 + a3ˆxˆ3 + ..., where a1 != 0. Then in a neighborhood of 0
there is an inverse function B(y) is defined such that B(A(x)) = x for
y near 0. Let b1 * y + b2 * yˆ2 + b3 * yˆ3 ... be the Taylor series for
B(y). The coefficients bj are unique functions of a1, a2, ... , aj; in
particular, b1 = 1/a1.

b <- invertseries(a), where a = vector(a1,a2,...,an) is a RE AL vector,
computes the coefficients b = vector(b1,b2,...,bn) of the T aylor series
for B(y).

Because of numerical instability, higher order coefficien ts in b may
not be accurate.

Example:
Let A(x) = log(1-x) = -x - xˆ2/2 - xˆ3/3 - Then B(y) = 1 - exp(y)
= -y - yˆ2/2 - yˆ3/6 - yˆ4/24 - yˆ5/120 - ... satisfies B(A(x)) = 1 -
exp(log(1 - x)) = 1 - (1 - x) = x.

Cmd> a <- -1/run(10); a # coefficients of -log(1-x)
(1) -1 -0.5 -0.33333 -0.25 -0.2
(6) -0.16667 -0.14286 -0.125 -0.11111 -0.1

Cmd> b <- invertseries(a); b # coefficients of 1 - exp(y)
(1) -1 -0.5 -0.16667 -0.041667 -0.0083333
(6) -0.0013889 -0.00019841 -2.4802e-05 -2.7557e-06 -2.75 57e-07

6.23 kronecker()

Usage:
kronecker(A,B), A, B REAL matrices with no MISSING values

Keywords: matrices

Usage
C <- kronecker(A, B), where A and B are REAL matrices with no mi ssing
values, computes the Kronecker product of A and B.

C is a nrows(A) * nrows(B) by ncols(A) * ncols(B) made of nrows(a) * ncols(a)
blocks of the form a[i,j] * B.

Cross reference
See also topic ’matrices’.

6.24. MATHHELP() 657

6.24 mathhelp()

Usage:
mathhelp(topic1 [, topic2 ...] [,usage:T] [,scrollback:T])
mathhelp(topic, subtopic:Subtopics), CHARACTER scalar o r vector

Subtopics
mathhelp(topic1:Subtopics1 [,topic2:Subtopics2 ...])
mathhelp(key:Key), CHARACTER scalar Key
mathhelp(index:T [,scrollback:T])

Keywords: general

Usage
mathhelp(Topic1 [, Topic2, ...]) prints help on topics Topi c1, Topic2,
... related to macros in file math.mac. The help is taken from file
math.mac.

mathhelp(Topic1 [, Topic2, ...] , usage:T) prints usage inf ormation
related to these macros.

mathhelp(index:T) or simply mathhelp() prints an index of t he topics
available using mathhelp().

mathhelp(Topic, subtopic:Subtopic), where Subtopic is a C HARACTER scalar
or vector, prints subtopics of topic Topic. With subtopic:" ?", a list
of subtopics is printed.

mathhelp(Topic1:Subtopics1 [,Topic2:Subtopics2], ...) , where Suptopics1
and Subtopics2 are CHARACTER scalars or vectors, prints the specified
subtopics. You can’t use any other keywords with this usage.

In all the first 4 of these usages, you can also include help() keyword
phrase ’scrollback:T’ as an argument to mathhelp(). In wind owed
versions, this directs the output/command window will be au tomatically
scrolled back to the start of the help output.

Keyword key
mathhelp(key:key) where key is a quoted string or CHARACTER scalar lists
all topics cross referenced under Key. mathhelp(key:"?") p rints a list
of available cross reference keys for topics in the file.

mathhelp() is implemented as a predefined macro.

Cross reference
See help() for information on direct use of help() to retriev e
information from math.mac.

6.25 matsqrt()

Usage:
matsqrt(A [, symmetric:T or [lower:T]), square positive se mi-definite

matrix A with no MISSING values

658 CHAPTER 6. MATHEMATICAL MACROS HELP FILE

Keywords: matrices

Usage
B <- matsqrt(A) computes a matrix square root B of a positive
semi-definite REAL matrix A with no MISSING values. B satisf ies
B’ %* % B = A. B can also be computed by cholesky(A).

B <- matsqrt(A, lower:T) returns the lower triangular matri x square
root of A.

B <- matsqrt(A, symmetric:T) returns the symmetric matrix s quare
root of A. B satisfies B % * % B = A

Cross reference
See also cholesky().

6.26 minimizer()

Usage:
minimizer(x0, fun [,params:params] [, method:M] [, goldst eps:ngold] \

[, maxit:maxiter] [,minit:miniter] [,criteria:vector(n sigx, \
nsigfun,dgrad)] [printwhen:d1] [,recordwhen:d2]), REAL vector x0,
macro fun(x,i [,params]), CHARACTER scalar M (one of "bfs", "dfp",
"broyden", integers ngold > 0, maxiter >= 0, miniter > 0, nsig x,
nsigfun, d1 >= 0, d2 >= 0, dgrad REAL scalar

Keywords: minimize

Introduction
Macro minimizer() uses a quasi-Newton variable metric algo rithm to
minimize a function iteratively. There is a choice of three m ethods,
Broyden-Fletcher-Shanno (method:"bfs"), Davidon-Fletc her-Powell
(method:"dfp") and Broyden’s (method:"broyden"). For the first two a
golden mean line search is made at each step. See Dahlquist an d
Bjorck, Numerical methods, Prentice Hall, 1974, p. 441-444 .

Usage
result <- minimizer(x0, fun [, params] [,optional keywords]) computes
the minimum of a real function F(x1,x2,...,xk) starting ite ration at x
= x0 = vector(x01,x02,...,x0k), a REAL vector with no MISSIN G elements.
The Broyden-Fletcher-Shanno updating is used by default.

result <- minimizer(x0, fun [, params] , method:M [,optiona l
keywords]), where M is one of "bfs", "dfp", or "broyden", doe s the
same, using the Broyden-Fletcher-Shanno, Davidon-Fletch er-Powell or
Broyden update methods.

Optional argument params is a variable, possibly a structur e, with
additional constant information used to compute F(x) and it s gradient
vector.

6.26. MINIMIZER() 659

fun is a macro such that fun(x,0 [,params]) returns F(x[1],x [2],
...,x[k]) and fun(x,1 [,params]) returns a length k REAL gra dient
vector (vector of partial derivatives of F(x) with respect t o the
elements of x). fun() should ignore its third argument if not needed.

fun(x,-1 [,params]) should carry out any initialization ne eded. If
starting values or elements of param are not appropriate, fu n(x, -1,
[params]) should return MISSING. Otherwise, any non-MISSI NG value
should be returned.

fun() can use either a formula for derivatives, when one is kn own, or
compute them by numerical differentiation.

Result
result is structure(x:xmin, f:minVal, gradient:gradient , h:invhessian,
iterations:niter, status:N) where xmin is a REAL vector suc h that
minVal = F(xmin) is a local minimum, gradient is the length k g radient
vector at xmin, invhessian is a k by k approximation to the inv erse of
the Hessian matrix (matrix of second order derivatives of F) , niter is
the number of iterations taken and N is an integer indicating
convergence status; see below.

Convergence control
Optional keyword phrase criterion:vector(nsigx, nsigfun , dgrad) allows
control over how convergence is determined. nsigx and nsigf un must be
integers and dgrad a small REAL scalar. At least one of nsigx,
nsigfun and dgrad must be positive. A value <= 0 is ignored.

Iteration ends when any of the following occurs
1. nsigx > 0 and all elements of x have relative change <=
10ˆ-nsigx. For any x[i] with abs(x[i]) < .5, change is relati ve to
.5.

2. nsigfun > 0 and relative change in F(x) <= 10ˆ-nsigfun. Whe n
abs(f(x)) < .5, change is relative to .5.

3. dgrad > 0 and ||gradient|| < dgrad

The default value for ’criterion’ is vector(8,5,-1).

Keyword phrases minit:miniter and maxit:maxiter specify n o check for
convergence is made until iteration miniter and no more than maxiter
iterations will be done. miniter >= 0 (default 0) and maxiter > 0
(default 30) are integers.

Convergence status
When N = 0 (value of component ’status’ of the result), no conv ergence
criterion was satisfied.

When N < 0, iteration was terminated because an illegal value was
encountered.

660 CHAPTER 6. MATHEMATICAL MACROS HELP FILE

When N = 1 iteration ended by test using nsigx.

When N = 2 iteration ended by test using nsigfun.

When N = 3, iteration ended by test using dgrad.

After
Cmd> result <- minimizer(x0, fun ..., maxit:n)

You can restart the iteration where it stopped by
Cmd> result <- minimizer(result$x, fun, ..., h:result$h)

Other keywords
There other optional keyword phrases that can be arguments.

h:invhessian invhessian is a k by k REAL symmetric matrix
(default dmat(k,1)) used as starting approximation
to inverse Hessian matrix

goldsteps:m integer m >= 0 (default 5), the number of cycles
to be used in the golden mean linear search; with
m == 0 no linear search is done; ignored with
method:"broyden"

printwhen:d1 Integer d1 >= 0. When d1 > 0, current values of x,
F(x), and the gradient are printed on iterations
d1, 2 * d1, 3 * d1, ...

recordwhen:d2 Integer d2 >= 0. When d2 > 0, current values of
x, F(x) and the gradient on saved in components
’xvalx’, ’funvals’ and ’gradients’ of side-
effect structure BFSRECORD, DJPRECORD or
BROYDNRECORD, depending on the method used.

Cross references
See also bfs(), dfp(), broyden(), and neldermead()

6.27 moorepenrose()

Usage:
moorepenrose(A), A a real matrix with no MISSING values

Keywords: matrices, generalized inverse

Usage
B <- moorepenrose(A), where A is a real matrix with no MISSING values
computes the Moore-Penrose inverse of a A.

B satisfies A % * % B %* % A = A and B %* % A %* % B = B.

When A is square and non-singular B = solve(A).

When A is m by n, B is n by m. When m >= n and a is full rank b is

6.28. LEVMAR() 661

solve(a %c% a, a’).

The result is computed from the singular value decompositio n of A.

Cross references
See also solve(), svd().

6.28 levmar()

Usage:
levmar(b,x,y,f,param [,deriv:deriv,crit:crvec,active :active,\

maxit:itmax,minit:itmin,print:T])
or
levmar(b,x,y,param ,resid:res [,deriv:deriv,crit:crve c,active:active,\

maxit:itmax,minit:itmin,print:T])
b REAL vector of starting values for coefficients
x REAL variable. Without ’resid:res’ a vector or matrix

with nrows(x) = nrows(y); with ’resid:res’ nrows(x) =
norows(y) is not required

y REAL vector of data to be fit
f Macro: fit <- f(b,x,param) returns a vector of fitted value s

with length nrows(x) = nrows(y); not allowed with ’resid:re s’
param vector or structure of additional parameters for f or N ULL
res Macro: res(b, x, y, param) computes a vector of residuals of

length nrows(y). ’resid:res’ is required when argument f is
omitted and is not allowed when f is an argument.

crvect vector(numsig, nsigsq, delta), 3 criteria for conve rgence
deriv optional macro: deriv(b,x,y,param,j) computes deri vative of

f(b,x,param) or -res(b,x,y,param) with respect to b[j]
active LOGICAL vector the same length as b
itmax integer >= 0, maximum number of iterations permitted (default

= 30)
itmin 0 <= minimum <= itmax = number of iterations performed (default

= 1)
print if T, partial results are printed on each iteration

Returned value is structure(coefs:b_hat,hessian:hes,ja cobian:jac,
gradient:g,rss:Rssmin,residuals:resids,nobs:n,iter: niter,
iconv:convflag)

Keywords: nonlinear least squares, minimize

Introduction
levmar() uses an analogue of the Levenberg-Marquardt and Ga uss algorithms
to minimize a sum of squares. Specifically, the criterion mi nimized is
sum(residsˆ2) where resids is computed as

resids <- y - f(b, x, param)
or as

resids <- res(b, x, y, param)
where f() or res() is a macro provided by the user

662 CHAPTER 6. MATHEMATICAL MACROS HELP FILE

You can supply a macro to compute derivatives with respect to the elements
of b analytically or rely on difference-based numerical dif ferentiation.

levmar() is intended for primarily use in higher level macro s such as
nlreg() (non-linear regression) and arima() (estimation o f ARIMA time
series models).

levmar() is based on a Fortran program for nonlinear least sq uares of Ken
Brown. See below for references.

Usage and arguments
levmar(b,x,y,f,param) uses an iterative algorithm to find a REAL vector
b_hat which minimizes Rss = sum((y - f(b_hat,x,param))ˆ2), a sum of
squared residuals.

levmar(b,x,y,param, resid:res) does the same except the qu antity minimized
is Rss = sum(res(b, x, y, param)ˆ2).

In these usages, derivatives are computed by differences.

levmar(b,x,y,f,param, deriv:der) and levmar(b,x,y,para m,resid:res,
deriv:der) do the same, except derivatives are computed by m acro der()
instead of by differencing.

The arguments to levmar() are as follows
b REAL vector of starting values for b_hat
x REAL variable. When f is an argument, x must be a vector or

matrix with nrows(x) = nrows(y). When ’resid:res’ is an
argument, nrows(x) is not required; if x is not used, it shoul d
be 0

y REAL vector of data to be fit
param vector, matrix or structure of additional fixed param eters or

NULL
f macro called as fit <- f(b,x,param). fit is a vector of

containing nrows(x) = nrows(y) function values
res macro called as r <- res(b, x, y, param). r is a vector

of nrows(y) residuals
der macro called as derivs_j <- der(x,y,param,j). derivs_j is

vector containing the nrows(y) derivatives with respect to
b[j] of the elements of f(b,x,param) or -res(b,x,y,param).

Return value
levmar() returns structure(coefs:b_hat,hessian:hes,ja cobian:jac,
gradient:g,rss:Rssmin,residuals:resids,nobs:n,iter: niter,iconv:convflag)
where component values are as follows:

b_hat REAL vector which minimizes Rss
hes jac’ % * % jac, an approximation to the Hessian matrix H,

where H[i,j] = 2nd order partial derivative of Rss/2
with respect to b_hat[i] and. b_hat[j]

jac the nrows(y) by nrows(b) Jacobian matrix; -jac[,j] = vec tor
of partial derivatives of the elements of the residual
vector with respect to b_hat[j].

6.28. LEVMAR() 663

g the nrows(b) REAL gradient vector with g[j] = partial
derivative of Rss/2 with respect to b_hat[j]. g should be
close to a vector of zeros.

Rssmin the minimized value of Rss
resids vector of residuals of length nrows(y)
n positive integer = nrows(y) = nrows(resids) = nrows(jac)
niter positive integer = the number of iterations
conflag Convergence status flag; 0 = not converged, 1 = met re lative

change in b_hat criterion, 2 = met relative change in Rss
criterion, 3 = met norm of gradient vector criterion, 4 =
failed to reduce Rss on a step of the iteration.

When any parameters are inactive as specified by keyword ’ac tive’ (see
below), jac is nrows(y) by p, hes is p by p and g has length p wher e p =
number of active parameters.

Keyword phrase arguments
There are several of keywords that can be used to control the i teration
and hold parameters at fixed values.

Keyword Phrase Value and Explanation
crit:crvec vector(numsig, nsigsq, delta), 3 criteria for

convergence (default = vector(8,5,-1)
numsig = desired number of significant digits in
the elements of b_hat (conflag = 1 when met)
nsigsq = desired number of significant digits in the
minimized Rss (conflag = 2 when met)
delta is a threshold for ||g||. Iteration is stopped
when ||g|| <= delta (conflag = 3 when met)
A negative criterion is not used

active:act LOGICAL vector the same length as b. b[j]
"participates" in the iteration only if act[j] is
True (default = rep(T,length(b))). When act[j] is
False, b_hat[j] remains at the starting value

maxit:itmax Non-negative integer specifying the maximum n umber of
iterations (default = 30). When itmax = 0, no iterations
are done and the quantities returned are computed at
the starting value b

minit:itmin Non-negative integer < itmax specifies the min inum
number of iterations

print:T When T, partial results are printed on each iteratio n

Iteration stops when (i) itmax is exceeded, (ii) any of the th ree
convergence criteria are satisfied, or (iii) when there has been no
reduction in Rss on an iteration after 10 halvings of the init ial step
size.

Convergence criteria
There are 3 possible convergence criteria, at least one of wh ich must be
enabled. levmar() terminates iteration when at least itmin iterations
have been completed and any convergence criterion is satisf ied or when
itmax iterations have been completed.

664 CHAPTER 6. MATHEMATICAL MACROS HELP FILE

The criteria are specified by optional argument crit:vec, w here vec is
vector(numsig [, nsigsq [, delta]]) with length <= 3. The def ault values
for numsig, nsiqsq and delta are 8, 5 and -1, respectively.

A negative value for a criterion means it is not active.

numsig Desired number of significant digits in every active
coefficient. Specifically, the criterion is satisfied if,
for every active coefficient b[j], the change d_j satisfies
abs(d_j) < 10ˆ-numsig * max(.5,abs(b_j)) where b_j is the
updated value of b[j]. Component ’iconv’ of the return value
is 1 when satisfied.

nsigsq Desired number of significant digits in Rss = the resi dual
sum of squares. Specifically, the criterion is satisfied
when abs(Rss_new - Rss_old) < 10ˆ-nsigsq * max(.5,Rss_new).
Component ’iconv’ of the return value is 2 when satisfied.

delta Desired maximum norm ||g|| of the gradient vector g.
Specifically, the criterion is satisfied when
sqrt(sum(gˆ2)) <= delta. Component ’iconv’ of the return
value is 3 when satisfied.

For numsig and nsigsq, the returned coefficients are the val ues updated
on that iteration. For delta, the returned coefficients are the values
found on the previous iteration.

Criteria are checked in the order delta, numsig and nsigsq.

Example:
Fit the function b1 + b2 * b3ˆx to data from Snedecor and Cochran with
starting values b1 = b2 = 40 and b3 = 1.

Cmd> x <- vector(0,1,2,3,4,5)

Cmd> y <- vector(57.5, 45.7, 38.7, 35.3, 33.1, 32.2)

Cmd> func <- macro("@b <- $1; @b[1]+@b[2] * @b[3]ˆ($2)", dollars:T)

Cmd> startVal <- vector(40,40,1) # starting values for iter ation

Cmd> stuff <- levmar(startVal,x,y,func,NULL); stuff
component: coefs
(1) 30.724 26.821 0.55184
component: hessian
(1,1) 6 2.1683 111.39
(2,1) 2.1683 1.4367 30.242
(3,1) 111.39 30.242 2675.8
component: jacobian
(1,1) 1 1 0
(2,1) 1 0.55184 26.821
(3,1) 1 0.30453 29.602
(4,1) 1 0.16805 24.503

6.28. LEVMAR() 665

(5,1) 1 0.092736 18.029
(6,1) 1 0.051176 12.436
component: gradient
(1) 5.5896e-08 -8.4145e-09 2.4503e-05
component: rss
(1) 0.097248
component: residuals
(1) -0.044919 0.17523 -0.19159 0.068869 -0.11115
(6) 0.10356
component: nobs
(1) 6
component: iter
(1) 7
component: iconv
(1) 1

Cmd> # compute MSE and approximate standard errors

Cmd> mse <- stuff$rss/(stuff$nobs - length(stuff$coefs)) ; mse
(1) 0.032416

Cmd> sqrt(mse * diag(solve(stuff$hessian)))
(1) 0.23099 0.2577 0.008448

Cmd> # don’t iterate over coefficient 1

Cmd> startVal1 <- vector(30,40,1)

Cmd> levmar(startVal1,x,y,func,NULL,active:vector(F, T,T))
component: coefs
(1) 30 27.418 0.57447
component: hessian
(1,1) 1.4907 34.492
(2,1) 34.492 3136.2
component: jacobian
(1,1) 1 0
(2,1) 0.57447 27.418
(3,1) 0.33002 31.502
(4,1) 0.18959 27.145
(5,1) 0.10891 20.792
(6,1) 0.062567 14.931
component: gradient
(1) 3.5552e-09 0.00067866
component: rss
(1) 0.38885
component: residuals
(1) 0.08214 -0.05082 -0.34842 0.10193 0.11385
(6) 0.48454
component: nobs
(1) 6
component: iter
(1) 7
component: iconv

666 CHAPTER 6. MATHEMATICAL MACROS HELP FILE

(1) 1

References
For information on the algorithm, see K M Brown and J E Dennis,
Derivative free analogues of the Levenberg-Marquardt and G auss
algorithms for nonlinear least squares approximation, Num erische
Mathematik, Vol. 18, pp. 289-297 (1972), and K M Brown, Compu ter
oriented methods for fitting tabular data in the linear and n onlinear
least squares sense, Technical Report No. 72-13, Universit y of
Minnesota Department of Computer and Information Sciences .

6.29 neldermead()

Usage:
neldermead(fun, xstart, steps [,data] [, maxeval:maxeval , print:ip,\

stopcrit:eps, nloop:nloop, quad:F or T, simpcrit:s]),
fun a macro, xstart and steps REAL vectors with no MISSING ele ments,
data a variable as required by fun(), integers maxeval > 0, nl oop > 0
and ip, REAL scalars eps > 0 and s > 0. fun() specifies a
function to be minimized and is called as fun(x) or fun(x,dat a),
where x is a REAL vector the same length as xstart.

Keywords: minimize, direct search

Introduction
neldermead() is a macro implementing function minimizatio n by direct
search using the simplex method. The minimum found may be a lo cal,
not a global, minimum. For details, see Nelder & Mead, The Com puter
Journal, January 1965.

Usage
result <- neldermead(fun, xstart, steps) attempts to find a minimum of
the function F(x) computed by macro fun().

xstart, a REAL vector with no MISSING values, contains start ing values
for x.

Macro fun() will be called as f <- fun(x, NULL) to evaluate
F(x), with argument 2 to be ignored.

steps is a REAL vector of non-negative numbers the same lengt h as
xstart. When steps[i] = 0, x[i] will remain fixed at xstart[i]. When
steps[i] > 0, it specifies an initial step size for building t he
simplex.

result <- neldermead(fun, xstart, steps, data), where data is an
arbitrary variable, possibly a structure, does the same, ex cept that
fun() will be called as f <- fun(x, data). Argument data can co ntain
data or other constant information such as a fixed parameter .

result <- neldermead(fun, xstart, steps [,data], quad:T) d oes the same,

6.29. NELDERMEAD() 667

except a quadratic approximation is fitted to F(x) near the m inimum
found by searching and then the minimum of that approximatio n is
found.

The value returned has the form structure(x:xmin, f:minval ,
invhessian:v, neval:n, status:s).

Returned value
The components of the structure returned are as follows:

x:xmin REAL vector contains the location of the minimum foun d
f:minval REAL scalar = F(xmin), the minimum attained
invhessian:V NULL or REAL square matrix describing the quad ratic surface

fitted with quad:T.
neval:n Integer > 0, the number of function evaluations requ ired
status:s Integer >= 0 specifying the termination status. s = 0

means successful termination at the apparent minimum; s
= 1 means termination because of excessive function
evaluations; s = 2 means v is not positive semidefinite
(only with quad:T), indicating stationary point is not a
minimum.

When F(x) = -log L(x), where x is a vector of parameters and L(x) is a
likelihood function, V is the inverse of the observed inform ation matrix
and can be used as a variance-covariance matrix of the maximu m
likelihood estimates.

When F(x) = sum((y - yhat(x))ˆ2) is a sum of squared residuals , 2 * MSE* V
is an estimate of the variance-covariance matrix of the leas t squares
estimates, where MSE = minval/edf, edf = error degrees of fre edom.

Keyword phrase arguments
neldermead recognizes a number of additional keyword phras es.

maxeval:m Integer m > 0, the maximum number of function evalu ations
allowed; default is m = 1000

crit:eps REAL scalar eps > 0. Search will terminate when SD <= eps,
where SD = standard deviation of values of F(x) on a
simplex. The default is eps = 1e-5

checkwhen:n Integer n > 0; the stopping rule is applied after every
n function evaluations. The default is n = 10.

simp:s Small REAL scalar s > 0, a criterion for expanding the
final simplex to overcome rounding errors before fitting
the quadratic surface with quad:T. The default is s =
1e-8. See below for a guideline.

print:ip Integer scalar ip controlling printing. With ip < 0 (the
default), nothing will be printed unless an error is
found. With ip = 0, the found minimum value and its
location will be printed as well as warning messages.
With ip > 0, the current value of x and F(x) will be
printed every ip function evaluations. When ip >= 0
the returned structure is "invisible"; it can be
assigned but won’t be printed automatically.

668 CHAPTER 6. MATHEMATICAL MACROS HELP FILE

Advice on usage
When the function minimized can be expected to be smooth in th e vicinity
of the minimum, you are are strongly urged to use ’quad:T’ to s pecify
the quadratic-surface fitting option. This is the only sati sfactory
way of testing that the minimum has been found. When the fitte d
quadratic surface is not positive definite (value of status = 2), it
probably means that the search terminated prematurely and y ou have not
found the minimum.

You should use simp:s, where s >= 10000 * E, where E = the rounding
error in calculating F(x). For example, the default simp:1e -8 is
appropriate when the rounding error in calculating F(x) may be of the
order of 1e-12. If, say, the F(x) is computed by numerical int egration
with accuracy on the order of 1e-05, simp:0.1 would be approp riate..

This advice is derived from the comments in the Fortran sourc e on which
neldermead() was modeled.

History and references
neldermead() is based on a Fortran program with the followin g history

Programmed by D.E.Shaw, CSIRO, Division of Mathematics & St atistics
P.O. Box 218, Lindfield, N.S.W. 2070

With amendments by R.W.M.Wedderburn,Rothamsted Experime ntal Station,
Harpenden, Hertfordshire, England

Further amended by Alan Miller, CSIRO, Division of Mathemat ics &
Statistics, Private Bag 10, Clayton, Vic. 3168

Cross references
For other macros to minimize functions, see minimizer(), bf s(), dfp()
and broyden().

6.30 orthopoly()

Usage:
orthopoly(x, n, [,polycode [,parameters]]), x a REAL vecto r with no

MISSING values, n >= 0 an integer, polycode one of p, j, g, t, u, l, h
and d, parameters a REAL scalar or vector

Keywords: orthogonal polynomials

Usage
orthopoly() is a macro which computes values of several of th e standard
orthogonal polynomials.

P <- orthopoly(x, n), where x is a REAL vector with no MISSING v alues
and n > 0 is an integer, computes the matrix

P = hconcat(P0(x), P1(x), ..., Pn(x))
where Pj(x) = vector(Pj(x[1], Pj(x[2]), ...) and Pj is the j- th
Legendre polynomial. When x is a scalar, P is vector(P0(x),. .., Pn(x)).

6.31. PARTITIONS() 669

P <- orthopoly(x, n, polycode [,parameters]) does the same e xcept
the type of polynomials is determined by polycode, an unquot ed letter
which must be one of p, j, g, t, T, u, U, l, h and d.

parameters is required when polycode is j, G, or l, is optiona l when
polycode is d and should not be an argument otherwise.

Available polynomials
The following table summarizes the options

Polynomial type polycode parameters
Legendre p none
Jacobi j vector(alpha,beta)
Gegenbauer g alpha
Chebyshev 1 t none
Shifted Chebyshev 1 T none
Chebyshev 2 u none
Shifted Chebyshev 2 U none
Laguerre l alpha
Hermite h none
Discrete d vector w of with w[i] > 0; default

is w = rep(1,length(x)).

Discrete polynomials
The discrete polynomials are defined by both vector x and the vector of
weights. They are orthogonal on the discrete set x[1], ..., x [m],
where m = length(x). That is, they satisfy

w[1] * Pj(x[1]) * Pk(x[1]) + w[2] * Pj(x[2]) * Pk(x[2]) + . . . +
w[m] * Pj(x[m]) * Pk(x[m]) = 0, j != k

Recurrence relations
All but the discrete polynomials are computed from the recur rence
relations in Table 22.7 of Handbook of Mathematical Functio ns by
Abramowitz and Stegun and satisfy the normalizations in Tab le 22.4.
The discrete polynomials are also computed by recursion and are
standardized so that sum(wj * poly(x[j])ˆ2)/sum(wj) = 1

6.31 partitions()

Usage:
partitions(n [,all:T])

Keywords: integers

Usage
partitions(n), where n > 0 is an integer, computes a matrix wi th n
columns whose rows, possibly padded with 0, are the partitio ns of n. A
partition of n is a non-increasing set of integers summing to n.

partitions(n,all:T) returns a structure R with n component s, such that
R[j] is a matrix with j columns whose rows are the partitions o f j

670 CHAPTER 6. MATHEMATICAL MACROS HELP FILE

(padded with 0).

The number N of partitions of n grows fairly rapidly:
n N n N n N n N
1 1 7 15 13 101 19 490
2 2 8 22 14 135 20 627
3 3 9 30 15 176 21 792
4 5 10 42 16 231 22 1002
5 7 11 56 17 297 23 1255
6 11 12 77 18 385 24 1575

Examples:
Cmd> partitions(4) # all 5 partitions of 4; rows add to 4
(1,1) 4 0 0 0
(2,1) 3 1 0 0
(3,1) 2 2 0 0
(4,1) 2 1 1 0
(5,1) 1 1 1 1

Cmd> partitions(3,all:T) # partitions of 1, 2 and 3
component: Parts_of_1
(1,1) 1
component: Parts_of_2
(1,1) 2 0
(2,1) 1 1
component: Parts_of_3
(1,1) 3 0 0
(2,1) 2 1 0
(3,1) 1 1 1

6.32 printfactors()

Usage:
printfactors(vector(n1 [n2, ...,]), integers n1 > 0, n2 > 0, ...

Keywords: prime factors

Usage
printfactors(vector(n), where n > 0 is an integer prints n an d its prime
factors, if any. It does not return any values.

printfactors(N), where N = vector(n1,n2,...), integers n1 > 0, n2 > 0,
..., prints each element of N together with its prime factors , if any.

Example:
Cmd> printfactors(2ˆ2ˆrun(5) + 1)
5 is prime
17 is prime
257 is prime
65537 is prime

6.33. QRDCOMP() 671

4294967297 = 641 * 6700417

Cross references
See also factors() and primefactors().

6.33 qrdcomp()

Usage:
qrdcomp(x) or qrdcomp(qr(x)), where x is a REAL matrix with n o MISSING

values

Keywords: matrices, qr decomposition

Usage
qrdcomp(X) computes a QR decomposition without pivoting of M by N REAL
matrix X with no MISSING values. It returns structure(q:Q,r :R), where
Q and R are REAL matrices satisfying X = Q % * % R.

When M >= N, Q is M by N orthonormal (Q’ % * % Q = N by N identity
matrix) and R is N by N upper triangular. When M < N, Q is M by M
orthonormal and R is M by N with the first M columns an upper
triangular matrix.

qrdcomp() also works with the output from function qr(). Tha t is
qrdcomp(qr(X)) is the same as qrdcomp(X).

Note: Computation of the QR decomposition without pivoting is not
reliable when X is not of full rank.

Keyword pivot
qrdcomp(X, pivot:T) or qrdcomp(qr(X, pivot:T)) a QR decomp osition or X
with pivoting and return a structure(q:Q,r:R,pivot:J), wh ere J is a
permutation of run(N), such that X[,J] = Q % * % R, where Q and R are as
before. This usage is accurate even when X is not of full rank.

Cross reference
See also qr()

672 CHAPTER 6. MATHEMATICAL MACROS HELP FILE

Chapter 7

Multivariate Macros Help File

This Chapter contains help for the set of macros that do multivariate analysis distributed
with MacAnova in the file Mulvar.mac.txt. The material here is a reformatting of the help
in file Mulvar.mac.txt.

7.1 backstep()

Usage:
backstep(H,E,fh,fe), H and E symmetric REAL matrices of the same size

with no MISSING values

Keywords: classification, discrimination, stepwise

NOTE: This macro is OBSOLETE and is retained only for backwar d
compatibility because it was in file MacAnova.mac in earlie r versions of
MacAnova. For doing stepwise variable selection in discrim inant
analysis you should use newer macros dastepsetup(), daente rvar(),
daremovevar(), dastepstatus() and dasteplook().

When backstep() is used
You can use macro backstep() to perform a variable eliminati on step in
backwards stepwise variable selection in linear discrimin ant analysis.

Macro backstep() is intended to be used after you have used ma nova() to
compute hypothesis and error matrices H and E, with fh and fe d egrees of
freedom respectively.

Status information
Status information about the variables currently "in" and " out" is
maintained in integer vectors INS and OUTS containing numbe rs of
variables currently included and currently excluded. When no variables
are "in", INS = NULL (INS = 0 means the same thing); when all var iables
are "in", OUTS = NULL. INS must be initialized, usually to run (p),
before backstep() can be used.

Usage
backstep(H,E,fh,fe) computes F-to-delete for all variabl es currently

673

674 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

included in vector INS. It then updates INS by removing the in dex of
the variable with the smallest F-to-delete, setting INS to 0 if no
variable is left "in". OUTS is computed as run(p) when there a re no
variables "in" and as run(p)[-INS] otherwise.

Value returned
The value returned is structure(f:F_to_delete, df:vector (fh,fe-k+1),
ins:INS,outs:OUTS), where F_to_delete is the vector of F-t o-delete
statistics and k = length(INS) before deletion. INS and OUTS are
copies of the updated INS and OUTS vectors. The F-to-delete s tatistics
have nominal degrees of freedom fh an fe - k + 1.

The variable that is deleted is the one with the smallest F-to -delete
statistic. If this is large enough, you may want to reenter th e
variable using forstep(). See forstep().

Example
You can initialize things by

Cmd> manova("y = groups",silent:T) # response matrix y, fac tor groups

Cmd> H <- matrix(SS[2,,]); E <- matrix(SS[3,,])

Cmd> fh <- DF[2]; fe <- DF[3]

Cmd> INS <- run(nrows(H)) # all variables "in"

Macro forstep() is available for doing a forward step (varia ble
inclusion). One difference between backstep() and forstep () is that
backstep() determines the variable to eliminate, and then u pdates INS
and OUTS; you must tell forstep() which variable to include. See
forstep() for details. See also compf() which computes F-to -enter for
variables not in INS. compf() does not compute F-to-delete.

Both forstep() and compf() are OBSOLETE and are retained onl y for
backward compatibility.

Cross references
See also manova(), daentervar(), daremovevar(), dastepse tup(),
dastepstatus() and dasteplook().

7.2 chiqqplot()

Usage:
chiqqplot(y [,sqrt:T] [,graphics keywords phrases]), REA L matrix y
chiqqplot(dsq, df [,sqrt:T] [, graphic keyword phrases]), REAL vector

or matrix dsq of squared distances, REAL scalar df > 0

Keywords: plotting, diagnostics

Usage
You use chiqqplot() to make a chisquare or sqrt(chisquare) q uantile-

7.3. COMPF() 675

quantile (Q-Q) plot of ordered generalized distances again st chisquare
or sqrt(chisquare) quantiles.

chiqqplot(y [, graphics keyword phrases]), where y is a REAL matrix
with no MISSING elements, plots the ordered values of genera lized
distances against x[i] = invchi((i - 1/2)/n, df), where df = p =
ncols(y). Common graphics keywords are ’xlab’, ’ylab’, ’ti tle’ and
’symbols’. ’symbols’ may be used as with chplot(), except th at
’symbols:0’ labels the points by row number.

The generalized distance of y[i,] from ybar, the sample mean row vector,
= sum(y)/nrows(y) is

dsq[i] = (y[i,] - ybar) % * % solve(s) % * % (y[i,] - ybar)’
with s the sample variance-covariance matrix with divisor n -1.

Assessment of normality
When the rows of y are a random sample from a multivariate norm al
distribution, d[i] is distributed approximately as chi-sq uared on p
degrees of freedom and the plot should approximate a straigh t line with
slope 1.

Very commonly, the "data" matrix is RESIDUALS, the matrix of residuals
computed by manova(). The Q-Q plot is a way to assess the multi variate
normality of the errors.

Keyword sqrt
chiqqplot(y, sqrt:T ...) does the same, except the ordered v alues of
sqrt(dsq[i]) are plotted against sqrt(invchi((i - 1/2)/n, df)).
Again the plot should be linear when y is multivariate normal .

Distance argument
chiqqplot(dsq, df, [,sqrt:T] ...) does the same except the o rdered
columns of REAL vector or matrix dsq or sqrt(dsq) are plotted against
quantiles of chisquare or sqrt(chisquare) with df degrees o f freedom.
When dsq is computed by distcomp(y) and df = ncols(y), this us age is
equivalent to chiqqplot(y, [,sqrt:T] ...)

When dsq is a matrix, the columns are separately ordered and p lotted
with different symbols. With symbol:0, the symbols are the r ow numbers
when ncols(dsq) = 1 and are the column numbers otherwise.

chiqqplot() uses macros covar() and distcomp().

7.3 compf()

Usage:
f <- compf(h,e,fh,fe), REAL symmetric matrices h and e, posi tive

integers fh and fe; integer vector INS must be defined

Keywords:

676 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

NOTE: This macro is OBSOLETE and is retained only for backwar d
compatibility because it was in file MacAnova.mac in earlie r versions of
MacAnova. For doing stepwise variable selection in discrim inant
analysis you should use newer macros dastepsetup(), daente rvar(),
daremovevar(), dastepstatus() and dasteplook().

When compf() is used
Macro compf() computes Fs-to enter at any stage in stepwise v ariable
selection in linear discriminant analysis.

You can use compf() after manova() has computed hypothesis a nd error
matrices H and E, with fh and fe degrees of freedom respective ly.

Setup
Integer vector INS must be defined, containing the variable numbers
that are "in". INS = 0 means no variables are in and the Fs-to-e nter
are simply the separate ANOVA Fs. When INS != 0, the Fs-to-ent er are
the analysis of covariance Fs for each "out" variable, with t he "in"
variables being used as covariates.

Usage
compf(H,E,fh,fe) returns structure(f:f_to_enter,df:ve ctor(fh,fe-k),
ins:INS, outs:OUTS), where OUTS is run(p) when INS = 0, is NUL L when
INS contains all integers 1, ..., p and is run(p)[-J] otherwi se, where
p = ncols(H). k is the number of variables "in". The F-to-ente r
statistics have nominal degrees of freedom fh and fe - k.

Example
Here is an example of starting forward stepwise variable sel ection.

Cmd> manova("y = groups",silent:T)#, response matrix y, fa ctor groups

Cmd> H <- matrix(SS[2,,]); E <- matrix(SS[3,,])

Cmd> fh <- DF[2]; fe <- DF[3]

Cmd> INS <- 0 # no variables in

Cmd> results <- compf(H,E,fh,fe)

Cmd> j <- grade(results$f,down:T)[1] # index of largest F

Cmd> # now continue with forstep(j,H,E,fh,fe)

7.4 covar()

Usage:
covar(x), REAL matrix x with no MISSING values, returns

structure(n:sampleSize,mean:xbar,covariance:s)

7.5. DAENTERVAR() 677

Keywords: covariance, descriptive statistics

Usage
covar(x), where x is a REAL matrix with no MISSING values comp utes the
sample mean and variance-covariance matrix of x. It returns

structure(n:N, mean:xbar, covariance:s)
where N = nrows(x) is the sample size, xbar is a row vector of th e
sample means of the columns, and s is the sample variance-cov ariance
matrix (with divisor N - 1).

Macro covar() is obsolete but is retained for backward compa tibility.

Comparison with tabs()
Essentially the same output can be obtained from tabs(y, cou nt:T,
covar:T, mean:T) which returns structure(mean:means, cov ar:s,count:n).
The components of covar() output differ from those of tabs() in three
ways:

(a) Component names (’covariance’ instead of ’covar’ and ’n ’
instead of ’count’)

(b) The value of ’mean’ is a row vector (1 by ncols(x)) for cova r() and
a (column) vector for tabs()

(c) The value of covar() component ’n’ is the scalar N, while t abs()
component ’count’ is rep(N,ncols(x)), with a count for each column
of x

For both covar() and tabs() with covar:T, it is an error if y ha s any
MISSING elements.

Cross references
See also tabs() and groupcovar().

7.5 daentervar()

Usage:
daentervar(var1 [,var2 ...] [,silent:T]), var1, var2 ... n ames

or numbers of variables to be entered

Keywords: classification, discrimination, stepwise

Usage
daentervar(j), where j is a positive integer, enters depend ent variable
j as part of a stepwise dependent variable selection, usuall y as one
stage in stepwise discriminant analysis. This is what is som etimes
called a "forward" step. It is an error if variable j is alread y an
"in" variable.

daentervar() updates variable _DASTEPSTATE which encapsu lates the
current state of the variable selection process and prints a report with
the new values of F-to-enter or F-to-remove, and their P-val ues. See
topic ’_DASTEPSTATE’ and dastepsetup() for more details. I t returns a
copy of the updated _DASTEPSTATE as an invisible variable th at can be
assigned but is not normally printed.

678 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

You normally choose the variable to enter as the variable wit h the
largest value of F-to-enter as printed by macro dastepsetup (),
dastepstatus() or a preceding use of daentervar()

Entering named variable
daentervar(varname), where varname is the quoted or unquot ed name of
a variable in the model, does the same. Thus if the original da ta
matrix had column labels "SepLen", "SepWid", "PetLen" and " PetWid",
either daentervar(SepWid) or daentervar("SepWid") would be equivalent
to daentervar(2).

Entering several variables
daentervar(j1, j2, ...) and daentervar(varname1, varname 2, ...)
successively enter several variables, printing a report af ter each is
entered. The value returned is _DASTEPSTATE after all the va riables
have been entered.

Keyword silent
daentervar(j1 [,j2, ...], silent:T) and daentervar(varna me1 [,varname2,
...], silent:T) do the same, except no report is printed. Thi s would
normally be followed by dastepstatus() to print a report aft er all the
variables have been entered.

Cross references
See also dastepstatus(), daremovevar() and dasteplook().

7.6 daremovevar()

Usage:
daremovevar(var1 [,var2 ...] [,silent:T]), var1, var2 ... names or

numbers of variables to be removed

Keywords: classification, discrimination, stepwise

Usage
daremovevar(j), where j is a positive integer, removes depe ndent
variable j as part of a stepwise dependent variable selectio n, usually
as one stage in stepwise discriminant analysis. This is what is
sometimes called a "backward" step. It is an error if variabl e j is
not an "in" variable (is already an "out" variable).

daremovevar() updates variable _DASTEPSTATE which encaps ulates the
current state of the variable selection process and prints a report with
the new values of F-to-remove or F-to-remove, and their P-va lues. See
topic ’_DASTEPSTATE’ and dastepsetup() for more details. I t returns a
copy of the updated _DASTEPSTATE as an invisible variable th at can be
assigned but is not normally printed.

You normally choose which variable to remove as the variable with the

7.7. DASTEPLOOK() 679

smallest value of F-to-remove as printed by macro dastepset up(),
dastepstatus() or a preceding use of daremovevar().

Removing named variable
daremovevar(varname), where varname is the quoted or unquo ted name of a
variable in the model, does the same. Thus if the original dat a matrix
had column labels "SepLen", "SepWid", "PetLen" and "PetWid ", either
daremovevar(SepWid) or daremovevar("SepWid") would be eq uivalent to
daremovevar(2).

Removing several variables
daremovevar(j1, j2, ...) and daremovevar(varname1, varna me2, ...)
successively remove several variables, printing a report a fter each is
removed. The value returned is _DASTEPSTATE after all the va riables
have been removed

Keyword silent
daremovevar(j1 [,j2, ...], silent:T) and daremovevar(var name1
[,varname2,...], silent:T) do the same, except no report is printed.
This would normally be followed by dastepstatus() to print a report
after all the variables have been removed.

Cross references
See also dastepstatus(), daentervar() and dasteplook().

7.7 dasteplook()

Usage:
dasteplook(name1, name2, ...), names selected from ’model ’, ’hpluse’,

’e’, ’in’, ’F’, ’fh’, ’fe’, and ’history’ dasteplook(all)

Keywords: classification, discrimination, stepwise

Usage
dasteplook(compname), where compname is the name of a compo nent of
variable _DASTEPSTATE, that is one of ’model’, ’hpluse’, ’e ’, ’in’,
’F’, ’fh’, ’fe’, and ’history’, returns that component of
_DASTEPSTATE. See topic ’_DASTEPSTATE’ for details on thes e components

compname can either be quoted, as in dasteplook("hpluse"), or unquoted,
as in dasteplook(hpluse).

Viewing several components
dasteplook(compname1, compname2, ...), where the compnam es are quoted
or unquoted _DASTEPSTATE component names, returns a struct ure
consisting of those components.

dasteplook(all) or dasteplook("all") return all of _DASTE PSTATE as
value.

Purpose of dasteplook()

680 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

dasteplook() is designed for use in a macro which controls th e use of
macros dastepsetup(), daentervar(), daremovevar() to car ry out an entire
stepwise dependent variable selection.

Cross references
See also topics dastepsetup(), daentervar(), daremovevar () and
dastepstatus().

7.8 dastepsetup()

Usage:
dastepsetup([Model] [,allin:T or in:logvec] [,silent:T]), Model a

CHARACTER scalar glm model, usually of the form "y = groups"

Keywords: classification, discrimination, stepwise

Purpose of dastepsetup()
You use macro dastepsetup() at the start of a forward or backw ard
stepwise selection of dependent variables in a discriminan t analysis or
more generally in a multivariate linear model.

What it actually does is create and initialize invisible var iable
_DASTEPSTATE which encapsulates information on which depe ndent
variables are "in" and which are "out" at any stage of the vari able
selection process. See topic ’_DASTEPSTATE’.

Linear discrimination
The most common use is in stepwise linear discriminant analy sis where
you are trying to select a subset of reponse variables that ef fectively
discriminate among two or more groups. It can also be used in a ny
linear model when you are trying to select a subset of reponse
variables that are responsible for any violation of the over all null
hypothesis H0: all model coefficients except constant term are 0.

Usage
dastepsetup(Model), where Model is a CHARACTER scalar spec ifying a GLM
model, initializes _DASTEPSTATE so that no variables are "i n" and all
are "out". This is appropriate at the start of forward stepwi se
dependent variable selection. In linear discrimination an alysis, Model
has the form "y = groups", where groups is a factor defining th e groups
to be discriminated.

Printed output
A report of the current status is printed. This includes all t he
F-to-enter statistics and their P-values.

Value returned
A copy of _DASTEPSTATE is returned as an "invisible" variabl e which can
be assigned but is not automatically printed.

Keyword silent

7.9. DASTEPSTATE 681

dastepsetup(Model, silent:T) does the same, except the pri nted report
is suppressed.

Default model
dastepsetup([,silent:T]) does the same, except variable S TRMODEL,
usually the most recent GLM model used, is taken as Model.

Keyword allin
dastepsetup([Model], allin:T [,silent:T]) does the same, except that
all response variables are "in" and no variables are "out". C omponent
’history’ of _DASTEPSTATE is initialized to run(p), where p is the
number of variables.

Keyword ins
dastepsetup([Model], in:ins [,silent:T]), where ins is a L OGICAL vector
of length p, does the same, except only variables j1, j2 , ... a re "in"
where ins[j1], ins[j2] ... are T and the remaining elements a re F.
Component ’history’ is initialized to vector(j1,j2,...).

What you do next
After dastepsetup(), your next step is to use daentervar() t o enter a
new variable or daremovevar() to remove a variable. The choi ce of which
variable to enter or remove is usually made on the basis of the
F-to-enter and/or F-to-remove statistics in the printed re port.

Cross references
See also topics daentervar(), daremovevar(), dastepstatu s() and
dasteplook().

7.9 DASTEPSTATE

Keywords: classification, discrimination, stepwise

Description
_DASTEPSTATE is an invisible variable which encapsulates t he current
state of a process of stepwise response variable selection f or a
multivariate linear model. The model is most commonly of the form "y =
groups", groups a factor, and the stepwise process correspo nds to
stepwise linear discriminant analysis. You normally don’t need to be
concerned with _DASTEPSTATE itself, since all interaction with it can
be done using macros.

In the following, p = number of variables, E = p by p error matri x from
manova() and H = p by p hypothesis matrix. For a model of the for m "y
= groups", H = matrix(SS[2,,]) and E = matrix(SS[3,,]). H exc ludes
contributions from a constant term. See topic ’models’

At a particular stage there are from 0 to p "in" variables, var iables
tentatively considered important in rejecting the null hyp othesis H0
associated with H; the remainder are "out" and either have no t yet been
considered or are tentatively considered unimportant in re jecting H0.

682 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

At each stage there is an F-to-enter statistics for each "out "
variable, if any. This is the F-statistic in an analysis of co variance
of the variable with the "in" variables as covariates. When n o
variables are "in", this is just the usual ANOVA F-statistic for the
variable.

Similarly, at each stage, there is an F-to-remove statistic for each
"in" variable, if any. This is the F-to-enter statistic for t he
variable that would be computed if it were to be removed and tu rned
into an "out" variable.

Contents of _DASTEPSTATUS
_DASTEPSTATUS has the form

structure(model:glmModel, hpluse:(H+E)swept, e:Eswept , in:ins,\
F:F_stats, fh:hypDF, fe:errDF, history:hist)

glmModel CHARACTER scalar specifying a GLM model, usually o f the
form "y = groups", groups a factor

ins LOGICAL vector of length p with ins[j] = T when variable
j is "in"

(H+E)swept H+E when no variables are "in"; swp(H+E,run(p)[ins]),
otherwise; that is any "in" variables have been swept

Eswept E when no variables are "in"; swp(E,run(p)[ins])
otherwise

F_statistics A REAL vector of F-statistics, with F[ins] bei ng values
of F-to-remove and F[!ins] being values of F-to-enter

hypDF Numerator d.f. of F-to-enter and F-to-remove = fh, the
degrees of freedom associated with H

errDF Denominator d.f of F_statistics = fe - k - 1 for "in"
and fe - k otherwise, where fe are the error d.f. and
k = sum(ins) = number of "in variables"

hist An integer vector summarizing the path followed to
reach the current state. when hist[i] = j > 0, variable
j was entered at step i; when hist[i] = -j < 0, variable
j was removed at step i.

When to use dastepsetup()
You normally use macro dastepsetup() to initialize _DASTEP STATUS.
dastepsetup() uses manova() to find E, H, fh and fe. When vari ables j1,
j2, ... jk are specified as being "in", hist is initialized to
vector(j1,...,jk); when no variables are "in" at the start, hist is
NULL. dastepsetup() calls stepstatus to compute component ’F’ and
optionally report on the initial status.

What you do next
You use macros daentervar() and daremovevar() to update _DA STEPSTATUS by
changing an "out" variable to an "in" or vice versa. These opt ionally
print a report of the new status.

You use macro dastepstatus() to compute component F and opti onally print
a report of the information in _DASTEPSTATUS.

7.10. DASTEPSTATUS() 683

You use macro dasteplook() to extract components of _DASTEP STATUS
without changing it.

Macros daentervar(), daremovevar(), dastepsetup() and da setupstatus()
return the new value of _DASTEPSTATUS as an "invisible" resu lt which can
be assigned but is not printed.

Cross references
See also topics dastepsetup(), daentervar(), daremovevar (),
dasteplook() and dastepstatus().

7.10 dastepstatus()

Usage:
dastepstatus([silent:T])

Keywords: classification, discrimination, stepwise

Usage
dastepstatus() computes and prints out the values of F-to-e nter or
F-to-remove, and their P-values at the current stage of step wise
dependent variable selection. You can use this information to select
the next variable to be entered (the one with the largest F-to -enter)
or remove (the one with the smallest F-to remove). Component
’F_statistics’ of variable _DASTEPSTATE is updated.

Value returned
dastepstatus() returns as value an "invisible" copy of vari able
_DASTEPSTATE. This can be assigned but is not normally print ed.
_DASTEPSTATE must have been previously initialized or upda ted by macros
dastepsetup(), daentervar() or daremovevar().

Keyword silent
dastepstatus(silent:T) sets component ’F_statistics’ of _DASTEPSTATE
and returns an invisible copy of _DASTEPSTATE but does not pr int the
F-statistics.

You ordinarily don’t need to use dastepstatus() directly si nce macros
daentervar(), daremovevar() and dastepstatus() all use da stepstatus() to
report F-statistic values and their P-values. An exception is when you
want to enter or remove several variables at once and want to s ee a
report only at the end. Suppose, for example, that you want to add
variables 2 and 4 together, but don’t want to see a report afte r
variable 2 is entered.

Example
Cmd> daentervar(2,4,silent:T) # silently enter variables 2 and 4

Cmd> dastepstatus() # print report

684 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

Cross references
See also topics dastepsetup(), daentervar(), daremovevar (), dasteplook()
and ’_DASTEPSTATE’.

7.11 discrim()

Usage:
discrim(groups, y), vector of positive integers groups, RE AL matrix y

with no MISSING values

Keywords: classification, discrimination

Usage
discrim(groups, y), where groups is a factor or an integer ve ctor, and
y is a REAL data matrix with no MISSING elements, computes the
coefficients of linear discriminant functions that can be u sed to
classify an observation into one of the populations specifi ed by
argument groups.

The functions being estimated are optimal in the case when th e
distribution in each population is multivariate normal and the
variance-covariance matrices are the same for all populati ons.

When there are g = max(groups) populations, and p = ncols(y) v ariables,
the value returned is structure(coefs:L, add:C) where L is a REAL p by
g matrix and C is a 1 by g row vector.

If y is a length p vector of data to be classified to one of the
populations, then f = L’ % * % y + C’ is the vector of discriminant
function values (scores) for the g populations.

If f[j] = max(f) is the largest element of f, then, assuming th e g
populations are equally probable (each have prior probabil ity 1/g), then
population j is the most probable population based on y.

Prior and posterior probabilities
If P is a length g vector such that P[j] = prior probability a ra ndomly
selected case belongs to population j, then the estimated
posterior probability that y belongs to population k is

P[k] * exp(f[k])/sum(P * exp(f)) =
P[k] * exp(f[k] - f[1])/sum(P * exp(f - f[1]))

The second form is preferred since exp(f[k]) can be too large to
compute.

Classifying rows of matrix
When Y is a m by p data matrix whose rows are to be classified, F = Y
%* % L + C is m by g matrix, with F[i,j] containing the value of the
discriminant function for population j evaluated with the d ata in row i
of Y. A m by g matrix of posterior probabilities for each group and
case can be computed by

P * exp(F - F[,1])/((P * exp(F - F[,1])) % * % rep(1,g))

7.12. DISCRIMQUAD() 685

Bias in estimating posterior probabilities
It is well known that posterior probabilities computed for a case that
is in "training set", the data set from which a classificatio n method
was estimated, are biased in an "optimistic" direction: The estimated
posterior probability for its actual population is biased u pward. For
this reason posterior probabilities should be estimated on ly for cases
that are not in the training set. See macro jackknife() for a p artial
remedy.

7.12 discrimquad()

Usage:
discrimquad(groups, y), factor or vector of positive integ ers groups,

REAL matrix y with nrows(y) = length(groups)

Keywords: classification, discrimination

Usage
discrimquad(groups, y), where groups is a factor or an integ er vector,
and y is a REAL data matrix, computes the coefficients of quad ratic
discriminant functions that can be used to classify an obser vation into
one of the populations specified by argument groups.

It is an error if the smallest group has p or fewer members or if y has
any MISSING elements.

Value returned
When there are g = max(groups) populations, and p = ncols(y) v ariables,
the value returned is structure(Q:q, L:l, addcon:c, grandm ean:ybar),
where the components are as follows:

q structure(Q1,Q2,...Qg), each Qj a REAL p by p matrix
l structure(L1,L2,...Lg), each L2 a REAL vector of length p
c vector(c1,c2,...cg), cj REAL scalars
ybar vector(ybar1,...ybarp), the vector of column means

Quadratic score
When x is a vector of length p to be classified, the quadratic s core
for group j is

qs[j] = (x-ybar)’ % * % q[j] % * % (x-ybar) + (x-ybar)’ % * % l[j] + c[j]

The functions are optimal in the case when the distribution i n each
population is multivariate normal with no assumption that t he variance-
covariance matrices are the same for all populations.

Prior and posterior probabilities
When P = vector(P1,P2,...,Pg) is a vector of prior probabili ties a
randomly selected case comes from the various populations, then the
posterior probabilities the elements of the vector

P* exp(qs)/sum(P * exp(qs)) = P * exp(qs - qs[1])/sum(P * exp(qs - qs[1])

686 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

The latter form is usually preferable since it is possible fo r
exp(qs[1]) to be so large as to be uncomputable. These probab ilities
can be computed using macro probsquad().

Bias in estimating posterior probabilities
It is well known that posterior probabilities computed for a case that
is in "training set", the data set from which a classificatio n method
was estimated, are biased in an "optimistic" direction: The estimated
posterior probability for its actual population is biased u pward. For
this reason posterior probabilities should be estimated on ly for cases
that are not in the training set.

Cross references
See also discrim() and probsquad().

7.13 distcomp()

Usage:
distcomp(y), REAL matrix y with no MISSING values

Keywords: covariance, descriptive statistics

Usage
distcomp(y) computes the generalized distances of each row of REAL
matrix y from the mean of all the rows. y must not have any missi ng
elements.

When y is n by p, the result is the length nrows(y) vector
d = diag((y - ybar’) ’ % * % solve(s) % * % (y - ybar’),

where ybar is the vector of column means and s is the sample cov ariance
matrix of y. The individual elements of d[i] are

d[i] = (y[i,]’ - ybar)’ % * % solve(s) % * % (y[i,]’ - ybar),

Very commonly matrix y is the matrix RESIDUALS computed by ma nova().

Cross references
See also chiqqplot().

7.14. FACANAL() 687

7.14 facanal()

Usage:
facanal(s, m [, method:Meth] [,start:psi0] [,rotate:Rotm eth] \

[,maxit:nmax] [,minit:nmin] [,crit:vector(nsig1,nsig2 ,dg)]\
[,minimizer:M] [,gold:ngold] [,quiet:T] [,silent:T] \ [, recordwhen:d1]
[,printwhen:d2]), REAL p.d. symmetric matrix s, integer m > 0, psi0
positive vector of starting uniquenesses, Rotmeth one of "v arimax",
quartimax", "equimax", "none" (default), nmin >= 0, nmax > 0 , ngold >
0, d1 >= 0, d2 >= 0, nsig1, nsig2 integers, dg REAL scalar, M one of
"dfp", "bfs" (default) or "broyden",

Keywords: factor analysis

Introduction
facanal() uses an optimization macro (dfp(), bfs() or broyd en()) to find
ULS, GLS or ML estimates of uniquenesses and loadings. The op timizer
minimizes a criterion as a function of log(psi), psi = vector of
uniquenesses.

You can specify a rotation method and starting values.

facanal() is to be preferred to other macros, including ulsf actor() and
glsfactor(), for factor extraction.

By default, minimizer bfs() is used but you can specify anoth er
minimizer.

Usage
facanal(r, m, method:Meth) computes estimated uniqueness es and unrotated
estimated loadings for a orthogonal factor analysis based a p by p
correlation or covariance matix r which must be symmetric an d positive
definite.

Integer m > 0 is the number of factors assumed. It must satisfy m <
(2 * p + 1 - sqrt(8 * p+1))/2

Meth is must be one of "mle" or "ml" (ML or maximum likelihood m ethod),
"uls" (ULS or unweighted least squares method) or "gls" (GLS or
generalized least squares method). If you omit method:Meth , the default
is method:"mle".

In addition to the uniquenesses and loadings, facanal() pri nts the
minimized value of the criterion being minimized. This can b e used in a
goodness of fit test.

See below for the value returned by facanal(). It is "invisib le" unless
’quiet:T’ or ’silent:T’ is an argument.

Starting values
facanal(r, m, method:Meth, start:psi0), does the same exce pt that the
minimization iteration is started with uniquenesses psi0. The default
starting values are psi0 = 1/diag(solve(r)).

688 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

Rotation
You control rotation of the estimated loadings using keywor ds ’rotate’
and ’kaiser’.

facanal(r, m, method:Meth, rotate:Rot), where Rot is one of "varimax",
"quartimax", "equimax" or "none" (the default), carries ou t the
indicated rotation of the factor loadings using Kaiser norm alization.
It does not affect the values of the uniquenesses or criterio n.

facanal(r, m, method:Meth, rotate:Rot,kaiser:F), does th e same except
Kaiser normalization is not done.

Optimization control
There are several keywords you can use to control the actual
minimization of the criterion. Default values are in [..]

nmin:n1 integer n1 >= 0 = minimum number of interations perfo rmed
[0]

nmax:n2 integer n2 > 0 = maximum number of interations perfor med
[30]

crit:vector(nsig1,nsig2,dg)
nsig1 target number of significant digits in log uniqueness es

[5]
nsig2 target number of significant digits in the criterion [8]
dg target upper limit for ||gradient|| [-1]

Negative values of nsig1, nsig2 or dg are ignored.
minimizer:M M = name of minimizer, one of "dfp" (Davidon-Fle tcher-

Powell), "bfs" (Broyden-Fletcher-Shanno) or "broyden"
["bfs"]

ngold:n integer n >= 0 = number of steps in golden mean linear
search by minimizer [1]; ignored with minimizer:"broyden"

Macros needed
facanal() requires and loads automatically one of the macro s ulscrit(),
glscrit() or mlcrit() to compute the objective function, gr adient vector
and loading matrix.

Printing control
There are three keywords that you can use to control what gets printed.

quiet:T suppresses printing of results; the return value is
visible

silent:T same as quiet:T except warning messages are also
suppressed

printwhen:d1 d1 >= 0 integer specifies (when d1 > 0) that part ial
results are printed at iterations d1, 2 * d1, 3 * d1. These
are the current values of x = log(uniquenesses), the F(x)
= criterion and the gradient vector dF(x)/dx

Side effect variables
In addition to returning them, facanal() saves the estimate d
uniquenesses, rotated loadings, minimized criterion, eig envalues and
gradient vector in side-effect variables PSI, LOADINGS, CR ITERION,

7.14. FACANAL() 689

EIGENVALUES and GRADIENT, respectively.

Each time they are entered, ulscrit(), glscrit() or mlcrit() save a copy
of their argument psi in invisible variable _PSIULS, _PSIGL S or _PSIML.

You can use keyword ’recordwhen’ to specify that partial res ults are
saved in side-effect structure BFSRECORD, DFPRECORD or BRO YDNRECORD on
some or all iterations:

recordwhen:d2 d2 >= 0 integer specifies (when d2 > 0) that par tial
results are saved at iterations d2, 2 * d2, 3 * d2, ...
Values of x = log(uniquenesses), F(x) = criterion and
dF(x)/df go in components ’xvalx’, ’funval’ and
’gradients’ of the structure.

Value returned
facanal() always returns as structure a value which can be as signed.
Unless ’silent:T’ or ’quiet:T’ is an argument, the return va lue is
"invisible" and won’t be automatically printed.

The result has the form structure(psihat:psi,loadings:l, criterion:crit,
eigenvals:vals, gradient:g, method:Meth, rotation:Rot, iter:n, status:k)
where the values of the components are as follows:

psi REAL vector of estimated uniquenesses
l REAL p by m matrix of loadings
crit Minimized criterion
vals eigenvalues s relative to psi
g REAL gradient vector at optimum
n > 0 integer = number of iterations
k >= 0 integer specifying which (1, 2 or 3) of the convergence

criterion signalled convergence; k = 0 means not
converged

Examples
Cmd> facanal(cor(y),2,rotate:"varimax") # y a 50 by 5 matri x
Convergence in 26 iterations by criterion 2
estimated uniquenesses:
(1) 0.39881 5.4107e-07 0.20203 0.32915 0.63907
varimax rotated estimated loadings:
(1,1) 0.71121 0.30883
(2,1) 0.13876 0.99033
(3,1) -0.84817 -0.28032
(4,1) -0.80203 -0.16613
(5,1) 0.59678 -0.069151
minimized ml criterion:
(1) 0.013439

Cmd> result <- facanal(cor(y),2,rotate:"varimax",metho d:"uls",\
silent:T)

Cmd> compnames(result)
(1) "psihat"

690 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

(2) "loadings"
(3) "criterion"
(4) "eigenvals"
(5) "gradient"
(6) "method"
(7) "rotation"
(8) "iter"
(9) "status"

Cmd> result[vector(8,9)] # status = 0 => did not converge
component: iter
(1) 30
component: status
(1) 0

Cross references
See also ulsfactor(), glsfactor(), ulscrit(), glscrit(), mlcrit(),
minimizer().

7.15 forstep()

Usage:
forstep(i,H,E,fh,fe), integer i > 0, fh > 0, fe > 0, REAL symme tric

matrices H and E with no MISSING values

Keywords: factor analysis, iteration

NOTE: This macro is OBSOLETE and is retained only for backwar d
compatibility because it was in file MacAnova.mac in earlie r versions of
MacAnova. For doing stepwise variable selection in discrim inant
analysis you should use newer macros dastepsetup(), daente rvar(),
daremovevar(), dastepstatus() and dasteplook().

What forstep() does
Macro forstep() performs a variable inclusion step in forwa rd stepwise
variable selection in linear discriminant analysis.

forstep() is intended to be used after you have used manova(" y =
groups"), where y is a data matrix and groups is a factor, to co mpute
hypothesis and error matrices H = matrix(SS[2,,]) and E =
matrix(SS[3,,]), with fh = DF[2] and fe = DF[3] degrees of fre edom
respectively.

Status information
Status information about the variables currently "in" and " out’ is
maintained in integer vectors INS and OUTS containing numbe rs of
variables currently included and currently excluded. When no variables
are "in", INS = 0; when all variables are "in", OUTS = NULL. INS must
be initialized, usually to 0, before forstep() can be used.

Usage

7.15. FORSTEP() 691

forstep(j,H,E,fh,fe), where j is the number of a variable no t currently
"in", adds j to INS and removes it from OUTS, and then uses macr o
compf() to compute F-to-enter for all variables included in the updated
INS. The Fs-to-enter are the analysis of covariance Fs for ea ch "out"
variable, with the "in" variables being used as covariates. See topic
compf(). When no variables are "in", the Fs-to-enter are the ordinary
ANOVA F-statistics for each variable.

Value returned
The value returned (which will normally be printed if not ass igned) is
structure(f:F_to_enter, df:vector(fh,fe-k), ins:INS,o uts:OUTS), where
F_to_enter is the vector of F-to-enter statistics, one for e ach
variable not in INS, INS and OUTs are copies of the status vect ors INS
and OUTS. k is the number of variables currently "in".

The F-to-enter statistics have nominal degrees of freedom f h and fe -
k. The next variable to be entered, if any, is normally the var iable
with the largest F-to-enter. The decision to enter it is base d on the
size of F-to-enter.

Example
You can somewhat automate the start of this process as follow s:

Cmd> manova("y = groups", silent:T) # response matrix y, fac tor groups

Cmd> H <- matrix(SS[2,,]); E <- matrix(SS[3,,])

Cmd> fh <- DF[2]; fe <- DF[3]

Cmd> INS <- 0; stuff <- compf(H,E,fh,fe)

Cmd> stuff <- forstep(OUTS[grade(stuff$f,down:T)[1]],H ,E,fh,fe);

The last step can be repeated to bring "in" variables. Of cour se, in
practice, you want to examine the computed F-to-enter stati stics to see
if another variable * should * be entered.

Doing a backward step
You can do a backward step (variable deletion) using macro ba ckstep().
One difference between backstep() and forstep() is that bac kstep()
determines the variable to eliminate, and then updates INS a nd OUTS; you
must tell forstep() which variable to include. See backstep () for
details. See also compf() which computes F-to-enter for var iables not
in INS.

Both backstep() and compf() are OBSOLETE and are retained on ly for
backward compatibility.

Cross references
See also manova(), daentervar(), daremovevar(), dastepse tup(),
dastepstatus() and dasteplook().

692 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

7.16 glscrit()

Usage:
result <- glscrit(logpsi, k, structure(r, nfact [, del])), REAL vector

logpsi, integer scalar k, integer nfact > 0, small REAL scala r del

Keywords: factor analysis

Usage
glscrit() is used by facanal() with method:"gls" to compute the
generalized least squares (GLS) criterion F_gls(x), x = log (psi) being
minimized, its gradient dF_gls(x)/dx and the current loadi ngs and
eigenvalues.

trace((I - solve(r) % * % rhat) % * % (I - solve(r) % * % rhat))

result <- glscrit(logpsi, k, structure(r, nfact [,del]) co mputes a
scalar, vector or structure, depending on the value of integ er k.

r is a REAL symmetric covariance or correlation matrix, nfac t > 0 is the
number of factors, and del >= 0 is a small REAL scalar (default is 1e-5)
controlling how the gradient is computed.

When del = 0 (value used by facanal()), the gradient is comput ed
analytically.

When del > 0, the gradient vector has elements gradient[i] = (F_gls(x) +
del * (run(p)==i)) - F_gls(x))/del.

Result
The result computed is as follows:

k result
0 scalar F_gls(x), x = logpsi
1 vector gradient dF_gls(x)/dx

-2 structure(loadings, eigenvals)

When r is not positive definite, MISSING (k = 0) or rep(MISSIN G,
nrows(s)) (k = 1) is returned.

No argument checking is done.

Cross references
See also facanal(), mlcrit(), ulscrit()

7.17 glsfactor()

Usage:
glsfactor(s, m [, quiet:T,silent:T,start:psi0,uselogs: T], maxit:nmax,

minit:nmin, print:T,crit:crvec]), REAL symmetric matrix s with no
MISSING values, integers nmax > 0 and nmin > 0, crvec =
vector(numsig, nsigsq, delta)

7.17. GLSFACTOR() 693

Keywords: factor analysis

Usage
You use glsfactor() to find GLS (generalized least squares) estimates of
the vector psi of factor analysis uniquenesses and loading m atrix L by
means of nonlinear least squares. It uses macro glsresids() to compute
residuals used by non-linear least squares macro levmar().

glsfactor(r, m) estimates uniquenesses and loadings for a m -factor
analysis based on p by p symmetric correlation or variance-c ovariance
matrix r. m > 0 must be an integer < (2 * p + 1 - sqrt(8 * p+1))/2. The
default starting value for the uniquenesses is psi0 = 1/diag (solve(r)).

glsfactor() prints the estimated uniquenesses psihat and l oading matrix,
the minimized criterion value, and vals, a vector of numbers computed
from certain eigenvalues; see below.

Value returned
The result is an "invisible" (assignable but not automatica lly printed)
variable of the form

structure(psihat:psi,loadings:L,criterion:crit,eige nvals:vals,\
status:iconv,iter:n)

The values of these components are as follows

psi length p vector of estimated uniquenesses
L p by m matrix of estimated loadings satisfying

L’ %* % dmat(1/psi) % * % L is diagonal
crit sum of squared "residuals" of r from rhat
vals 1/v - 1, where v is the vector of eigenvalues of

dmat(psi) % * % solve(r) in increasing order
iconv integer >= 0 indicating convergence status, with 0 and 4

indicating non-convergence
n number of iterations

Keyword phrase arguments
There are several keyword phrases that can be used as argumen ts to
control the behavior of glsfactor().

start:psi0 psi0 a REAL vector of length p with min(psi0) > 0
to be used as starting values for the iteration

uselogs:T log(psi) is used in the iteration instead of psi;
this ensures psi does not become negative and may
speed convergence

maxit:nmax No more than nmax iterations are to be used; the
default is 30

minit:nmin At least nmin iterations will be performed; the
default is 1

crit:crvec crvec = vector(numsig, nsigsq, delta), 3 criter ia
for convergence; a negative criterion is ignored;
see macro levmar() for details

quiet:T uniquenesses, loadings and vals are not printed;
only certain warning messages are printed

silent:T nothing is printed except error messages

694 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

print:T macro levmar() will print a status report on every
iteration

Convergence status indicator
Values of iconv indicate the following situations

iconv Meaning
0 Not converged
1 Converged with relative change in psi or log(psi) < 10ˆ-num sig
2 Converged with relative change in rss <= 10ˆ-nsigsq
3 Converged with ||gradient|| < delta
4 Interation stopped; could not reduce rss.

Caveats
Without uselogs:T, there is no guarantee that min(psihat) > = 0.

Even with uselogs:T, there is no guarantee that the minimum i s inside
the permissible range (r - dmat(psihat) positive semi-defi nite);
however, this often leads to an ’argument to solve() singula r’ error
message.

Invisible variable _PSIGLS
Everytime it is called by levmar(), macro glsresids() saves a copy of
the current value of psi in invisible variable _PSIGLS. Type
’print(_PSIGLS)’ to see this value.

glsfactor() is very much a work in progress, that may in fact b e
abandoned in favor of other methods using optimization macr os in macro
file Math.mac distributed with MacAnova.

Cross references
See also ulsfactor() and glsresids().

7.18 glsresids()

Usage:
glsresids() is used by macro glsfactor() to do GLS factor ext raction by
a nonlinear least squares method.

Keywords: factor analysis

Usage
glsresid(theta,0,vector(r),m) returns a length pˆ2 "resi dual vector"
computed from but not identical with dmat(p,1) - solve(r) % * % rhat,
where r is a REAL p by p correlation or variance-covariance ma trix. m >
0 is an integer specifying the number of factors to extract.

When __USELOGSGLS, a LOGICAL scalar defined by glsfactor() , has value
False, argument theta is interpreted as psi, the length(p) R EAL vector
of uniquenesses. When __USELOGSGLS is True, theta is interp reted as
log(psi). glsresid saves a copy of psi in variable _PSIGLS.

7.19. GOODFIT() 695

rhat = dmat(psi) + V, where V is the best rank m approximation t o r -
dmat(psi) in a generalized least squares sense.

glsresids() is used by macro glsfactor() which does general ized least
squares (GLS) factor extraction.

7.19 goodfit()

Usage:
goodfit(s,lhat,psihat), REAL symmetric matrix lhat REAL v ector or

matrix, psihat REAL vector, all with no MISSING values

Keywords: factor analysis

Usage
goodfit(r, L, psi), where r is a p by p symmetric correlation o r
variance-covariance matrix, L is a REAL p by m matrix of purpo rted
factor loadings, and psi is a length p REAL vector of factor an alysis
uniquenesses computes three measures of lack of fit of r to th e factor
analytic approximation rhat = L % * % L’ + dmat(psi).

If dev = vector(r - rhat) is the length pˆ2 vector of deviation s of r
from rhat, then goodfit() returns

vector(max(abs(dev)), sum(devˆ2), sum(abs(dev)))

When L and psi have been computed by some factor analysis esti mation
method, and one or more of the elements of the result is large i t may
indicate lack of fit of r to the factor analytic model.

These are intended to describe how bad the fit is, not to test i t.

7.20 groupcovar()

Usage:
groupcovar(groups, y), factor or vector of positive intege rs groups,

REAL matrix y with no MISSING values

Keywords: covariance, descriptive statistics

Usage
groupcovar(G, y), where G is a length N factor or vector of pos itive
integers and y is a REAL N by p data matrix with no MISSING value s,
computes group means and the pooled sample covariance matri x for the
groups defined by the elements of G. It is an error if no group h as at
least 2 members.

Value returned
The result is structure(n:n, means:ybar, covariance:V).

n = vector(n1, ...,ng) is the vector of group sample sizes, wh ere g =

696 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

max(G).
ybar is a g by p REAL matrix with ybar[i,] = sample mean for

group i. When group i is empty, ybar[i,] is all MISSING.
V is the pooled variance-covariance matrix. When all the gro ups are

non-empty, V = ((n1-1) * S1 + (n2-1) * S2 + ... + (ng-1) * Sg)/(N - g)
where S1, ..., Sg are the sample variance-covariance matric es for
the g groups.

Cross reference
See also tabs().

7.21 hotellval()

Usage:
hotellval(x [, pval:T]), REAL matrix x with no MISSING eleme nts

Keywords: hotelling tsq, hypothesis tests

Usage
hotellval(x), where x is a n by p REAL matrix with no MISSING el ements,
returns a REAL scalar containing Hotelling’s Tˆ2 statistic for testing
the null hypothesis H0: mu = 0. mu’ is the expectation of each r ow of
x when the rows are assumed to be random sample from a multi-va riate
population.

It is an error if n <= p.

hotellval(x, pval:T) does the same, except a P-value is also computed
under the assumption that the rows of x are independent multi variate
normal. The result is structure(hotelling:tsq, pvalue:pv al), where tsq
and pval are REAL scalars.

Examples:
Cmd> hotellval(x - mu0’, pval:T)

where mu0 is a REAL vector of length p, computes a test statist ic and
associated P-value for testing H0: mu = mu0.

Cmd> hotellval(x1 - x2, pval:T)

where x1 and x2 are both n by p, computes Hotelling’s paired Pˆ 2
statistic for testing H0: E(x1 - x2) = 0, together with a P-val ue.

Cross references
See also hotell2val(), tval() and t2val().

7.22. HOTELL2VAL() 697

7.22 hotell2val()

Usage:
hotell2val(x1, x2 [, pval:T]), REAL matrices x1 and x2 with n o MISSING

elements and ncols(x1) = ncols(x2)

Keywords: hotelling tsq, hypothesis tests

Usage
hotell2val(x1, x2), where x1 and x2 are REAL matrices with n1 and n2
rows and p columns, returns Hotelling’s two-sample Tˆ2 stat istic for
testing the null hypothesis that the rows of x1 have the same m ean as
the rows of x2 when they are considered as independent random samples
from two multivariate populations. The statistic assumes t hat the
variance-covariance matrix is the same in the two populatio ns.

It is an error if n1 + n2 <= p.

hotell2val(x1, x2, pval:T) does the same, except it also com putes a
P-value under the assumption that the rows of x1 and of x2 cons titute
independent random samples from multivariate normal distr ibutions with
the same variance-covariance matrix. The result is
structure(hotelling:tsq, pvalue:pval).

Cross references
See also hotellval(), tval() and t2val().

7.23 mlcrit()

Usage:
result <- mlcrit(logpsi, k, structure(r, nfact [, del])), R EAL vector

logpsi, integer scalar k, integer nfact > 0, small REAL scala r del

Keywords: factor analysis

Usage
mlcrit() is used by facanal() with method:"mle" to compute t he maximum
likelihood ML criterion F_ml(x), x = log(psi) being minimiz ed, its
gradient dF_ml(x)/dx and the current loadings and eigenval ues.

result <- mlcrit(logpsi, k, structure(r, nfact [,del]) com putes a
scalar, vector or structure, depending on the value of integ er k.

r is a REAL symmetric covariance or correlation matrix, nfac t > 0 is the
number of factors, and del >= 0 is a small REAL scalar (default is 1e-5)
controlling how the gradient is computed.

When del = 0 (value used by facanal()), the gradient is comput ed
analytically.

When del > 0, the gradient vector has elements gradient[i] = (F_ml(x) +
del * (run(p)==i)) - F_ml(x))/del.

698 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

Result
The result computed is as follows:

k result
0 scalar F_ml(x), x = logpsi
1 vector gradient dF_ml(x)/dx

-2 structure(loadings, eigenvals)

When r is not positive definite, MISSING (k = 0) or rep(MISSIN G,
nrows(s)) (k = 1) is returned.

No argument checking is done.

Cross references
See also facanal(), glscrit(), ulscrit()

7.24 jackknife()

Usage:
probs <- jackknife(groups,y [,prior:P]), factor or vector of positive

integers groups, REAL matrix y and positive vector P with no M ISSING
elements

Keywords: discrimination, classification

Usage
jackknife(G, y), where G is a factor or vector of positive int egers of
length n and y is a REAL n by p matrix with no MISSING elements, c arries
out a jackknife validation of linear discriminant function s designed to
discriminate among the g groups defined by the levels of G.

What jackknife() does
When you try to estimate the error rate of a classification me thod by
counting the errors it makes in classifying the cases in the " training
sample", the data set you are using to estimate the method, yo ur
estimate is biased in an optimistic direction. That is, the p roportion
of cases misclassified in the training sample tends to be sma ller than
the proportion of cases misclassified in new sample (valida tion sample).
jackknife() attempts to avoid this bias by classifying each case in the
training sample with linear discriminant functions comput ed from all the
other cases in the training sample. This is the "leave-one-o ut" method,
sometimes called the Lachenbruch-Mickey method.

Value returned
Macro jackknife() returns a n by g+1 matrix probs.

probs[i,j], for j = 1,...,g is an estimate of the posterior pr obability
that the data in y[i,] were derived from population j.

probs[i,g+1] is an integer from 1 to g indicating the populat ion in
which the case should be classified, that is the population f or which

7.25. MULVARHELP() 699

the posterior probability is largest.

Posterior probabilities
For each i, 1 <= i <= n, the posterior probabilities probs[i,j], j =
1,..., g are computed as follows.

The linear discriminant function based on y[-i,], that is us ing all the
data except row i, and the discriminant functions scores for the data
in y[i,] are computed. From these the posterior probabiliti es are
computed assuming equal prior probability 1/g for each of th e groups.
Each group is assumed to be multivariate normal with the same variance-
covariance matrix in each group.

Because the discriminant functions used to classify y[i,] a re computed
without using y[i,], the method is close to unbiased.

Keyword prior
jackknife(G,y,prior:P), where P is a REAL vector of length n with no
MISSING elements, does the same except the posterior probab ilities are
computed using P.

Example
Here is how you might use jackknife() to estimate the expecte d
probability of misclassification, assuming the prior prob ability that a
randomly selected case comes from population j is P[j].

Cmd> probs <- jackknife(G, y, prior:P)

Cmd> n <- tabs(,G,count:T) # vector of sample sizes

Cmd> misclassprob <- tabs(,G,probs[,g+1],count:T)/n

Cmd> misclassprob[hconcat(run(g),run(g))] <- 0# set diag s to 0

Cmd> sum(misclassprob’ % * % P)

The last line computes the estimated probability case rando mly selected
from a group with prior probabilitys P will be misclassified by
linear discriminant functions estimated from y. misclassp rob[i,j] with
i != j is an estimate that a case from population i is misclassi fed as
population j.

This version of jackknife() is relatively fast since it comp utes the
successive leave-one-out discriminant functions by modif ication of the
discriminant functions using all the data, rather than star ting fresh.

7.25 mulvarhelp()

Usage:
mulvarhelp(topic1 [, topic2 ...] [,usage:T])
mulvarhelp(index:T)

700 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

Keywords:

Usage
mulvarhelp(topicname) prints help on a topic related to fil e
mulvar.mac. Usually topicname is the name of a macro in the fi le.

When quoted, topicname may contain "wildcard" characters " * " and "?".
You can also use help keyword ’key’. See help() for details.

mulvarhelp(topicname1, topicname2, ...) prints help on mo re than one
topic.

mulvarhelp(topicname1 [, topicname2 ...], usage:T) print s just a brief
summary of usage for the each topic.

7.26 mvngen()

Usage:
mvngen() has been renamed rmvnorm(). Type ’usage(rmvnorm) ’.

Keywords:

Usage
mvngen() has been renamed rmvnorm(). Type ’help(rmvnorm)’ .

7.27 probsquad()

Usage:
probsquad(x,structure(Q,L,addcon,grandmean) [, prior: P]), REAL matrix x

with no MISSING elements, argument 2 a structure as returned by macro
discrimquad(), REAL vector P of prior probabilities with P[i] > 0,
default = rep(1/g,g)

Keywords: classification, discrimination

@usage
Suppose info = structure(Q,L,addcon,grandmean) as comput ed by
discrimquad(groups, y) summarizes quadratic discriminan t functions
estimated from a n by p matrix of data from g groups.

probsquad(x, info), where x a REAL vector of length p, return s the
length g vector of posterior probabilities, assuming multi variate
normality of each groups and equal prior probability 1/g for each group.

probsquad(x, info, prior:P), where P is a length g vector wit h P[j] >
0, does the same using P[j]/sum(P) as prior probability of gr oup j.

7.28. RMVNORM() 701

In both these usages x can be a m by p matrix, each row of which is an
observation and probsquad() returns a m by g matrix of poster ior
probabilities.

Cross reference
See probsquad() for information about the form of info.

7.28 rmvnorm()

Usage:
rmvnorm(n , p), integers n > 0, p > 1
rmvnorm(n, sigma), REAL positive definite symmetric matri x sigma,

nrows(sigma) > 1
rmvnorm(n, p or sigma, mu), REAL row or column vector mu with l ength(mu)

= p or ncols(sigma)

Keywords: random numbers

Usage
rmvnorm(n, p), where n > 0 and p > 0 are integer scalars, return s an n
by p matrix whose rows are a random sample from the standard
multivariate normal distribution MVN(0, I_p), where I_p is the p by p
identity matrix.

rmvnorm(n, p, mu) where mu is a REAL row or column vector of len gth p
does the same, except the rows of the result are MVN(mu, I_p).

rmvnorm(n, sigma [,mu]), where sigma is a positive definite p by p
symmetric matrix with p > 1, does the same, except the rows of t he
result are MVN(0, sigma) or MVN(mu, sigma).

When p = 1, use mu + sd * rnorm(n) or mu + sd * rmvnorm(n,1) to generate a
normal sample with mean mu and standard deviation sd.

Cross reference
See also rnorm().

7.29 standardize()

Usage:
ynew <- standardize(y [,locs [,scales]]), n by p REAL matrix y, locs and

scales REAL scalars or row or column vectors of length p, defa ults
mean and standard deviations

Keywords: transformations

Usage
ynew <- standardize(y), where y is a n by p REAL matrix, create s a n by

702 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

p REAL matrix ynew with ynew[i,j] = (y[i,j] - ybar[j])/sd[j] , where ybar
and sd are vectors of column means and standard deviations of y. ynew
will have column means = 0 and column standard deviations = 1.

ynew <- standardize(y,locs), where locs is a REAL row or colu mn vector
of length p, does the same except ynew[i,j] = (y[i,j] - locs[j])/sd[j].

ynew <- standardize(y,locs,scales), where scales is a REAL row or column
vector of length p, does the same except ynew[i,j] = (y[i,j] -
locs[j])/scales[j].

Scalar locs or scales
If locs is a scalar, it is expanded to rep(locs, p).

If scales is a scalar, it is expanded to rep(scales, p).

Missing values
Any means or standard deviations needed are computed by desc ribe(y).
MISSING elements are ignored except for a warning message.

If any elements of locs are MISSING, they are replaced by the m ean of
the corresponding columns of y.

If any elements of scales are MISSING, they are replaced by th e standard
deviations of the corresponding columns of y.

Cross reference
See also describe().

7.30 stepgls()

Usage:
stepgls(s, psi, m [, print:T]), REAL positive definite symm etric matrix

s, REAL vector psi or structure with psi[1] a REAL vector, int eger m
> 0

Keywords: factor analysis, iteration

Usage
stepgls(r, psi, m) performs one step of an iteration which at tempts to
extract m factors in factor analyis. r is a p by p correlation o r
variance-covariance matrix, psi is a REAL vector of trial un iquenesses
of length p with min(psi) > 0 and integer m > 0.

Value returned
The value returned is structure(psi:newpsi, loadings:L, c rit:criterion),
where newpsi is an updated vector of uniquenesses, L is a p by m matrix
of factor loadings satisfying L’ % * % dmat(1/psi) % * % L is diagonal, and
criterion is a value of the criterion being minimized; see be low.

Side effect variables

7.31. STEPML() 703

In addition, stepgls() creates side effect variabls PSI, LO ADINGS, and
CRITERION containing newphi, L and criterion.

Actually L is the loadings that minimize the criterion for ar gument
phi, not the output newphi, and criterion is the criterion as socated
with phi and L.

What stepgls() does
Each step reduces the generalized least squares (GLS) crite rion =
trace((I - solve(r) % * % rhat) % * % (I - solve(r) % * % rhat)), where rhat
has the form rhat = dmat(psi) + V where V is the unique rank m mat rix
that minimizes this criterion for given psi.

Multiple steps
Argument psi can also have the form structure(psi1, ...) whe re psi1 is
the vector of uniquenesses. This means you can do many steps o f the
iteration as follows.

Cmd> psi <- psi0 # psi0 a vector of starting values

Cmd> for (i,1,500){psi <- stepgls(r,psi,m);;} # 500 steps

stepgls(r, psi, m, print:T) does the same except the updated psi and the
criterion value are printed. For example,

Cmd> for (i,1,500){psi <- stepgls(r,psi,m,print:i %% 50 == 0);;}

prints out psi and and the criterion every 50 steps.

Caveats
The iteration performed by stepgls() is similar but not iden tical to
what is known Principal Factor Iteration. It is not unusual f or it to
converge very slowly. In addition, it is possible for a step t o produce
a psi with min(psi) < 0 or r - dmat(psi) not non-negative defin ite.
When this happens stepgls() aborts. You can retrieve the mos t recent
uniquenesses and loadings from variables PSI and LOADINGS.

It is usually preferable to use a method that more directly mi nimizes
the criterion, such as macro glsfactor(). In addition, one o f the
function minimization macros, dfp, bfs or broyden could be u sed to
minimize the criterion as a function of psi or log(psi).

7.31 stepml()

Usage:
stepml(s, psi, m [, print:T]), REAL positive definite symme tric matrix

s, REAL vector psi or structure with psi[1] a REAL vector, int eger m
> 0

Keywords: factor analysis, iteration

704 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

Usage
stepml(r, psi, m) performs one step of an iteration which att empts to
extract m factors in factor analyis. r is a p by p correlation o r
variance-covariance matrix, psi is a REAL vector of trial un iquenesses
of length p with min(psi) > 0 and integer m > 0.

Value returned
The value returned is structure(psi:newpsi, loadings:L, c rit:criterion),
where newpsi is an updated vector of uniquenesses, L a p by m ma trix of
factor loadings satisfying L’ % * % dmat(1/psi) % * % L is diagonal, and
criterion is a value of the criterion being minimized; see be low.

Side effect variables
In addition, stepml() also creates side effect variabls PSI , LOADINGS,
and CRITERION containing newphi, L and criterion.

Actually L is the loadings that minimize the criterion for ar gument
phi, not the output newphi, and criterion is the criterion as socated
with phi and L.

What stepml() does
Each step reduces the likelihood (ML) criterion = log(det(r hat)) -
trace(r % * % solve(rhat)) - log(det(r)) - p, where rhat has the form
rhat = dmat(psi) + V where V is the unique rank m matrix that min imizes
this criterionfor given psi.

Multiple steps
Argument psi can also have the form structure(psi1, ...) whe re psi1 is
the vector of uniquenesses. This means you can do many steps o f the
iteration as follows.

Cmd> psi <- psi0 # psi0 a vector of starting values

Cmd> for (i,1,500){psi <- stepml(r,psi,m);;}

Keyword print
stepml(r, psi, m, print:T) does the same except the updated p si and the
criterion value are printed. For example,

Cmd> for (i,1,500){psi <- stepml(r,psi,m,print:i %% 50 == 0);;}

prints out psi and and the criterion every 50 steps.

Caveats
The iteration performed by stepml() is similar but not ident ical to what
is known Principal Factor Iteration. It is not unusual for it to
converge very slowly. In addition, it is possible a step to pr oduce a
psi with min(psi) < 0 or r - dmat(psi) not non-negative defini te. When
this happens stepml() aborts. You can retrieve the most rece nt
uniquenesses and loadings from variables PSI and LOADINGS.

It is usually preferable to use a method that more directly mi nimizes
the criterion. At present, none such is distributed with Mac Anova.

7.32. STEPULS() 705

However, one of the function minimization macros, dfp, bfs o r broyden
could be used to minimize the criterion as a function of psi or
log(psi).

7.32 stepuls()

Usage:
stepuls(r, psi, m [, print:T]), REAL positive definite symm etric matrix

r, REAL vector psi or structure with psi[1] a REAL vector, int eger m
> 0

Keywords: factor analysis, iteration

Usage
stepuls(r, psi, m) performs one step of an iteration which at tempts to
extract m factors in factor analyis. r is a p by p correlation o r
variance-covariance matrix, psi is a REAL vector of trial un iquenesses
of length p with min(psi) > 0 and integer m > 0.

Value returned
The value returned is structure(psi:newpsi, loadings:L, c rit:criterion),
where newpsi is an updated vector of uniquenesses, L a p by m ma trix of
factor loadings satisfying L’ % * % L is diagonal, and criterion is a
value of the criterion being minimized; see below.

Side effect variables
In addition, stepuls() also creates side effect variabls PS I, LOADINGS,
and CRITERION containing newphi, L and criterion.

Actually L is the loadings that minimize the criterion for ar gument
phi, not the output newphi, and criterion is the criterion as socated
with phi and L.

Each step reduces the unweighted least squares (ULS) criter ion =
trace((r - rhat) % * % (r - rhat)), where rhat has the form rhat =
dmat(psi) + V where V is the unique rank m matrix that minimize s this
criterion for given psi.

Multiple steps
Argument psi can also have the form structure(psi1, ...) whe re psi1 is
the vector of uniquenesses. This means you can do many steps o f the
iteration as follows.

Cmd> psi <- psi0 # psi0 a vector of starting values

Cmd> for (i,1,500){psi <- stepuls(r,psi,m);;}

Keyword print
stepuls(r, psi, m, print:T) does the same except the updated psi and the
criterion value are printed. For example,

706 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

Cmd> for (i,1,500){psi <- stepuls(r,psi,m,print:i %% 50 == 0);;}

prints out psi and and the criterion every 50 steps.

Caveats
The iteration performed by stepuls() is also known as Princi pal Factor
Iteration. It is not unusual for it to converge very slowly. I n
addition, it is possible a step to produce a psi with min(psi) < 0 or r
- dmat(psi) not non-negative definite. When this happens st epuls()
aborts. You can retrieve the most recent uniquenesses and lo adings
from variables PSI and LOADINGS.

It is usually preferable to use a method that more directly mi nimizes
the criterion, such as macro ulsfactor(). In addition, one o f the
function minimization macros, dfp, bfs or broyden could be u sed to
minimize the criterion as a function of psi or log(psi).

7.33 ulscrit()

Usage:
result <- ulscrit(logpsi, k, structure(r, nfact [, del])), REAL vector

logpsi, integer scalar k, integer nfact > 0, small REAL scala r del

Keywords: factor analysis

Usage
ulscrit() is used by facanal() with method:"uls" to compute the
unweighted least squares (ULS) criterion F_uls(x), x = log(psi) being
minimized, its gradient dF_uls(x)/dx and the current loadi ngs and
eigenvalues.

result <- ulscrit(logpsi, k, structure(r, nfact [,del]) co mputes a
scalar, vector or structure, depending on the value of integ er k.

r is a REAL symmetric covariance or correlation matrix, nfac t > 0 is the
number of factors, and del >= 0 is a small REAL scalar (default is 1e-5)
controlling how the gradient is computed.

When del = 0 (value used by facanal()), the gradient is comput ed
analytically.

When del > 0, the gradient vector has elements gradient[i] = (F_uls(x) +
del * (run(p)==i)) - F_uls(x))/del.

Value returned
The result computed is as follows:

k result
0 scalar F_uls(x), x = logpsi
1 vector gradient dF_uls(x)/dx

-2 structure(loadings, eigenvals)

7.34. ULSFACTOR() 707

When r is not positive definite, MISSING (k = 0) or rep(MISSIN G,
nrows(s)) (k = 1) is returned.

No argument checking is done.

Cross references
See also facanal(), glscrit(), mlcrit().

7.34 ulsfactor()

Usage:
ulsfactor(s, m [, quiet:T,silent:T,start:psi0,uselogs: T], maxit:nmax,

minit:nmin, print:T,crit:crvec]), REAL symmetric matrix s with no
MISSING values, integers nmax > 0 and nmin > 0, crvec =
vector(numsig, nsigsq, delta)

Keywords: factor analysis

Usage
You use ulsfactor() to find ULS (unweighted least squares) e stimates of
the vector psi of factor analysis uniquenesses and the loadi ng matrix L
by means of nonlinear least squares. It uses macro ulsresids () to
compute residuals required by non-linear least squares mac ro levmar().

ulsfactor(r, m) estimates uniquenesses and loadings for a m -factor
analysis based on p by p symmetric correlation or variance-c ovariance
matrix r. m > 0 must be an integer < (2 * p + 1 - sqrt(8 * p+1))/2. The
default starting value for the uniquenesses is psi0 = 1/diag (solve(r)).

Printed output
ulsfactor() prints the estimated uniquenesses psihat and l oading matrix,
the minimized criterion value, and vals, a vector of numbers computed
from certain eigenvalues; see below.

Value returned
The result is an "invisible" (assignable but not automatica lly printed)
variable of the form

structure(psihat:psi,loadings:L,criterion:crit,eige nvals:vals,\
status:iconv,iter:n)

The values of these components are as follows

psi length p vector of estimated uniquenesses
L p by m matrix of estimated loadings satisfying

L’ %* % L is diagonal
crit sum of squared "residuals" = vector(r - rhat)
vals v, where v is the vector of eigenvalues of r - dmat(psi)
iconv integer >= 0 indicating convergence status, with 0 and 4

indicating non-convergence
n number of iterations

Keyword phrase arguments

708 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

There are several keyword phrases that can be used as argumen ts to
control the behavior of ulsfactor().

start:psi0 psi0 a REAL vector of length p with min(psi0) > 0
to be used as starting values for the iteration

uselogs:T log(psi) is used in the iteration instead of psi;
this ensures psi does not become negative

maxit:nmax No more than nmax iterations are to be used; the
default is 30

minit:nmin At least nmin iterations will be performed; the
default is 1

crit:crvec crvec = vector(numsig, nsigsq, delta), 3 criter ia
for convergence; a negative criterion is ignored;
see macro levmar() for details

quiet:T uniquenesses, loadings and vals are not printed;
only certain warning messages are printed

silent:T nothing is printed except error messages
print:T macro levmar() will print a status report on every

iteration

Convergence status indicator
Values of iconv indicate the following situations

iconv Meaning
0 Not converged
1 Converged with relative change in psi or log(psi) < 10ˆ-num sig
2 Converged with relative change in rss <= 10ˆ-nsigsq
3 Converged with ||gradient|| < delta
4 Interation stopped; could not reduce rss.

Caveat
With or without uselogs:T, there is no guarantee that the sol ution
found is admissible in the sense that r - dmat(psihat) is posi tive
semi-definite. A warning is printed when is not. With uselog s:T this
situation is sometimes indicated by an ’argument to solve() singular’
error message.

Without uselogs:T, there is no guarantee that min(psihat) > = 0. A
warning is printed if it is not.

Invisible variable _PSIGLS
Every time macro ulsresids() is called by levmar(), it saves a copy of
the current value of psi in invisible variable _PSIGLS. Type
print(_PSIGLS) to see this value.

ulsfactor() is very much a work in progress that may in fact be
abandoned in favor of other methods using optimization macr os in macro
file Math.mac distributed with MacAnova.

7.35. ULSRESIDS() 709

7.35 ulsresids()

Usage:
ulsresids() is used by macro ulsfactor() to do ULS factor ext raction by
a nonlinear least squares method.

Keywords: factor analysis

Usage
ulsresid(theta,0,vector(r),m) returns the residual matr ix r - rhat as a
vector of length pˆ2, where r is a REAL p by p correlation or var iance-
covariance matrix. m > 0 is an integer specifying the number o f
factors to extract.

rhat = dmat(psi) + V, where V is the best rank m approximation t o r -
dmat(psi) in the least squares sense.

ulsresids() is used by macro ulsfactor() to do unweighted le ast squares
(ULS) factor extraction.

Use of logs
When __USELOGSULS, a LOGICAL scalar defined by ulsfactor() , has value
False, argument theta is interpreted as psi, the length(p) R EAL vector
of uniquenesses. When __USELOGSULS is True, theta is interp reted as
log(psi). ulsresids() saves a copy of psi in variable _PSIUL S.

710 CHAPTER 7. MULTIVARIATE MACROS HELP FILE

Chapter 8

Regression Macros Help File

This Chapter contains help for the set of macros related to regression analysis and linear
models distributed with MacAnova in the file Regress.mac.txt. The material here is a
reformatting of the help in file Regress.mac.txt.

8.1 anovapred()

Usage:
anovapred(a,b,...), a, b, ... all the factors in STRMODEL

Keywords: glm, anova, standard error, confidence limits, predic-
tion limits

Usage
anovapred(a,b,...), where a, b, ... are all the factors in th e most
recent GLM model, computes the fitted (predicted) value, th e standard
error of estimation, and the standard error of prediction fo r each
cell. The result is a structure with components ’estimate’, ’SEest’ and
’SEpred’, each of which is a vector, matrix, or array with dim ensions
derived from the number of levels of a, b, It uses side eff ect
variables DEPVNAME, RESIDUALS, and HII.

When the most recent GLM model was manova() with a p-dimensio nal
dependent variable, each component will have an extra dimen sion of size
p.

When the most recent GLM model included variates (non-facto rs), or when
you do not include all factors in the argument list, the resul ts will
probably be wrong, although no warning message will be print ed.

anovapred() is implemented as a pre-defined macro.

Cross references
See also predtable(), regpred(), ’glm’.

711

712 CHAPTER 8. REGRESSION MACROS HELP FILE

8.2 betalimits()

Usage:
betalimits(Term, level), Term a CHARACTER scalar, a positi ve integer or

a variable in the most recent regression model, REAL positiv e scalar
level < 1.

Keywords: regression, confidence limits

Usage
You use betalimits() to compute confidence limits for a regr ession
coefficient. Its use must be preceded by a GLM command, usual ly
regress() or anova().

betalimits(Term, Level), where Term specifies a variable o r a term in
the ANOVA table, and Level is a REAL scalar between 0.5 and 1, r eturns
upper and lower confidence limits for a regression coeffice int or ANOVA
main effects or interactions.

Term can be a quoted or unquoted predictor variable or term na me, or
CONSTANT or a positive integer specifying the number of the t erm. If
the term is an iteraction it must be quoted.

Level is the desired confidence coefficient. If level < .5, a warning
message is given and the confidence coefficient is assumed t o be 1 -
level.

After regress(), the result is vector(lower, upper), where lower and
upper are the confidence limits.

After anova(), when the term is a main effect with k levels, th e result
is k by 2 matrix hconcat(lower, upper). When the term is an
interaction of factors with k1, k2, ... levels, the result is
array(vector(upper,lower),k1,k2,...,2).

Example:
After regress("y=x1 + x2 + x3"), the following are all equiva lent

Cmd> betalimits(x2, .95)
Cmd> betalimits("x2",.95)
Cmd> betalimits(3,.95) #counting the constant, x2 is the th ird term

They all return a vector of length 2.

If a and b are factors with 3 and 4 levels, respectively, after
anova("y = a * b") (equivalent to anova("y = a + b + a.b"))

Cmd> betalimits("a.b",.95) # quotes are required
and

Cmd> betalimits(4, .95) # a.b is term 4
are equivalent and return a 3 by 4 by 2 array with a[i,j,] the up per
and lower limits for the i,j interaction effect.

In all these replacing .95 by .05 gives the same result except a
warning message is printed.

8.3. ENTERVAR() 713

Cross references
See also coefs(), secoefs(), regress()

8.3 entervar()

Usage:
entervar(var1 [,var2 ...] [,silent:T]), var1, var2, ... th e names or

numbers of independent variables in the complete stepwise m odel but
not in the current stepwise model

Keywords: stepwise regression, regression

Usage
entervar(NewVar) enters independent variable Var to the cu rrent stepwise
regression model. NewVar can either be a quoted name ("z3"), an
unquoted name (z3) or the number of a variable in the complete stepwise
model but not in the current stepwise model. Thus if the full m odel is
"y=x1+x2+x3+x4+x5", entervar(x2), entervar("x2") and en tervar(2) are
equivalent.

It is an error if NewVar is not an independent variable in the c omplete
stepwise model or if it has already been entered in.

Invisible variable _STEPSTATUS is updated to reflect the ch anged model.
See topic ’_STEPSTATUS’.

Printed output
The F-to-remove statistics with P-values are printed for al l the
variables in the model, including NewVar, and F-to-enter st atistics
with P-values are printed for any variables in the full model that have
not yet been entered.

In addition, entervar() prints an overall F statistic and it s P-value,
Mallow’s Cp statistic, adjusted Rˆ2 and Rˆ2. The F-statisti c tests
the null hypothesis that the coefficients of the "in" variab les are 0.
Because the "in" variables have been selected because they a ppear to
contributed importantly to the regression, the P-value sho uld not be
interpreted literally.

Value returned
The value, which can be assigned (stuff <- entervar(x3)) but is not
printed, is a copy of the updated invisible variable _STEPST ATUS.

Entering several variables
entervar(Var1, Var2 ...) does the same except that more than one
variable is entered. The model and other statistics are prin ted after
each variable is entered. The value returned is _STEPSTATUS after all
have been entered. An example when the full model is "y=x1+x2 +x3+x4+x5"
might be entervar(x1,"x2",4). This would enter x1, x2 and x4 in that
order.

714 CHAPTER 8. REGRESSION MACROS HELP FILE

Keyword silent
entervar(Var1 [, Var2 ...], silent:T) does the same, except that the
model and summary statistics are not printed. You can then us e
stepstatus() to print the summary statistics for the new cur rent state
of the stepwise regression process.

Cross references
See also removevar(), stepsetup(), stepstatus()

8.4 estimlimits()

Usage:
estimlimits(x, confLevel), REAL vector or matrix x with no M ISSING

elements, 0 < confLevel < 1 a REAL scalar
estimlimits(NULL,factorValues, confLevel), REAL vector or matrix

factorValues with no MISSING elements
estimalimits(x,factorValues, confLevel)

Keywords: regression, confidence limits

Macro estimlimits() computes confidence limits for the exp ected value
E(y|x) after a regression. You can also use it to compute limi ts for
the expectation of y after anova() when the model includes on e or more
factors.

Before using estimlimits(), you must have run regress("y=x ") or
regress("y=x1 + x2 + ... xk") or more generally anova(Model) where
Model may contain both one or more predictors (covariates) a nd/or one
or more factors

When the arguments to estimlimits() specify a single condit ion under
which limits are wanted for E(y), the result is vector(lower ,upper),
where lower and upper are the limits.

When the arguments specify several conditions (several val ues of x
and/or several factor levels), the result is hconcat(lower ,upper),
where lower and upper are vectors with length(lower) = lengt h(upper) =
number of conditions.

Usage after regress()
estimlimits(x, confLevel), where REAL variable x is a scala r (simple
linear regression) or a vector (multiple regression) retur ns
vector(lower, upper), the confidence limits for E(y|x) for the
specified value of of the predictor variable(s). x can conta in no
MISSING elements and confLevel must be a real scalar between 0 and 1.

When there is more than one predictor variable, length(x) = n umber of
predictors.

When there is only one predictor (simple linear regression) , x can be a
vector. When there is more than one predictor, x can be a matri x with

8.4. ESTIMLIMITS() 715

ncols(x) = number of predictors. In both cases, the result is
hconcat(lower,upper).

When confLevel < .5, a warning message is printed and the conf idence
level is assumed to be 1 - confLevel.

Usage after anova() with factors in the model
estimlimits(NULL,FactorValues,confLevel) is appropria te after anova()
with a model with no variates (covariates).

When there is just one factor ("y = a"), FactorValues should b e a
scalar or vector of permissible factor levels. When there ar e nFactors
> 1 factors, FactorValues should be a vector with length(Fac torValues) =
nFactors, or a matrix with ncols(FactorValues) = nFactors.

estimlimits(x,FactorValues,confLevel) is appropriate a fter anova() with
a model containing both factors and (co)variates. x and Fact orValues
are as in the no factor case and no variate case, respectively .

Examples after regress()
After regress("y=x1 + x2 + x3"):

estimlimits(vector(2,3,4),.95) returns where lower and u pper are the
limits when x1 = 2, x2 = 3 and x3 = 4.

estimlimits(hconcat(x01, x02, x03),.95), returns hconca t(lower,upper),
where lower[I] and upper[I] are limits whenx1 = x01[I], x2 = x 02[I]
and x3 = x03[I]. x01, x02, and x03 must all be vectors of the sam e
length.

Examples after anova()
After anova("y = a + b")

estimlimits(NULL,vector(1,2),.95) returns vector(lowe r,upper), where
lower and upper are limits when a = 1 and b = 2

After anova("y = x + a + b")
estimlimits(vector(3,4),vconcat(vector(1,2)’,vector (1,3)’),.95)
returns hconcat(lower,upper), where lower[1] and upper[1] are limits
when x = 3, a = 1 and b = 2 and lower[2] and upper[2] are limits
when x = 4, a= 1 and b = 3.

Cross references
See also predlimits(), regpred(), glmpred().

716 CHAPTER 8. REGRESSION MACROS HELP FILE

8.5 nlreg()

Usage:
nlreg(b,x,y,f,param [,deriv:deriv,crit:vec,active:ac tive,maxit:itmax,\

minit:itmin, print:T, keep:T, quiet:T])
nlreg(b,x,y param ,resid:res [,deriv:deriv,crit:vec,ac tive:active,\

maxit:itmax,minit:itmin,print:T,keep:T, quiet:T])
b REAL vector of starting values for the iterative fitting
x REAL matrix; with argument f, nrows(x) = nrows(y); with

’resid:res’ nrows(x) = nrows(y) can be omitted; if x is not
used by res(), it should be 0

y REAL vector
f macro: f(b,x,param) computes a vector of fitted values for y

(not allowed with ’resid:res’; required without
’resid:res’)

param a vector or structure of additional parameters for f() or NULL
res macro: res(b,x,y [,param]) computes a vector of residua ls from

a function defined or directly referenced in res() (not allo wed
when f is an argument; required when f is not an argument).

deriv optional macro: deriv(b,x,y,param,j) computes deri vative of
f(x,b,param) or -res(b,x,y) with respect to b[j], returnin g a
vector the same length as y

active LOGICAL vector the same length as b specifies which pa rameters
are included in iteration

vec vector(numsig, nsigsq, delta): 3 criteria for converge nce
numsig = number of digits of accuracy in coefficients
nsiqsq = number of digits of accuracy in residual SS
delta = threshhold for norm of gradient

itmin the minimum number >= 0 of iterations performed
itmax the maximum number >= itmin of iterations allowed
print If T, partial results printed at each iteration
keep If T, nlreg() returns the structure returned by levmar()

with components, coefs, hessian, jacobian, gradient,
rss, residuals, nobs, iter, iconv plus component edf

quiet If F (default, unless keep:T), no summary results are p rinted.
quiet:T is illegal without keep:T

Keywords: nonlinear fitting, regression

Introduction
nlreg() is a macro for carrying out nonlinear least squares r egression.
It uses macro levmar() to do the actual minimization. The fun ction
fitted and/or residuals from the function are specified by m acros in the
argument list. Derivatives may be computed by a macro. If no m acro to
compute derivatives is provided, derivatives are computed numerically by
differencing.

Usage and arguments
nlreg(b,x,y,f,param [,deriv:deriv,crit:vec,active:ac tive,maxit:itmax,\

minit:itmin,print:T, keep:T, quiet:T])
or

nlreg(b,x,y, param ,resid:res [,deriv:deriv, crit:vec,\
active:active,maxit:itmax,minit:itmin,print:T, keep: T, quiet:T])

8.5. NLREG() 717

b REAL vector of starting values for the iterative fitting
x REAL matrix; when f is an argument, nrows(x) = nrows(y) is

required; when ’resid:res’ is an argument, nrows(x) !=
nrows(y) is allowed; if res() does not use x, x should be 0

y REAL vector
f macro; f(b,x,param) computes a vector with length nrows(y) of

fitted values for y (not allowed with ’resid:res’)
param a vector or structure of additional parameters for fun c or NULL
res macro; res(b,x,y [,param]) computes a vector of residua ls from

a function defined or directly referenced in res(). f must no t
be an argument when resid:res is an argument. Conversely,
when resid:res is not an argument, f is a required argument.
res() must return a vector of length nrows(y) and need not use
x.

deriv optional macro: deriv(b,x,y,param,j) computes deri vative of
f(x,b,param) or -res(b,x,y,param) with respect to b[j],
returning a vector the same length as y

active LOGICAL vector the same length as b. active[i] = F mean s b[i]
is kept constant and does not participate in iteration

vec vector(numsig, nsigsq, delta), 3 criteria for converge nce
numsig = number of digits of accuracy in coefficients [8]
nsiqsq = number of digits of accuracy in residual SS [5]
delta = norm of gradient threshhold [-1]

itmin the minimum number >= 0 of iterations performed
itmax the maximum number >= itmin of iterations allowed
print If T, partial results printed at each iteration
keep If T, nlreg() returns the structure returned by levmar() with

components, coefs, hessian, jacobian, gradient, rss, resi duals,
nobs, iter, iconv plus component edf (error degrees of freed om)

quiet If F (default, unless keep:T), no summary results are
printed. quiet:T is illegal without keep:T

Value returned
With ’keep:T’, nlreg() returns structure(coefs:b_hat,he ssian:hes,
jacobian:jac,gradient:g,rss:Rssmin,residuals:resids ,nobs:n,iter:niter,
iconv:convflag,edf:errordf). The components are the same as returned by
levmar() with the addition of ’edf’.

The component values are as follows:

b_hat REAL vector which minimizes Rss
hes jac’ % * % jac, an approximation to the Hessian matrix H,

where H[i,j] = 2nd order partial derivative of Rss/2
with respect to b_hat[i] and. b_hat[j]

jac the nrows(y) by nrows(b) Jacobian matrix; -jac[,j] = vec tor
of partial derivatives of the elements of the residual
vector with respect to b_hat[j].

g the nrows(b) REAL gradient vector with g[j] = partial
derivative of Rss/2 with respect to b_hat[j]. g should be
close to a vector of zeros at convergence

Rssmin the minimized value of Rss
resids vector of residuals of length nrows(y)
n positive integer = nrows(y) = nrows(resids) = nrows(jac)

718 CHAPTER 8. REGRESSION MACROS HELP FILE

niter positive integer = the number of iterations
conflag Convergence status flag; 0 = not converged, 1 = met re lative

change in b_hat criterion, 2 = met relative change in Rss
criterion, 3 = met norm of gradient vector criterion, 4 =
failed to reduce Rss on a step of the iteration.

edf Error degrees of freedom = nrows(y) - length(b_hat).

When any parameters are inactive as specified by keyword ’ac tive’ (see
below), jac is nrows(y) by p, hes is p by p, g has length p and edf =
nrows(y) - p, where p = number of active parameters.

Keyword phrase arguments
There are several of keywords that can be used to control the i teration
and hold parameters at fixed values.

Keyword Phrase Value and Explanation
crit:crvec vector(numsig, nsigsq, delta), 3 criteria for

convergence (default = vector(8,5,-1). See below.
active:act LOGICAL vector the same length as b. b[j]

"participates" in the iteration only if act[j] is
True (default = rep(T,length(b))). When act[j] is
False, b_hat[j] remains at the starting value

maxit:itmax Non-negative integer specifying the maximum n umber of
iterations (default = 30). When itmax = 0, no iterations
are done and the quantities returned are computed at
the starting value b

minit:itmin Non-negative integer < itmax specifies the min inum
number of iterations

print:T When T, partial results are printed on each iteratio n

Iteration stops when (i) itmax is exceeded, (ii) any of the th ree
convergence criteria are satisfied, or (iii) when there has been no
reduction in Rss on an iteration after 10 halvings of the init ial step
size.

Use of argument param
One use for param might be to provide a choice between several functions
to be fit. For example, the code for macro f might be the follow ing:

@b <- $1; @x <- $2; @p <- $3
@val <- @b[1]
for(@i,1,@p){

@P <- @b[3* @i+1]
@val <- @val + @b[3 * @i-1] * cos(@x/@P,cycles:T) +\

@b[3* @i] * sin(@x/@P,cycles:T)
}
@val # return

Here is the equivalent code for a macro res():

@b <- $1; @x <- $2; @y <- $3; @p <- $4
@res <- @y - @b[1]
for(@i,1,@p){

8.5. NLREG() 719

@P <- @b[3* @i+1]
@res <- @res - @b[3 * @i-1] * cos(@x/@P,cycles:T) -\

@b[3* @i] * sin(@x/@P,cycles:T)
}
@res # return

Either might be used in fitting a curve with p cosine componen ts with
unknown periods, amplitudes or phases, with the number of te rms
specified by params.

Convergence criteria
There are 3 possible convergence criteria, at least one of wh ich must be
enabled. nlreg() terminates iteration when at least itmin i terations
have been completed and any convergence criterion is satisf ied or when
itmax iterations have been completed.

The criteria are specified by optional argument crit:vec, w here vec is
vector(numsig [, nsigsq [, delta]]) with length <= 3. The def ault values
for numsig, nsiqsq and delta are 8, 5 and -1, respectively.

A negative value for a criterion means it is not active.

numsig Desired number of significant digits in every active
coefficient. Specifically, the criterion is satisfied if,
for every active coefficient b[j], the change d_j satisfies
abs(d_j) < 10ˆ-numsig * max(.5,abs(b_j)) where b_j is the
updated value of b[j]. Component ’iconv’ of the return value
is 1 when satisfied.

nsigsq Desired number of significant digits in Rss = the resi dual
sum of squares. Specifically, the criterion is satisfied
when abs(Rss_new - Rss_old) < 10ˆ-nsigsq * max(.5,Rss_new).
Component ’iconv’ of the return value is 2 when satisfied.

delta Desired maximum norm ||g|| of the gradient vector g.
Specifically, the criterion is satisfied when
sqrt(sum(gˆ2)) <= delta. Component ’iconv’ of the return
value is 3 when satisfied.

For numsig and nsigsq, the returned coefficients are the val ues updated
on that iteration. For delta, the returned coefficients are the values
found on the previous iteration.

Criteria are checked in the order delta, numsig and nsigsq.

Test macros and data
Included in this file are the following four macros used in de bugging
and testing nlreg():

linear() Linear function f <- x % * % b
asymptot() f = b[1] + b[2] * (b[3])ˆx & derivatives
DandSFunc() f = b[1] + (.49 - b[1]) * exp(-b[2] * (x - 8)) & derivatives
testfun() f = b[1]+b[2] * x+b[3] * xˆ2+b[4] * sin(b[5] * x)+b[6] * exp(-b[7] * x)

720 CHAPTER 8. REGRESSION MACROS HELP FILE

In addition, the following data sets are included in this fil e:
DandS_T10.2 Data from Draper and Smith to be used with DandSF unc()
SandCT19.8.1 Data from Snedecor and Cochran to be used with

asymptot()
Example:
Fit the function b1 + b2 * b3ˆx to data from Snedecor and Cochran with
starting values b1 = b2 = 40 and b3 = 1.

The data are also available in data set SandCT19.8.1 and the m acro is
available as macro asymptot(), both in this file.

Cmd> x <- vector(0, 1, 2, 3, 4, 5)

Cmd> y <- vector(57.5, 45.7, 38.7, 35.3, 33.1, 32.2)

Cmd> f <- macro("@b <- $1; @b[1]+@b[2] * @b[3]ˆ($2)", dollars:T)

Cmd> startVal <- vector(40,40,1) # starting values for iter ation

Cmd> nlreg(startVal,x,y,f)
Coef StdErr t P Value

B 1 30.724 0.23099 133.01 9.3704e-07
B 2 26.821 0.2577 104.08 1.9555e-06
B 3 0.55184 0.008448 65.322 7.9056e-06

N: 6, MSE: 0.032416, DF: 3
Converged with relative change in all coefs < 1e-05 in 7 itera tions

Cmd> resfunc <- macro("($3) - f($1,$2)") # computes residua ls

Cmd> nlreg(startVal,x,y,resid:resfunc) # identical
Coef StdErr t P Value

B 1 30.724 0.23099 133.01 9.3704e-07
B 2 26.821 0.2577 104.08 1.9555e-06
B 3 0.55184 0.008448 65.322 7.9056e-06

N: 6, MSE: 0.032416, DF: 3
Converged with relative change in all coefs < 1e-05 in 7 itera tions

Cmd> stuff <- nlreg(startVal,x,y,f,keep:T)

Cmd> compnames(stuff)
(1) "coefs"
(2) "hessian"
(3) "jacobian"
(4) "gradient"
(5) "rss"
(6) "residuals"
(7) "nobs"
(8) "iter"
(9) "iconv"

(10) "edf"

8.6. PREDLIMITS() 721

Cmd> stuff[vector(1,2,5,8,9,10)]
component: coefs
(1) 30.724 26.821 0.55184
component: hessian
(1,1) 6 2.1683 111.39
(2,1) 2.1683 1.4367 30.242
(3,1) 111.39 30.242 2675.8
component: rss
(1) 0.097248
component: iter
(1) 7
component: iconv
(1) 1
component: edf
(1) 3

Cmd> # compute approximate standard errors

Cmd> sqrt((stuff$rss/stuff$edf) * diag(solve(stuff$hessian)))
(1) 0.23099 0.2577 0.008448

Cross reference
See also levmar().

8.6 predlimits()

Usage:
predlimits(x, confLevel), x REAL scalar, vector or matrix w ith no

MISSING elements, 0 < confLevel < 1 scalar

Keywords: regression, prediction limits

Usage
You can use macro predlimits() to compute prediction limits for y =
E(y|x) + epsilon or y = E(y | x1, x2 ...) + epsilon after running
regress("y=x") or regress("y=x1+x2+..+xk"). These are li mits on the a
future value of y for specified values of the predictor varia ble or
variables.

predlimits(x, confLevel), where x is a REAL vector with leng th(x) =
number of predictors (1 for simple linear regression), retu rns
vector(lower,upper), where lower and upper are prediction limit with
confidence level confLevel. Argument confLevel must be a RE AL scalar
between 0.5 and 1.

When confLevel < .5, a warning message is printed and 1 - confL evel is
used.

Example of single prediction
Example:

722 CHAPTER 8. REGRESSION MACROS HELP FILE

After regress("y=x1 + x2 + x3"), predlimits(vector(2,3,4) , .95)
returns vector(lower,upper) where lower and upper are the l imits when
x1=2, x2=3 and x3=4

Limits for several predictions
You can use predlimits() to get limits for several values at o nce,
returning hconcat(lower,upper), where lower and upper are vectors of
limits for the various values.

For simple linear regression, x should be a vector containin g the
values for which you want prediction limits.

When there are k predictors, x should be a matrix with k column s, and
lower and upper will have length(nrows(x)).

Example of several predictions
Example:

After regress("y = x1 + x2"), predlimits(vconcat(vector(1 ,2)’,
vector(2,1.5)’,vector(3,3.2)’), .95) returns hconcat(l ower,upper)
where, for example, lower[2] and upper [2] are the limits whe n x1 = 2
and x2 = 1.5.

Cross references
See also estimlimits(), regpred(), glmpred().

8.7 regcoefs()

Usage:
regcoefs(Model [,pvals:T] [,byvar:F]) or regcoefs([pval s:T] [,byvar:F]),

where Model is a CHARACTER scalar

Keywords: glm, anova, regression, confidence limits, standard er-
ror

Usage
regcoefs(Model) returns a matrix with appropriately label ed rows and
columns of the regression coefficients, their standard err ors and
t-statistics from a least squares fit to the regression mode l specified
by Model. There can be no factors in Model. If Model is omitted , the
most recent GLM model is used.

regcoefs(Model,pvals:T) or regcoefs(pvals:T) also compu tes two-tail P
values corresponding to the t-statistics on the basis of Stu dent’s
t-distribution with degrees of freedom from the last elemen t of side
effect variable DF.

Because of the row and column labels, after any GLM command wi th a model
withut factors, typing regcoefs([pvals:T]) produces a tab le similar to
that produced by regress(). After non-linear fits such as lo gistic() or
poisson(), the P-values will not necessarily be appropriat e.

8.8. REGRESSHELP() 723

Multivariate response
If the response variable is multivariate, the result is a str ucture,
each of whose components is a labeled matrix of coefficients , standard
errors and t-statistics. regcoefs(Model,byvar:F) or regc oefs(byvar:F)
returns a single labeled matrix, with separate columns for t he
coefficients, standard errors, ... for each variable.

Cross references
See also topics ’glm’, regress(), secoefs().

8.8 regresshelp()

Usage:
regresshelp(topic1 [, topic2 ...] [,usage:T])
regresshelp(index:T)

Keywords: general

regresshelp(topicname) prints help on a topic related to fi le
regress.mac. Usually topicname is the name of a macro in the f ile.

When quoted, topicname may contain "wildcard" characters " * " and "?".
You can also use help keyword ’key’. See help() for details.

regresshelp(topicname1, topicname2, ...) prints help on m ore than one
topic.

regresshelp(topicname1 [, topicname2 ...], usage:T) prin ts just a brief
summary of usage for the each topic.

8.9 regs()

Usage:
regs(x,y [,T] [GLM keywords]), x and y REAL matrices with the same

number of rows; T means no intercept

Keywords: glm, regression

Usage
regs(x,y) computes the regression of y on the columns of x. Fo r
example, when data is a n by 7 matrix, say, you can compute the
regression of the last column on the first 6 by regs(data[,-7],
data[,7]).

regs(x,y,T) does the same, except the model fit has no consta nt term
(intercept).

You can use GLM keyword phrases such as ’pvals:T’, ’silent:T ’,
’wts:weights’, and ’marginal:T’ as additional arguments.

724 CHAPTER 8. REGRESSION MACROS HELP FILE

Macro regs() creates temporary variables @X1, @X2, ... and @ Y and then
invokes regress() or, if y has more than 1 column, manova().

When y is univariate, immediately follow regs() by anova() t o see the
ANOVA table. When y is multivariate, follow regs() by regcoe fs() to see
coefficients and standard errors.

Because the model for regress() or manova() uses temporary v ariables,
STRMODEL cannot be used as a model for a subsequent regress() , anova(),
or manova() command. However, these variables can be retrie ved, by
modelvars(). For example, when x has 3 columns,

Cmd> makecols(modelvars(x:T),X1,X2,X2)

creates variables X1, X2 and X3. Of course, if x still exists,
makecols(x,X1,X2,X3) does the same.

Cross references
See also regress(), anova(), modelvars(), regcoefs(), and ’glm_keys’.

8.10 removevar()

Usage:
removevar(var1 [,var2 ...] [,silent:T]), var1, var2, ... t he names or

numbers of independent variables in the current stepwise mo del

Keywords: stepwise regression, regression

Usage
removevar(Var) removes independent variable from the curr ent stepwise
regression model. Var can be either a quoted name ("z3"), an u nquoted
name (z3) or the number of a variable in the current stepwise m odel (an
’in’ variable). Thus if the full model is "y=x1+x2+x3+x4+x5 ",
removevar(x2), removevar("x2") and removevar(2) are equi valent.

It is an error if the variable is not an independent variable i n the
full stepwise model or if it is not in the current model.

Invisible variable _STEPSTATUS is updated to reflect the ch anged model.
See topic ’_STEPSTATUS’.

Printed output
The F-to-remove statistics with P-values are printed for al l the
variables in the model, and F-to-enter statistics with P-va lues are
printed for any variables not in the model, including Var.

In addition, if there are any variables left in the model, rem ovevar()
prints an overall F statistic and its P-value, Mallow’s Cp st atistic,
adjusted Rˆ2 and Rˆ2. The F-statistic tests the null hypothe sis that
the coefficients of the "in" variables are 0.

8.11. RESID() 725

Value returned
The value returned is the updated invisible variable _STEPS TATUS. It
can be assigned (stuff <- removevar(x3)), but is not printed .

Removing several variables
removevar(Var1, Var2 ...) does the same except that more tha n one
variable is removed. All variable must be in the current step wise
model. The model and other statistics are printed after each variable
is removed. The value returned is _STEPSTATUS after all have been
removed. An example when the full model is "y=x1+x2+x3+x4+x 5"
might be removevar(x1,"x2",4). This would remove x1, x2 and x4 in that
order.

Keyword silent
removevar(Var1 [,Var2 ...], silent:T) does the same, excep t that the
model and summary statistics are not printed.

Cross references
See also entervar(), stepsetup(), stepstatus()

8.11 resid()

Usage:
resid() or resid(Model)

Keywords: glm, residuals, anova, regression

Usage
resid(), with no argument, computes a REAL matrix of various quantities
useful in the analysis of residuals. It uses side effect vari ables
RESIDUALS, HII, etc. produced by the most recent GLM (genera lized linear
or linear model) command such as regress(), anova(), or pois son().

It is an error if any of the needed side effect variables do not exist.

resid(Model) first executes manova(Model, silent:T) to co mpute the
required side effect variables before computing the residu al-related
quantities. Model should be a CHARACTER variable or string s pecifying a
linear ANOVA or MANOVA model. Any factors in the model will be treated
as factors. If you want them treated as variates, use resid(M odel,T).

Description of output
Each row of the result corresponds to a case. When the depende nt
variable Y is univariate, there are 5 columns, as follows:

Col. 1 Y = observed response
Col. 2 Studentized residuals = RESIDUALS/SE(RESIDUALS)
Col. 3 HII = leverage
Col. 4 Cook’s distance
Col. 5 t-statistics = externally studentized residuals =

726 CHAPTER 8. REGRESSION MACROS HELP FILE

RESIDUALS/SE* (RESIDUALS), where SE * for each case is
a standard error based on the model fit excluding that case.

When Y is multivariate of dimension p, there are 4 * p + 1 columns -- the
p values for Y, the p standardized residuals, HII, the p Cook’ s
distances, and the p externally studentized residuals.

If a case has missing values, most entries for that case will b e MISSING
and there are no useful numbers.

After nonlinear GLM commands
After non-linear GLM commands such as poisson() and logisti c(), the
results are based on the last stage of the iteratively reweig hted least
squares algorithm used to fit the model. Residuals are stand ardized by
the error mean square in the linear scale. They should still b e valid
for diagnosing departures from the model.

The output of resid() is modeled on what is printed by the resi d()
command in program Multreg.

resid() is implemented as a pre-defined macro.

Cross references
See also topics ’glm’, yhat(), resvsindex(), resvsrankits (),
resvsyhat().

8.12 resvsindex()

Usage:
resvsindex([varNo,] [usehii:T or F] [,standres:F]\

[,graphics keyword phrases]), 1 <= varNo <= ncols(RESIDUAL S)

Keywords: plotting, glm, residuals, anova, regression

Usage
You use resvsindex() to plot standardized (default) or non- standardized
residuals vs case numbers.

resvsindex([graphics keyword phrases]) plots standardiz ed residuals
against case number.

resvsindex(usehii:T [,graphics keyword phrases]) does th e same using
leverages HII in standardizing. This is the default after a G LM
command.

resvsindex(usehii:F [,graphics keyword phrases]) does th e same without
using leverages HII. This is the default after arima().

resvsindex(standres:F [,graphics keyword phrases]) does the same without
any standardization.

8.12. RESVSINDEX() 727

The residuals are from variable RESIDUALS or WTDRESIDUALS p roduced by
the most recent GLM (generalized linear or linear model) com mand such as
regress(), anova(), or poisson(), or from an ARIMA fit compu ted by macro
arima().

If the most recent command was manova(), only column 1 of the r esidual
matrix is plotted, but see the next usage for plotting other c olumns.

After manova()
resvsindex(varNo [, usehii:T or F] [, standres:F] [,graphi cs keyword
phrases]), where varNo is an integer between 1 and ncols(RES IDUALS),
plots residuals associated with variable varNo against cas e numbers.
varNo > 1 is legal only when RESIDUALS was computed by manova().

Plotting symbols
The default plotting symbol is the same as for plot(), a drawn asterisk
or star ("\6"). You can change it by including ’symbols:c’ as an
argument, where c is a CHARACTER or integer scalar or vector. c = 0 is
special: it is equivalent to c = "###" and results in points be ing
labeled with case number. See chplot(), subtopic ’symbols_ used’.

Graphics keywords
You can use all the usual graphics keywords to modify the defa ult plot
characteristics. These include ’title’, ’xlab’, ’ylab’, ’ symbols’
’impulse’ and ’lines’. See topics ’graphs’, ’graph_keys’,
’graph_border’ and ’graph_ticks’.

When you have set option ’dumbplot’ to False (see ’options’) , the plot
will be a low resolution plot unless ’dumb:F’ is an argument.

What is plotted
Without standres:T, the quantities plotted are r[i]/sd[i] where r[i] is
RESIDUALS[i] or WTDRESIDUALS[i] and sd[i] is the estimated standard
deviation. WTDRESIDUALS[i] is used after regress(), anova (), or
manova() with ’weights:wts’ or after nonlinear GLM command s such as
logistic() and poisson().

When usehii is True (the default after GLM commands), sd[ii] =
sqrt(mse * (1-HII[i])), where mse is the residual mean square after
regress(), anova() or manova(), the mean error deviance aft er non-linear
GLM commands or the estimated innovation variance after ari ma().

When usehii is False (the default after arima()), sd[i] = sqr t(mse).

With standres:F, the quantities plotted are r[i].

The values on the X-axis are 1, 2, ..., nrows(RESIDUALS).

resvsindex() is implemented as macro.

Cross references
See also topics resvsrankits(), resvsyhat(), resid().

728 CHAPTER 8. REGRESSION MACROS HELP FILE

8.13 resvsrankits()

Usage:
resvsrankits([varNo,] [usehii:T or F] [,standres:F]\

[,graphics keyword phrases]), 1 <= varNo <= ncols(RESIDUAL S)

Keywords: plotting, glm, residuals, anova, regression

Usage
resvsrankits([graphics keyword phrases]) plots standard ized residuals
against normal scores as computed by function rankits().

resvsrankits(usehii:T [,graphics keyword phrases]) does the same using
leverages HII in standardizing. This is the default after a G LM
command.

resvsrankits(usehii:F [,graphics keyword phrases]) does the same without
using leverages HII. This is the default after arima().

resvsrankits(standres:F [,graphics keyword phrases]) do es the same
without any standardization.

The residuals are from variable RESIDUALS or WTDRESIDUALS p roduced by
the most recent GLM (generalized linear or linear model) com mand such as
regress(), anova(), or poisson(), or from an ARIMA fit compu ted by macro
arima().

If the most recent command was manova(), only column 1 of the r esidual
matrix is plotted, but see the next usage for plotting other c olumns.

After manova()
resvsrankits(varNo [, usehii:T or F] [, standres:F] [,grap hics keyword
phrases]), where varNo is an integer between 1 and ncols(RES IDUALS),
plots residuals associated with variable varNo against cas e numbers.
varNo > 1 is legal only when RESIDUALS was computed by manova().

Plotting symbols
The default plotting symbol is the same as for plot(), a drawn asterisk
or star ("\6"). You can change it by including ’symbols:c’ as an
argument, where c is a CHARACTER or integer scalar or vector. c = 0 is
special: it is equivalent to c = "###" and results in points be ing
labeled with case number. See chplot(), subtopic ’symbols_ used’.

Graphics keywords
You can use all the usual graphics keywords to modify the defa ult plot
characteristics. These include ’title’, ’xlab’, ’ylab’, ’ symbols’
’impulse’ and ’lines’. See topics ’graphs’, ’graph_keys’,
’graph_border’ and ’graph_ticks’.

When you have set option ’dumbplot’ to False (see ’options’) , the plot

8.14. RESVSYHAT() 729

will be a low resolution plot unless ’dumb:F’ is an argument.

What is plotted
Without standres:T, the quantities plotted are r[i]/sd[i] where r[i] is
RESIDUALS[i] or WTDRESIDUALS[i] and sd[i] is the estimated standard
deviation. WTDRESIDUALS[i] is used after regress(), anova (), or
manova() with ’weights:wts’ or after nonlinear GLM command s such as
logistic() and poisson().

When usehii is True (the default after GLM commands), sd[ii] =
sqrt(mse * (1-HII[i])), where mse is the residual mean square after
regress(), anova() or manova(), the mean error deviance aft er non-linear
GLM commands or the estimated innovation variance after ari ma().

When usehii is False (the default after arima()), sd[i] = sqr t(mse).

With standres:F, the quantities plotted are r[i].

The values on the X-axis are normal scores computed by rankit s(r). See
rankits() for more information.

resvsrankits() is implemented as macro.

Cross references
See also topics resvsindex(), resvsyhat(), resid().

8.14 resvsyhat()

Usage:
resvsyhat([varNo,] [usehii:T or F] [,standres:F]\

[,graphics keyword phrases]), 1 <= varNo <= ncols(RESIDUAL S)

Keywords: plotting, glm, residuals, anova, regression

Usage
resvsyhat([graphics keyword phrases]) plots standardize d residuals
against fitted or predicted values.

resvsyhat(usehii:F [,graphics keyword phrases]) does the same without
using leverages HII in standardizing. The default is to use H II.

resvsyhat(standres:F [,graphics keyword phrases]) does t he same without
any standardization, that is, the residuals y - y_hat are plo tted.

The residuals are from variable RESIDUALS or WTDRESIDUALS p roduced by
the most recent GLM (generalized linear or linear model) com mand such as
regress(), anova(), or poisson().

If the most recent command was manova(), only column 1 of the r esidual
matrix is plotted, but see below for plotting other columns.

730 CHAPTER 8. REGRESSION MACROS HELP FILE

Unlike resvsrankits() and resvsindex(), resvsyhat() cann ot be used to
make a residual plot after arima() was used to estimate an ARI MA time
series model.

After manova()
resvsyhat(varNo [, usehii:T or F] [, standres:F] [,graphic s keyword
phrases]), where varNo is an integer between 1 and ncols(RES IDUALS),
plots residuals associated with variable varNo against cas e numbers.
varNo > 1 is legal only when RESIDUALS was computed by manova().

Plotting symbols
The default plotting symbol is the same as for plot(), a drawn asterisk
or star ("\6"). You can change it by including ’symbols:c’ as an
argument, where c is a CHARACTER or integer scalar or vector. c = 0 is
special: it is equivalent to c = "###" and results in points be ing
labeled with case number. See chplot(), subtopic ’symbols_ used’.

Graphics keywords
You can use all the usual graphics keywords to modify the defa ult plot
characteristics. These include ’title’, ’xlab’, ’ylab’, ’ symbols’
’impulse’ and ’lines’. See topics ’graphs’, ’graph_keys’,
’graph_border’ and ’graph_ticks’.

When you have set option ’dumbplot’ to False (see ’options’) , the plot
will be a low resolution plot unless ’dumb:F’ is an argument.

What is plotted
Without standres:T, the quantities plotted are r[i]/sd[i] where r[i] is
RESIDUALS[i] or WTDRESIDUALS[i] and sd[i] is the estimated standard
deviation. WTDRESIDUALS[i] is used after regress(), anova (), or
manova() with ’weights:wts’ or after nonlinear GLM command s such as
logistic() and poisson().

When usehii is True (the default after GLM commands), sd[ii] =
sqrt(mse * (1-HII[i])), where mse is the residual mean square after
regress(), anova() or manova() or the mean error deviance af ter
non-linear GLM commands.

When usehii is False, sd[i] = sqrt(mse).

With standres:F, the quantities plotted are r[i].

The values on the X-axis are the estimated means of the respon se
variable. After a nonlinear GLM command, they are in the orig inal
scale, not the transformed scale.

resvsyhat() is implemented as macro.

Cross references
See also topics resvsindex(), resvsrankits(), resid(), yh at().

8.15. STEPLOOK() 731

8.15 steplook()

Usage:
steplook(item1, item2, ...), item1, item2, ... unquoted wo rds selected

from ’model’, ’sscp’, ’in’, ’F’, ’dfe’, ’fullmse’ and ’hist ory’

Keywords: stepwise regression, regression

Usage
steplook(item1, item2, ...) returns the values of componen ts of
hidden variable _STEPSTATUS (see topic ’_STEPSTATUS’). Th e arguments
must match component names of _STEPSTATUS, that is they must be one
or more of ’model’, ’sscp’, ’in’, ’F’, ’dfe’, ’fullmse’ and ’ history’.

If only one item is requested, the value is a scalar, vector or
matrix, depending on the item. Otherwise, the value is a stru cture.

Examples:
Cmd> steplook(model, history, in)
returns structure(model:_STEPSTATUS$model,history:_S TEPSTATUS$history,

in:_STEPSTATUS$in)

Cmd> steplook(in)
returns _STEPSTATUS$in

Cmd> steplook(F)[1,steplook(in)]
returns F-to-remove for variables in current stepwise mode l

Cmd> steplook(F)[2,!steplook(in)]
returns P-values for F-to-enter for variables not in curren t stepwise
model

Cmd> regress(steplook(model),pvals:T)

estimates the coefficients for the current stepwise model.

Cross references
See also topics stepsetup(), entervar(), removevar(), ste pstatus()

8.16 stepsetup()

Usage:
stepsetup([Model] [,silent:T] [,allin:T or in:logVec]), Model of form

"y = x1+x2+...+xk" or "y = x1+x2+...+xk - 1", logVec a LOGICAL
vector of length k

Keywords: stepwise regression, regression

Usage
stepsetup(Model), where Model is a CHARACTER scalar specif ying a
regression model, initializes a stepwise regression proce ss.

732 CHAPTER 8. REGRESSION MACROS HELP FILE

It creates invisible variable _STEPSTATUS and prints the F- to-enter
statistics and P-values for all the variables in the model.

It returns _STEPSTATUS as value. This can be assigned (stuff <-
stepsetup("y=x1+x2+x3+x4")) but is not printed. See topic
’_STEPSTATUS’.

stepsetup(), with no model specified, does the same, except it uses
STRMODEL, the model for the most recent GLM command, as model .

Keywords silent, in and allin
stepsetup([Model,] silent:T) does the same except nothing is printed.

stepsetup([Model,] allin:T [,silent:T]) does the same, ex cept all the
variables are entered in the model immediately so that backw ard
stepwise regression can be done.

stepsetup([Model,] in:In [,silent:T]) does the same, exce pt the
variables specified by In are entered in the model immediate ly. In
must be a LOGICAL vector the same length as the number of indep endent
variables in Model. Variable j is considered in the model if I n[j] is
True.

Printed output
When variables are initially entered in the model, stepsetu p() prints an
overall F statistic and its P-value, Mallow’s Cp statistic, adjusted
Rˆ2 and Rˆ2. The F-statistic tests the null hypothesis that t he
coefficients of the "in" variables are 0.

Examples:
Cmd> stepsetup("y=x1+x2+x3+x4+x5")

starts stepwise regression process with no variables in the model.

Cmd> stepsetup("y=x1+x2+x3+x4+x5+x6-1",in:vector(F,F ,F,T,T,T))
starts stepwise regression process with variables x4, x5 an d x6 in the
model. Because of "-1" in the model, no intercept is included .

Cross references
See also stepstatus(), entervar(), removevar(), steplook ().

8.17 stepstatus()

Usage:
stepstatus([silent:T])

Keywords: stepwise regression, regression

Usage
stepstatus() prints the current stepwise regression model , F-to-remove

8.18. TESTBETA() 733

statistics with P-values for all the variables currently in the model,
and F-to-enter statistics with P-values for any variables n ot in the
model.

In addition, if there are any variables in the model, stepsta tus()
prints an overall F statistic and its P-value, Mallow’s Cp st atistic,
adjusted Rˆ2 and Rˆ2. The F-statistic tests the null hypothe sis that
the coefficients of the "in" variables are 0.

It returns _STEPSTATUS as value. This can be assigned (stuff <-
stepstatus()) but is not printed. See topic ’_STEPSTATUS’.

Keyword silent
stepstatus(silent:T) prints nothing but returns _STEPSTA TUS as value.

8.18 testbeta()

Usage:
testbeta(Term, hypValue [,df:T] [,pval:T]), Term a quoted or unquoted

variable name or an integer term number, hypValue a non-MISS ING real
scalar

Keywords: regression, hypothesis test

Usage
You can use testbeta() to compute a t-statistic to test a null
hypothesis of the form H0: betaj = hypValue, where betaj is a r egression
coefficient. There must be an active regression model, that is you need
to have executed a command of the form regress("y = x" or regre ss("y=x1
+ x2 + ... xk").

testbeta(Term, betaj0), where Term is the quoted or unquote d name of a
predictor in the regression (for example, "x3" or x3) and bet aj0 is a
REAL scalar whose value is the hypothesized value of the regr ession
coefficient of the predictor. Term can also be the number of t he term
associated with the variable in an ANOVA.

The value is the test statistic Tstat = (betajHat-betaj0)/S E[betajHat].

Keywords pvalue and df
testbeta(Term, betaj0, pvalue:T) does the same except the v alue returned
is structure(tstat:Tstat, pvalue:Pvalue), where Pvalue i s the two-tail
P-Value associated with Tstat.

testbeta(Term, betaj0, df:Df [, pvalue:T]), returns
structure(tstat:Tstat, df:Df [,pvalue:Pvalue]), where D f = error
degrees of freedom.

Example:
Cmd> regress("y = x", silent:T) # output suppressed

734 CHAPTER 8. REGRESSION MACROS HELP FILE

Cmd> testbeta(x, 1, pvalue:T, df:T) # tests H0: beta = 1

Cross references
See also secoefs(), twotailt().

8.19 testestim()

Usage:
testestim(x, hypValue), x REAL scalar or vector with no MISS ING

elements, hypValue a non MISSING REAL scalar

Keywords: regression, hypothesis test

Usage
You can use macro testestim() to test a null hypothesis of the form
H0: E(y|x) = hypValue or E(y|x1,x2,...,xk) = hypValue, wher e hypValue
is a hypothesized value for the expectation of y for given x va lues.
You must previously have run regress("y=x") or regress("y= x1+...+xk").

testestim(x, hypValue), where hypValue is the hypothesize d value, x is
a scalar (simple linear regression) or a vector of length k (m ultiple
regression) returns a t-statistic of for testing H0. It is an error if
there is not an active regression model or if length(x) != k.

Keywords df and pvalue
testestim(x, hypValue, df:T) does the same except the resul t is
structure(tstat:tvalue, df:errorDF), where errorDF is th e error degrees
of freedom needed to compute a P-value or find a critical valu e.

Keyword pvalue
testestim(x, hypValue [,df:T] , pvalue:T) does the same exc ept the
result is structure(tstat:tvalue [,df:errorDF], pvalue: Pvalue), where
Pvalue is the two-tail P-value associated with the test stat istic.

Example:
After regress("y=x1 + x2 + x3"),

testestim(vector(2,3,4), 17) returns the t-statistic for testing H0:
E(y|x) = 17

testestim(vector(2,3,4), 17, pval:T, df:T) returns
structure(tstat:t_statistic, df:ErrorDF, pval:p_value)

Cross references
See also estimlimits(), predlimits(), regpred().

8.20 yhat()

Usage:
yhat() or yhat(Model [,T])

8.20. YHAT() 735

Keywords: glm, regression, anova

Usage
yhat(), with no argument, computes a REAL matrix of various q uantities
useful in making predictions from a regression or analysis o f variance
model.

yhat() uses side effect variables RESIDUALS, HII, etc. prod uced by the
most recent GLM (generalized linear or linear model) comman d such as
regress() or anova(). If weights were supplied, it also uses the result
of modelinfo(weights:T).

NOTE: If the most recent GLM was not linear, that is, not regre ss(),
anova(), manova() or their weighted variants, only the firs t two columns
computed by yhat() are meaningful.

It is an error if any of the needed side effect variables do not exist.

Specified model
yhat(Model) first executes manova(Model, silent:T) to com pute the side
effect variables and then computes its usual output. Model s hould be a
CHARACTER variable or string specifying a linear model. Any factors in
the model will be treated as factors.

yhat(Model,T) does the same, except any factors in the model are treated
as variates.

Value returned
Each row of the result corresponds to a case. When the depende nt
variable Y is univariate (has one column), the result has the following
5 columns:

Col. 1 Y = observed response
Col. 2 Yhat = predicted or fitted value computed using all dat a
Col. 3 Predictive residuals = Y - (Yhat computed excluding th e

case)
Col. 4 SE[Yhat] = estimated standard error of Yhat as estimat e of

E[Y | x]
Col. 5 SE[pred] = estimated s.e. of prediction error

When the all the independent variables in the model "y=x1+x2 +x3+...+xk"
are variates and not factors, columns 2, 4, and 5 of the output
correspond to components ’estimate’, ’SEest’, and ’SEpred " in the output
of regpred(hconcat(x1,x2,...)) following regress("y=x1 +x2+...+xk"). See
regpred().

Multivariate model
When Y is multivariate, with p columns, there are 5 * p columns in groups
of p -- the p columns of Y, the p columns of YHat, and so on.

If a case has missing values, most entries will be MISSING and there are
no useful numbers.

736 CHAPTER 8. REGRESSION MACROS HELP FILE

Example:
Cmd> yhat("y=x1+x2+x3+x4")

The output of yhat() is modelled on output printed by the yhat () command
in program Multreg.

yhat() is implemented as a pre-defined macro.

Cross references
See also topics regpred(), ’glm’, resid().

Chapter 9

Time Series Macros Help File

This Chapter contains help for the set of time series macros that are distributed with
MacAnova in the file Tser.mac.txt. The material here is a reformatting of file Tser.hlp.txt.

9.1 arspectrum()

Usage:
arspectrum(Y,P [,nfreq:nfreq] [,nospec:T]), Y a REAL vect or, integer P >

0, integer nfreq > 0.

Keywords: spectrum analysis, frequency domain, autoregression,
arima models

Usage
arspectrum(Y,P) estimates the spectrum of Y considered as a discrete
parameter AR(P) (order P autoregressive) time series. Y mus t be a REAL
vector with no MISSING elements and P > 0 an integer.

The value returned is a structure(phi:Phi,var:Var, spectr um:Sy)
Phi REAL vector of length P containing estimated AR coeffici ents
V REAL scalar containing the estimated variance of the resid uals

(innovations)
Sy REAL vector of length Nfreq (see below) containing the

estimated spectrum computed at frequencies 0, 1/Nfreq,
2/Nfreq, ..., (Nfreq-1)/Nfreq cycles per Delta_t, the
interval between observations.

The default value for Nfreq is determined as follows:
1. If variable S is defined and is an integer > 2, Nfreq = S. It is
an error if S has a prime factor > 29.

2. Otherwise, Nfreq is the smallest integer >= 2 * nrows(y) which has
no prime factor > 29, that is Nfreq = goodfactors(2 * nrows(y))

arspectrum(Y,P,nfreq:Nfreq) or arspectrum(Y,P,Nfreq), where Nfreq > 0 is
an integer, does the same, computing the spectrum at Nfreq fr equencies.
It is an error if Nfreq has a prime factor > 29.

737

738 CHAPTER 9. TIME SERIES MACROS HELP FILE

Keyword nospec
arspectrum(Y,P,nospec:T) computes phi and var but not spec trum,
returning structure(phi,var).

Method
Estimated AR coefficients Phi are computed from the first P s ample
autocorrelations by solving the Yule-Walker equations. Se e
yulewalker(). The variance V = gammahat(0) * prod(1 - pacfˆ2),
where gammahat(0) = sum((y - ybar)ˆ2)/n and pacf is the vecto r of
P partial autocorrelations associated with Phi.

Cross reference
See also burg(), yulewalker().

9.2 autocor()

Usage:
autocor(y [, nlags [, nfreq]] [,full:T] [center:T] [,degre e:d]), y a REAL

vector or matrix, nlags > 0 and nfreq > 0 integers, d an integer
scalar or vector

Keywords: time domain, autocorrelation

Usage
r_y <- autocor(y, nlags) computes sample autocorrelations acf(h,y) (y a
REAL vector) or acf(h,y[,j]) (y a REAL matrix) for lags h = 1, 2 , ...,
nlags.

The columns of y, which may have no MISSING elements, are inte rpreted as
time series defined at equally spaced time points.

For a vector y of length N, the sample autocorrelations are de fined as
acf(h,y) = acvf(h,y)/acvf(0,y),

where
acvf(h,y) = sum((y[i] - ybar) * (y[i+h] - ybar),i=1,...,N-h)/N

is the sample autocovariance. ybar = sum(y)/N is the sample m ean of y.

When ny = ncols(y) = 1, r_y is a vector of length L = nlags with r_ y[k]
= acf(k,y). When ny > 1, r_y is a L by ny matrix with r_y[k,j] =
acf(k,y[,j]).

autocor(y) is the same as autocor(y, nrows(y) - 1), computin g all
non-degenerate sample autocorrelations.

Keyword degree
You can specify that columns of y be detrended by subtracting a
polynomial in time using keyword phrase ’degree:d’, where d is an
integer scalar or vector of length ny = ncols(y). A scalar d is
interpreted as rep(d,ny).

r_y <- autocor(y [,nlags] degree:d) computes autocorrelat ions of the

9.3. AUTOCOV() 739

residuals from polynomial trends fit by least squares to eac h column of
y. The values of the fitted polynomial replace ybar in the def inition
of acvf().

d[j] is the degree of the polynomial fit to column j. When d[j] = 0,
only the sample mean is subtracted (default). When d[j] < 0, n othing is
subtracted.

Keywords
You can modify the behavior of autocor() using keyword phras es ’full:T’
(compute acf for negative lags, with acf(-h,y) = acf(h,y) in row
2* nlags+2-h), and ’center:T’ (same, but with acf(0,y) in row n lags+1).
Note that the output includes acf(0,y) which is not included in the
default output. See crosscor() for details.

Computation
Autocovariances acvf(h,y) are computed using crosscov() w hich makes use
of discrete Fourier transforms (DFTs) of length goodfactor s(N+nlags),
the smallest integer >= N + nlags which has no prime factors > 2 9. See
topic ’fourier’.

autocor(y, nlags, M) where M is an integer, does the same, usi ng DFTs of
length M. It is an error if M < N + nlags or if M has a prime factor >
29. See topic ’fourier’.

Plotting autocorrelations
You can use macro tsplot() to plot the computed autocorrelat ions. Any
of the following might be appropriate to plot the first 50
autocorrelations of the columns of y.

Cmd> tsplot(autocor(y, 50), 1) # line plot
Cmd> tsplot(autocor(y, 50), 1, impulse:T) # impulse plot
Cmd> tsplot(autocor(y, 50), 1, impulse:T, lines:T) # line a nd impulse
Cmd> tsplot(autocor(y, 50), 1, char:charVec)#plot lines & symbols
Cmd> tsplot(autocor(y,50,center:T),-50, impulse:T)

On each of these it would usually be appropriate to include ke yword
phrases ymin:-1 and ymax:1 since autocorrelations are betw een -1 and 1.

Cross reference
See also autocov(), crosscov(), crosscor(), tsplot().

9.3 autocov()

Usage:
autocov(y [, nlags [, nfreq]] [,full:T] [center:T] [,degre e:d]), y a REAL

vector or matrix, nlags > 0 and nfreq > 0 integers, d an integer
scalar or vector.

Keywords: time domain, autocovariance

Usage

740 CHAPTER 9. TIME SERIES MACROS HELP FILE

c_y <- autocov(y, nlags) computes sample autocovariances a cvf(h,y) (y a
REAL vector) or acvf(h,y[,j]) (y a REAL matrix) for lags h = 0, 1, ...,
nlags.

The columns of y, which may have no MISSING elements, are inte rpreted as
time series defined at equally spaced time points.

For a vector y of length N, the sample autocovariances are def ined as
acvf(h, y) = sum((y[i] - ybar) * (y[i+h] - ybar),i=1,...,N-h)/N

where ybar = sum(y)/N is the sample mean of y.

When ny = ncols(y) = 1, c_y is a vector of length L = nlags + 1 with
c_y[k] = acvf(k-1,y). When ny > 1, c_y is a L by ny matrix with
c_y[k,j] = acvf(k-1,y[,j]).

autocov(y) is the same as autocov(y, nrows(y) - 1), computin g all
non-degenerate sample autocovariances.

Keyword degree
You can specify that columns of y be detrended by subtracting a
polynomial in time using keyword phrase ’degree:d’, where d is an
integer scalar or vector of length ny = ncols(y). A scalar d is
interpreted as rep(d,ny).

c_y <- autocov(y [,nlags] degree:d) computes autocovarian ces of the
residuals from polynomial trends fit by least squares to eac h column of
y. The values of the fitted polynomial replace ybar in the def inition
of acvf().

d[j] is the degree of the polynomial fit to column j. When d[j] = 0,
only the sample mean is subtracted (default). When d[j] < 0, n othing is
subtracted.

Keywords
You can modify the behavior of autocov() using keyword phras es ’full:T’
(compute acvf for negative lags, with acvf(-h,y) in row 2 * nlags+2-h), and
’center:T’ (same, but with acvf(0,y) in row nlags+1). See cr osscov() for
details.

Computation
Autocovariances are computed using crosscov() which makes use of
discrete Fourier transforms (DFTs) of length goodfactors(N+nlags), the
smallest integer >= N + nlags which has no prime factors > 29. S ee
topic ’fourier’.

autocov(y, nlags, M) where M is an integer, does the same, usi ng DFTs of
length M. It is an error if M < N + nlags or if M has a prime factor >
29. See topic ’fourier’.

Plotting autocovariances
You can use macro tsplot() to plot the computed autocovarian ces. Any of
the following might be appropriate to plot the first 50 autoc orrelations
of the columns of y.

9.4. BANDWIDTH 741

Cmd> tsplot(autocov(y, 50), 0) # line plot
Cmd> tsplot(autocov(y, 50), 0, impulse:T) # impulse plot
Cmd> tsplot(autocov(y, 50), 0, impulse:T, lines:T) # impul se and lines
Cmd> tsplot(autocov(y, 50), 0, char:charVec) # plot lines & symbols

Cross reference
See also autocor(), crosscov(), crosscor(), tsplot().

9.4 bandwidth

Keywords: spectrum analysis, frequency domain

Introduction
Suppose a spectrum estimate is computed by circular convolu tion (see
MacAnova topic convolve()) of weights w[1], w[2], ..., w[nf req] with a
periodogram computed from an untapered time series at nfreq equally
spaced frequences 0,1/nfreq, 2/nfreq, ..., (nfreq-1)/nfr eq cycles per
delta_t where delta_t is the time interval between observat ions.

An important characteristic of the estimate is its bandwidt h, the
effective frequency range over which appreciable smoothin g occurs. The
greater the bandwidth, the more stable (smaller variance) i s the
resulting estimate, but the greater the potential for bias b ecause of
the smoothing. Conversely, the smaller the bandwidth, the s maller is
the bias, at the cost of increased variance of the estimate.

A common definition of the bandwidth associated with a perio dogram
computed at nfreq frequencies and smoothed by w[i] is

B = {sum(w[i])ˆ2/sum(w[i]ˆ2)}/(nfreq * delta_t).

This is in units of cycles per unit time.

When {w[i]} is a "box car" of length m, that is w[i] = 0 except fo r m
consecutive values of i for which w[i] is constant, then B =
m/(nfreq * delta_t). In the common situation when nfreq ˜= 2 * N, where N
= nrows(y), B = .5 * m/(N * delta_t).

Convolution weights
A common type of smoothing weights are obtained by convolvin g
(non-circularly) a box car with itself P times. This is somet imes
called the P-th convolution power of the box car.

For P = 2, the a graph of the weights is a triangle; for higher P t he
graph becomes bell shaped. For large P the graph approximate s a normal
curve. MacAnova macros spectrum(), crsspectrum() and comp fa() all use
the 4-th convolution power of a box car as the smoothing weigh ts.

When the weights are computed as the P-th convolution power o f a box
car of length m, sum(wˆ2)/sum(w)ˆ2 and sum(w)ˆ2/sum(wˆ2) a re as follows.

P sum(wˆ2)/sum(w)ˆ2 sum(w)ˆ2/sum(wˆ2)

742 CHAPTER 9. TIME SERIES MACROS HELP FILE

1 1/m m
2 (2 * mˆ3+m)/(3 * mˆ4) 1.5 * m-.75/m+O(mˆ-3)
3 (11 * mˆ5+5 * mˆ3+4 * m)/(20 * mˆ6) 1.818 * m-.826/m+O(mˆ-3)
4 (151 * mˆ7+70 * mˆ5+49 * mˆ3+45 * m)/(315 * mˆ8) 2.086 * m-.967/m+O(mˆ-3)

Thus, when nfreq ˜= 2 * N, the default smoothing using the 4th convolution
power of a boxcar smoother of length m, has bandwidth approxi mately

B = (2.09 * m - .97/m)/(nfreq * delta_t) ˜= 1.043 * m/(N * delta_t)

Equivalent degrees of freedom (EDF)
One common way to summarize the stability of a spectrum estim ator is by
its equivalent degrees of freedom or EDF. Large EDF means sma ller
relative standard deviation and thus greater stability.

For a positive random variable W, EDF[W] = 2 * E[W]ˆ2/Var[W] = 2/CV[W]ˆ2,
where CV[W] = SD[W]/E[W] is the coefficient of variation.

When W = k* Xˆ2, where Xˆ2 is distributed as chisq(f) (chi-squared on f
degrees of freedom), EDF[W] = f.

Even when W is not a multiple of chi-squared, its distributio n may
often be well approximated by that of (E[W]/EDF[W]) * chisq(EDF).

When the spectrum is sufficiently smooth, the approximate E DF of a
smoothed periodogram with bandwidth B at a frequency f betwe en B/2 and
.5/deltat_t - B/2 is approximately 2 * B* N* delta_t. At 0 and .5/deltat_t
the EDF is B * N* deltat_t. For the default smoother, EDF ˜=
(4.17 * m-1.93/m) * N. Expressing m in terms of EDF you have the
approximate relationship m ˜= EDF/4.17 + 1.93/EDF

Using a Taper or Data Window
In most situations it is desirable to "taper" the time series before
computing the periodogram. If yr[i] = y[i] - muhat[i], where muhat[i]
is an estimate of E[y[i]], the tapered time series is h[i] * yr[i],
where (usually) h[i] tapers smoothly to 0 near i = 1 and i = N. Th e
sequence h[1],...,h[N] is called a taper or a data window.

Tapering reduces "leakage" -- bias at a given frequency aris ing from
variation a distant frequencies. However, it also reduces t he EDF of a
smoothed periodogram by a factor of approximately

R = sum(hˆ2)ˆ2/{N * sum(hˆ4)} <= 1
thus increasing the variance. The greater the amount of tape ring, the
smaller is R.

EDF for cosine taper
Macro compfa(), which computes estimated spectra and, opti onally, cross
spectra, uses a "cosine" taper which tapers approximately A * N
observations on each end, where 0 <= A <= .5. For this taper, th e
factor by which the EDF is reduced is

R = (1 - 5 * A/8)ˆ2/(1 - 93 * A/128) = 1 - 0.5234 * A + 0.0103 * Aˆ2 + O(Aˆ3).

Therefore, for the default smoothing, with 100 * A percent tapering on

9.5. BURG() 743

each end and nfreq ˜= 2 * N, EDF ˜= (1 - 0.5234 * A) * 1.043 * m* N.

Cross reference
See costaper() for details on the form of a cosine taper.

9.5 burg()

Usage:
burg(Y, P [,degree:d, nfreq:Nfreq]), Y a REAL vector, P an in teger > 0,

Nfreq an integer > 0 (length of DFT used).

Keywords: spectrum analysis, frequency domain, time domain,
autoregression

Usage
burg(Y,P,degree:D,nfreq:Nfreq) estimates the spectrum o f Y considered
as a discrete parameter AR(P) (order P autoregression) time series.

The value returned is a structure with the following compone nts:
phi REAL vector of length P containing estimated AR

coefficients
var REAL scalar containing the estimated variance of the res -

iduals (innovations)
spectrum REAL vector of length Nfreq (see below) containing the

estimated spectrum computed at frequencies 0, 1/Nfreq,
2/Nfreq, ..., (Nfreq-1)/Nfreq cycles per Delta-t, the
interval between observations.

Y must be a REAL vector and P an integer > 0. The keyword phrases are
optional. See below for the default values of D and Nfreq.

Before estimating the spectrum, Y is detrended by subtracti ng a degree D
polynomial in time fit by least squares. D = 0 corresponds to
subtracting the sample mean and D < 0 directs that no detrendi ng is
to be done, not even subtracting a mean.

Nfreq must be an integer >= nrows(Y) + P and must have no prime f actors
> 29.

If degree:D is omitted, the default value for D is 0 (subtract the
mean).

Default number of frequencies
If nfreq:Nfreq is omitted, the default value for Nfreq = S if S is a
positive integer variable; it is an error if S has a prime fact or >
29.

When such an S does not exist, Nfreq = smallest integer >= N + P t hat
has no prime factors > 29 otherwise, that is Nfreq = goodfacto rs(N+P),
where N = nrows(Y).

744 CHAPTER 9. TIME SERIES MACROS HELP FILE

Algorithm
The estimated AR coefficients are computed using an algorit hm due to
Burg which does not involve computing the sample autocorrel ations. The
method is sometimes called the maximum entropy method, alth ough that can
equally well describe any method of estimating a spectrum by fitting an
autoregressive model.

Cross reference
See also arspectrum(), detrend(), getmacros().

9.6 compfa()

Usage:
compfa(y, edf [, degree:D, alpha:A, nfreq:Nfreq, cross:T]), y a REAL

vector or matrix, nfreq > 0, D integers, edf >=0 and 0 <= A <= .5

Keywords: frequency domain, spectrum analysis, cross spectrum

Usage
Sf <- compfa(y, edf, degree:D, alpha:A, nfreq:Nfreq) compu tes spectrum
estimates which are smoothed periodograms of the detrended and tapered
data in the columns of REAL matrix y.

Sf is a Nfreq by ncols(y) matrix whose columns are the estimat ed
spectra of the detrended and tapered columns of y in Real form .

Nfreq must be a positive integer with no prime factors > 29.

More generally, y can be an array with dimensions n1, n2, n3, . .. in
which case the result is also an array with dimensions Nfreq, n2, n3,
... with result[,i2,i3,...] containing the estimated spec trum of
y[,i2,i3,...].

See below for defaults for D, A and Nfreq.

Cross spectrum usage
Sf <- compfa(y, edf, cross:T, degree:D, alpha:A, nfreq:Nfr eq), with y a
matrix with p > 1 columns and N rows, returns a matrix containi ng
estimated spectra (smoothed periodograms) and cross spect ra (smoothed
cross periodograms) for the tapered detrended columns of y.

It is an error when ncols(y) == 1 (no cross spectrum is defined).

Sy is a Nfreq by Q matrix, where Q = p + p * (p-1)/2 = p * (p+1)/2.

Sy[,j], j = 1,...,p are the estimated spectra of y[,j], in Rea l form.

Sy[,p+1], Sy[,p+2],...,Sy[,Q] contain the estimated cros s spectra of
y[,i] and y[,j], i < j, in Hermitian form. The order is (i,j) = (1,2),
(1,3), ..., (1,p), (2,3),..., (2,p), ... (p-1,p) so that
Sy[,i * (p-(i+1)/2)+j] is the estimated cross spectrum of y[,i] and y[,j].

9.6. COMPFA() 745

For example, when x and y are vectors, compfa(hconcat(x,y), edf)
returns hconcat(Sxx, Syy, Sxy), where Sxx and Syy are estima ted spectra
and Sxy is the estimated cross spectrum. Sxx and Syy are in Rea l form
and Sxy is in Hermitian form.

Amount of smoothing
When edf > 2 the amount of smoothing will be chosen so as to yiel d
spectrum estimates with approximatly edf equivalent degre es of freedom.
See ’bandwidth’.

When 0 < edf <= .5, edf is interpreted as a bandwidth B in cycles per
delta_t and is translated to a working edf = 2 * B* N, where N = dim(y)[1].
delta_t is the time interval between successive rows of y. Se e topic
bandwidth.

When edf = 0 or edf = 2, no smoothing of periodograms will be don e.

Default keyword values
The values of the optional keywords other than ’cross’, are R EAL
scalars with the following restrictions and default values .

Keyword Value Default Value Restrictions
degree D 0 Integer
alpha A 0 0 <= A <= .5.
nfreq Nfreq See below Positive integer with no

prime factors > 29

Default for Nfreq when nfreq:Nfreq is not an argument:
When variable S is defined and is a positive integer, Nfreq = S . It
is an error if S has a prime factor > 29.

Otherwise, Nfreq is the smallest integer >= 2 * nrows(y) that has no
prime factor > 29, that is Nfreq = goodfactors(2 * nrows(y)).

Detrending
When D > 0, the columns of y are detrended before any tapering w ith a
polynomial of degree D fit by least squares, that is the resid uals from
the polynomial are tapered and analyzed. When D = 0, the sampl e mean
is subtracted. When D < 0, no detrending is done, not even subt raction
of the mean.

Amount of tapering
When A = 0, no tapering is done.

When A > 0, after detrending, each column of y will be multipli ed by a
cosine taper. The taper is chosen so as to modify approximate ly
A* nrows(y) values on each end of the series, approximately 2 * A* nrows(y)
values in all.

For example alpha:.5, say, directs that all the observation s, except
the middle one, when N is odd, are tapered. Similarly, alpha: .1
directs that approximately 10% of the observations at the st art and 10%
at the end, or 20% in all, will be tapered.

746 CHAPTER 9. TIME SERIES MACROS HELP FILE

NOTE: The interpretation of tapering proportion A differs f rom that
used by some practitioners, for whom the tapering proportio n is the
proportion of the entire series modified that is tapered. To modify
100* P percent of the entire series, use alpha:P/2.

See topic costaper() for an exact definition of the taper use d.

Comparison with spectrum() and crsspectrum()
Generally compfa() is to be preferred to macros spectrum() a nd
crsspectrum() because it allows polynomial detrending and cosine
tapering which spectrum() and crsspectrum() lack. In addit ion, you
specify the amount of smoothing in terms of bandwidth or EDF i nstead of
the length of smoothing weights.

Other macros used
compfa() uses macros compza(), costaper(), detrend(), rea d from file
tser.mac if they haven’t yet been defined.

Cross reference
See also ’complex_data’.

9.7 complex data

Keywords: complex numbers, frequency domain

MacAnova representation of complex data
An unrestricted complex series (vector) of length N is
represented as a REAL N by 2 matrix with the real and imaginary parts in
columns 1 and 2.

An unrestricted N by p complex matrix (p unrestricted comple x series)
is represented by a REAL N by 2 * p matrix, with the real and imaginary
parts of the j-th series in columns 2 * j-1 and 2 * j. A N by 2 * p-1 matrix
can be considered to represent p-1 complex series and 1 real s eries in
the last column.

When the series represents a frequency function evaluated a t Nfreq
frequencies, row k usually contains the values for frequenc y (k-1)/Nfreq
cycles.

Hermitian form
A complex vector with Hermitian symmetry (a Hermitian serie s) {x(j)} of
length N is represented as a REAL vector, say, hx, of length N w ith

hx[1] = x(0)
hx[j+1] = Re(x(j)), 1 <= j < N/2
hx[N+1-j] = Im(x(j), 1 <= j < N/2.
hx[N/2+1] = x(N/2) (only when N is even).

p Hermitian series are represented by the columns of a N by p ma trix.

When the series represents a frequency function evaluated a t Nfreq

9.8. COMPLEX FUN 747

frequencies, row 1 contains the value for frequency 0 and row s j and
Nfreq+1-j contain the real and imaginary parts of the functi on at
frequency (j-1)/Nfreq cycles.

Cross reference
See also topic ’hermitian’.

9.8 complex fun

Keywords: complex numbers, frequency domain, fourier trans-
forms

Here is a brief summary of MacAnova functions and macros for w orking
with complex data.

Notational conventions
rx is a REAL vector or matrix whose columns represent real ser ies
hx is a REAL vector or matrix whose columns represent complex series

with Hermitian symmetry (see topics ’hermitian’ and ’compl ex_data’)
cx is a REAL matrix with successive pairs of columns represen ting

unrestricted complex series. If ncols(cx) is odd, the last c olumn
represents a real series.

Fourier transforms
rft(rx) returns in Hermitian form the DFT of real series in th e columns
of rx.

hft(hx) returns as real series the DFT of Hermitian complex s eries in
hx.

cft(cx) returns as unrestricted complex series the DFT of un restricted
complex series in cx.

Complex conjugation
hconj(hx) and cconj(cx) compute the complex conjugate of He rmitian
series or unrestricted complex series in hx or cx.

Real and imaginary parts
hreal(hx) and creal(cx) return the complete real parts of He rmitian
series or unrestricted complex series in hx or cx.

himag(hx) and cimag(cx) return the complete imaginary part s of Hermitian
series or unrestricted complex series in hx or cx.

The results of hreal(), creal(), himag() and cimag() are all
unretricted Real series.

cmplx(rx1,rx2) returns the unrestricted complex form of th e series
rx1+i * rx2, where i = sqrt(-1).

Conversion to polar form

748 CHAPTER 9. TIME SERIES MACROS HELP FILE

hpolar(hx) and cpolar(cx) return the polar forms of Hermiti an series or
unrestricted complex series in hx or cx. The amplitudes (mod uli) are
returned in the real parts and the phases (arguments) are ret urned in
the imaginary parts.

The output of hpolar() is in Hermitian form. The phases are in radians,
cycles, or degrees depending on the value of option ’angles’ . See
regular topic setoptions() for details. By default, the pha ses are
"unwound" to minimize discontinuities if they wrap around t he circle.

Conversion from polar form
hrect(hx) and crect(cx) return the usual representation in terms of real
and imaginary parts of the polar forms of Hermitian series or
unrestricted complex series in hx or cx. The phases of the pol ar form
are assumed to be in radians, cycles or degrees depending on t he value
of option ’angles’.

Converting to and from hermitian form
htoc(hx) returns the unrestricted complex form of the Hermi tian series
in hx.

ctoh(cx) returns the Hermitian symmetrization of the unres tricted
complex series in cx. If cx has Hermitian symmetry, then htoc (ctoh(cx))
returns cx.

Complex multiplication
hprdh(hx1, hx2) returns the Hermitian form of the elementwi se complex
product of the Hermitian series in hx1 and hx2. hprdh(hx) ret urns
hprdh(hx,hx).

hprdhj(hx1,hx2) and hprdhj(hx) are equivalent to hprdh(hx 1,hconj(hx2))
and hprdh(hx,hconj(hx)), respectively.

cprdc(cx1, cx2) returns the unrestricted complex form of th e elementwise
complex product of the complex series in cx1 and cx2. cprdc(c x) returns
cprdc(cx,cx).

cprdcj(cx1,cx2) and cprdcj(cx) are equivalent to cprdc(cx 1,cconj(cx2))
and cprdc(cx,cconj(cx)), respectively.

Complex division
hdivh(hx1, hx2) returns the Hermitian form of the elementwi se complex
ratio of the Hermitian series in hx1 and hx2. hdivh(hx) retur ns
hdivh(hx,hx). When hx is a vector and no represented complex elements
are 0, cdivh(hx,hx) is the Hermitian form of rep(1,nrows(hx)).

hdivhj(hx1,hx2) and hdivhj(hx) are equivalent to hdivh(hx 1,hconj(hx2))
and hdivh(hx,hconj(hx)), respectively.

cdivc(cx1, cx2) returns the unrestricted complex form of th e elementwise
complex product of the complex series in cx1 and cx2. cdivc(c x) returns
cdivc(cx,cx). When cx has 1 or 2 columns, with no zero rows,
cdivc(cx,cx) is the fully complex form of rep(1,nrows(cx)) .

9.8. COMPLEX FUN 749

cdivcj(cx1,cx2) and cdivcj(cx) are equivalent to cdivc(cx 1,cconj(cx2))
and cdivc(cx,cconj(cx)), respectively.

Macros for complex matrices
In the following a and b are REAL vectors or matrices represen ting
complex matrices A and B in unrestricted complex form. All th e macros
return their result in unrestricted complex form.

cmatmultc(a,b [,op:"% * %"), cmatmultc(a,b,op:"%c%") and cmatmultc(a,b,
op:"%C") return matrix products of A and B.

ctrace(a) returns the trace of A.

cdiag(a) returns the complex diagonal of square A.

ctranspose(a) returns the transpose of A.

cjtranspose(a) is equivalent to ctranspose(cconj(a)).

csubscr(A), csubscr(A,i), csubscr(A,i,j) simulate A[i], A{i,], and
A[i,j]. i and or j can be empty.

csolve(a) returns the inverse of non-singular square A.

ceigen(a) returns a structure containing the real eigenval ues and complex
eigenvectors of a Hermitian matrix A (ctranspose(a) = cconj (a)).

Additional functions useful in time series analysis

autoreg()
autoreg(phi,x) applies an autoregressive operator specif ied by REAL
vector phi of length p to the columns of REAL matrix x. Keyword s
’reverse’, ’limits’ and ’start’ allow for reversing the dir ection,
operating on a subset of rows and providing starting values.

Uses for autoreg() include generation of autoregressive (A R(p)) time
series (x random), computing residuals from a moving averag e (MA(p)
time series with coefficients phi, computing cumulative su ms (phi = 1)
and solving difference equations.

The sign convention used corresponds to ARSIGN = -1. See arim ahelp
topic ’MASIGN’.

convolve()
convolve(wts,x) returns the circular convolutions of REAL vector wts and
the columns of REAL matrix x.

convolve(wts,x,reverse:T) returns the sums of circularly lagged products
of wts with the columns of x. With keyword phrase ’decimate:n ’ as an
argument it returns only rows 1, n+1, 2 * n+1, ... of the convolutions.

750 CHAPTER 9. TIME SERIES MACROS HELP FILE

movavg()
movavg(theta,x) applies an moving average operator specif ied by REAL
vector theta of length q to the columns of REAL matrix x. Keywo rds
’reverse’, ’limits’ and ’start’ allow for reversing the dir ection,
operating on a subset of rows and providing starting values.

Uses for movavg() include generation of moving average (MA(q)) time
series (x random), computing residuals from a autoregressi ve (AR(q))
time series with coefficients theta, computing first diffe rences (theta
= 1), and computing non-circular convolution.

The sign convention used corresponds to MASIGN = -1. See arim ahelp
topic ’MASIGN’.

padto()
padto(x,n) returns matrix x padded with n additional rows of zeros. If
n < nrows(x), the result consists of the first n rows of x.

padto() is useful in computing Fourier transforms at Nfreq f requencies
where Nfreq > nrows(x), for example, rft(padto(x,2 * nrows)) computes the
Fourier transforms of the columns of x at Nfreq = 2 * nrows equally spaced
frequencies.

partacf()
phi_kk <- partacf(rho) computes the partial autocorrelati ons
corresponding to autocorrelations in the column or columns of REAL
vector or matrix rho.

rho <- partacf(phi_kk,reverse:T) computes the autocorrel ations
corresponding to partial autocorrelations in the column or columns of
REAL or matrix vector phi_kk.

polyroot()
polyroot(coefs) returns a REAL matrix with 2 * ncols(coefs) columns
containing the complex zeros of real polynomials whose coef ficients are
specified by the columns of REAL vector or matrix coefs.

polyroot() is useful in determining whether a MA operator is invertible
or a AR operator is stationary.

REAL vector theta defines an invertible MA operator if and on ly if
max(creal(cpolar(polyroot(theta)))) < 1.

REAL vector phi defines a stationary AR operator if and only i f
max(creal(cpolar(polyroot(phi)))) < 1.

The sign convention used corrsponds to MASIGN = -1 and ARSIGN = -1 and
is not affected by options ’masign’ and ’arsign. See help top ic
’MASIGN’.

reverse()
reverse(x) returns a vector or matrix whose rows are the same as those
of REAL or LOGICAL vector or matrix x but in reverse order.

9.9. COMPZA() 751

unwind()
unwind(theta) returns a vector or matrix derived from the co lumns of
REAL vector or matrix theta interpreted as angles in units of radians,
cycles or degrees depending on option ’angles’. Multiples o f 2 * PI
radians, 1 cycle or 360 degrees are added or subtracted to rem ove large
row to row jumps. You can specify the size of jumps using keywo rd
’crit’.

yulewalker()
phi <- yulewalker(rho) computes a vector or matrix whose col umns are the
autoregression coefficients that solve the Yule-Walker eq uations based
on autocorrelations in the corresponding column of REAL vec tor or matrix
rho.

rho <- yulewalker(phi,reverse:T) computes a vector or matr ix
autocorrelations that satisfies phi = yulewalker(rho).

Informational Topics
Cross reference

See topic ’hermitian’ for the definition of Hermitian symme try.

See topic ’fourier’ for information on Fourier transforms.

See topic ’complex_data; for information on representing c omplex data.

See regular MacAnova help topics for full information on cft (), hft(),
rft(), creal(), hreal(), cimag(), himag(), cmplx(), cpola r(), hpolar(),
crect(), hrect(), ctoh(), htoc(), cprdc(), cprdcj(), cdiv c(), cdivcj(),
hprdh(), hprdhj(), hdivh(), hdivhj(), autoreg(), movavg(), convolve(),
padto(), partacf(), polyroot(), reverse(), unwind() and y ulewalker().

9.9 compza()

Usage:
compza(y [,degree:D, alpha:A, nfreq:Nfreq]), y a REAL vect or or matrix,

D and Nfreq != 0 integers, 0 <= A <= .5

Keywords: frequency domain, spectrum analysis

Usage
compza(y,nfreq:Nfreq,degree:D,alpha:A) computes scale d Fourier
transforms of the columns of REAL matrix y after detrending a nd
tapering them. They are scaled by dividing by sqrt(Ka) where Ka =
sum(taperˆ2).

The number of frequencies at which the Fourier transform is c omputed is
abs(Nfreq). It is an error if Nfreq > 0 and has a prime factor > 2 9.

Integer D = degree of polynomial used to detrend the columns o f y. D <
0 means no detrending, not even subtracting a mean.

752 CHAPTER 9. TIME SERIES MACROS HELP FILE

Scalar A >= 0 is the proportion of tapering on each end of the ti me
series.

See below for defaults for Nfreq, A and Nfreq.

The value is structure(za:Za, n:nrows(y), ka:Ka, alpha:A, degree:D)
Za The Nfreq by ncols(y) matrix of Fourier transforms of the

detrended and then tapered columns of y, in Hermitian form
Ka sum(Wˆ2), where vector W are the tapering factors

Default keyword values
The values of the optional keyword phrase arguments are REAL scalars
with the following restrictions and default values.

Keyword Value Default Value Restrictions
degree D 0 Integer
alpha A 0 0 <= A <= .5.
nfreq Nfreq See below Integer != 0 with abs(Nfreq)

not having prime factors > 29

When nfreq:Nfreq is not an argument and positive integer var iable S
does not exist, Nfreq is the smallest integer >= 2 * nrows(y) with no
prime factor > 29, that is Nfreq = goodfactors(2 * nrows(y)).

When S does exist and is a positive integer, nFreq = S. It is an e rror
if S has a prime factor > 29.

Detrending
When D > 0, the columns of y are detrended with a polynomial in t ime of
degree D fit by least squares, that is the residuals from the p olynomial
are tapered and analyzed. When D = 0, the sample mean is subtra cted.
When D < 0, no detrending is done, not even subtraction of the m ean.

Tapering
When A = 0, no tapering is done.

When A > 0, after detrending, each column of y will be multipli ed by a
cosine taper which modifies approximately A * nrows(y) values on each end
of the series, approximately 2 * A* nrows(y) values in all. Thus alpha:.5,
say, means that the all the observations, except the middle o ne, when N
is odd, are tapered. Similarly, alpha:.1 directs that 10% of the
observations at the start and 10% at the end, or 20% in all, wil l be
tapered.

NOTE: The interpretation of tapering proportion A differs f rom that
used by some practitioners, for whom the tapering proportio n is the
proportion of the entire series modified that is tapered. To modify
100* P percent of the entire series, use alpha:P/2.

See topic costaper() for an exact definition of the taper use d.

Method
After detrending followed by tapering, enough zero rows are added to the

9.10. COSTAPER() 753

end to bring the total number of rows to Nfreq and then rft() is used to
compute the Hermitian form of the Fourier transforms of each column.
These are sometimes known as "modified Fourier transforms" . Finally
they are divided by sqrt(Ka), where Ka = sum(taperˆ2); see ab ove.

Other macros used
compza() uses macros detrend() and costaper(). If they have not
previously been loaded, they are read from file tser.mac.

Cross reference
See also detrend(), costaper(), ’hermitian’, ’complex_fu n’,
’complex_data’, rft(), ’complex’.

9.10 costaper()

Usage:
costaper(N, alpha), N > 0 an integer, 0 <= alpha <= .5 a REAL sca lar.

Keywords: tapering, frequency domain, spectrum analysis, time
domain

Usage
costaper(N, alpha) returns a vector h containing a 100 * alpha percent
cosine taper (data window) of length N, tapering approximat ely N * alpha
elements on each end. N must be a positive integer and alpha a R EAL
scalar with 0 <= alpha <= .5.

When alpha = 0, h = rep(1,N), a "taper" that does no tapering.

For 0 < alpha <= .5 and L = ceiling(alpha * N),
h[j] = .5 * (1 - cos(PI * (j-.5)/L) = sin(.5 * PI * (j-.5)/L)ˆ2 , 1 <= j <= L
h[j] = 1, L + 1 <= j <= N - L
h[j] = h[N-j+1], N - L + 1 <= j <= N

A taper of length N is used to multiply a (usually) detrended t ime
series of length N before computing its discrete Fourier tra nsform.

Interpretation of tapering proportion
NOTE: The interpretation of tapering proportion alpha diff ers from that
used by some practitioners, for whom the tapering proportio n is the
proportion of the entire series modified that is tapered. To compute a
cosine taper to modify 100 * P percent of a series of length N, use
costaper(N, P/2).

754 CHAPTER 9. TIME SERIES MACROS HELP FILE

9.11 crosscor()

Usage:
ccf <- crosscor(x [,nlags] [,degree:d] [,auto:T] [,full:T or center:T]\

[,nfreq:M]), REAL matrix x, integer nlags > 0, integer scala r or vector
d, integer M > 0

ccf <- crosscor(x, i, j [,nlags] [,degree:d] [,full:T or cen ter:T]\
[,nfreq:M]), integers i > 0, j > 0

Keywords: autocorrelation, crosscorrelation, autocovariance,
crosscovariance, time domain

Usage
r_yy <- crosscov(y, nlags) computes sample auto- and crossc orrelation
functions ccf(h,y[,i],y[,j]) for lags h = 0, 1, ..., nlags.

The columns of y, a N by ny REAL matrix with no MISSING elements , are
interpreted as time series defined at equally spaced time po ints.

r_yy will be a nlags+1 by ny by ny REAL array, with r_yy[h+1,i, j] =
ccf(h,y[,i],y[,j]), h = 0, ..., nlags, where

ccf(h,y[,i],y[,j]) =
ccvf(h,y[,i],y[,j])/sqrt(ccvf(h,y[,i],y[,i]) * ccvf(h,y[,j],y[,j])),

with
ccvf(h,y[,i],y[,j]) =

sum((y[l+h,i]-ybar[i]) * (y[l,j]-ybar[j]),l=1,...,N-h)/N.
Note the divisor is N, not N-h or N-h-1. ybar[j] = sum(y[,j])/ N is the
sample mean of y[,j].

Note that y[,j] lags h behind y[,i]. Correlations where y[,j] leads h
ahead of y[,i] are in r_yy[h+1,j,i].

r_yy <- crosscor(y) does the same, except nlags = N-1.

In contrast to the output of autocor(), r_yy contains lag 0 co rrelations.

r_yy <- crosscor(y, i, j [,nlags]) computes ccf(h,i,j) for h =
-nlags,...,0,...,nlags as a vector of length 2 * nlags+1. Without
center:T (see below), results for lags 0, ..., nlags are in ro ws 1
through nlags+1 and those for lags -1, ..., -nlags are in rows
2* nlags+1, 2 * nlags, ..., nlags+2. If you want ccf(h,i,j) only for h >=
0, use full:F as an argument.

Keywords
You can also use crosscov() keyword phrases ’degree:d’ (to c ontrol
detrending), ’auto:T’ (to restrict computations to autoco rrelations),
’full:T’ (to compute results for negative lags), ’center:T ’ (to center
lag 0 between negative and positive lags) and ’nfreq:M’ (to s pecify the
length of Fourier transforms used). See crosscov() for deta ils.

Computation
crosscor() is implemented as a macro which uses crosscov() w ith keyword
phrase ’cor:T’ to compute auto- and cross-correlations usi ng discrete
Fourier transforms. See subtopic ’crosscov:"computation " for details

9.12. CROSSCOV() 755

and for description of the use of keyword ’nfreq’.

Cross reference
See also crosscov(), autocor(), autocov().

9.12 crosscov()

Usage:
ccvf <- crosscov(y [,nlags] [,degree:d] [,auto:T] [,cor:T]\

[,full:T or center:T] [,nfreq:M]), REAL matrix y, integer n lags > 0,
integer scalar or vector d, integer M > 0

ccvf <- crosscov(y, i, j [,nlags] [,degree:d] [,cor:T] \
[,full:T or center:T] [,nfreq:M]), integers i > 0, j > 0

Keywords: crosscovariance, crosscorrelation, autocovariance, au-
tocorrelation, time domain

Usage
c_yy <- crosscov(y, nlags) computes sample auto- and crossc ovariance
functions ccvf(h,y[,i],y[,j]) for lags h = 0, 1, ..., nlags.

The columns of y, a N by ny REAL matrix with no MISSING elements , are
interpreted as time series defined at equally spaced time po ints.

c_yy will be a nlags+1 by ny by ny REAL array, with c_yy[h+1,i, j] =
ccvf(h,y[,i],y[,j]), h = 0, ..., nlags, where

ccvf(h,y[,i],y[,j]) =
sum((y[l+h,i]-ybar[i]) * (y[l,j]-ybar[j]),l=1,...,N-h)/N.

Note the divisor is N, not N-h or N-h-1. ybar[j] = sum(y[,j])/ N is the
sample mean of y[,j].

Note that y[,j] lags h behind y[,i]. Covariances where y[,j] leads h
ahead of y[,i] are in c_yy[h+1,j,i].

crosscov(y) is the same as crosscov(y,nrows(y)-1), comput ing all
non-degenerate sample autocovariances.

c_yy <- crosscov(y, i, j [,nlags]) computes ccvf(k,i,j) for k =
-nlags,...,0,...,nlags as a vector of length 2 * nlags+1. Without
center:T (see below), results for lags 0, ..., nlags are in ro ws 1
through nlags+1 and those for lags -1, ..., -nlags are in rows
2* nlags+1, 2 * nlags, ..., nlags+2. If you want ccvf(k,i,j) only for k >=
0, use full:F as an argument.

Keyword auto
c_yy <- crosscov(y [,nlags], auto:T) computes only autocov ariances. The
result is a matrix with ny columns with c_yy[h+1,j] = ccvf(h,
y[,j],y[,j]), h = 0,...,nlags, j = 1,...,ny.

crosscov(y, i, j [,nlags], auto:T) is legal only when i = j.

756 CHAPTER 9. TIME SERIES MACROS HELP FILE

Keywords full and center
c_yy <- crosscov(y [,nlags] full:T) does the same, except au to- and
cross-covariances are also computed for negative lags.

c_yy will be a 2 * nlags+1 by ny by ny array, with results for lags 0
through nlags in c_yy[1,,], c_yy[2,,],..., c_yy[nlags+1, ,], and results
for lags -1 through -nlags in c_yy[2 * nlags+1,,], c_yy[2 * nlags,,],...,
c_yy[nlags+2,,].

c_yy <- crosscov(y [,nlags] center:T) does the same as with f ull:T,
except the auto- and cross-covariance functions are center ed at row
nlags+1. Specifically, results for lags -nlags, -nlags+1, ..., -1, 0,
1, ..., nlags are in c_yy[1,,], c_yy[2,,], ..., c_yy[2 * nlags+1,,]

With auto:T, with either full:T or center:T, c_yy will be a 2 * nlags+1 by
ny matrix.

Keyword degree
You can specify that columns of y be detrended by subtracting a
polynomial in time using keyword phrase ’degree:d’, where d is an
integer scalar or vector of length ny = ncols(y). A scalar d is
interpreted as rep(d,ny).

c_yy <- crosscov(y [,nlags], degree:d) computes auto- and c ross-
covariances of the residuals from polynomial trends fit by l east squares
to each column of y. The values of the fitted polynomial repla ce ybar
in the definition of ccvf.

d[j] is the degree of the polynomial fit to column j. When d[j] = 0,
only the sample mean is subtracted (default). When d[j] < 0, n othing is
subtracted.

You can use keyword phrases ’full:T’, ’center:T’ and ’auto: T’ with
’degree:d’

Correlations
r_yy <- crosscov(y [,i,j] [,nlags], cor:T ...) computes aut o- and cross-
correlations instead of auto- and cross-covariances. You c an use any of
the other keywords with ’cor:T’.

Note that, unlike autocor(), the result includes lag 0 corre lations.

Computational method
The necessary sums of lagged products are computed using dis crete
Fourier transforms (DFTs) of length >= N + nlags, the actual l ength
chosen being M = goodfactors(N + nlags). See goodfactors().

When working with long time series, it may be possible to find M1 > M
with more small factors resulting in faster DFT computation . For
example, when N + nlags = 24388, M = goodfactors(24388) = 2438 9 = 29ˆ3,
but a DFT of length M1 = 24576 = 3 * 2ˆ13 takes only about 40% as long to
compute as a DFT of length M.

9.13. CRSSPECTRUM() 757

c_yy <- crosscov(y[,i,j] [,nlags], nfreq:M1 ...) uses DFTs of length M1.

Cross reference

See also crosscor(), autocov(), autocor().

9.13 crsspectrum()

Usage:
crsspectrum(y, len [,reps]), y a REAL matrix with ncols(y) > = 2, len > 0

and reps > 0 integers.

Keywords: frequency domain, spectrum analysis, cross spectrum

Usage
crsspectrum(y, len) computes smoothed periodogram and cro ss-periodogram
estimates of the spectrum and cross-spectrum of the multiva riate time
series in the columns of REAL matrix y.

Smoothing is accomplished by 4 successive convolutions of a "boxcar"
smoother of length len. That is, the smoothing weights are
rep(1/len,len). The total number of frequencies involved i n each
spectrum estimate is 4 * len - 3. When len = 1 no smoothing is done.

crsspectrum(y, len, reps) does the same, except that reps co nvolutions
with a boxcar are used, where reps > 0 is an integer scalar. Whe n reps
is odd, then len must also be odd.

See topic ’bandwidth’ for information on the approximate ba ndwidth and
equivalent degrees of freedom associated with these estima tes.

Form of result
Suppose p = ncols(y) and N = nrows(y). Then, after Sy <-
crsspectrum(y, len [,reps]), Sy is a N by Q matrix, where Q = p +
p* (p-1)/2 = p * (p+1)/2.

Sy[,j], j = 1,...,p are the estimated spectra of y[,j], in Rea l form.

Sy[,p+1], Sy[,p+2],...,Sy[,Q] contain the estimated cros s spectra of
y[,i] and y[,j], i < j, in Hermitian form. The order is (i,j) = (1,2),
(1,3), ..., (1,p), (2,3),..., (2,p), ... (p-1,p)

Specifically, the estimated cross spectrum of y[,i] and y[, j] is in
column i * (p - (i + 1)/2) + j.

For example, when x and y are vectors, crsspectrum(hconcat(x,y), len)
returns hconcat(Sxx, Syy, Sxy), where Sxx and Syy are estima ted spectra
and Sxy is the estimated cross spectrum. Sxx and Syy are in Rea l form
and Sxy is in Hermitian form.

Detrending and tapering

758 CHAPTER 9. TIME SERIES MACROS HELP FILE

The column means are subtracted before computing the period ograms and
cross-periodograms, but no tapering or other detrending is done.

Length of fourier transform
The spectra and cross spectra are computed at the Nfreq Fouri er
frequencies 0, 1/Nfreq, 2/Nfreq, ..., (Nfreq-1)/Nfreq cyc les per unit
time, were Nfreq is determined as follows:

When variable S is defined and is a positive integer, Nfreq = S . It
is an error if S has a prime factor > 29.

Otherwise, Nfreq = smallest integer >= 2 * nrows(y) which has no prime
factors > 29, that is Nfreq = goodfactors(2 * nrows(y)).

Comparison with compfa()
Most of the time, a better choice for estimating cross spectr a is macro
compfa() which includes tapering and detrending and for whi ch the amount
of smoothing is specified as a bandwidth or an equivalent deg rees of
freedom. See compfa() for details.

9.14 detrend()

Usage:
detrend(x [,Degree]), REAL vector or matrix x, integer scal ar or vector

Degree

Keywords: time domain

Usage
y1 <- detrend(y, k, time:tt) detrends each column of REAL vec tor or
matrix by subtracting a degree k polynomial P_k(tt). Each co lumn of y,
which can have no MISSING values, is considered as a time seri es
observed at time points tt[1], tt[2], ..., tt[N], where N = nr ows(y).
tt is a REAL vector of length N and with no MISSING values. y1 ha s the
same size and shape as y.

k is usually an integer scalar but can be a length ny = ncols(y) vector
of integers, in which case column j is detrended by a degree k[j]
polynomial.

When k = 1, a linear trend is removed. When k = 0, only the sample mean
is subtracted. When k < 0, nothing is subtracted and y1 = y.

Each polynomial is fit by least squares.

You can find the trend values themselves by y - detrend(y,i,t ime:tt).

detrend(y, time:tt) is equivalent to detrend(y, 1, time:tt), subtracting
least squares regression lines a + b * tt from columns of y.

detrend(y [,k]) is equivalent to detrend(y [,k], time:run(nrows(y))).

9.15. DPSS() 759

This is what you should use with discrete parameter time seri es observed
at equally spaced time points.

Caution: Some early versions of detrend() used k = 0 as the def ault,
so that detrend(y) removed only the column means. It was chan ged
because it seemed inconsistent with the usual meaning of "de trend".

Examples
Compute residuals from linear trend:

Cmd> detrended <- detrend(y) # or detrend(y,1,time:run(nr ows(y)))

Plot a discrete parameter monthly time series starting Janu ary 1995
together with cubic trend:

Cmd> tsplot(hconcat(y,y-detrend(y,3)),1995,1/12,titl e:"Time series")

Detrend y[,1] linearly, y[,2] using a cubic polynomial and y [,3] not at
all:

Cmd> y1 <- detrend(y,vector(1,3,-1))

Cross reference
See also regress(), orthopoly(), tsplot().

9.15 dpss()

Usage:
dpss(N, W, K [,First]), N >= 1, 1 <= K <= N, 1 <= First <= N - K + 1

integers, 0 < W < .5

Keywords: tapering, spectrum analysis, frequency domain, taper-
ing

Usage
dpss(N, W, K) computes Discrete Prolate Spheroidal Sequenc es (DPSS) with
half bandwidth W for orders 0, 1, ..., K-1. The order L DPSS is t he
L+1-th orthonormal eigenvector of a certain tridiagonal sy mmetric matrix
of order N (see below). The value returned is N by K REAL matrix , with
the first K eigenvectors in columns 1, 2, ... K in order of decr easing
eigenvalue.

DPSS sequences are used as tapers in multi-taper spectrum es timation.
See below.

dpss(N, W, K, J) does the same, except the DPSS have orders J-1 , J, ...,
J+K-2, that is they are eigenvectors J, J+1, ..., J+K-1 of the
tridiagonal matrix. It returns a N by K REAL matrix, with eige nvectors
J, J+1,..., J+K-1 in columns 1, 2, ... K.

760 CHAPTER 9. TIME SERIES MACROS HELP FILE

N, K and J must be integers satisfying N >= 1, 1 <= K <= N, 1 <= J <= N
- K + 1.

W must be a REAL scalar, 0 < W < 0.5.

Use as tapers
Discrete Prolate Spheroidal Sequences (DPSS) are used as ta pers (data
windows) in multi-taper spectrum estamation. Their contin uous Fourier
transforms are very highly concentrated in low frequencies with a very
sharp cutoff near frequencies W and -W cycles. Because they a re
eigenvectors of a symmetric matrix, they are orthogonal.

The diagonal and subdiagonal of the tridiagonal matrix are
d = cos(2 * PI * W)* (.5 * run(-N+1,N-1,2))ˆ2

and
e = (run(N-1) * run(N-1,1))/2

The DPSS are computed by trideigen(d,e,J,J+K-1,values:F) , followed by
certain sign changes. See regular topic trideigen().

9.16 evalpoly()

Usage:
evalpoly(coef,z), coef and z REAL matrices with ncols(z)=2 * ncols(coef)
evalpoly(coef,z,T), coef and z REAL matrices with ncols(z) =ncols(coef)

Keywords:

Usage
evalpoly(coef,z) evaluates polynomials with REAL coeffic ients in coef
for complex arguments specified by z.

Specifically, when coef is a n by p REAL matrix and z is a N by 2 * p
REAL matrix considered as representing a N by p complex matri x Z,
evalpoly(coef,z) evaluates

Zˆn - coefs[1,] * Zˆ(n-1) - ... - coef[n-1,] * Z - coef[n,],

The result is a N by 2 * p REAL matrix representing a N by p complex
matrix.

By definition, evalpoly(coef,polyroot(coef)) should be z ero within
rounding error.

It is an error when ncols(z) != 2 * ncols(coef).

evalpoly(coef,x,T) does the same except x is considered to b e a real
rather than complex matrix with ncols(x) = ncols(coef). The result
is a matrix with the same dimensions as x and is the same as
creal(evalpoly(coef,cmplx(x)))

Cross reference

9.17. FFPLOT() 761

See also topics ’complex_data’, cmplx(), creal() and polyr oot().

9.17 ffplot()

Usage:
ffplot(G [, Range[, delta_t]] [,timeunit:Unit] [,plottin g keywords]),

G a REAL matrix, Range a real scalar or vector of length 2, REAL
scalar delta_t > 0, CHARACTER scalar Unit

Keywords: frequency domain, plotting, complex numbers

Usage
ffplot(G, Range, delta_t) plots the columns of REAL matrix G considered
as functions of frequency f for values of f specified by Range .

If N = nrows(G), the i-th row of G is associated with frequency (i-1)/N
cycles per delta_t time units, or (i-1)/(N * delta_t) cycles per unit time
so the full range of frequencies in G is assumed between 0 and
((N-1)/N)/delta_t.

When Range is vector(f1, f2), G is plotted for all Fourier fre quencies
between f1 and f2, inclusive.

Range = f, where f is a non-zero scalar, is equivalent to Range =
vector(0,f).

Range = 0 is equivalent to Range = vector(0,.5/delta_t).

You can provide a default value for delta_t by setting variab le DELTAT
appropriately. You can also provide a time unit to be used in
constucting the default x-axis label by setting variable TI MEUNIT. See
below.

You can use the usual graphic keywords, including ’title’, ’ xlab’,
’ylab’, ’xmin’, ’xmax’, ’ymin’, ’ymax’, and ’linetype’.

Keyword timeunit
ffplot(G,Range,delta_t,timeunit:Unit), where Unit is a C HARACTER scalar
such as "year", does the same, the default x-axis label will b e, say,
"Frequency (cycles/year)".

Unit should be specified consistantly with delta_t. For exa mple, with
monthly data and delta_t = 1/12, Unit should be "year", while with
delta_t = 1, Unit should be "month".

Defaults for arguments
You can omit delta_t or both Range and delta_t, and provide a d efault
time unit.

When you omit argument delta_t (ffplot(G, Range)), the defa ult for
delta_t is variable DELTAT if it is a positive scalar and is 1

762 CHAPTER 9. TIME SERIES MACROS HELP FILE

otherwise.

When you omit both arguments Range and delta_t (ffplot(G), t he defaults
for Range and delta_t are vector(0,.5/DELTAT) and DELTAT, w hen DELTAT
is a positive scalar, and vector(0, .5) and 1 otherwise

Without keyword ’timeunit’, the default x-axis label will b e
constructed from the value of CHARACTER scalar TIMEUNIT, if it exists
and differs from "".

Macro tsplot() also uses variables DELTAT and TIMEUNIT, as w ell as
variable START, to construct a default title and x-axis labe l. You
can set them once and forget about them. For example

Cmd> START <- 1991; DELTAT <- 1/12; TIMEUNIT <- "year"

to ensure that the x-axis label for both frequency and time do main
plots will be informative.

Plotting outside normal range
If some or all of Range is outside of the interval (0,.5/delta _t), the
values plotted are the periodic extension (with period N) of each column
of G. Thus ffplot(G,vector(-.5,.5), 1) is legal and plots th e a full
cycle of each column from frequency -.5 to .5, with the values with
frequencies < 0 coming from rows i with i > N/2.

Hermitian argument
If the columns of G are complex in Hermitian form, ffplot(G, R ange) will
produce the same plot as ffplot(hreal(G), Range) as long as t he range
specified is contained in the interval (0, .5/DELTAT). See
’complex_data’.

Cross reference
See also tsplot().

9.18 fourier

Keywords: frequency domain, fourier transforms, complex num-
bers

Discrete Fourier Transform (DFT)
Let {x(t)} = {x(0), x(1), ..., x(N-1)} = {x(t),0<=t<=N-1}} b e a finite
complex or real series, that is, a series of N complex or real n umbers.
Then the DFT (discrete Fourier transform) of {x(t)} is the fi nite
complex series of length N {X<N>(k),0<=k<=N-1}, where

X<N>(k) = sum(x(t) * exp(-i * 2* PI * t * k/N),0<=t<=N-1), k = 0,1,...,N-1

In the argument to exp(), i = sqrt(-1) is a pure imaginary numb er.

For any integer M > 0 we define
X<M>(k) = sum(x(t) * exp(-i * 2* PI * t * k/M),0<=t<=N-1), k = 0,1,...,M-1

9.18. FOURIER 763

When M > N, this can be viewed as the DFT of the series of length M
obtained by "padding" {x(t),0<=t<=N-1} with M - N 0’s.

There are two aspects of this notation:
The use of an upper case X for the Fourier transform of lower ca se x.
The use of suffix <M> to specify that f = k/M is used in the compl ex
exponential exp(-i * 2* PI * t * f).

The alternative notation DFT<M>{x}(k) = X<M>(k) is sometim es useful.

The definition of x<M>(k) works for any integer k < 0 and k >= M. With
this extension, x<M>(k) is periodic with period M, that is fo r any k

x<M>(k+M) = x<M>(k-M) = x<M>(k).

Note that in the definition of the DFT, indices start with 0 ra ther than
1 as is assumed in MacAnova. In working with Fourier transfor ms in
MacAnova, this correspondence must be kept in mind. The firs t element
in a series is always considered to be x(0) or X(0), but to acce ss it
you will need to use x[1].

Inversion formula
If {X<N>(k)},k = 0, 1, ..., N-1 is the DFT of {x(t)},t = 0, 1, ... , N-1,
then the following inversion formula holds:

x(t) = (1/N) * sum(X<N>(t) * exp(+i * 2* PI * t * k/N),0<=k<=N-1)
= (1/N) * conj(DFT<N>{conj(DFT<N>{x})}(t)), t = 0, 1, ..., N-1,

where conj(x) is the complex conjugate of the complex number z.

More generally, when M > N

x(t) = (1/M) * sum(X<M>(t) * exp(+i * 2* PI * t * k/M),0<=k<=M-1)
= (1/M) * conj(DFT<M>{conj(DFT<M>{x})}(t)), t = 0, 1, ..., N-1,

For t = N,...,M-1, the sum is 0.

Periodic Extensions
When dealing with the DFT it is sometimes convenient to consi der a
finite complex or real series as being a segment of length N fr om a
periodic infinite complex or real series {x<N>(t),-oo<t<o o} with period
N:

x<N>(t) = x(t), t = 0, 1, ..., N-1
x<N>(t) = x<N>(t-N), t = N, N+1, ...
x<N>(t) = x<N>(t+N), t = -1, -2, ...

More generally, we can define x<M>(t) as the periodic extens ion with
period M of x(t) padded with M-N 0’s:

x<M>(t) = x(t), t = 0, 1, ..., N-1
x<M>(t) = 0, t = N,...,M-1
x<M>(t) = x<M>(t-M), t = M, M+1, ...
x<M>(t) = x<M>(t+M), t = -1, -2, ...

With this extended definition, for any integer t0

764 CHAPTER 9. TIME SERIES MACROS HELP FILE

X<M>(k) = sum(x<M>(t) * exp(-i * 2* PI * t * k/M),t0 <= t <= t0+M-1)

that is, as a summation over an arbitrary complete period of x <M>(t).

Continuous Fourier Transform (CFT)
The continuous Fourier transform of a finite real or complex series
{x(t),0<=t<=N-1} is the continuous function of the real var iable f

Xˆ(f) = CFT{X}(f) = sum(x(t) * exp(-i * 2* PI * t * f),0<=t<=N-1)

The argument f is the frequency at which Xˆ(f) is evaluated an d is in
units of cycles.

Xˆ(f) is a periodic function of f with period 1, that is
Xˆ(f) = Xˆ(f+k) = Xˆ(f-k) for any integer k.

You can consider the DFT to be a "sampling" of the CFT, in the se nse
that X<M>(k) = Xˆ(k/M).

Because X<M>(k), k = 0, ..., M-1 is the DFT of x(t) "padded" wit h M - N
0’s, by padding {x(t)} with enough additional zeros, you can use the DFT
to compute the CFT at an arbitrarily dense set of frequencies . For
purposes of computing spectra of a series of length N it is usu ally
desirable to compute Fourier transforms at approximately M = 2* N
frequencies. Function padto() is useful for adding zero row s to a
vector or matrix.

You can define the continuous Fourier transform of an infini te real or
complex series {x(t), -oo < t < oo} in a similar manner as

Xˆ(f) = sum(x(t) * exp(-i * 2* PI * t * f), -oo < t < oo)
when the infinite sum converges as it always will if only x(t) != 0 for
only a finite set of t’s.

In another terminology, {x(t), -oo < t < oo} are the Fourier co eficients
of the periodic function Xˆ(f).

9.19 gettsmacros()

Usage:
gettsmacros(name1 [,name2 ...]), name1, name2 ... unquote d of macro

names on file TSMACROS or "tser.mac" if CHARACTER scalar TSM ACROS does
not exist

Keywords: general

Usage
gettsmacros(Macro1,Macro2,...) retrieves macros Macro1 , Macro2, ... from
a file. The file name is the value of CHARACTER scalar TSMACRO S if it
exists or "tser.mac" if it does not. The macro names must not b e
enclosed in quotes or be CHARACTER variables.

9.20. HERMITIAN 765

gettsmacros(Macro1,Macro2,...,quiet:T) retrieves the m acros but
suppresses printing the descriptive comments associated w ith them.

If there is more than one copy of any of the named macros in the f ile,
getttmacros retrieves the first one found.

TSMACROS has no predefined value.

Example: If TSMACROS does not exist or has value "tser.hlp",
Cmd> gettsmacros(detrend, spectrum, costaper)

retrieves macros detrend(), spectrum() and costaper() fro m file
"tser.mac".

gettsmacros() should be faster than pre-defined macro getm acros()
because it searches only one file. See MacAnova help topic ge tmacros().

9.20 hermitian

Keywords: frequency domain, fourier transforms, complex num-
bers

Definition
A complex series {y(j),0<=j<=N-1} of length N that satisfie s

y(0) real and y(n-j) = conj(y(j)), j = 1, ..., N-1

is said to have Hermitian symmetry, or simply to be a Hermitia n series.
Here conj(z) denotes the complex conjugate of complex numbe r z.

This should not be confused with the Hermitian symmetry of a s quare
complex matrix A for which A’ = complex conjugate of A.

When N is even, y(N/2) is real for Hermitan y.

If you define the periodic extension as the infinite complex series
y<N>(j) = y(j), j = 0, ..., N-1
y<N>(j) = y<N>(j-N), j = N, N+1, ...
y<N>(j) = y<N>(j+N), j = -1, -2, ...

then Hermitian symmetry is equivalent to

y<N>(-j) = conj(y<N>(j)), j = 0, +-1, +-2, ...

If {x(t),0<=t<=N-1} is a real series, then its DFT, {x<N>(t) } is a
Hermitian series. Conversely if {x(t),0<=t<=N-1} is Hermi tian, then
{x<N>(t)} is real. See topic ’fourier’ for information on th e DFT.

If {x(t),0<=t<=N-1} is an unrestricted complex series, its Hermitian
symmetrized form is the Hermitian series {y(t),0<=t<=N-1} where

766 CHAPTER 9. TIME SERIES MACROS HELP FILE

y(0) = Re(x(0)), y(t) =(1/2)(x(t)+conj(x(N-t))), t = 1, ... , N-1

Using the periodic extensions {x<N>(t)} and {y<N>(t)}, thi s is
equivalent to

y<N>(t) = (x<N>(t)+x<N>(-t))/2, j = 0, +-1, +-2, ...

Cross reference
See topic ’complex_data’ for information on how complex ser ies are
represented in MacAnova.

9.21 multitaper()

Usage:
multitaper(y, W, K [,degree:D,nfreq:Nfreq],deltat:delt a_t,wts:wts]),

REAL vector y, scalar W > 0, integer K >= 1, integer D, integer N freq
>= length(y), REAL scalar delta_t > 0, REAL vector wts with wt s[i] > 0

Keywords: spectrum analysis, tapering, frequency domain

Usage
multitaper(y, W, K, degree:D, deltat:delta_t, nfreq:Nfre q, wts:Wts)
computes multitaper spectrum estimates using K discrete pr olate
spheroidal sequences (DPSS) as tapers, with total bandwidt h
approximately 2 * W cycles per unit time.

The keyword phrases are optional. See below for defaults.

y is a REAL matrix with no MISSING values whose columns are dis crete
parameter time series observed at equally spaced times delt a_t units
apart.

delta_t > 0 is a scalar; see below for default.

REAL scalar W specifies the half bandwidth W; 0 < W <.5/delta_ t is
required.

Integer K > 0 is the number of DPSS tapers used. Sensible value s for K
should satisfy K < 2 * nrows(y) * W* delta_t, but this is not checked. At a
frequency where the spectrum is smooth, the approximate equ ivalent
degrees of freedom EDF (see topic ’bandwidth’) of an estimat e is
2* sum(Wts)ˆ2/sum(Wtsˆ2). For equal weights, EDF = 2 * K.

Wts is a REAL vector of length K with Wts[i] > 0. Default is Wts =
rep(1/K, K), that is, equal weights.

The estimated spectrum is the weighted average, using weigh ts in Wts,
of K periodograms of detrended columns of y, tapered using DP SS tapers.

Reference
See Spectral Analysis for Physical Applications by D. B. Per cival and

9.22. SPECTRUM() 767

A. T. Walden (Cambridge Univ. Press, 1993) for details on mul titaper
spectrum estimation.

Keyword deltat
Keyword phrase deltat:delta_t specifies the assumed inter val between
observations. It affects only the interpretation of W which is
interpreted as cycles per unit time. Because of this, W must s atisfy 0
< W < .5/delta_t.

For example, with hourly data and W in units of cycles per day, you
would use deltat:1/24 and W must satisfy 0 < W < 12. See below fo r the
default value of delta_t.

Keyword degree
Keyword phrase degree:D specifies that the columns of y are d etrended
using a polynomial of degree D fit by least squares. When D < 0 n o
detrending is done. When D = 0 column means are subtracted.

Number of frequencies
When nfreq:Nfreq is an argument, estimated spectra will be c omputed at
Nfreq frequencies. It is an error if Nfreq < nrows(y) or if Nfr eq has
a prime factor > 29.

When nfreq:Nfreq is not an argument and S is a positive intege r
variable, Nfreq = S. It is an error if S has a prime factor > 29.
When such an S does not exist, Nfreq = smallest integer >= 2 * nrows(y)
with no prime factor > 29, that is Nfreq = goodfactors(@ * nrows(y))

Defaults for keywords
The default values of omitted keywords are as follows:

Keyword Default value
degree D = 0 (subtract only the mean).
deltat delta_t = variable DELTAT if it exists; otherwise 1
nfreq Nfreq = variable S if it exists or the smallest integer > =

2* nrows(y) otherwise; it is an error if S has a prime
factor > 29.

wts Wts = rep(1/K,K)

Other macros used
multitaper() uses macros dpss() and detrend(). If they are n ot defined,
an attempt is made to read them from tser.mac using getmacros .

9.22 spectrum()

Usage:
spectrum(y, len [,reps]), y a REAL matrix, and len > 0 and reps > 0

integers

Keywords: spectrum analysis, frequency domain

Usage

768 CHAPTER 9. TIME SERIES MACROS HELP FILE

Sy <- spectrum(y, len) computes a smoothed periodogram esti mate of the
spectrum of each column of REAL vector or matrix y.

Smoothing is accomplished by 4 successive convolutions of a "boxcar"
smoother of length len. That is, the smoothing weights are
rep(1/len,len). The total number of frequencies involved i n each
spectrum estimate is 4 * len - 3. When len = 1 no smoothing is done.

spectrum(y, len, reps) does the same, except that reps convo lutions
with a boxcar are used. If reps is odd, then len must also be odd .

spectrum(y, 1) computes the unsmoothed periodogram.

The column means are subtracted before computing the period ograms, but
no other detrending or tapering is done.

See topic ’bandwidth’ for information on the approximate ba ndwidth and
equivalent degrees of freedom associated with these estima tes.

Number of frequencies
The spectrum is computed at the Nfreq Fourier frequencies 0, 1/Nfreq,
2/Nfreq, ..., (Nfreq-1)/Nfreq cycles per unit time, were Nf req is
determined as follows:

When variable S is defined and is a positive integer, Nfreq = S . It
is an error if S has a prime factor > 29.

Otherwise, Nfreq = smallest integer >= 2 * nrows(y) which has no prime
factors > 29, that is Nfreq = goodfactors(2 * nrows(y)).

Comparison with compfa()
Most of the time, macro compfa() is a better choice than spect rum() for
estimating spectra. compfa() tapers the series and allows p olynomial
detrending. Moreover, you specify the amount of smoothing t o use by
either a bandwidth or an EDF (equivalent degrees of freedom) . See
compfa() for details.

Other, quite different, choices for estimating spectra are macros
arspectrum() and burg().

Cross reference
See also arspectrum(), burg(), crsspectrum(), compfa(), c ompza().

9.23 testnfreq()

Usage:
testnfreq(nfreq), nfreq a vector of positive integers

Keywords: fourier transforms

Usage

9.24. TSPLOT() 769

testnfreq(nfreq) returns a LOGICAL vector the same length a s nfreq, a
vector of positive integers. Element j of the result is True i f and
only if nfreq[j] has no prime factors > 29.

testnfreq() is useful in macros which use one of the fast Four ier
transform functions, rft(), dft() and hft(), since these op erate only on
vectors or matrices x for which nrows(x) has no prime factors > 29. It
allows you to test whether this condition is true.

The use of testnfreq() is deprecated since goodfactors() ca n be used in
an equivalent test. When N is a scalar, goodfactors(N) == N is True if
and only if testnfreq(N) is true. Moreover, the value of good factors(N)
is the next integer >= N with no prime factors > 29.

Example
if (!testnfreq(nrows(y))){

error("nrows(y) has prime factor > 29")
}else{

yft <- rft(y)
}

Cross reference
See also topics goodfactors(), primefactors(), rft(), hft (), cft(),
’fourier’

9.24 tsplot()

Usage:
tsplot(y, times [,symbols:Symb] [,lines:F] [,impulse:T]

[,timeunit:Unit] [,graphics keywords]), y a REAL matrix, t imes a REAL
vector with length(time) = nrows(y), Symb a REAL or CHARACTE R scalar,
vector or matrix, Unit a CHARACTER scalar

tsplot(y [,start [,deltat]] [,symbols:Symb] [,lines:F] [,impulse:T]
[,timeunit:Unit] [,graphics keywords]), Start and delta_ t > 0 REAL
scalars

Keywords: plotting, time domain

Usage
tsplot(Y, Times) does a line plot of the columns of REAL matri x y vs
Times, a REAL vector whose non MISSING values must be in incre asing
order.

tsplot(Y, Start, Delta_t) does the same using Times = Start +
Delta_t * run(0,nrows(Y)-1). That is, the plotting times are equally
spaced starting with Start and incrementing by Delta_t.

tsplot(Y, Start) does the same using a default value for Delt a_t.

tsplot(Y) does the same using default values for Start and De lta_t.

770 CHAPTER 9. TIME SERIES MACROS HELP FILE

Defaults for Start and Delta_t are taken from variables STAR T and
DELTAT, if they exist and are non-missing REAL scalars with D ELTAT > 0.
When they do not exist the defaults for Start and Delta_t are 0 and 1,
respectively.

You can provide a time unit to be used in constucting a graph ti tle and
x-axis label by setting variable TIMEUNIT or by using keywor d
’timeunit’. See below.

You can use the usual graphic keywords, including ’title’, ’ xlab’,
’ylab’, ’xmin’, ’xmax’, ’ymin’, ’ymax’, ’linetype’ and ’im pulse’.

With ’impulse:T’, no connecting lines are drawn unless ’lin es:T’ is also
an argument.

Without ’symbols:Symb’, no symbols are plotted unless ’lin es:F’ is an
argument and ’impulse:T’ is not an argument. See below.

Keyword timeunit
tsplot(Y, Times, timeunit:Unit) and tsplot(Y, Start, Delt a_t,
timeunit:Unit) do the same except that Unit is used in constr ucting
the default title and x-axis label. Unit must be a CHARACTER s calar
such as "year" that is different from "".

Unit should be specified consistantly with Delta_t. For exa mple, with
monthly data and Delta_t = 1/12, Unit should be "year", while with
delta_t = 1, Unit should be "month".

Without keyword ’timeunit’, the default title and x-axis la bel will be
constructed from the value of CHARACTER scalar TIMEUNIT, if it exists
and differs from "".

Keyword symbols
tsplot(Y, Times, symbols:Symb) and tsplot(Y [,Start ,[Del ta_t]],
symbols:Symb) does the same, except that plotting symbols a re taken from
REAL or CHARACTER scalar, vector or matrix Symb. When Symb is a scalar,
it will be used for every point. When Symb is a vector of length
ncols(Y), Symb[j] will be the plotting symbol for column j. S ee
chplot() for further details.

’symbols:?’ is a special case. It specifies that plotting sy mbols will
be 1, 2, ..., nrows(y) when Y is a vector and 1, 2, ..., ncols(y) for
each column of Y when ncols(Y) > 1.

Keyword impulse
tsplot(Y, Times, impulse:T, ...) and tsplot(Y [,Start ,[De lta_t]],
impulse:T, ...) do the same, except an "impulse" plot is draw n rather
than a line plot. If you want both, also include ’lines:T’ as a n
argument.

Keyword lines
tsplot(Y, Times, lines:F, ...) and tsplot(Y [,Start ,[Delt a_t]],

9.24. TSPLOT() 771

lines:F, ...) do the same, except that no lines or impulses ar e drawn.
If symbols are not supplied, the symbols are the default symb ols drawn
by plot().

Keyword graphics
All the usual graphic keywords can be used, including ’impul se’,
’lines’, ’title’, ’xlab’, ’ylab’, ’xaxis’, ’yaxis’, ’xmin ’, ’xmax’,
’ymin’, ’add’, ’linetype’, etc.

In particular, ’impulse:T’ draws an impulse plot without li nes unless
’lines:T’is also an argument. See regular help topic ’graph _keys’ for
details.

Examples
Suppose the columns of x contain 10 years of monthly data star ting in
January, 1948. Then

Cmd> tsplot(x, 1948, 1/12, symbols:"\1",xlab:"Year")

will make a plot of the columns of x against time in years, usin g a
small triangle as plotting symbol. If DELTAT has value 1/12, argument 3
can be omitted. If also variable START is 1948, argument 2 can be
omitted.

Cmd> tsplot(x,1948+run(0,119)/12, symbols:"\1",xlab:" Year")

makes the same plot, ignoring DELTAT and START.

Suppose rhohat contains autocorrelation functions for the columns of x,
starting with lag 1 month, perhaps computed as rhohat <- auto cor(x,60).
Then

Cmd> tsplot(rhohat,1/12,1/12,impulse:T,ymin:-1,ymax: 1,\
xlab:"Lag (Years)", ylab:"Autocorrelation",\
title:"Autocorrelation functions for x")

makes an impulse plot of the autocorrelation functions.

If you wanted the lags in months, use tsplot(rhohat,1,1,... ,xlab:"Lag
(months)",...) After DELTAT <- 1/12, simply tsplot(rhohat ,DELTAT,
impulse:T, ...) would produce the same plot.

Cross reference
See also ffplot(), autocor().

772 CHAPTER 9. TIME SERIES MACROS HELP FILE

Chapter 10

Graphical User Interface Help File

This Chapter contains help for the graphical user interface macros that are distributed
with MacAnova in the file Gui.mac.txt. The material here is a reformatting of file Gui.hlp.txt.

10.1 alert()

Usage:
alert(mess) displays a message box containing mess

Keywords: dialogs

alter(mess) opens a dialog box displaying the message in the
character scalar mess.

10.2 doguihelp()

Usage:
doguihelp(filename) display html file filename in a simple html viewer

Keywords:

doguihelp(filename) displays the html file named in the CHA RACTER
scalar filename in a simple browser. filename should be a com plete
path to the html file (see findfile()). See also ’guihelp()’ and
’help()’.

10.3 getdirname()

Usage:
getdirname() finds a directory

773

774 CHAPTER 10. GRAPHICAL USER INTERFACE HELP FILE

Keywords:

getdirname() brings up a dialog box to allow the user to selec t
a directory. The full path to the directory is returned as a
CHARACTER scalar.

10.4 getmenubar()

Usage:
getmenubar() returns a character scalar containing the men u resource

Keywords: xml

getmenubar() returns a character scalar containing the cur rent
menu resource.

10.5 guiabout()

Usage:
guiabout() displays the About Macanova dialog

Keywords:

guiabout() displays the About Macanova dialog.

10.6 guianova()

Usage:
guianova() does basic anova via dialogs

Keywords:

guianova() does basic anova via dialogs

10.7 guiboxplot()

Usage:
guiboxplot() does boxplots via dialogs

Keywords:

10.7. GUIBOXPLOT() 775

guiboxplot brings up a dialog box to collect information tha t
will be used to construct a boxplot command. The dialog is a
"tabbed" dialog, meaning that the information is collected on
multiple panels that the user accesses via tabs.

The "Basic" tab collects the standard information for a basi c
boxplot without any bells and whistles. At the bottom of the
panel, you choose the variable or variables to appear in the
boxplot. If you choose multiple vector variables, each vari able
will determine one box. If you choose a matix variable, each
column will determine one box. At the top of the panel, you can
choose a "split-by" variable. If you have chosen a single vec tor
variable at the bottom of the panel, you can choose a "split-b y"
variable to divide the single variable into groups. This spl it-by
variable must have the same number of elements as the plotted
variable, and a separate box will be constructed for each uni que
value of the split-by variable, with elements of the respons e
variable divided according to their corresonding split val ue.
See split(). You must type the name of the split variable (or a n
expression that computes an appropriate split variable) in to the
dialog element.

The remainder of the elements on the Basic tab control how the
boxplots look. You can choose vertical (default) or horizon tal
boxes. You can choose to show outliers (default) or to simply
have the whiskers extend to the extremes. If you show the outl iers,
you can control the symbols used to display them. You may also
enter variables or expressions to control the location and w idth
of the boxes. The location expression should evaluate to a re al
vector with length equal to the number of boxes. The width
expression can be a real scalar or a vector with length equal t o
the number of boxes.

The "Appearance" tab collects information that affects the overall
appearance of the plot. First, you can choose that the plot ap pear
in a new window (default), or you can choose the number of the
graph window where you would like it to appear. A window numbe r of
0 indicates the most recently used graph window. Next, you ca n set
the width and height of the plot. On the screen, these are in
units of pixels. When printing using PostScript, these are i n
units of points (approximately 1/72 of an inch).

The second major set of choices are for labels. You can add a ti tle
and/or labels for the vertical and horizontal axes.

Finally, you can set where the border box and axis ticks will b e
drawn. By default, ticks and borders are drawn on all four sid es.

The "Axes" tab allows you to control the appearance of the axe s.
First, you can choose to have a logarithmic scale by clicking the
check box. Next, you may specify your own minimum and maximum values
in each direction. Third, you may decide whether the x=0 or y= 0 lines
are drawn on the plot. Finally, you may set the appearance of t he

776 CHAPTER 10. GRAPHICAL USER INTERFACE HELP FILE

ticks and labels. Tick locations should be either a variable name
or an expression that evaluates to a vector of real values. If
this is NULL, no ticks will be drawn. Tick labels should be cha racter
vectors with the same number of elements as the tick location s.
Finally, tick lengths should be real scalars >= -1. Values le ss than
0 are outside the frame; values greater than zero are inside t he
frame. Values greater than 2 draw a grid all the way across the
plot. The default value is -.5.

If you know the MacAnova commands, you may type in your option s
directly on the "Direct Options" tab.

10.8 guifilepath()

Usage:
guifilepath(type:charscalar) where charscalar is one of
"setdatafile", "addmacrofile", "addhelpfile", "addpath "

Keywords:

guifilepath() is used to set various files, file lists,
and path lists. It brings up dialogs to solicit file
information, which it then forms into a MacAnova command.
Options are

type:"setdatafile" does DATAFILE <- "..."
type:"addmacrofile" does addmacrofile("...")
type:"addhelpfile" does addhelpfile("...")
type:"adddatapath" does adddatapath("...")

where the ... is extracted from the dialogs

10.9 guihelp()

Usage:
guihelp(topic) displays html help on topic

Keywords:

guihelp(topic) displays the MacAnova html help associated with topic.
Standard MacAnova help topics have html versions in files in the
SharedSupport/docs/html directory. They have names of the form
prefix_topic.htm; for example, the html help on run is in bas e_run.htm,
and the html help on reml is in design_reml.htm . guihelp() ru ns
through the various prefixes in an attempt to match an html he lp file,
and then calls doguihelp() when a match is found. See also
’doguihelp()’ and ’help()’.

10.10. GUIHIST() 777

10.10 guihist()

Usage:
guihist()

Keywords:

guihist brings up a dialog box to collect information that
will be used to construct a histogram command. The dialog is a
"tabbed" dialog, meaning that the information is collected on
multiple panels that the user accesses via tabs.

The "Basic" tab collects the standard information for a basi c
histogram without any bells and whistles. At the bottom of th e
panel, you choose the variable to appear in the histogram.

The elements at the top of the Basic tab control how the
histogram looks. On the left, you can choose between density
(default) or frequency or relative frequency histograms. O n
the right, you set the bins. You may let MacAnova choose the
bins, or you can choose the number of bins and let MacAnova
choose their locations. The two remaining options allow you
to specify the bin locations. The anchor/width specificati on
will produce adjacent bins with your chosen width, with one
bin edge placed at the anchor point. Both the anchor and the
width must be numeric values. The final choice is to enter
an expression that will evaluate to a vector of bin edges.
It is usually an error to have data outside the bins, but you
may choose to let that happen by checking the "Data outside bi ns"
box. Finally, you choose the endpoint convention. By defaul t,
the right hand endpoint is in the interval, but you may choose
to have the left hand endpoint in the interval by choosing tha t
option.

The "Appearance" tab collects information that affects the overall
appearance of the plot. First, you can choose that the plot ap pear
in a new window (default), or you can choose the number of the
graph window where you would like it to appear. A window numbe r of
0 indicates the most recently used graph window. Next, you ca n set
the width and height of the plot. On the screen, these are in
units of pixels. When printing using PostScript, these are i n
units of points (approximately 1/72 of an inch).

The second major set of choices are for labels. You can add a ti tle
and/or labels for the vertical and horizontal axes.

Finally, you can set where the border box and axis ticks will b e
drawn. By default, ticks and borders are drawn on all four sid es.

The "Axes" tab allows you to control the appearance of the axe s.
First, you can choose to have a logarithmic scale by clicking the
check box. Next, you may specify your own minimum and maximum values
in each direction. Third, you may decide whether the x=0 or y= 0 lines

778 CHAPTER 10. GRAPHICAL USER INTERFACE HELP FILE

are drawn on the plot. Finally, you may set the appearance of t he
ticks and labels. Tick locations should be either a variable name
or an expression that evaluates to a vector of real values. If
this is NULL, no ticks will be drawn. Tick labels should be cha racter
vectors with the same number of elements as the tick location s.
Finally, tick lengths should be real scalars >= -1. Values le ss than
0 are outside the frame; values greater than zero are inside t he
frame. Values greater than 2 draw a grid all the way across the
plot. The default value is -.5.

If know the MacAnova commands, you may type in your options
directly on the "Direct Options" tab.

10.11 guilistxml()

Usage:
guilistxml()

Keywords:

This is a utility routine, not called by users

10.12 guilistctrl()

Usage:
guilistctrl()

Keywords:

This is a utility routine, not called by users. It produces
the xml for a choose variable control that can be embedded int o
a dialog. See guilistdlg() for a description of the argument s.

10.13 guilistdlg()

Usage:
guilistdlg(many, many keyword arguments)

Keywords:

This routine brings up a dialog box allowing you to choose var iables,
and returns a CHARACTER vector of the chosen names. It takes
keyword arguments of several types: usexxxx:T, reqxxxx:T, and

10.13. GUILISTDLG() 779

attrxxxx:T|F (for example, attrlogic:T or reqreal:T). Wit hout any
arguments, all variables are included in the dialog. If an re qxxx:T
argument is present, any variable must match the xxxx to be li sted in
the dialog. If one or more usexxxx:T arguments is present, th en a
variable must match at least one of the xxxx descriptors to be
included in the dialog. If an attrxxx: keyword is used, then a
checkbox will be added to the dialog to optionally allow vari ables
that match the xxx to be show. The T or F of the attrxxx keyword
determines whether the checkbox in initially checked or unc hecked.
Note: if any attrxxx:T arguments are present, then a variabl e must
match at least one of them to be listed.

There are two additional reqxxx keywords. reqnrows:k means that a
variable must have leading dimension k; reqndims:k means th at a
variable must have k dimensions.

Keyword maxselected:k sets that at most k variables can be se lected.
0 is the default, and it indicates no limit.

usonly:vec says to use only the names in the character vector vec.
omit:vec says to omit any names in the character vector vec.

matchrows:T means that once a variable has been selected, on ly
variables that match the number of rows will be show. This dif fers
from reqnrows:k in that matchrows:T allows different numbe rs of
rows to be shown before the first variable is selected.

Possible xxxx attributes are:
char CHARACTER variable
graph GRAPH variable
logic LOGIC variable
macro MACRO variable
real REAL variable

scalr Scalar variable
vect Vector variable (a la isvector)
matrx Matrix variable (a la ismatrix)
1d Exactly one dimensional
2d Exactly two dimensional
array Array variable
struc Structure variable

lockd Locked variable
ulock Unlocked variable

factr Factor variable
vart Variate (1 dimensional, real, not factor) variable
binary 0/1 variable
system Name is all capitals, and either longer than

1 letter or not "E"

nonsys A non-system variable
nsvart A non-system variate

780 CHAPTER 10. GRAPHICAL USER INTERFACE HELP FILE

nsfact A non-system factor
ns1d A non-system 1d variable
ns2d A non-system 2d variable
nsstrc A non-system structure

10.14 guintrctplt()

Usage:
guintrctplt() does interaction plots via dialogs

Keywords:

guintrctplt brings up a dialog box to collect information th at
will be used to construct an interaction plot command. The
dialog is a "tabbed" dialog, meaning that the information is
collected on multiple panels that the user accesses via tabs .

Interaction plots graphically display a vector/matrix/ar ray of
real numbers. The coordinates of the first dimension are
indicated by the horizontal plotting position. The levels o f
any other dimensions are indicated by the plotting symbol; f or
example, 2.4 indicates level 2 of the second factor and level 4
of the third factor. Points with the same plotting symbol are
joined by lines.

The "Basic" tab determines the vector/matrix/array to be pl otted.
First, you may directly select a matrix or array of plotting
positions by selecting a matrix of array in the variable sele ction
control at the bottom of the tab. In this form, you only select
a single matrix or array. Second, if there is an active model,
you may choose to plot least squares means from the active mod el.
To do this, you check the "use LS means" box in the "Control"
subdialog and select the desired factors from the model in th e
variable selection control. (Note: this form makes use of gl mtable()
internally and thus will not work for balanced designs. Use u nbal:T
in the anova() command to enable the use of LS means in interac tion
plots for balanced data.) Finally, you may indicate the vect or/
matrix/array to be plotted as the tabular means of a response
variable split according to one or more factor variables. In this
form, you first select the response variable, and then selec t one
or more splitting variables.

You may optionally choose to plot error bars around each mean ,
simply by checking the show error bars button in the "Control "
subdialog. By default, the bars are plus or minus two SE, but y ou
may adjust that in the Control subdialog. For LS means, stand ard
errors are taken directly from the model. For the matrix/arr ay
form, you must enter the name of a matrix of standard errors in

10.15. GUIPATTERNED() 781

the "Options" subdialog. The tabular data form will compute SEs
for the within-cell variances. Note: an SE of 0 will be used
for cells with a single observation. Optionally, checking t he
"Pooled estimate of error" box in the Options subdialog will pool
variance information from all cells into a single common est imate
of variance, which will then be used to compute cell standard errors.
Finally, you may simply specify a common error variance dire ctly
in the Options subdialog.

The "Appearance" tab collects information that affects the overall
appearance of the plot. First, you can choose that the plot ap pear
in a new window (default), or you can choose the number of the
graph window where you would like it to appear. A window numbe r of
0 indicates the most recently used graph window. Next, you ca n set
the width and height of the plot. On the screen, these are in
units of pixels. When printing using PostScript, these are i n
units of points (approximately 1/72 of an inch).

The second major set of choices are for labels. You can add a ti tle
and/or labels for the vertical and horizontal axes.

Finally, you can set where the border box and axis ticks will b e
drawn. By default, ticks and borders are drawn on all four sid es.

The "Axes" tab allows you to control the appearance of the axe s.
First, you can choose to have a logarithmic scale by clicking the
check box. Next, you may specify your own minimum and maximum values
in each direction. Third, you may decide whether the x=0 or y= 0 lines
are drawn on the plot. Finally, you may set the appearance of t he
ticks and labels. Tick locations should be either a variable name
or an expression that evaluates to a vector of real values. If
this is NULL, no ticks will be drawn. Tick labels should be cha racter
vectors with the same number of elements as the tick location s.
Finally, tick lengths should be real scalars >= -1. Values le ss than
0 are outside the frame; values greater than zero are inside t he
frame. Values greater than 2 draw a grid all the way across the
plot. The default value is -.5.

If you know the MacAnova commands, you may type in your option s
directly on the "Direct Options" tab.

10.15 guipatterned()

Usage:
guipatterned()

Keywords:

guipatterned() will solicit information for building fact ors,

782 CHAPTER 10. GRAPHICAL USER INTERFACE HELP FILE

maximum level, the number of times each should be repeated
consecutively, and the number of times the whole pattern is t hen
repeated. You may optionally save as factor or nonfactor.

10.16 guiplotresid()

Usage:
guiplotresid() does residual plots via dialogs

Keywords:

guiplotresid brings up a dialog box to collect information t hat
will be used to construct a plotresids command for plotting
residuals. The dialog is a "tabbed" dialog, meaning that the
information is collected on multiple panels that the user ac cesses
via tabs.

The "Basic" tab allows you to determine which plots you want,
which kind of residuals to use, and what plotting character t o use.
On the left, you may select one or more of the plot types: resid uals
versus fitted values, or residuals versus normal scores, or
residuals versus case numbers. On the right, you may choose w hich
type of residuals: raw residuals, scaled residuals, standa rdized
residuals, or studentized residuals. You may also choose th e size
and style of the plotting character.

Scaled residuals are raw residuals divided by the root MSE.
Standardized residuals are residuals divided by an estimat e of their
standard error (ie, this takes the HII values into account).
Studentized residuals are outlier-t residuals. In all case s,
scaling involves the final error term of the model.

The "Appearance" tab collects information that affects the overall
appearance of the plot. First, you can choose that the plot ap pear
in a new window (default), or you can choose the number of the
graph window where you would like it to appear. A window numbe r of
0 indicates the most recently used graph window. Next, you ca n set
the width and height of the plot. On the screen, these are in
units of pixels. When printing using PostScript, these are i n
units of points (approximately 1/72 of an inch).

The second major set of choices are for labels. You can add a ti tle
and/or labels for the vertical and horizontal axes.

Finally, you can set where the border box and axis ticks will b e
drawn. By default, ticks and borders are drawn on all four sid es.

The "Axes" tab allows you to control the appearance of the axe s.
First, you can choose to have a logarithmic scale by clicking the
check box. Next, you may specify your own minimum and maximum values

10.17. GUIRANDOM() 783

in each direction. Third, you may decide whether the x=0 or y= 0 lines
are drawn on the plot. Finally, you may set the appearance of t he
ticks and labels. Tick locations should be either a variable name
or an expression that evaluates to a vector of real values. If
this is NULL, no ticks will be drawn. Tick labels should be cha racter
vectors with the same number of elements as the tick location s.
Finally, tick lengths should be real scalars >= -1. Values le ss than
0 are outside the frame; values greater than zero are inside t he
frame. Values greater than 2 draw a grid all the way across the
plot. The default value is -.5.

If you know the MacAnova commands, you may type in your option s
directly on the "Direct Options" tab.

10.17 guirandom()

Usage:
guirandom(dist:disttype)

Keywords:

guirandom() is a dialog based interface to the most common
ways to generate random data into MacAnova. The possible dis ttypes
(as character scalars) are:

"uniform","normal","binomial","poisson","F","beta",
"gamma","chisq","student"

10.18 guireadfile()

Usage:
guireadfile(type:readtype,useclip:TF)

Keywords:

guireadfile() is a dialog based interface to the most common
ways to read data into MacAnova. If useclip is T, then guiread file()
will read from the clipboard; otherwise it will read from a fi le.
The possible readtypes (as character scalars) are:

"matread" read in matread format
"matread/datafile" read from DATAFILE in matread format
"vecread" read data as a vector
"vecread/matrix" read data but store as matrix
"readdata/labelled" read labelled columns
"readdata/unlabelled" read unlabelled columns

784 CHAPTER 10. GRAPHICAL USER INTERFACE HELP FILE

10.19 guirsample()

Usage:
guirsample() to subsample a variable through a dialog

Keywords:

guitypein() brings up a dialog into which you can enter infor mation
to subsample from a variable.

10.20 guitypein()

Usage:
guitypein() to type in data through a dialog

Keywords:

guitypein() brings up a dialog into which you can type data,
and then have it read in.

10.21 setmenubar()

Usage:
setmenubar(res,menuName) replaces the current menubar wi th that
described in the xml resource res with name menuName; both re s and
menuName are CHARACTER scalars

Keywords: xml

All menus in Carapace versions of MacAnova, including the de fault
menus, are set using XML resources. These resources are base d on the
XRC system in wxWidgets, with some MacAnova-specific exten sions.
The resource variable is a CHARACTER scalar in XML format:
<?xml version="1.0"?>

<resource>
...

</resource>

Of course, all the action is in the ... where the menus are actu ally
specified. The resource is a collection of objects. Each obj ect
has a type given by its class, and an identifier given by its na me.
Within the object, you can have parameters that describe or m odify
the object, and other objects that are called children of the containing
object.

To set up a menu bar, the resource contains one object of class

10.21. SETMENUBAR() 785

wxMenuBar. The name for that menubar is the menuName used in t he
setmenubar() call. For example, setmenubar(resource,"sa mpleMenu")
based on this excerpted resource:
<?xml version="1.0"?>

<resource>
<object class="wxMenuBar" name="sampleMenu">

...
</object>

</resource>

The children of a menu bar are objects of class cpcMenu; these are the
menus seen on the menu bar. The children of a menu are items (ob jects
of class cpcMenuItem), separators (objects of class separa tor), and/or
submenus (more objects of class cpcMenu). Here is an example , with
comments and explanations interspersed in the XML.

<object class="cpcMenu" name="File_menu">
<label>File</label>

Start a menu. The name (File_menu) should be unique, but is ot herwise
not used. The label determines how the menu will be shown on th e
menu bar; here we have the File menu.

<object class="cpcMenuItem" name="CPC_FILE_OPEN">
<label>Open\tCtrl+O</label>
<accel>Ctrl+O</accel>
<help>Open a text file</help>

</object>
Here we have a menu item with name CPC_FILE_OPEN. Many names t hat
begin CPC_ correspond to predetermined actions; here, CPC_ FILE_OPEN
opens a text file in a new output window. A list of these known
names is given below. The label parameter determines how the item
will appear on the menu. The accel parameter determines a key board
combination that is equivalent to selecting the menu item, h ere,
control plus O. Finally, the help parameter is a message disp layed
in the status bar at the bottom of the frame.

<object class="separator"/>
This is a separator to produce a gap in the menu.

<object class="cpcMenuItem" name="SaveWorkspace">
<label>Save workspace\tCtrl+K</label>
<accel>Ctrl+K</accel>
<help>Save the workspace in a file</help>
<action>save()</action>

</object>
Here is a menu item with an action. When a menu item with
an action is selected, the action value is sent to MacAnova as a
command, just as if you had typed it at the command line. Pleas e
note, if you add an action to one of the standard CPC_... named
items, the action will be ignored.

<object class="cpcMenu" name="CPC_WINDOWS_TEXTWINDOW" >
<label>Output windows</label>
<help>Select output window</help>
<object class="cpcMenuItem" name="fake window">

<label>fake</label>
</object>

786 CHAPTER 10. GRAPHICAL USER INTERFACE HELP FILE

</object>
Here is object that is another menu. In this case, the menu nam ed
CPC_WINDOWS_TEXTWINDOW has only a single fake item in the re source.
The menu with this name is updated automatically by Carapace to
reflect the command windows present.

<object class="cpcMenuItem" name="CPC_HELP_HELP">\
<label>$Help\tCtrl+L</label>\
<accel>Ctrl+L</accel>\
<selectionlabel>$Help on selection</selectionlabel>\
<help>Help on MacAnova</help>\
<action>guihelp()</action>\
<hidecommand>1</hidecommand>\
<selectionaction>guihelp(%s)</selectionaction>\

</object>\
</object>

You can make menus change slightly depending on whether or no t anything
in the window is selected. If there is a selectionlabel param eter,
that label will be used whenever something in the window is se lected.
Similarly, the selectionaction will be used instead of the a ction
whenever something is selected. In this case, the selected t ext will
replace the %s in the selectionaction parameter. One additi onal
twist here is hidecommand. Ordinarily, any action or select ionaction
command is printed in the output pane. If hidecommand is 1, th e
command will not be printed. It is not shown here, but there is also
a hideoutput parameter. If hideoutput is 1, then any printin g that
the command would do is suppressed.

Here are the standard names and their corresponding actions :
CPC_FILE_OPEN Open a file in an output window
CPC_FILE_SAVEWINDOW Save the contents of the output pane
CPC_FILE_SAVEWINDOWAS Save the contents, but change the na me
CPC_FILE_PAGESETUP Set up for printing
CPC_FILE_PRINTSELECTION Print
CPC_FILE_INTERRUPT Interrupt execution
CPC_FILE_QUIT Quit
CPC_FILE_FASTQUIT No fooling around, just quit now

CPC_EDIT_UNDO Undo last edit/typing
CPC_EDIT_CUT Cut selection
CPC_EDIT_COPY Copy selection
CPC_EDIT_PASTE Paste selection
CPC_EDIT_COPYTOEND Copy selection to command line
CPC_EDIT_EXECUTE Execute the command line
CPC_EDIT_UPHISTORY Go back in command history
CPC_EDIT_DOWNHISTORY Go forward in command history

CPC_WINDOWS_HIDE Hide this window
CPC_WINDOWS_CLOSE Close this window
CPC_WINDOWS_FASTCLOSE Close this window, no chance to save
CPC_WINDOWS_NEWWINDOW Open a new command window
CPC_WINDOWS_GRAPH Nothing happens, this is a submenu
CPC_WINDOWS_TEXTWFONT Select command window font
CPC_WINDOWS_GOTOTOP Scroll to top of output pane

10.21. SETMENUBAR() 787

CPC_WINDOWS_GOTOEND Scroll to bottom of output frame
CPC_WINDOWS_GOTOCOMMANDPOINT Move focus to end of commandpane

788 CHAPTER 10. GRAPHICAL USER INTERFACE HELP FILE

Chapter 11

User Function Help File

This Chapter contains help for users interested in producing user functions (compiled C
or FORTRAN code that is loaded into MacAnova and executed). The material here is a
reformatting of file Userfun.hlp.txt A suggested order for reading this material is

1. loadUser

2. User

3. user fun

4. arginfo fun

5. callback fun

6. c macros

7. compile dos compile mac compile unix compile win

8. type codes

11.1 arginfo fun

Usage:
Type userfunhelp(user_fun) for information on the structu re of user

functions.
Type userfunhelp(callback_fun) for information on the str ucture of user

functions making "call backs" to MacAnova.
Type userfunhelp(arginfo_fun) for information on how to en able automatic

checking of arguments to a user function.

Keywords: user functions, coding, sample source

This topic presumes familiarity with topic User() and user_ fun. It
provides a brief introduction to the form of an arginfo funct ion, that
is an externally compiled function that can be called by MacA nova to

789

790 CHAPTER 11. USER FUNCTION HELP FILE

obtain information about the arguments expected by a user fu nction. If
available, an arginfo function operates transparently to t he user of
MacAnova. Because of the inherent dependence on the compute r and
operating system, there are many details that are not covere d here.
Additional details may be found in topics compile_dos, comp ile_mac,
compile_unx and compile_win.

This topic presumes familiarity with topics user_fun and ca llback_fun.

Arginfo functions are not currently possible when compilin g for the
protected mode DOS version (DJGPP).

Since we have no experience with writing arginfo functions i n Fortran,
no Fortran related information is provided here.

In the following, ’handle’ is used in the Macintosh OS sense, as a
pointer to a pointer.

To compile an arginfo function associated with user functio n foo, say,
you need to include a function named ’arginfo_foo’ in the sou rce for
foo. arginfo_foo should have no arguments and should return a pointer
to a vector of long integers, that is it should be declared as

long * arginfo_foo(void)
When compiling for Windows using Borland C/C++ 4.5, the decl aration
should be

long * _export arginfo_foo(void)

The ending of the name of the arginfo function (here ’foo’) mu st match
the name of the user function.

arginfo_foo should return a pointer to a vector arginfo of Na rgs + 2
long integers, where Nargs is the number of arguments expect ed by foo,
excluding the list, if any, of call back functions (see callb ack_fun).

The first element of vector arginfo (arginfo[0]) must be Nar gs >= 1.

The second element of vector arginfo (arginfo[1]) is compos ed of bit
constants that specify various properties of the function (whether it
makes call backs, whether it expects pointers or handles, wh ether its
arguments should be data or symbols, and whether a required 6 8881
co-processor is absent (Macintosh only). Symbolic names fo r these are
defined in header file dynload.h which is automatically inc luded by
header file Userfun.h.

Name of bit Meaning
DOESCALLBACK Call backs to MacAnova functions will be made
NOCALLBACK No call backs to MacAnova functions will be made
USESPOINTERS Arguments should be pointers
USESHANDLES Arguments should be handles
POINTERUSE Same as USESHANDLES on Macintosh and same as

USESPOINTERS on other systems
SYMBOLARGS All arguments (except call back function list) a re

pointers or handles to Symbols
NOSYMBOLARGS All arguments (except call back function list) are

11.1. ARGINFO FUN 791

pointers or handles to data
COPROCESSOROK Co-processor not needed or, if needed, is ava ilable
COPROCESSORERROR A co-processor is needed but not availabl e

For example, for a function with default pointer/handle usa ge that makes
call backs and does not expect Symbol arguments, arginfo[1] should be
DOESCALLBACK | POINTERUSE | NOSYMBOLARGS. When compiling for a Macintosh,
this is equivalent to DOESCALLBACK | USERSHANDLES | NOSYMBO LARGS; when
compiling for other computers it is equivalent to DOESCALLB ACK |
USESPOINTERS | NOSYMBOLARGS

Strictly speaking NOCALLBACK and NOSYMBOLARGS are not need ed since they
evaluate to 0, but their use can make for clearer code.

The remaining Nargs elements (arginfo[2], arginfo[3], ... ,
arginfo[Nargs+1]) of the vector are integers that specify t he MacAnova
types of the user function arguments, using symbolic consta nts defined
in Userfun.h. Typical constants are REALMATRIX, CHARSCALA R,
LOGICSCALAR, INTVECTOR, POSITIVEREALVECTOR, NONNEGATIVEINT, LONGVECTOR
and SYMHVALUE. The qualifier INT means REAL with integer val ues; the
qualifer LONG means actual long integers as produced by asLo ng(). See
topic type_codes for a complete list of permissible constan ts.

In writing a function for a 68K Macintosh when compiling usin g
Metrowerks CodeWarrior, to ensure correct compilation, al l declarations
of call back and arginfo functions must be bracketed by

#pragma mpwc on
...
#pragma mpwc off

Here is an example of a function to provide argument informat ion for
fooeval() listed under topic callback_fun and executed fro m MacAnova by,
say,

Cmd> User("fooeval", "sqrt(PI/2)")

Non-Macintosh version:
#include "Userfun.h"

static long Fooevalarginfo[] =
{1, DOESCALLBACK | POINTERUSE | NOSYMBOLARGS, CHARSCALAR};

long * arginfo_fooeval(void)
{

return(Fooevalarginfo);
}

Macintosh version:

#include "Userfun.h"

#define info_main main

792 CHAPTER 11. USER FUNCTION HELP FILE

static long Fooevalarginfo[] =
{1, DOESCALLBACK | POINTERUSE | NOSYMBOLARGS, CHARSCALAR};

#ifndef powerc
#pragma mpwc on
#endif
long * info_main(void)
{

long * arginfo;

EnterCode();

arginfo = Fooevalarginfo;
/ * add COPROCESSORERROR to arginfo[1] if appropriate * /
CHECK68881(arginfo);

ExitCode();
return(arginfo);

}
#ifndef powerc
#pragma mpwc off
#endif

#ifdef powerc
RoutineDescriptor arginfo_fooeval =

BUILD_ROUTINE_DESCRIPTOR(uppArgInfoEntryProcInfo, in fo_main);
#endif / * powerc * /

When compiled for a 68K Macintosh, this must be compiled sepa rately from
fooeval. If the source is in the same file as source for fooeva l, some
form of conditional compilation should be used so that both
arginfo_fooeval and fooeval don’t both get compiled at once . The code
resource produced should have name arginfo_fooeval and be i ncluded in
the same resource file as fooeval.

When compiled for a Power PC Macintosh, arginfo_fooeval wou ld normally
be in the same source file as fooeval (C function main) and inf o_main
would not be defined to be main. A single compilation would pr oduce a
resource file containing resource fooeval with entries foo eval and
arginfo_fooeval. The actual entry points would be specifie d by
RoutineDescriptors fooeval and fooeval_arginfo.

See topics compile_dos, compile_mac, compile_unix and com pile_dos for
information on compiling a user function on different types of
computers.

See loadUser() and User() for information on how to load and e xecute a
user function.

See topic user_fun for information on the structure of a user function
not making call backs to MacAnova.

See topic callback_fun for information on the structure of a user

11.2. C MACROS 793

function making call backs to Macanova.

See topic c_macros and header file Userfun.h distributed wi th MacAnova
for C macros that are helpful in writing arginfo functions.

11.2 c macros

Usage:
type userfunhelp(c_macros) for information on available C _macros for compiling

user functions that may be compiled for more than one type of c omputer.

Keywords: user functions, coding, sample source

This topic presumes familiarity with topics User(), user_f un,
arginfo_fun and callback_fun. It describes the use of the C m acros in
header file Userfun.h in writing user functions in such a way that their
code may be compiled on a variety of computers with little or n o change.
Some of the macros in Userfun.h are helpful even when writing a user
function to run on a single type of computer. Among other thin gs, use
of these macros ensures that all non-symbol arguments end up as pointers
and symbol arguments end up as handles. They can also make it e asier to
call back to MacAnova. See callback_fun.

To make these macros available, the following should appear in your
source file

#include "Userfun.h"
and both files Userfun.h and dynload.h (included by Userfun .h) should be
in the same directory as the file being compiled.

Userfun.h also includes macros for working directly with Ma canova
symbols. These are not discussed here. However, example sou rce
fooeval.c includes some example of their use. See Userfun.h for more
information.

Userfun.h also defines constants for describing the type an d shape of
user function arguments. See topic type_codes for a complet e list.

Here is a brief summary of the most important macros in Userfu n.h.

Prefix each user and arginfo function name with EXPORTED:
void EXPORTED foo(...)

or
long * EXPORTED arginfo_fooeval(void)

If MACINTOSH is defined, the macros referencing arguments (THEARG,
THECOMMAND, THESYMBOL, CALLBACKFUN) normally assume the arguments are
handles; if MACINTOSH is not defined, they normally assume a rguments are
pointers.

If, for some reason, you want to deviate from this convention , you can
override it by using one of the following

794 CHAPTER 11. USER FUNCTION HELP FILE

#define POINTERARGS 1 / * arguments assumed to be pointers * /
or

#define POINTERARGS 0 / * arguments assumed to be handles * /

If POINTERARGS is not defined, Userfun.h defines it to be 0 on a
Macintosh or 1 otherwise.

Use DOUBLEARG(argx), CHARARG(argx), LONGARG(argx) and SY MBOLARG(argx) to
declare arguments other than a list of call back functions. T hey expand
to handles (double ** argx, char ** argx, long ** argx, Symbol ** argx)
when POINTERARGS is 0 (Macintosh) and to pointers (double * argx, char *
argx, long * argx, Symbol * argx) when POINTERARGS is 1 (everywhere
else). If you do deviate and do not provide an arginfo functio n (see
arginfo_fun), you will have to include either pointers:T (M acintosh) or
pointers:F (otherwise) as an argument to User().

Use CALLBACKLIST(funlist) to declare the call back functio n list
structure. It expands to MacAnovaCBSH funlist (a handle) wh en
POINTERARGS is 0 and to MacAnovaCBSPtr funlist (a pointer) o therwise.

Use arg = THEARG(argx) to obtain a pointer to non-symbol argu ment. This
expands to arg = * argx (dereferencing a handle) when POINTERARGS is 0
and to arg = argx otherwise. On a Macintosh, you should derefe rence any
handle argument again after calling back to a function inter nal to
MacAnova.

Use commandH = THECOMMAND(argx) to obtain a handle (char **) to a
CHARACTER argument that is to be an argument to the mvEval() c all back
function.

Use symhArg = THESYMBOL(argx) to obtain a Symbolhandle (Sym bol **) for a
symbol type argument.

Use CALLBACKFUN(funlist, funName) to obtain a pointer to fu nction
funName in the list of call back functions.

In any user function making callbacks define C macro MVCALLB ACKS before
include Userfun.h. This results in the declaration of MvCal lbackFuns, a
global handle or pointer (depending on the value of POINTERA RGS) to a
call back function list. It this case, one of the first execut able
lines in the user function should be setMvFuns(funlist) to i nitialize
MvCallbackFuns. Subsequently you can call the standard cal l back
functions by mvPrint(msg), mvAlert(msg), mvEval(cmd), mv Ismissing(&x),
mvSeterror(errorNumber), and mvFindfun(funName), where msg, cmd and
funName have type char * , x has type double and errorNumber has type
long. For example, mvPrint("Hello!") expands to
CALLBACKFUN(MvCallbackFuns, print)("Hello").

When compiling for a 68K Macintosh, Userfun.h defines PRAGM AMPWC. This
is to be used as follows:

#ifdef PRAGMAMPWC
#pragma mpwc on

11.2. C MACROS 795

#endif

Declaration of arginfo or call back function(s)

#ifdef PRAGMAMPWC
#pragma mpwc off
#endif

This ensures the use of function calling conventions that ar e compatible
with the 68K version of MacAnova which is compiled using MPW C . See the
sample files goo.c and fooeval.c below for examples of the us e of
PRAGMAMPWC.

If the user function makes call backs and has more than one sou rce file,
define USERSUBFUNCTION in all but one source file. This assu res that
MvCallbackFuns will not be multiply defined.

In topic user_fun is C code not using these macros for user fun ction goo
and its arginfo function arginfo_goo. Separate versions ar e given there
for Macintosh and non-Macintosh use. Here is C code for these functions
that uses the macros. It should compile correctly on all plat forms.
When compiled for a 68K Macintosh, two compilation runs will be
required, changing the value of WHICHFUN (1 for goo, 2 for arg info_goo).

Use of these macros requires that MACINTOSH be defined when c ompiling
for a Macintosh (with powerc also defined for PPC and MW_CW de fined if
using Metrowerks CodeWarrior compiler), DJGPP is defined w hen compiling
for use with the protected mode DOS version, and WIN32 is defi ned when
compiling for use with the Windows version.

The use of macros such as USERFUN and ARGINFO to define functi on names
is needed to meet the requirements for Macintosh compilatio n for which
an entry point must be named ’main’. The conditional compila tion of the
user function and arginfo function (depending on whether MA INFUN and/or
INFOFUN is defined) is in response to limitations on compila tions for a
68K Macintosh for which there can be only one entry point per r esource.

We suggest the examples below, source for which is distribut ed with
MacAnova) be used as templates, changing most of the executa ble code and
the augument lists to meet your particular needs.

File goo.c:
#include "Userfun.h"

#ifndef MACINTOSH
#define MAINFUN / * main entry will be compiled * /
#ifndef DJGPP
#define INFOFUN / * arginfo entry will be compiled * /
#endif / * DJGPP* /
#define USERFUN goo
#define ARGINFO arginfo_goo
#else / * !MACINTOSH* /

796 CHAPTER 11. USER FUNCTION HELP FILE

/ *
For PPC MAC, one function must be called main
For 68K MAC, only one function is reachable per compilation
project and it must be called main

* /
#ifdef powerc
#define MAINFUN / * main entry will be compiled * /
#define INFOFUN / * arginfo entry will be compiled * /
#define main_goo main
#else / * powerc * /

/ * define which of the 2 functions will be compiled * /
#define WHICHFUN 1 / * must be 1 or 2 * /
#if WHICHFUN == 1
#define MAINFUN
#else
#define INFOFUN
#endif

#if defined(MAINFUN)
#define main_goo main
#else
#define info_goo main
#endif

#endif / * powerc * /

#define USERFUN main_goo
#define USERFUNENTRY goo
#define ARGINFO info_goo
#define ARGINFOENTRY arginfo_goo

#endif / * !MACINTOSH* /

#ifdef MAINFUN
/ *

EXPORTED is _export for Windows compiled by Borland C/C++ 4. 5
DOUBLEARG(argx) expands as double * argx or double ** argx, and
similarly for LONGARG(argn)

* /
void EXPORTED USERFUN(DOUBLEARG(argx), DOUBLEARG(argy), LONGARG(argn),

DOUBLEARG(argresult))
{

/ * THEARG(argx) expands as argx or * argx * /
double * x = THEARG(argx);
double * y = THEARG(argy);
long * n = THEARG(argn);
double * result = THEARG(argresult);
int i;

EnterCode();

* result = 0.0;
for (i = 0; i < * n; i++)

11.2. C MACROS 797

{

* result += x[i] * y[i];
}
ExitCode();

}
#endif / * MAINFUN* /

#ifdef INFOFUN
static long Gooarginfo[] =
{

4, NOCALLBACK | POINTERUSE | NOSYMBOLARGS,
NONMISSINGREALVECTOR, NONMISSINGREALVECTOR, LONGSCALAR, REALSCALAR

};

#ifdef PRAGMAMPWC /* PRAGMAMPWC defined in Userfun.h only for 68K Mac * /
#pragma mpwc on
#endif / * PRAGMAMPWC* /
long * EXPORTED ARGINFO(void)
{

long * arginfo;

EnterCode();

arginfo = Gooarginfo;
CHECK68881(arginfo);

ExitCode();

return(arginfo);
}
#ifdef PRAGMAMPWC
#pragma mpwc off
#endif / * PRAGMAMPWC* /
#endif / * INFOFUN* /

#ifdef powerc / * powerc defined means compiling for Power PC * /
RoutineDescriptor USERFUNENTRY =

BUILD_ROUTINE_DESCRIPTOR(uppMainEntryProcInfo04, USE RFUN);
RoutineDescriptor ARGINFOENTRY =

BUILD_ROUTINE_DESCRIPTOR(uppArgInfoEntryProcInfo, AR GINFO);
#endif / * powerc * /

In topic arginfo_fun is C code not using the macros in Userfun .h for
user function fooeval and its arginfo function arginfo_foo . Here is C
code using the macros that should compile correctly on all pl atforms
using the C macros defined in Userfun.h. Since fooeval calls back to
MacAnova, it must define MVCALLBACKS before including User fun.h. This
allows use of macros such as mvPrint and mvEval to call back to
MacAnova. See topic callback_fun or header file Userfun.h f or
information on type sprintftype.

File fooeval.c:
#define MVCALLBACKS / * enables call backs; required before include * /

798 CHAPTER 11. USER FUNCTION HELP FILE

#include "Userfun.h"

#ifndef MACINTOSH
#define MAINFUN / * if defined, compile fooeval * /
#ifndef DJGPP
#define INFOFUN / * if defined, compile arginfo function for fooeval * /
#endif
#define USERFUN fooeval
#define ARGINFO arginfo_fooeval
#else / * MACINTOSH* /

/ *
For PPC MAC, one function must be called main
For 68K MAC, only one function is reachable per compilation
project and it must be called main

* /
#ifdef powerc
#define MAINFUN
#define INFOFUN
#define main_fooeval main
#else / * powerc * /
/ * define which of the 2 functions this project is for * /
#define WHICHFUN 1

#if WHICHFUN == 1
#define MAINFUN
#else
#define INFOFUN
#endif

#if defined(MAINFUN)
#define main_fooeval main
#else
#define main_info main
#endif

#endif / * powerc * /
#define USERFUN main_fooeval
#define USERFUNENTRY fooeval
#define ARGINFO main_info
#define ARGINFOENTRY arginfo_fooeval

#endif / * MACINTOSH* /

#ifdef MAINFUN
void EXPORTED USERFUN(CHARARG(commandarg), CALLBACKLIST(funlist))
{

char ** commandH = THECOMMAND(commandarg);
Symbolhandle result;
char line[200];
sprintftype sprintf; / * type defined in Userfun.h * /

EnterCode();

11.2. C MACROS 799

setMvFuns(funlist); / * initializes global duplicate of funlist * /

sprintf = (sprintftype) mvFindfun("sprintf");

result = mvEval(commandH);

if (result != (Symbolhandle) 0)
{

switch (TYPE(result))
{

case CHAR:
sprintf(line, "STRINGPTR(result) = ’%s’", STRINGPTR(res ult));
break;

case REAL:
if (!mvIsmissing(&DATAVALUE(result,0)))
{

sprintf(line, "DATAVALUE(result,0) = %.17g",
DATAVALUE(result,0));

}
else
{

sprintf(line, "DATAVALUE(result,0) = MISSING");
}

break;

case LOGIC:
sprintf(line, "DATAVALUE(result,0) = %c",

(DATAVALUE(result,0)) ? ’T’ : ’F’);
break;

case NULLSYM:
sprintf(line, "Result is NULL");
break;

default:
sprintf(line,

"Type %ld of result not CHARACTER, REAL, LOGICAL, or NULL",
TYPE(result))

}
mvPrint(line);

}
else
{

mvAlert("ERROR: Command produced error");
/ * tell User() error occurred but no message should be printed * /

mvSeterror(silentCallbackError);
}
ExitCode();

} / * fooeval() * /
#endif / * MAINFUN* /

800 CHAPTER 11. USER FUNCTION HELP FILE

#ifdef INFOFUN
static long Fooevalarginfo[] =

{1, DOESCALLBACK | POINTERUSE | NOSYMBOLARGS, CHARSCALAR};

#ifdef PRAGMAMPWC
#pragma mpwc on
#endif / * PRAGMAMPWC* /

long * EXPORTED ARGINFO(void)
{

long * arginfo;

EnterCode();

arginfo = Fooevalarginfo;
CHECK68881(arginfo);
ExitCode();
return(arginfo);

}
#ifdef PRAGMAMPW
#pragma mpwc off
#endif / * PRAGMAMPW* /

#endif / * INFOFUN* /

#ifdef powerc
RoutineDescriptor USERFUNENTRY =

BUILD_ROUTINE_DESCRIPTOR(uppMainEntryProcInfo02, USE RFUN);
RoutineDescriptor ARGINFOENTRY =

BUILD_ROUTINE_DESCRIPTOR(uppArgInfoEntryProcInfo, AR GINFO);
#endif / * powerc * /

11.3 callback fun

Usage:
Type userfunhelp(user_fun) for information on the structu re of user

functions.
Type userfunhelp(callback_fun) for information on the str ucture of user

functions making "call backs" to MacAnova.
Type userfunhelp(arginfo_fun) for information on how to en able automatic

checking of arguments to a user function.

Keywords: user functions, coding, sample source

This topic provides a brief introduction to the form of a user function
that makes "call backs" (executes functions internal to Mac Anova).
Because of the inherent dependence on the computer and opera ting system,
there are many details that are not covered here. Additional details
may be found in topics compile_dos, compile_mac, compile_u nx and
compile_win.

11.3. CALLBACK FUN 801

It presumes familiarity with topic user_fun which describe s the
structure of user functions not making call backs.

See headerfile Userfun.h distributed with MacAnova for C ma cros that are
helpful in writing user functions.

See loadUser() and User() for information on how to load and e xecute a
user function.

See topic arginfo_fun for information on how to make it possi ble for
MacAnova to obtain information about a user function for aut omatic
argument checking.

Since we have no experience in making call backs from a Fortra n routine,
no Fortran tips are given.

In the following, ’handle’ is used in the Macintosh OS sense, as a
pointer to a pointer.

Structure of user functions calling back to MacAnova
In addition to regular arguments (pointers or handles to dat a or
symbols; see topic user_fun), a user function that calls bac k to
MacAnova must have an extra argument providing a list of func tions that
can be called. This is either a pointer (non-Macintosh) or ha ndle
(Macintosh) to a MacAnovaCBS structure (defined in header f ile
dynload.h, included by header file Userfun.h).

Example of non-Macintosh declaration
void fooclbck(char * m, MacAnovaCBS * funlist)

or
void fooclbck(char * m, MacAnovaCBSPtr funlist)

Example of Macintosh declaration
void fooclbck(char ** m, MacAnovaCBS ** funlist)

or
void fooclbck(char ** m, MacAnovaCBSH funlist)

Here is the current definition of a MacAnovaCBS structure ta ken from
header file dynload.h:

typedef struct MacAnovaCBS
{

void (* print)(char *);
void (* alert)(char *);
Symbol ** (* eval)(char **);
long (* ismissing)(double *);
void (* seterror)(long);
void * (* findfun)(char *);

} MacAnovaCBS, * MacAnovaCBSPtr, ** MacAnovaCBSH;

All the components are pointers to single argument function s internal to
MacAnova.

802 CHAPTER 11. USER FUNCTION HELP FILE

’print’ points to mvPrint which expects a pointer to null ter minated
character vector (a "string") as argument. It inserts the st ring in the
MacAnova output stream, usually the screen or command/outp ut window.
Virtually all MacAnova output is printed with mvPrint. If ou tput is
being spooled to a file (see spool()), mvPrint correctly han dles it.

’alert’ points to mvAlert() which expects a pointer to a stri ng as
argument. In a windowed version (Macintosh, Windows, Motif), this
displays the string in a dialog box. In other versions, ’aler t’ is
equivalent to ’print’.

’eval’ points to mvEval which expects a handle to a character string
(type char **) as argument. mvEval evaluates this string as if it were
input to MacAnova, almost as if it were the text of a macro, and returns
a handle of type Symbolhandle as value. Just as in a macro, thi s is the
value of the last expression evaluated. C macros in dynload. h allow
access to the type (REAL, CHARACTER, ...), dimension and val ue of the
value returned by mvEval. The argument to mvEval must be a han dle (char

**) even in a non-Macintosh user function.

’ismissing’ points to mvIsmissing which expects a pointer t o double
(double *) as argument. If x is a pointer to a double vector,
mvIsmissing(&x[i]) (or mvIsmissing(x+i)) returns 1 if x[i] is MISSING
and 0 otherwise.

’seterror’ points to mvSeterror which expects a long intege r as
argument. mvSeterror(code) sets a variable that will be che cked by
User() on return. If the value is non-zero User() treats it as an
error. Unless code = silentCallbackError (defined wheneve r MacAnovaCBS
is defined), User will print the value.

’findfun’ points to mvFindfun which expects a pointer to a st ring
containing the name of an internal MacAnova function as argu ment.
mvFindfun returns a pointer to void (C type void *) which must be cast
to a function pointer of the appropriate type. A NULL return v alue
indicates the function could not be found.

On some systems, you may be able to access any function known t o
MacAnova; on others, the available functions are limited to those in a
short list. The functions available always include the foll owing
functions that can be used to allocate and de-allocate memor y and to
create and decode character strings. Additional functions may be
available on other systems.

char ** mygethandle(long n) Allocate n bytes of memory
and return handle to the
space allocated

void mydisphandle(char ** x) De-allocate memory referenced
by handle x

char ** mygrowhandle(char ** x, long n) Allocate n bytes, copy at most
n bytes of x to it and then
de-allocate x.

11.3. CALLBACK FUN 803

int sprintf(char * bf, char * fmt, ...) Formatted "print" to buffer bf
int sscanf(char * bf, char * fmt, ...) Formatted "scan" of buffer bf

C types for these functions are defined in header file Userfu n.h so that
you can use the following to declare local pointers to them:

mygethandletype mygethandle;
mydisphandletype mydisphandle;
mygrowhandletype mygrowhandle;
sprintftype sprintf;
sscanftype sscanf.

See below for an example.

Memory management functions mygethandle, mydisphandle an d mygrowhandle
work with handles (pointers to pointers) in all versions.

The char ** arguments to mydisphandle and mygrowhandle must have been
allocated by mygethandle.

On a Macintosh, although memory is allocated using Macintos h OS function
NewHandle, the values returned by mygethandle and mygrowha ndle cannot be
used as handle arguments to Macintosh OS functions such as Di sposHandle.

It appears that calling back to these sprintf and sscanf is th e only way
to use them in the protected mode DOS version; in other versio ns, you
can probably use them directly.

In writing a 68K Macintosh user function, to ensure correct c ompilation,
all declarations of call back and arginfo functions must be b racketed by

#pragma mpwc on
...
#pragma mpwc off

This is because the released 68K versions of MacAnova are com piled using
MPW C.

Here is an example of a function that calls back to MacAnova. I t uses
mvEval to evaluate its first argument as a command and then us es call
back functions to print a message describing the result of th e
evaluation. A typical use might be User("fooeval","sqrt(2 * PI)").

Non-Macintosh version:

#include "Userfun.h"

void fooeval(char * commandarg, MacAnovaCBSPtr funlist)
{

char ** commandH = &commandarg;
Symbolhandle result;
char line[200];
void (* mvPrint)(char *) = funlist->print;

804 CHAPTER 11. USER FUNCTION HELP FILE

void (* mvAlert)(char *) = funlist->alert;
long (* mvIsmissing)(double *) = funlist->ismissing;
Symbolhandle (* mvEval)(char **) = funlist->eval;
void (* mvSeterror)(long) = funlist->seterror;
void * (* mvFindfun)(char *) = funlist->findfun;
sprintftype sprintf;

/ * the code from here to END is the same for any version * /
sprintf = (sprintftype) mvFindfun("sprintf");

result = mvEval(commandH); / * have MacAnova evaluate the command * /

if (result != (Symbolhandle) 0)
{

/ *
C macros TYPE, STRINGPTR, DATAVALUE and constants
CHAR, REAL, LOGIC, and NULLSYM are defined in Userfun.h
along with other macros for working with Symbols

* /
switch (TYPE(result))
{

case CHAR:
sprintf(line,

"STRINGPTR(result) = ’%s’", STRINGPTR(result));
break;

case REAL:
if (!mvIsmissing(&DATAVALUE(result,0)))
{

sprintf(line,
"DATAVALUE(result,0) = %.17g", DATAVALUE(result,0));

}
else
{

sprintf(line, "DATAVALUE(result,0) = MISSING");
}

break;

case LOGIC:
sprintf(line, "DATAVALUE(result,0) = %c",

(DATAVALUE(result,0)) ? ’T’ : ’F’);
break;

case NULLSYM:
sprintf(line, "Result is NULL");
break;

default:
sprintf(line,

"Type of result not CHARACTER, REAL, LOGICAL, or NULL");
}
mvPrint(line);

11.4. COMPILE DOS 805

}
else
{

mvAlert("ERROR: Command produced error");
/ * Tell User an error has occurred but code should not be printed * /

mvSeterror(silentCallbackError);
}
/ * END * /

}

Macintosh version:

#include "Userfun.h"
/ *

On a Macintosh, the main entry must be called main; the functi on
is found by the name of its code resource

* /
void main(char ** commandarg, MacAnovaCBSH funlist)
{

char ** commandH = commandarg;
Symbolhandle result;
char line[200];

#ifndef powerc / * if compiled for 68K Macintosh * /
#pragma mpwc on
#endif

void (* mvPrint)(char *) = funlist->print;
void (* mvAlert)(char *) = funlist->alert;
long (* mvIsmissing)(double *) = funlist->ismissing;
Symbolhandle (* mvEval)(char **) = funlist->eval;
void (* mvSeterror)(long) = funlist->seterror;
void * (* mvFindfun)(char *) = funlist->findfun;

#ifndef powerc
#pragma mpwc off
#endif

EnterCode();
/ * the code from here to END is the same for any version * /

. see above
/ * END * /

Exitcode();
}

#ifdef powerc / * powerc defined means compiling for Power PC * /
RoutineDescriptor fooeval =

BUILD_ROUTINE_DESCRIPTOR(uppMainEntryProcInfo02,mai n);
#endif / * powerc * /

11.4 compile dos

Usage:
Type userfunhelp(compile_dos) for information on how to co mpile a user

function for use with the protected mode DOS version of MacAn ova.

806 CHAPTER 11. USER FUNCTION HELP FILE

Keywords: user functions, compiling

This topic provides some details about compiling a user func tion for use
with the protected mode DOS version of MacAnova. User functi ons are not
implemented in the real mode version (BCPP). Compilation us es version
2.0 of the DJGPP compiler.

DJGPP uses the dxe format for loading. This is a simple but res tricted
method of loading. In particular, you can access only one ent ry point
(function) in a file. You should compile the file with gcc as u sual as
in

gcc -c goo.c subs.c
and then run dxegen (supplied with DJGPP 2.0) as in

dxegen goo.dxe _goo goo.o subs.o -lm -lc

The first two arguments to dxegen are the output file and the e ntry
point to be made visible for loading (note the prepended unde rscore).
These are followed by the compiled (* .o) files and arguments specifying
libraries to be searched.

There are some restrictions on your source file. Not all libr ary
functions may be used. Excluded functions include input/ou tput
functions and their relatives such as sprintf and sscanf. In addition
there are some naming restrictions. For example, you can’t h ave
functions foo and foo2 and try to load entry point _foo, but yo u could
have foo and dofoo (it seems that the leading string must be un ique).

Because sprintf and sscanf are frequently needed, (sprintf is often
used to build output lines or error messages), they are inclu ded in the
list of functions known to mvFindfun.

Because you can have only one entry point using dxe files, you cannot
also provide arginfo_foo() to check the number and types of a rguments.
Moreover, you must use ’callback:T’ and/or ’symbols:T’ on U ser() when
executing a user function that makes call backs and/or expec ts
Macanova symbols as arguments.

11.5 compile mac

Usage:
Type userfunhelp(compile_mac) for information on how to co mpile a user

function for use with Macintosh versions of MacAnova.

Keywords: user functions, compiling

This topic provides some details about compiling a user func tion for use
with the Macintosh versions of MacAnova. It assumes the Metr owerks
CodeWarrior compiler is used.

The Macintosh is a bit more complicated than other platforms , since

11.5. COMPILE MAC 807

there are two kinds of processors (PPC and 68K) to support. Th e 68K
case is further complicated by the fact that code may or may no t
compiled to use a 68881 math coprocessor.

In coding a Macintosh user function, if you make a pointer by
dereferencing a handle argument, you should dereference it again after
calling back to a function internal to MacAnova since its loc ation in
memory may have been changed by the call back.

User functions and arginfo functions are compiled into code resources
in files of type ’rsrc’. PPC resources must have resource typ e
’MVPP’; 68K resources not requiring a 68881 coprocessor mus t have
resource type ’MV6n’; and 68K resources requiring a coproce ssor must
have resource type ’MV6c’.

User() accesses the resources themselves by name. The resou rce for a
function should have the name, say ’foo’, you will give in you r User()
call or ’arginfo_foo. All resources of the same type should i n a file
should have distinct resource numbers, say 4000, 4001, A PPC user
function may be in a resource with a different name, in which c ase you
have to provide the name of the resource using User(funName,
resource:resName, ...).

Source files for both PPC and 68K user functions must have a fu nction
named ’main’, plus possibly other functions.

PPC code resources, but not 68K ones, can have additional ent ry points,
usually an arginfo function, but occasionally other user fu nctions.

Macintosh 68K user functions
For 68K user functions, it is necessary to set 68000 register A4 so
that global variables will be found. Using CodeWarrior, thi s is
accomplished by including

EnterCodeResource();
immediately after declaring local variables and before any reference
to global variables, and including

ExitCodeResource();
immediately before returning. When C macro MACINTOSH is def ined but
powerc is not, macros EnterCode() and ExitCode() defined in header file
Userfun.h expand to EnterCodeResource() and ExitCodeReso urce().
Otherwise they expand to nothing.

68K code resources have just one entry point which must be nam ed
’main’, so a single resource cannot include both a user funct ion and
its arginfo function. However, the Codewarrior compiler ha s a "Merge
to file" option that allows you to add to an existing resource file
the resource created when compiling a function.

PPC User Functions
PPC code resources may have multiple entry points which are t aken from
the names of global RoutineDescriptor variables in the sour ce. Their
names should similar to ’goo’ and ’arginfo_goo’ or ’fooeval ’ and
’arginfo_fooeval’. The name given to the function that actu ally codes

808 CHAPTER 11. USER FUNCTION HELP FILE

the user function should be ’main’ and the name given to the fu nction
with the arginfo function code should be something like ’mai n_info’
different from the name given to the arginfo. Here are typica l
RoutineDescriptor declarations.

RoutineDescriptor goo =
BUILD_ROUTINE_DESCRIPTOR(uppMainEntryProcInfo04, mai n);

RoutineDescriptor arginfo_goo =
BUILD_ROUTINE_DESCRIPTOR(uppArgInfoEntryProcInfo, in fo_main);

Argument uppMainEntryProcInfo04 is appropriate for a user function
expecting 4 arguments, including the call back function lis t. For a
function expecting 5 arguments, use uppMainEntryProcInfo 05, and so on.

Since you will normally use the funName given in the User("fu nName",...)
call for both the name of the resource and the name of the
RoutineDescriptor entry point, you will ordinarily includ e only one user
function (and its arginfo function) in a resource. If you inc lude more
than one user function in a resource, you must use keyword phr ase
’resource:Resname’ to specify the resource name. An arginf o function
must be in the same resource as its user function.

Setting up Macintosh 68K projects
Here is how to set things up to create a 68K code file with resou rces
’fooeval’ and ’arginfo_fooeval’ based on file fooeval.c li sted in topic
c_macros. This has been written in such a way that only one of f ooeval
or arginfo_fooeval will be compiled, depending on the value of C macro
WHICHFUN.

(1) Create two MacOS 68K CodeWarrior project files, one for f ooeval and
the other for arginfo_fooeval. They should both have source files
fooeval.c, Userfun.h and dynload.h. See below for library f iles needed.

(1.a) Specify Code Resource for the project type for both pro jects.

(1.a) For both projects specify resource type ’rsrc’ and the same resource
file, say, Fooeval.rez as Project options. The fooeval proj ect should
specify ’fooeval’ and 4000 as the resource name and number. T he
arginfo_fooeval project should specify ’arginfo_fooeval ’ and 4001 as the
resource name and number, and should have Merge to File check ed. The
resource numbers are arbitrary but should be different. The resource
type should be ’MV6c’ or ’MV6n’, depending on whether you are compiling
to use a 68881 math coprocessor.

(1.b) Both projects should specify processor options 68020 Codegen, 4 byte
ints, 8 byte doubles and far data. If you are compiling to use a math
coprocess, also specify 68881 Codegen,

(1.c) Set linker options Link Single Segment.

(1.d) For a user function making call backs (as does fooeval) , C/C++
language option MPW Newlines should be checked.

11.5. COMPILE MAC 809

(1.e) If you reference any C library functions such as strcpy (fooeval
does not) you will need library file ’ANSIFa(N/4i/8d)C.A4. 68K.Lib’ and
possibly ’MathLib68K Fa(4i/8d).A4.Lib’ (’ANSIFa(N/4i/F /8d)C.A4.68K.Lib’
and ’MathLib68K Fa(4i/f/8d).A4.Lib’ if compiling to use a 6 8881 math
comprocessor). You may also need MacOS.lib. For example, al l three
libraries are needed if you use the library version of sprint f. None is
required for fooeval.c as written.

(1.f) Both projects should specify a prefix file, say Userfu n.pch,
containing at least the following:

#define MACINTOSH
#define MW_CW

(2) Edit fooeval.c to define C macro WHICHFUN as 1 and compile the
fooeval project.

(3) Re-edit fooeval.c to define WHICHFUN as 2 and compile the
arginfo_fooeval project.

You end up with one resource file ’Fooeval.rez’ containing r esources
’fooeval’ and ’arginfo_fooeval’.

Setting up Macintosh PPC projects
Here is how to set up a CodeWarrior project to compile a PPC ver sion of
fooeval using source file fooeval.c listed in topic c_macro s.

(1) Create a MacOS PPC project with source files fooeval.c, U serfun.h
and dynload.h and library files MPCRuntime.Lib and Interfa ceLib. See
below for other library files.

(1.a) Specify Code Resource for the project type

(1.b) Specify resource file ’fooevalppc.rez’ of type ’rsrc ’. The
resource type must be ’MVPP’. The resource name should be ’fo oeval’.
The resource number should be different from any other PPC us er
functions you might be using simultaneously.

(1.c) Specify Main entry ’main’ for the PPC linker.

(1.d) For a user function making call backs (as does fooeval) , C/C++
language option MPW Newlines should be checked.

(1.e) If you reference any C library functions such as strcmp you should
add libraries ’ANSI C.PPC.Lib’ and ’MathLib’ and file ’cons ole.stubs.c’.

(2) Compile the fooeval PPC project.

You end up with a resource file fooevalppc.rez containing re source
’foo’. You load it into MacAnova by loadUser("fooevalppc.r ez") and
execute it by, say, User("fooeval","exp(-xˆ2/2)/sqrt(2 * PI)").

810 CHAPTER 11. USER FUNCTION HELP FILE

11.6 compile unix

Usage:
Type userfunhelp(compile_unix) for information on how to c ompile a user

function for use with a Unix version of Macanova, including M otif.

Keywords: user functions, compiling

This topic provides some details about compiling a user func tion to be
used with a Unix version of MacAnova (including Unix Motif).

Hewlett-Packard UX (HPUX)
The file to load must be a shared library. This can be construc ted, for
example, by

cc -c +z -Aa fooeval.c
ld -b fooeval.o -o fooeval.sl

It should be loaded by loadUser("fooeval.sl").

At present (version 4.05 release 1), there may be unsatisfie d external
problems when linking with system libraries.

Other Unix Versions
Compilation and linking commands may be different. MacAnov a will have
to have been compiled and linked with functions for using a sh ared
library. The actual loading of shared libraries and executi on of
routines in them is done in file dynload.c. Currently (July 1 997) this
has been coded only for HPUX (using shl_load() and shl_finds ym()). Most
Unix versions will have similar functions. For example, on I RIX, the
corresponding functions are dlopen() and dlsym().

11.7 compile win

Usage:
Type userfunhelp(compile_win) for information on how to co mpile a user

function for use with the Windows version of MacAnova.

Keywords: user functions, compiling

This topic provides some details about compiling a user func tion using
Borland C/C++ for use with the Windows version of MacAnova.

Set up the project to construct a 32 bit DLL.

Change the default Project Options as follows:
Add WIN32 to the list of defines
Set 32-bit Compiler Processor Data Alignment to Quad word (8 bytes).
Set Resources Target Windows Version to Win32

In the source, add the modifier "_export" to the functions in the
project, as in

void _export goo(double * x, double * y, long * n, double * result)

11.8. LOADUSER 811

long * _export goo_arginfo(void)

This will be accomplished automatically if you include head er file
Userfun.h, and preface routine names with EXPORTED instead of _export.

Entry names will be prefixed by the compiler with ’_’. For thi s reason,
User("_foo", ...) and User("foo", ...) are equivalent.

Files goo.c and fooeval.c listed in topic c_macros are examp les of user
functions that compile for Windows.

11.8 loadUser

Usage:
loadUser(fileName [,reload:T or clear:T]), CHARACTER sca lar fileName.

Keywords: user functions, loading

loadUser(FileName) loads a user function (separately comp iled routine)
into MacAnova. FileName should be a quoted string or CHARACT ER scalar
giving the name of the file containing the user function to be loaded.
Once loaded, a user function can be executed by function User (). As
usual, in windowed versions (Macintosh, Windows, Motif), F ileName can be
"". If the file has been previously loaded, it is not reloaded , but it
may be put at the start of the entry search list for the next use of
User().

loadUser(FileName, reload:T) does the same, except that th e file will be
reloaded, even if it has been previously loaded into MacAnov a.

loadUser(FileName, clear:T) does the same, except all prev iously loaded
files will be forgotten.

On some systems, the user function can be written in Fortran, although
some features such as call back functions and argument check ing may not
be available.

Functions loadUser() and User() are inherently specific to a particular
computer system although it is possible to write user functi ons that can
be compiled on multiple systems without change.

Unix:
FileName must be the name of a shared library.

Windows:
FileName must be the name of a DLL.

Protected mode DOS (DJGPP):
FileName must be the name of a dxe file.

Macintosh:
FileName must be the name of a file containing one or more code
resources. The PPC version of MacAnova can call both 68K and P PC code

812 CHAPTER 11. USER FUNCTION HELP FILE

resources, but a 68K version of MacAnova can call only 68K cod e
resources. Resource types must be one of ’MVPP’ (PPC), ’MV6n ’ (68K
without coprocessor) or ’MV6c’ (68K with coprocessor).

See also topics User() and user_fun. Type userfunhelp(User) or
userfunhelp(user_fun).

11.9 type codes

Usage:
Type userfunhelp(type_codes) for a complete list of argume nt type and

shape codes to be returned by an arginfo function.

Keywords: user functions, coding

This topic lists the type and shape codes that may be used by an arginfo
function to provide information about the arguments expect ed by a user
function (see topic arginfo_fun). They are all integer cons tants
defined in header file Userfun.h.

Scalar argument (all dimensions 1)
CHARSCALAR, LOGICSCALAR, REALSCALAR, NONMISSINGREAL, POSITIVEREAL,
NONNEGATIVEREAL, INTSCALAR, POSITIVEINT, NONNEGATIVEINT, LONGSCALAR,
POSITIVELONG, NONNEGATIVELONG

Vector argument (all dimensions beyond first, if any, are 1)
CHARVECTOR, LOGICVECTOR, REALVECTOR, NONMISSINGREALVECTOR,
POSITIVEVECTOR, NONNEGATIVEVECTOR, INTVECTOR, POSITIVEINTVECTOR,
NONNEGATIVEINTVECTOR, LONGVECTOR, POSITIVELONGVECTOR,
NONNEGATIVELONGVECTOR

Matrix argument (no more than 2 dimensions >= 1)
CHARMATRIX, LOGICMATRIX, REALMATRIX, NONMISSINGREALMATRIX,
POSITIVEMATRIX, NONNEGATIVEMATRIX, INTMATRIX, POSITIVE INTMATRIX,
NONNEGATIVEINTMATRIX, LONGMATRIX, POSITIVELONGMATRIX,
NONNEGATIVELONGMATRIX

Square matrix argument
REALSQUAREMATRIX

Array argument
CHARARRAY, LOGICARRAY, REALARRAY, NONMISSINGREALARRAY,POSITIVEARRAY,
NONNEGATIVEARRAY, INTARRAY, POSITIVEINTARRAY, NONNEGATIVEINTARRAY,
LONGARRAY, POSITIVELONGARRAY, NONNEGATIVELONGARRAY

Arbitrary Symbol argument
SYMHVALUE

The qualifiers INT, POSITIVE and NONNEGATIVE imply all elem ents must be
non-MISSING.

11.10. USER 813

These codes are applicable both for user functions whose arg uments are
pointers or handles to data, and for user functions whose arg uments are
pointers or handles to MacAnova symbols. SYMHVALUE should o nly be used
when symbol arguments are expected and then only when the arg ument is
not restricted to one type and shape or may has type different from
REAL, LOGICAL, CHARACTER or LONG.

11.10 User

Usage:
User(funName [,resource:resName][,control keyword phra ses],arg1 [,...]),

funName and resName CHARACTER scalars; control keyword phr ases are any
of callback:T, symbols:T, pointers:T and quiet:T; arg1, .. . arguments
to a user function; if argument is keyword phrase other than
’protect:arg’, it is returned, possibly modified.

Keywords: user functions, executing

User(FuncName, arg1, arg2, ...) executes a user function, t hat is, a
compiled routine external to MacAnova. Quoted string or CHA RACTER
scalar FuncName specifies the name of a user function whose c ode is in a
file previously loaded by loadUser(). arg1, arg2, ... are ar guments
that will be passed to the function. You must have a least one a rgument
in addition to FuncName and no more than 20 (13 in the Macintos h PPC
version). Depending on the compiler and system, you may be re quired to
include leading or trailing underscore characters ’_’ in Fu ncName, say
User("foo_",...) or User("_foo", ...) instead of User("fo o", ...).

A 68K version of MacAnova cannot execute a user function comp iled for a
PPC.

User(FuncName, quiet:T, arg1, ...) does the same except war ning
messages, if any, are suppressed.

User(FuncName, callback:T, arg1, ...) specifies the funct ion is known to
"call back" to MacAnova, that is, to execute functions inter nal to
MacAnova. On a Macintosh, the type of user function (PPC or or dinary
68K) must match the version of MacAnova. See topic ’callback _fun’ in
file userfun.hlp (type userfunhelp(callback_fun)).

If the MacAnova version requires a 68881 math coprocessor, t here can be
problems if a user function that makes call backs does not req uire a
coprocessor.

User(FuncName, symbols:T, arg1, ...) specifies that all th e arguments
are to be passed as complete MacAnova "symbols", including a ll dimension
information. This should be used only with a user function sp ecifically
written to make use of MacAnova symbols.

The PPC Macintosh version cannot pass symbol arguments to a 6 8K user
function.

814 CHAPTER 11. USER FUNCTION HELP FILE

User(FuncName, pointers:T or F, arg1, ...) changes the defa ult way
arguments are passed, either as "pointers" (pointers:T) or as "handles"
(pointers:F). On all but Macintosh computers, the default i s
pointers:T. You are unlikely ever to need to use this keyword .

User(FuncName, resource:ResName, arg1, ...) specifies th e name of the
PPC Macintosh resource containing the user function. This o ption is not
needed in other versions and needed on a PPC only when the reso urce name
differs from the function name.

You can use more than one of the preceding keywords phrases to gether
(User("goo", resource:"foo",quiet:T,callback:T,x,res ult:0)).

On most systems, it is possible to include with a user functio n an
"arginfo" function that MacAnova can call to obtain informa tion about
the user function. The information includes the number of ar guments
expected, their types and shapes expected (for example, CHA RACTER
scalar, REAL matrix), and whether the function makes call ba cks or
expects "symbol" arguments (see above). This allows automa tic argument
checking. If the function is compiled without an arginfo fun ction,
using the wrong number or type of arguments will usually resu lt in a
crash or other undesirable behavior. In particular, a user f unction
will not be able to handle MacAnova symbol arguments unless i t has been
specially written to be able to understand their structure.

You normally do not need to use keywords ’callback’, ’symbol s’ and
’pointers’ if the user function has an associated arginfo fu nction which
is possible on all systems except protected mode DOS.

See topics user_fun and arginfo_fun in help file userfun.hl p for
information about the form of a user function and an arginfo f unction
(type userfunhelp(user_fun), say).

Interpretation of FuncName
Unix, Motif and Windows:

FuncName should be the name of the function being called, pos sibly
modified by a leading or trailing ’_’ (leading ’_’ when compi ling for
Windows with Borland C 4.5). In Windows and Unix versions whe re it is
known entry names start with ’_’, when the function is not fou nd using
the name as provided, a second search is made after prependin g ’_’ to the
name. Thus if User("_foo", ...) would be successful, so will be
User("foo", ...).

Extended memory DOS (DJGPP):
FuncName should be the same as the name of the .dxe file loaded by
loadUser() that contains the code except that directory inf ormation
and the extension ".dxe" may be omitted. Thus after
loadUser("../foo.dxe"), you can use any of User("../foo.d xe",...),
User("foo.dxe",...) or User("foo",...). When there is mor e than one
file with the same name attached (for example, "/a/foo.dxe" and
"/b/foo.dxe", you should use the complete path name.

11.10. USER 815

PPC Macintosh user function
FuncName is the name of the user function. This will usually a lso be
the name of the PPC code resource containing the user functio n. If it
is not, you need to include keyword phrase ’resource:ResNam e’ as an
argument, where ResName is a quoted string or CHARACTER scal ar
specifying the resource name.

68K Macintosh user function:
FuncName should be the name of the 68K code resource containi ng the
user function (only one user function per resource). If
’resource:ResName’ is an argument, ResName must be identic al with
FunName. It is an error to attempt to call a 68K user function t hat
requires a 68881 or 68882 math coprocessor on a Macintosh wit hout
one.

User function arguments
All arguments except the function name and ’callback’, ’qui et’,
’symbols’, ’pointers’ and ’resource’ keyword phrases are p assed to the
user function as its arguments

Only copies of keyword phrase arguments are passed to a user f unction.
This means that the user function can modify these arguments without
danger of changing any MacAnova variable.

Non-keyword phrase arguments to User() (except the user fun ction name)
are passed to the user function without being copied. When th e argument
is a named MacAnova variable and the user function modifies i t, the
value of the variable itself is changed. When the argument is a
literal number (User("foo", 1, 2, 0)) or expression (User(" foo",
sqrt(2)+3, log(4), 19ˆ2)) the function can safely change th e argument
without danger to any variable.

Example:
Suppose fooadd expects three arguments, and modifies the th ird by
assigning the sum of the first two. Then

Cmd> c <- 0; User("fooadd", 1, 2, c)

returns no value (actually a NULL; see NULL), but c has been ch anged to
3 (= 1+2). However,

Cmd> c <- 0; User("fooadd", 1, 2, protect:c)

will not change c itself, but only a copy.

In addition to being copied before use, all keyword phrase us er function
arguments are returned, possibly modified, as the value of U ser(). When
there are two or more such keyword arguments, a structure is r eturned
with component names taken from the keyword names.

Keyword ’protect’ is special, in that its only effect is to ca use its
value to be copied before being passed to the user function; i ts value
is not returned by User(). Thus the use of ’protect’ in the exa mple

816 CHAPTER 11. USER FUNCTION HELP FILE

makes the user function useless: c does not get changed becau se it is
protected by a keyword, but the modified value is not returne d either.
The following both protects c and causes the modified value o f the last
argument to be returned as the value of User().

Cmd> c <- 0;User("fooadd", 1, 2, result:c)

This returns 3 = 1 + 2, but c would be unchanged. In place of vari able
c for result, you could use any REAL scalar (result:0). This s erves to
provide space for the answer.

Cmd> User("fooadd", left:1, right:2, result:0)

returns a structure with components ’left’, ’right’ and ’re sult’
containing the possibly modified values of the original arg uments.

It is essential that the size of any argument that is to be modi fied
matches the size that is expected by the user function. Thus, if foocat
is a user function that concatenates its first two arguments into a
third argument, the length of the third argument should be th e combined
length:

Cmd> User("foocat", run(4), run(7), combined:rep(0,11)

In this example, for the third argument to have fewer than 11 e lements
would lead to unpredictable results, possibly even a crash o f MacAnova.

Except when symbols:T is an argument, all user function argu ments are
either REAL, LOGICAL, CHARACTER or LONG variables. REAL arg uments are
passed as double precision data, as are LOGICAL arguments (T rue = 1.0,
False = 0.0). When an argument is a matrix or array, the values are
ordered such that the first subscript changes fastest. See t opic
’user_fun’ in help file userfun.hlp for more information (t ype
userfunhelp(user_fun)).

LONG is a special MacAnova type whose values are long integer s between
-2147483647 and 2147483647 = 2ˆ31 - 1. A LONG argument can be c reated
only by function asLong(). A LONG argument that is returned
(result:asLong(x)), is turned into an REAL quantity before being
returned. See asLong().

Cmd> User("goo", run(10), run(10), asLong(10), result:0)

invokes user function goo with three REAL arguments and one l ong
argument.

For virtually unlimited flexibility, when keyword phrase ’ symbols:T’ is
an argument to User(), all user function arguments are passe d as symbols
-- MacAnova objects which encapsulate the data, type, and di mensions of
a variable. Thus

Cmd> User("foo", symbols:T, x, y, result:z)

11.11. USERFUNHELP() 817

passes x, y and z to ’foo’ as symbols. You cannot have some user
function arguments be symbols and some just data; all must be symbols or
none.

11.11 userfunhelp()

Usage:
userfunhelp(topic1 [, topic2 ...] [,usage:T] [,scrollbac k:T])
userfunhelp(key:Key), CHARACTER scalar Key
userfunhelp(index:T [,scrollback:T])

Keywords: general

userfunhelp(Topic1 [, Topic2, ...]) prints help on topics T opic1,
Topic2, ... related to user functions. The help is taken from file
Userfun.mac.

userfunhelp(Topic1 [, Topic2, ...] , usage:T) prints usage information
related to these topics.

userfunhelp(index:T) or simply userfunhelp() prints an in dex of the
topics available using userfunhelp.

In all three usages, you can also include help() keyword phra se
’scrollback:T’ as an argument to userfunhelp. In windowed v ersions,
this directs the output/command window will be automatical ly scrolled
back to the start of the help output.

userfunhelp(key:key) where key is a quoted string or CHARAC TER scalar
lists all topics cross referenced under Key. userfunhelp(k ey:"?")
prints a list of available cross reference keys for topics in the file.

userfunhelp is implemented as a predefined macro.

See help() for information on direct use of help() to retriev e
information from Userfun.hlp.

11.12 user fun

Usage:
Type userfunhelp(user_fun) for information on the structu re of user

functions.
Type userfunhelp(callback_fun) for information on the str ucture of user

functions making "call backs" to MacAnova.
Type userfunhelp(arginfo_fun) for information on how to en able automatic

checking of arguments to a user function.

Keywords: user functions, coding, sample source

818 CHAPTER 11. USER FUNCTION HELP FILE

This topic provides a brief introduction to the form of a user function
(routine compiled separately from MacAnova) that can be loa ded by
loadUser() and executed by User(). Because of the inherent d ependence
on the computer and operating system, there are many details that are
not covered here. Additional details may be found in topics
compile_dos, compile_mac, compile_unx and compile_win.

See headerfile Userfun.h distributed with MacAnova for C ma cros that are
helpful in writing user functions.

See loadUser() and User() for information on how to load and e xecute a
user function.

See topic callback_fun for information on the structure of a user
function that makes call backs to Macanova. It presumes fami liarity
with this topic (user_fun).

See topic arginfo_fun for information on how to make it possi ble for
MacAnova to obtain information about a user function for aut omatic
argument checking.

On some systems, if you are willing to forego automatic argum ent
checking, creating a user function file may be as simple as re compiling
and linking existing code with certain options set. On other s you may
need to modify the code to include C header file Userfun.h whi ch defines
various constants and C macros. You will almost certainly ne ed to use
Userfun.h if you write a user function that makes call backs (executes
routines internal to MacAnova) or provides argument checki ng capability.

Structure of a user function
Most of this discussion assumes the user function is written in C
although a few tips are given for user functions written in Fo rtran. If
you write a user function in Fortran, you need to be aware that all its
arguments are pointers, that is the function receives the lo cation in
computer memory of each argument, not its value.

Header file Userfun.h should normally be included in the C so urce,
especially if you expect that the user function will be compi led for
more than one computer type. Userfun.h not only contains inf ormation
that may be essential for compilation (including type decla ration for
symbols; see above), but also contains many C macros that mak e coding
easier. In particular, it contains macros allowing you to wr ite a user
function that may be compiled with little or no change on Unix ,
Macintosh and Windows. However, to make clear the principle s, the
structure of a user function is illustrated without using th ese macros.

Note: Header file Userfun.h itself includes header dynload .h which is
also distributed with MacAnova. Both need to be available wh en
compiling a user function.

Value returned:
The user function should not return a value (C type void, Fort ran
subroutine).

11.12. USER FUN 819

Non-Macintosh argument types
Each user function argument must be declared as a pointer. Th e legal
types are double * (REAL or LOGICAL data), char * (CHARACTER data),
long * (LONG data), or Symbol * (symbol argument). For Fortran, these
are double precision, character and integer * 4 (symbol not possible).

Example of non-Macintosh declaration:
C:

void goo(double * x, double * y, long * n, double * result)

Fortran:
subroutine goo(x, y, n, result)
integer * 4 n
double precision x(n), y(n), result

Macintosh argument types
Each argument must be declared as a pointer to a pointer, know n to
Macintosh programmers as a "handle". Thus the legal types ar e double

** (REAL or LOGICAL data), char ** (CHARACTER data), long ** (LONG
data), or Symbol ** (symbol argument. Type Symbolhandle declared in
Userfun.h is equivalent to Symbol ** .

It is probably not possible to do this directly in Fortran. A C
interface to the Fortran subroutine will be required.

Example of Macintosh declaration:
void goo(double ** x, double ** y, long ** n, double ** result)

When "handle" is used below, it always means a pointer to a poi nter,
not any of the various handles used when programming for Wind ows.

The reason for the use of handles as arguments to functions is that
MacAnova functions may allocate memory. On the Macintosh, t his can
move the contents of previously allocated memory, so that a p ointer
would no longer be valid. However, the handle remains valid e ven if
the pointer it points to changes.

If you make a pointer by dereferencing a handle argument, you should
dereference it again after calling back to a function intern al to
MacAnova since its location in memory may have changed.

Executable statements
There should be no direct input or output statements (you can do
output using a callback function) or any direct memory alloc ation
(also possible using a callback function). On a Macintosh, c ode must
take into account the extra level of indirection of the handl e
arguments.

Here is C code for an example user function that computes the i nner
product of two real vectors.

Non-Macintosh version:

820 CHAPTER 11. USER FUNCTION HELP FILE

C:
#include "Userfun.h" / * not needed here as coded * /

void goo(double * x, double * y, long * n, double * result)
{

int i;

* result = 0.0;
for (i = 0; i < * n; i++)
{

* result += x[i] * y[i];
}

}

Fortran:
subroutine goo(x, y, n, result)
integer * 4 n
double precision x(n), y(n), result
integer * 4 i

result = 0.0d0
do 2 i = 1, n

result = result + x(i) * y(i)
2 continue

return
end

In Windows, when compiling using Borland C/C++ 4.5, you need to replace
"void goo" by "void _export goo".

Macintosh (both PPC and 68K) version:
#include "Userfun.h" / * required * /
#define main_goo main / * entry must have internal name ’main’ * /

void main_goo(double ** argx, double ** argy, long ** argn,
double ** argresult)

{
double * x = * argx, * y = * argy, * z = * argz;
long * n = * argn;
int i;

EnterCode();

* result = 0.0;
for (i = 0; i < * n; i++)
{

* result += x[i] * y[i];
}
ExitCode();

}

#ifdef powerc / * powerc defined means compiling for Power PC * /
RoutineDescriptor goo =

BUILD_ROUTINE_DESCRIPTOR(uppMainEntryProcInfo04,mai n_goo);

11.12. USER FUN 821

#endif / * powerc * /

The first executable statement in a 68K Macintosh user funct ion must be
EnterCodeResource(), and the last before the return must be
ExitCodeResource(). EnterCode() and ExitCode() are C macr os defined in
Userfun.h that expand to these statements in a 68K Macintosh compilation
and to nothing in a PPC, DOS, Windows, Motif, Unix or other
compilation.

When coding for a PPC Macintosh, an additional statement dec laring and
initializing a RoutineDescriptor is required for each func tion.
Constant uppMainEntryProcInfo04 is defined in dynload.h (automatically
included by Userfun.h) and is appropriate for a function wit h 4
arguments.

822 CHAPTER 11. USER FUNCTION HELP FILE

Chapter 12

Search Key Tables

The tables in this Chapter relate the search keys used in each help file to the help topics
that reference them. Note that not all help files contain search keys.

Table 12.1: Search Keys and References from
MacAnova.hlp.txt

Search Key References
ANOVA anova(), anovapred(), cellstats(), coefs(), contrast(),

design, designhelp(), factor(), fastanova(), glm,
glm keys, glmfit(), glmpred(), glmtable(), make-
factor(), manova(), models, popmodel(), power(),
power2(), predtable(), pushmodel(), regcoefs(), ro-
bust(), samplesize(), secoefs(), wtanova(), wtmanova(),
yates()

Categorical Data bin(), glm, glm keys, glmfit(), glmpred(), ipf(), logis-
tic(), poisson(), probit(), tabs()

CHARACTER Variables array(), cat(), CLIPBOARD, compnames(), delete(),
fromclip(), getascii(), inforead(), ischar(), makefac-
tor(), makesymbols(), match(), nameof(), putascii(), re-
placestr(), syntax, toclip(), variables, varnames(), vec-
tor()

Combining Variables array(), cat(), hconcat(), makecols(), makestr(), ma-
trix(), rep(), rotate(), run(), select(), split(), strconcat(),
structure(), trilower(), triunpack(), triupper(), vcon-
cat(), vector()

Comparisons contrast(), cumdunnett(), cumstudrng(), invdunnett(),
invstu(), invstudrng(), propinterval(), proptest(),
t2val(), tinterval(), ttest(), tval(), twotailt(), zinterval(),
ztest()

823

824 CHAPTER 12. SEARCH KEY TABLES

Continued from previous page

Search Key References
Complex Arithmetic cconj(), cdivc(), cdivcj(), cft(), cimag(), cmplx(), com-

plex, cpolar(), cprdc(), cprdcj(), creal(), crect(), ctoh(),
hconj(), hdivh(), hdivhj(), hft(), himag(), hpolar(),
hprdh(), hprdhj(), hreal(), hrect(), htoc(), polyroot(),
rft(), unwind()

Confidence Intervals invchi(), invF(), invnor(), invstu(), invstudrng(), reg-
coefs(), regresshelp(), secoefs(), t2int(), tint()

Control arginfo fun, batch(), break, breakall, breakif(), call-
back fun, customize, else, elseif, evaluate(), for, getop-
tions(), if, interrupt, loadUser(), macro(), macro syntax,
macros, next, options, printoptions(), redo(), return, se-
toptions(), shell(), syntax, user fun, while

Descriptive Statistics boxplot(), cellstats(), cor(), describe(), descriptive(),
halfnorm(), hist(), lowess(), max(), min(), propinter-
val(), proptest(), rankits(), stemleaf(), sum(), t2int(),
t2val(), tabs(), tint(), tinterval(), ttest(), tval(), twotailt(),
vboxplot(), zinterval(), ztest()

Files addhelpfile(), adddatapath(), addmacrofile(), asci-
isave(), batch(), console(), data files, DATAPATHS,
file names, files, findfile(), fprint(), fwrite(), getdata(),
getfilename(), gethelp(), getmacros(), graph border,
graph files, inforead(), launching, loadUser(),
macro files, macroread(), macrowrite(), matprint(),
matread(), matread file, matwrite(), read(), readcols(),
readdata(), restore(), restorenames(), save(), spool(),
user fun, vecread(), vecread file, vecread keys, write()

GLM anova(), anovapred(), bcprd(), bit ops, coefs(), con-
trast(), design, designhelp(), factor(), fastanova(), glm,
glm keys, glmfit(), glmpred(), glmtable(), ipf(), isfac-
tor(), logistic(), makefactor(), manova(), modelinfo(),
models, modelvars(), nbits(), poisson(), popmodel(),
power(), power2(), predtable(), probit(), pushmodel(),
regcoefs(), regpred(), regress(), regresshelp(), robust(),
samplesize(), screen(), secoefs(), swp(), varnames(),
wtanova(), wtmanova(), wtregress(), xrows(), xvari-
ables(), yates()

825

Continued from previous page

Search Key References
General addhelpfile(), appendnotes(), arginfo fun, arimahelp(),

asciisave(), attachnotes(), callback fun, carapace, copy-
right, customize, designhelp(), dos windows, edit(),
equal(), evaluate(), gethelp(), gethistory(), getlabels(),
getnotes(), gettime(), getusage(), goodfactors(), graph-
icshelp(), haslabels(), hasnotes(), help(), interrupt, is-
array(), ischar(), isdefined(), isfactor(), isfunction(), is-
graph(), islocked(), islogic(), ismacro(), ismatrix(), is-
missing(), isname(), isnull(), isnumber(), isreal(), iss-
calar(), isstruc(), isvector(), labels, launching, list(),
listbrief(), loadUser(), locks, lockvars(), macintosh,
mac classic, macrousage(), mathhelp(), memory, mem-
oryinfo(), more(), mulvarhelp(), notes, options, prime-
factors(), printoptions(), quitting, regresshelp(), re-
name(), restore(), restorenames(), save(), sethistory(),
setlabels(), setodometer(), shell(), syntax, tserhelp(),
unix, unlockvars(), usage(), userfunhelp(), user fun,
workspace

Input adddatapath(), CLIPBOARD, clipreaddata, con-
sole(), data files, DATAPATHS, enter(), enterchars(),
file names, files, fromclip(), getdata(), getfilename(),
getmacros(), inforead(), macro files, macroread(),
matread(), matread file, read(), readcols(), readdata(),
vecread(), vecread file, vecread keys

LOGICAL Variables alltrue(), anytrue(), islogic(), logic, syntax, variables

NULL Variables anymissing(), cat(), dim(), hconcat(), ismissing(), is-
null(), length(), ndims(), NULL, save(), syntax, vari-
ables, vconcat(), vector()

Macros addmacrofile(), appendnotes(), argvalue(), attach-
notes(), evaluate(), getkeywords(), getmacros(), isar-
ray(), ischar(), isdefined(), isfactor(), isfunction(), is-
graph(), islogic(), ismacro(), ismatrix(), ismissing(),
isname(), isnull(), isnumber(), isreal(), isscalar(), is-
struc(), isvector(), keyvalue(), macro(), macro files,
macro syntax, macroread(), macros, macrousage(),
macrowrite(), notes, read(), return, setodometer()

826 CHAPTER 12. SEARCH KEY TABLES

Continued from previous page

Search Key References
Matrix Algebra bcprd(), cholesky(), det(), diag(), dmat(), eigen(), eigen-

vals(), mathhelp(), matrices, matrix(), outer(), qr(),
releigen(), releigenvals(), svd(), swp(), t(), toeplitz(),
trace(), transpose(), trideigen(), trilower(), triunpack(),
triupper()

Missing Values anymissing(), arithmetic, bit ops, files, ismissing(),
logic, matprint(), matread(), number, options, paste(),
print(), read(), setoptions(), syntax

Multivariate Analysis cluster(), glm, glm keys, kmeans(), manova(), mul-
varhelp(), popmodel(), pushmodel(), rotation()

Operations arithmetic, bit ops, logic, matrices, nbits(), precedence,
t(), transpose()

Ordering grade(), halfnorm(), match(), rank(), rankits(), sort(),
unique()

Output asciisave(), CLIPBOARD, clipwritedat(), data files,
DATAPATHS, error(), file names, files, fprint(), for-
matpval(), fwrite(), getfilename(), graph border,
graph files, labels, macro files, macrowrite(), mat-
print(), matread file, matwrite(), more(), options,
paste(), print(), putascii(), setoptions(), spool(), toclip(),
vecread file, vecread keys, write(), writedata()

Plotting addchars(), addlines(), addpoints(), addstrings(),
boxplot(), chplot(), colplot(), graphicshelp(), graphs,
GRAPHWINDOWS, graph assign, graph border,
graph files, graph keys, graph ticks, hist(), lineplot(),
lowess(), makesymbols(), Mouse(), plot(), rowplot(),
showplot(), stemleaf(), stringplot(), tek(), tekx(),
vboxplot(), vt(), vtx()

Probabilities cumbeta(), cumbin(), cumchi(), cumdunnett(), cumF(),
cumgamma(), cumnor(), cumpoi(), cumstu(), cum-
studrng(), invbeta(), invchi(), invdunnett(), invF(),
invgamma(), invnor(), invstu(), invstudrng(), power(),
power2(), propinterval(), proptest(), samplesize(),
t2int(), t2val(), tint(), tinterval(), ttest(), tval(),
twotailt(), zinterval(), ztest()

Random Numbers getseeds(), invbeta(), invchi(), invF(), invgamma(), in-
vstu(), options, rbin(), rnorm(), rpoi(), rsample(), runi(),
setoptions(), setseeds()

827

Continued from previous page

Search Key References
Regression coefs(), design, designhelp(), glm, glm keys, glmfit(),

glmpred(), logistic(), lowess(), models, poisson(), pop-
model(), power2(), probit(), pushmodel(), regcoefs(),
regpred(), regress(), regresshelp(), robust(), screen(),
secoefs(), wtregress()

Residuals popmodel(), pushmodel()

Structures changestr(), compnames(), isstruc(), makestr(),
ncomps(), restorenames(), split(), strconcat(), struc-
ture(), structures

Syntax alltrue(), anytrue(), argvalue(), arithmetic, assignment,
batch(), break, breakall, breakif(), CLIPBOARD, com-
ments, else, elseif, evaluate(), for, getkeywords(),
GRAPHWINDOWS, graph assign, if, interrupt, key-
value(), keywords, logic, macro(), macro syntax,
macros, next, number, precedence, return, scalars,
structures, subscripts, syntax, variables, vectors, while

Time Series arimahelp(), autoreg(), cconj(), cdivc(), cdivcj(), cft(),
cimag(), cmplx(), complex, convolve(), cpolar(),
cprdc(), cprdcj(), creal(), crect(), ctoh(), hconj(),
hdivh(), hdivhj(), hft(), himag(), hpolar(), hprdh(),
hprdhj(), hreal(), hrect(), htoc(), movavg(), padto(), par-
tacf(), polyroot(), reverse(), rft(), rotate(), time series,
trideigen(), tserhelp(), unwind(), yulewalker()

Transformations abs(), acos(), asin(), asLong(), atan(), atanh(), box-
cox(), ceiling(), cos(), cosh(), digamma(), exp(), floor(),
halfnorm(), hypot(), lgamma(), log(), log10(), log2(),
nbits(), polygamma(), rankits(), rational(), round(),
sin(), sinh(), sqrt(), tan(), tanh(), transformations

828 CHAPTER 12. SEARCH KEY TABLES

Continued from previous page

Search Key References
Variables appendnotes(), array(), arrays, asLong(), attachnotes(),

cat(), data files, delete(), diag(), dim(), dmat(), equal(),
getdata(), getlabels(), getnotes(), haslabels(), has-
notes(), hconcat(), isarray(), ischar(), isdefined(), is-
factor(), isfunction(), isgraph(), islocked(), islogic(), is-
macro(), ismatrix(), ismissing(), isname(), isnull(), is-
number(), isreal(), isscalar(), isvector(), labels, length(),
locks, lockvars(), logic, match(), matread file, matri-
ces, matrix(), nameof(), ncols(), ncomps(), ndims(),
notes, nrows(), NULL, number, rename(), rep(),
run(), save(), scalars, select(), setlabels(), shapeof(),
structures, syntax, trilower(), triunpack(), triupper(),
typeof(), unique(), unlockvars(), variables, varnames(),
vconcat(), vecread file, vector(), vectors

Table 12.2: Search Keys and References from
Arima.mac.txt

Search Key References
ARIMA models acfarma(), arima(), arimares(), ARSIGN, detarma(),

hannriss(), innovations(), innovest(), MASIGN, move-
outroots(), neg2logLarma()

Autocovariance acfarma()

Complex numbers

Frequency domain specarma()

General arimahelp()

Nonlinear fitting arima(), arimares()

Preliminary estimation hannriss(), innovations(), innovest()

Spectrum analysis specarma()

Time domain acfarma(), arima(), arimares(), hannriss(), innova-
tions(), innovest(), moveoutroots(), neg2logLarma(),
rhatcovar(), rhatvar()

829

Table 12.3: Search Keys and References from De-
sign.hlp.txt

Search Key References
Aliasing aberration2(), aliases2(), aliases3(), allaliases2(),

choosegen2(), doff2(), ffdesign2()

Analysis boxcoxvec(), ems(), interblock(), mixed(), pairwise(),
quadmax(), randsign(), randt2(), randt(), reml(),
rscanon(), varcomp(), yatesplot()

ANOVA all3anova(), all4anova(), boxcoxvec(), buildfactor(),
ems(), interblock(), mixed(), pairwise(), varcomp()

Confounding choosedef2(), confound2(), confound3(), docon-
found2()

Design aberration2(), aliases2(), aliases3(), allaliases2(),
choosedef2(), choosegen2(), confound2(), confound3(),
doconfound2(), doff2(), ffdesign2(), findncp(), find-
power(), findsampsize()

Factorial aberration2(), aliases2(), aliases3(), allaliases2(), build-
factor(), choosedef2(), choosegen2(), confound2(), con-
found3(), doconfound2(), doff2(), ems(), ffdesign2(), in-
teractplot(), mixed(), stdordlabels(), varcomp(), yates-
plot()

Permutation test randsign(), randt2(), randt()

Plots interactplot(), sidebyside(), yatesplot()

Random effects mixed(), varcomp()

Table 12.4: Search Keys and References from Graph-
ics.mac.txt

Search Key References
Bar graphs bargraph(), hist(), panelhist()

Contour graphs contour(), contourplot(), findcontour()

Distribution graphs boxplot5num(), hist(), piechart(), sampcdf(), vboxplot()

General graphicshelp(), news

Interaction graphs colplot(), rowplot()

Line graphs colplot(), ellipse(), plotpanes(), rowplot(), sampcdf()

Multivariate graphs plotmatrix()

830 CHAPTER 12. SEARCH KEY TABLES

Continued from previous page

Search Key References
Panel graphs panelhist(), panelplot(), panel graphs, plotmatrix(),

plotpanes()

Residual graphs plotresids()

Shapes ellipse()

Table 12.5: Search Keys and References from
Regress.mac.txt

Search Key References
ANOVA anovapred(), regcoefs(), resid(), resvsindex(), resvs-

rankits(), resvsyhat(), yhat()

Confidence limits anovapred(), betalimits(), estimlimits(), regcoefs()

General regresshelp()

GLM anovapred(), regcoefs(), regs(), resid(), resvsindex(),
resvsrankits(), resvsyhat(), yhat()

Hypothesis test testbeta(), testestim()

Nonlinear fitting nlreg()

Plotting resvsindex(), resvsrankits(), resvsyhat()

Prediction limits anovapred(), predlimits()

Regression betalimits(), entervar(), estimlimits(), nlreg(),
predlimits(), regcoefs(), regs(), removevar(), resid(),
resvsindex(), resvsrankits(), resvsyhat(), steplook(),
stepsetup(), stepstatus(), testbeta(), testestim(), yhat()

Residuals resid(), resvsindex(), resvsrankits(), resvsyhat()

Standard error anovapred(), regcoefs()

Stepwise regression entervar(), removevar(), steplook(), stepsetup(), step-
status()

Table 12.6: Search Keys and References from
Tser.hlp.txt

Search Key References
ARIMA models arspectrum()

Autocorrelation autocor(), crosscor(), crosscov()

831

Continued from previous page

Search Key References
Autocovariance autocov(), crosscor(), crosscov()

Complex numbers complex data, complex fun, ffplot(), fourier, hermitian

Fourier transforms complex fun, fourier, hermitian, testnfreq()

Frequency domain arspectrum(), bandwidth, burg(), compfa(), com-
plex data, complex fun, compza(), costaper(), crsspec-
trum(), dpss(), ffplot(), fourier, hermitian, multitaper(),
spectrum()

General gettsmacros()

Plotting ffplot(), tsplot()

Spectrum analysis arspectrum(), bandwidth, burg(), compfa(), compza(),
costaper(), crsspectrum(), dpss(), multitaper(), spec-
trum()

Time domain autocor(), autocov(), burg(), costaper(), crosscor(),
crosscov(), detrend(), tsplot()

Table 12.7: Search Keys and References from
Gui.hlp.txt

Search Key References
dialogs alert()

xml getmenubar(), setmenubar()

Table 12.8: Search Keys and References from User-
fun.hlp.txt

Search Key References
Coding arginfo fun, c macros, callback fun, type codes,

user fun

Compiling compile dos, compile mac, compile unix, compile win

Executing User

Loading loadUser

Sample source arginfo fun, c macros, callback fun, user fun

User functions arginfo fun, c macros, callback fun, compile dos,
compile mac, compile unix, compile win, loadUser,
type codes, User, user fun

