An Introduction to MacAnova

by

Christopher Bingham
and
Gary W. Oehlert

University of Minnesota
School of Statistics
Technical Report Number 600

Revised July 2001
Current to Release 2 of Version 4.12

July 2001

Copyright © 1994, 1995, 2001 Christopher Bingham and Gary W. Oehlert

Table of Contents

1. Introduction

1.1 What is MacAnova?

1.2 The purpose of this document oo
1.3 Differences among MacAnova versions .
1.4 Obtaining MacAnova

2. Getting Started

2.1 Launching MacAnova . .

2.2 Typing and editing commands

2.3 Quitting

2.4 Learning more about MacAnova - documentatlon

3. The Basics

3.1 MacAnova as a numerical calculator

3.2 MacAnova as symbolic calculator

3.3 MacAnova as computing language — functlons and macros

3.4 More on Variables — REAL, LOGICAL and CHARACTER data

3.5 Comparisons of numbers and combining LOGICAL values
3.6 Variables with several values — Vectors and Matrices
3.7 Missing values

A~ b OoO0ow

0 N o o1

10
11
13
15
16
19

An Introduction to MacAnova

4. Building on the Basics

4.1 Combining vectors and matrices — vector(), hconcat() and vconcat()

4.2 Creating patterned vectors — run() and rep()

4.3 Assigning values to the elements of a vector or matrix .

4.4 Simple summaries of data in vectors and matrices —
sum(), prod(), min(), max(), sort() and rank()

4.5 Simple descriptive statistics — describe()

4.6 Getting help — MacAnova commands help() and usage()

5. Using files

5.1 General .

5.2 Recording your MacAnova session — spool()

5.3 Saving your work — save() and asciisave()

5.4 Reading data from files — vecread() , readdata() and matread()
5.5 Moving data from and to a spreadsheet

6. Visualizing numbers — drawing graphs

6.1 Basic graphic command :
6.2 Using keywords to control the appearance of graphs
6.3 GRAPH variables and modifying graphs

6.4 Graphs in a windowed version . .

6.5 Plotting under DOS .o

6.6 Plotting under Linux/Unix

6.7 Incorporating a graph in word processor document
6.8 Writing graphs to files

7. Examples of statistical analyses

7.1 Introduction

7.2 Histogram and pseudo- random number generatlon (rnorm()
setseeds(), getseeds(), describe(), hist()) .o

7.3 Paired t analysis (stemleaf(), describe(), tint(), twotallt())

7.4 Two-sample t-test and confidence interval (describe(), t2va|(),
t2int(), twotailt())

7.5 Simple linear regression and scatter pIot (regress() pIot()
secoefs(), betalimits()) .

7.6 One-way Analysis of Variance and box pIot (anova() vboxplot()

factor(), tabs()) .
7.7 Randomized Block (Two- way) Analysrs of Varlance (anova()
factor(), tabs()) : .
7.8 Multiple Regression (regress() anova() secoefs() reS|d()
betalimits(), resvsrankits())

20
21
22

23
25
28

32
33
34
35
40

44
46
47
50
50
50
51
51

52

52
54

56

57

59

62

64

An Introduction to MacAnova

An Introduction to MacAnova
by Christopher Bingham and Gary Oehlert

1. Introduction

1.1 What is MacAnova?

MacAnova is an interactive computer program for statistics and data analysis. Among
its strengths are regression analysis, analysis of variance, multivariate analysis and time
series analysis. It is also good for more elementary analyses including computing
summary statistics, t-tests and confidence intervals for means and making graphical
displays such as scatter plots and histograms.

In spite of its name, MacAnova is not just a Macintosh program (and not just a
program to do Analysis of Variance). There is also a Windows version, two DOS
versions, and both Motif and non-Motif version for Linux and Unix.

Many statistical programs are primarily menu-driven. You select which analysis or
display to do by choosing an item on a menu. This can provide for an easy interface,
but it tends to restrict possible analyses to those specifically built into the program.

MacAnova, by contrast, is primarily command-driven, although the windowed
versions for Macintosh™, Windows™ and Motif™ make some use of menus. You
use the keyboard to type instructions into a command/output window or screen.
Because MacAnova has a very wide set of commands and functions, and a way to
combine them to make new commands, you are not limited to a predefined set of
analyses. In fact, MacAnova has been used to develop and try out innovative statistical
methods.

An attractive feature is that you can often directly translate a statistical formula to a
form that MacAnova recognizes. For example, the formula for the sample mean of
data x; is X = a X; /n, where a X; symbolizes the sum of all the data and n is the
sample size. In MacAnova, to compute a sample mean of data named X, you can type

sum(x) / nrows(x) or, if n has earlier been set to the sample size, you can type
sunm(x)/n.

You can easily make high quality scatter plots and other graphs, sometimes as simply as
typing pl ot (X, y).

1.2 The purpose of this document

Although there is comprehensive built-in help, MacAnova takes some getting used to.
You need to have a certain minimum level of knowledge and practice before you can

make full use of it. The goal of this document is to introduce you to the most
important features of MacAnova, illustrating them with examples.

A good way to learn is to read this Introduction at the computer, trying out things as

they are introduced and using the hel p() 1 or usage() commands (see Sec. 4.6) to get
more detailed information on each command as it is introduced.

1 The parentheses are part of the name of the command. When you use a command, you will usually have

stuff inside the parentheses, for example, hel p(anova) .

3

An Introduction to MacAnova

Some general help topics you may find useful later, but probably not at the start, are
arithmetic,array, batch,comments, fil es, graphs, keywor ds, | ogi c, nacr os,
macro_synt ax, matri ces, nodel s, struct ures, subscri pts, synt ax,
transformations,vari abl es and vect ors. Yet more complete information is
available in the MacAnova Users’ Guide, the most recent version of which (dated
August 1998) is for MacAnova 4.07. It is available on the web in PDF (Adobe Portable
Document Format) computer files which you can print if you want “hard copy.” For
convenience, it is split into files containing individual chapters and appendices.

1.3 Differences among MacAnova versions

All MacAnova versions, for Windows, DOS, Macintosh or Linux/Unix have the same
basic capabilities, although the limited memory DOS version lacks the capacity for large
analyses. The principal differences are these:

= Windowed versions (Windows, Macintosh and Motif on Linux/Unix) make some
use of menus with the Macintosh making the most use; other versions do not.

= In windowed versions, what you type and MacAnova’s responses go into an editable

command/output window. On a Macintosh you can have up to nine such
windows; in Windows and Motif you can have up to eight. You can scroll a
command/output window back to see stuff that has disappeared off the top of the
screen. You can save its contents on disk for later printing or editing.

On non-windowed versions (DOS and non-Motif Linix/Unux), what scrolls off the
screen is lost, although MacAnova pauses after every screenful so that you can read
the output.

In all versions you can automatically record your input and output to disk using the
spool () command (see Sec. 5.2 below).

< Windowed versions have up to eight graph windows where the plotting com-
mands draw graphs. You can switch between them and any active command/
output window.

Non-windowed versions have a single graph window whose contents are lost as
soon as you switch back to command mode. Exception: the graph window is
preserved when running MacAnova in an xterm window on a Linux/ZUnix
workstation.

= In windowed versions, you can print any graph or command window. You can
transfer its contents to a word processor using the Clipboard. Exception: you can’t
copy graph windows in the Motif version.

You can also copy a graph to the Clipboard in DOS versions running under
Windows 95/98/NT.

All the examples here were done on a Macintosh. The computer output, including
high resolutions graphs, was copied into a word processor document via the Clipboard.

1.4 Obtaining MacAnova The most recent version of MacAnova is the July 2001
release of Version 4.12. It is available on the Web through the MacAnova home page

htt p://ww. st at. um. edu/ macanova/ macanova. hone. ht m

4

An Introduction to MacAnova

You can download executable versions for Windows, DOS, Macintosh and Linux.
MacAnova is still evolving. You are strongly urged to check the web periodically for
new releases. Some of the examples use quite recently introduced features and macros.

2. Getting started
2.1 Launching Macanova

r
On a Macintosh, double click on the MacAnova Icon D/l¢ .

In Windows, the MacAnova installer installs similar icons labelled “MacAnova for
Windows” and “MacAnova for Extended Memory DOS” in a MacAnova program
group. These may both be there even if only one version was installed. You start up a
version by double clicking on its icon.

In Windows 95/98/NT, the installer places shortcuts in a folder so that they appear in
the Start menu.

For launching MacAnova in Windows 3.1, 95, 98 or NT, select the MacAnova for
Windows version. If you have only DOS, you should change directories so that

C. \ MACANOVA is the current directory. Then type nacanod]j to start up the extended
memory version. If your machine is an AT or has no extended memory, you should
type macanobc to start up the limited memory version.

In Linux or Unix, you normally type the application name, macanova for the command
line version or macanovawx for the Motif version in a terminal window.

You can get full details on launching MacAnova from the following Appendices in the
Users’ Guide:

Appendix Version
B Macintosh
C DOS, both limited and extended memory
D Windows 3.1, 95/98/NT
E Unix/Linux command line
F Motif

You can also get information by typing hel p(1 aunchi ng). This includes command
line options for all but the Macintosh version. Help topics maci nt osh, dos_w ndows,
uni x and wx also provide computer specific information, as do the r eadne files that are
distributed with MacAnova.

An Introduction to MacAnova

After launching MacAnova, you should see a start up message like the following which
is followed by the “prompt” Cnd>:

MACANOVA 4.12

An Interactive Programfor Statistical Analysis and Matrix Al gebra
For information on nmajor features, type 'hel p(rmacanova)'
For information on linear nodels and G.M's, type 'help(glm’
For latest information on changes, type 'hel p(news)’
For informati on on Maci ntosh version, type 'hel p(nmaci ntosh)’
Version of 07/25/01 (Power Macintosh [CW])
Type 'hel p(copyright)' for copyright and warranty info
Copyright (G 1994 - 2001 Gary W Cehlert and Chri stopher Bi nhgham
MacAnova hone page: http://ww. stat.um. edu/ macanova

hel p() and usage() have been renaned gethel p() and getusage().
There are new predefined macros hel p and usage whi ch use gethel p()
and getusage() to scan help files nanmed in vector HELPFILES
Type ' hel p(updates_411)' for a summary of changes from
first rel ease of Version 4.11

Cnd>

2.2 Typing and editing commands

“Cmd>” is the standard prompt requesting that you type a command. In windowed
versions, you can use the mouse to put the cursor anywhere in the window and type in
whatever you want, but MacAnova obeys only what you type after the prompt
(actually 1 space after the prompt). In non-windowed versions you have no choice; you
can type only after the prompt.

You type commands as sequences of letters and symbols, using Delete or Backspace to
correct mistakes. In windowed versions, before running what you have typed, you can
use arrow keys or the mouse to move the insertion point to make corrections or
changes. The command you typed is not carried out until you press Return or Enter.

Anything that you type on a line after a “#” is considered to be a comment and is
ignored by MacAnova. This feature is used in many examples below to explain what is
being done.

A convention we try to stick to is to use italic Courier font for what you type and
non-italic Cour i er font for what the computer prints. Added comments that are not
part of the MacAnova session are in bold face Cour i er.

Example
Cmd> x <- vector(1.2, 3.5, 2.3) # entering 3 values of data<cr >

creates a variable named x with values x; =1.2, X, =3.5and x3 =2.3. The <cr>
indicates a Return or Enter required at the end of any command. It will not appear in
later examples.

In windowed versions, if you press Return when the “insertion point” (cursor) is not at
the very end of the command line, the line just splits, but MacAnova won’t do
anything. For example suppose you type 12 + 23 and then use the mouse or arrow
keys to put the insertion point before 23:

An Introduction to MacAnova

Cm> 12 +[23 # insertion point before 23

If you press Return you get the following:

Omd> 12 +
|23 # insertion point before 23

but MacAnova does nothing.

In contrast, no matter where the insertion point is, pressing Shift Return or Shift Enter is
the same as moving the cursor to the end of the command line and then typing Return.

An alternative is to press F6. On a Macintosh, you can also press Enter or #\ 2. Here
is what happens then you press Shift Return with the insertion point before 23:

Cmd> 12 +[23 # insertion point before 23
(1) 35 Shift Return was pressed

When you need to type a command that is longer than the screen or window width,
you can just keep typing and it will wrap around to the next line (Exception: In
Windows or Motif versions, the line does not wrap; the window scrolls right).
Alternatively, you can split it yourself at a convenient spot by typing a backslash “\ ”
followed by Return. Thus, as long as you don’t type Return at the end of the first line,

Omd> y <- vector(113.7,91.4,89,133.3,90.6,87.4,96.8,78.4,81,
113.9,120,110,92.7,131.5,100.9,120.5,87.3,97.9,83.2,81.2)

has the same effect as

o> y <- vector(113.7,91.4,89,133.3,90.6,87.4,96.8,78.4,81,\
113.9,120,110,92.7,131.5,100.9,120.5,87.3,97.9,83.2,81.2)

where Return was typed after “\ ”. To repeat, don’t use Return without a backslash in the
middle of a command, except inside quotes " . . . " or curly brackets {...}.3

In the Windows and Motif versions, lines wider than the window do not wrap, they
just extend off the window and the window scrolls horizontally as you type. You can
use the horizontal scroll bar at the bottom of the window to see the rest of any line that
is too long, but you may find it more convenient explicitly to break long lines with a
backslash at each break.

2.3 Quitting
It is just as important to know how to stop MacAnova as to how to start it.

On all versions of MacAnova you can exit by typing qui t, end, st op, exi t or bye.

Example
Crd> bye # or quit or end or stop or exit
In windowed versions (Macintosh, Windows, Motif), you can leave MacAnova by

selecting Quit on the File menu or closing the command/output window when there
is only one such window.

3£\ means the combination of the Command key and the \ key.
In the limited memory DOS version, no more than 128 characters per line may be entered; for longer
lines you must break them using “\ ™.

3

An Introduction to MacAnova

When you leave MacAnova, all the data and results in MacAnova's memory (the
workspace) will disappear. The windowed versions ask if you want to save the
workspace and the output window when you quit.

In all versions you can use commands save() or asci i save() to save your workspace
before quitting (see Sec. 5.3 below). In windowed versions, when you definitely don’t
want to save anything, you can quit by typing qui t (F) . On a Macintosh you can

accomplish the same thing by pressing the Option key while you select Quit.

2.4 Learning more about MacAnova - documentation

Your first resources are probably commands hel p() and usage() (see Sec. 4.6 below).
hel p() provides the most up-to-date information on functions, commands and syntax,
and usage() gives a short summary without details. You can even get help on specific
subtopics. Get in the habit of using hel p() and usage() .

Example

Crd> help(rnorm) # full information *
rnorm(N) generates a vector of N pseudo-random normals with nean 0
and variance 1. N nust be a positive integer.

| f the random nunber generator has not been initialized by

set seeds(), setoptions() or previous use of rbin(), rnorm(), rpoi()
or runi (), the generator's "seeds" will be initialized automatically
using the current time and date, and their values will be printed
out .

See al so topics setseeds(), getseeds(), setoptions(), 'options',
rbin(), rpoi(), runi(), cumor() and invnor().

Cmd> usage(rnorm) # no description, just usage iInformation
rnorm(n), n a positive integer

Cnd> help(anova:"?"") # get list of available sub-topics °

Avai | abl e subtopics for topic 'anova' are:
usage
exanples_1
wei ght' s
om tting_node
side_effect variables created
keywor ds
bal anced_desi gns
nonbal anced_desi gns
after _regresss
see_al so

Crd> help(anova:"weights™) # get help on anova() subtopic “weights*
Subt opi ¢ 'wei ghts' of help on 'anova'

anova(Model , wei ghts: Ws) does an anal ysis using wei ghted | east
squares. Ws nust be a REAL vector with no negative elenents, wth
the sane | ength as the response vector.

The MacAnova Users’ Guide for version 4.07 in Acrobat portable document format

(PDF) is available on the web through the MacAnova home page. Itis splitinto files
4
5

Help output here and elsewhere has been slightly reformatted to fit the page.
Subtopics are a new (December 2000) feature that was not available in earlier versions.

8

An Introduction to MacAnova

containing individual chapters and appendices.

3. The Basics

3.1 MacAnova as a numerical calculator
You can use MacAnova as a simple calculator by typing numbers and algebraic symbols.

Crd> 3 + 5 # space between i1tems i1s 0.K.; simply 3+5 1s 0.K.too
(1) 8

Crd> 2 + 1 0 # but not spaces between digits In a number
ERROR problemw th input near 2 + 1 0

Crd> 4*7e3 ; 3™ ; 14.5 %% 5 # expressions separated by “;~

(1) 28000 4 x 7000

(1) 81 3 to the 4th power

(1) 4.5 remai nder when 14.5 is divided by 5
Crd> sqrt(20); sqg rt(20) # space in name IS an error

(1) 4. 4721 V20 "sqrt" means square root

ERROR. problemw th i nput near sqrt(20); sq rt

Crd> log(3)*(5 + sgrt(6)) #combination of functions and arithmetic
(1) 8. 1841 In(3) x (5+V6)

Cd> (1 + 3 +5 # 1incomplete expression
ERROR mssing ')' near (1 + 3 + 5

These lines illustrate several features (we’ll explain later about the “(1) ” at the start of
output lines).

When you type a number or an expression at the Cnd> prompt you get immediate
output — the value of the number of expression.

Spaces are generally ignored, except you can’t embed them in numbers or names.

You can use parentheses to force addition or subtraction to be done before other
operations ((3 + 4) *6 evaluates to 42; 3 + 4*6 evaluates to 27).

You can do several things on a single line, separating them by “; ”. The parts
produce output on separate lines as if they were typed after different prompts.

You compute things like square roots by typing their names with a number in
parentheses as in sgrt (20) and | og(3). Among the other available mathematical
functions are exp(),cos(),sin(),tan(),l 0ogl0() and at anh(). Type

usage(transformations) for a full list 6.

You can enter numbers using computer scientific notation: 1. 3e4 means 1.3" 104,
—-3. 231e-17 means -3.231" 10-17, etc.

Errors usually produce a message starting with ERROR Most are self explanatory, but
you may find some to be cryptic. When they end, as they do in these examples, with
part of the line you entered, preceded by “near ”, this informs you that MacAnova
first realized something was wrong at or near the last characters echoed. Users have
occasionally lost lots of time because they didn’t read the error messages.

Type usage("transfornations") inversions earlier than December 2000

9

An Introduction to MacAnova

The full set of arithmetic operators consists of “+”, “- 7, “*” (multiplication), “/ ”
(division), “~” (exponentiation) and “%% (modular division: 14. 5 %% 5 computes 4.5,
the remainder of 14.5 when divided by 5).

MacAnova more or less follows the normal rules of algebra in evaluating expressions.
For example, 3 + 4*3isevaluated as3 + 12 =15, while (3 + 4)*3 is evaluated as
7*3 =21. Exponentiation is a little tricky in that 2"4* 3 is interpreted as 16* 3 = 48,
while 2" (4*3) is evaluated as 212 = 4096. Also * and / are evaluated step by step from
left to right so that 3*4/ 5*6 is evaluated as ((3*4)/5) *6 = 14.400. Conversely, " is
evaluated from right to left so that 4*3"2 is evaluated as 4" (3"2) = 262,144.

Example
Cd> 3 + 1 #81 +1
(1) 82
Cmd> 3*(4 + 1) # 3*5
(1) 15
Cd> (4 + 1)/3 # 5/3
(1) 1. 6667

Crd> (4 + 1) %% 3 # remainder of 5 when divided by 3
(1) 2

3.2 MacAnova as symbolic calculator

Besides arithmetic such as 3+sqrt (2) which involves only numbers, you can create
named variables with numerical values and do arithmetic and other computations on
them.

Example
Omd> X <- 10; a <- 1101.1; b <- -2 # store values iIn variables

Cmd> a + b * x # use variables In an expression: 1101.1 - 2*10
(1) 1081. 1

Here you create variables x, a and b with specific values and then use them in an
algebraic formula or expression. The values remain available under these names until
you change them, delete them, or quit MacAnova. Expressions can be almost
arbitrarily complicated and can contain transformations as well as other MacAnova
functions.

The combined symbol “<-"" (less than followed by hyphen) is the assignment operator.
The value of the number or expression to the right of <- is saved in the variable named
to its left. The use of *“<-” is analogous to the use of “=" in some computer languages
such as Fortran and C or “: =" in Pascal. A common mistake made by users with
programming experience is to use “=" when they mean “<- ",

A few variables such as Pl and E, are predefined although you can change their values.

Om> Pl # ratio of circumference to diameter of circle
(1) 3. 1416

Cnd> E # E 1s base of natural logarithms = exp(l)
(1) 2.7183

10

An Introduction to MacAnova

Variable names must start with a letter or the underscore character “_”, but subsequent
characters may also include “0” through “9”. You probably shouldn’t start names with
“_” since such variables are “invisible” and are treated slightly differently.

Variable names are case sensitive, which means that r esi dual s, Resi dual s and

RESI DUALS are all different names. It is a good idea to avoid names with all capital
letters, as MacAnova automatically deletes and creates certain variables with all capital
names (for example, RESI DUALS).

Crd> pi # variable pi does not exist although Pl does
UNDEFI NED

You can get an alphabetized listing of all active variables using commands
listbrief()orlist().

A variable’s name may also start with the character “@ (as in @mean). Such a variable is
called a temporary variable because it will be automatically deleted at the next “Cnd>".

Example
Ord> x <- vector(1.2,3.5, 7); n <- 3# vector() is explained later

Crd> x # typing X" prints its value
(1) 1.2 3.5 7

Crd> @xbar <- sum(x)/n; var <- sum((x-@xbar)”2)/(n-1)

Ond> @xbar # @xbar has been deleted automatically
UNDEFI NED

Sometimes you may want to remove a variable from computer memory, perhaps
because you have gotten the warning message

ERROR not enough nenory, try deleting variables
Command del et e() does the trick.

Example
Ond> delete(x, n) # deletes variables x and n

Cmd> x # x 1s no longer defined
UNDEFI NED

You can delete as many variables as you like in a single use of del et e() .

3.3 MacAnova as computing language — functions and macros
In a technical sense, MacAnova commands are functional. Transformations such as
sqrt() orl ogl0O() are particular cases of functions.

When you use a function you give it one or more inputs called arguments (in
| 0g10(3. 145), 3. 145 is an argument), and it may return results (produce output) to be
printed, saved in a variable or combined with other values in an expression.

Many functions have several arguments which are separated by commas. The whole
list of arguments is between parentheses.

Example
Crd> round(17/3, 3) # round 17/3 to three decimals
(1) 5.667

11

An Introduction to MacAnova
Crd> hypot(3,4) # computes sqrt(3M2+41°2)
1) 5

Some functions just do things, but don’t return any value that can be assigned to a
variable or printed. We often call such a function simply a command. For example
print () isacommand you use to print several variables or expressions, perhaps with
an increased number of significant digits.

Example

Crd> w <- sqrt(10); w # print w with default significance
(1) 3.1623

Crd> print(nsig:12,w) # print w with 12 significant digits
W,
(1) 3. 16227766017 Out put from print()

The argument nsi g: 12 for pri nt () is an example of a keyword phrase.

Keyword phrases always have the form nane: val ue and are often used to control the
behavior of commands and functions.

Actually print (), as well as a number of other commands, does return a value, a so-
called NULL value, but this will seldom be relevant to you.

A few functions or commands can be used with no arguments. They still need a pair of
parenthesis, but with nothing between them.

Example
Crd> listbrief() # list all MacAnova objects; you"ll see others
boxcox DATAFI LE f col pl ot MACRCFI LES readcol s resvsyhat
CLI PBOARD DATAPATHS frowpl ot makecol s regs r owpl ot
col pl ot DEGPERRAD getdata makefactor resid twotailt
CONSCLE DELTAT get macr os nodel resvsi ndex yhat
consol e E MACRCFI LE PI resvsrankits

Commands that do not return a value usually produce what we call side effects. For
example, the side effect of pri nt () is the printed values of its arguments. One side
effect of r egress() is a printed regression analysis. Some commands like r egr ess()
also create, as side effects, variables with standard names such as SS, DF, RESI DUALS or
COEF containing quantities related to the analysis.

In addition to functions, MacAnova has what are known as macros. You use them
exactly the same as functions — the name followed by arguments enclosed in
parentheses and separated by commas. Like functions, macros may return values or
have side effects. Macros do differ from functions in some important ways, but most of
the time you can treat them the same.

boxcox() is an example of a pre-defined macro. It requires two arguments and returns
a value the same length as the first argument.

Example
Crd> boxcox(vector(3.03,3.01,3.32,3.65,4.42), .5)
(1) 2. 7514 2.73 3. 0538 3. 3822 4.0949

The two arguments here are vect or (3. 03, 3. 01, 3. 32, 3. 65, 4. 42) and . 5. The

12

An Introduction to MacAnova

result is proportional to the first argument to the 0.5 power.

Probably the most important difference between functions and macros is their
availability. A function can always be used. There is nothing you can do to delete it.
Macros, on the other hand, are more like variables — they can be predefined, deleted,
read in from a file, entered at the keyboard and printed.

Some macros like boxcox(), get macros(), hi st () and resvsrankits() are pre-
defined and immediately available. Others such as covar () must be read from a file.
Usually this happens automatically when you use them, but occasionally you have to
use get macr os() or macr or ead() to retrieve a macro from a file.

There are eight standard macro files containing macros for time series analysis (both
frequency and time domain), design of experiments, multivariate analysis,
mathematical computations, graphing and regression. These are automatically
searched when you use a macro that is not already in the workspace.

When you have gained some experience with using MacAnova, you can create your
own macros to extend the range of what MacAnova can do (see Sec. 9.3 of the Users’
Guide). You can get a list of all the macros already in MacAnova by command
[istbrief(macros:T).

Crd> listbrief(macros:T)

adddat apat h desi gnhel p hi st redo toclip
addmacrofil e enter LASTLI NE regcoefs tserhelp
anovapr ed enterchars nmakecol s regresshelp twotailt

ari mahel p fronclip makef act or regs user funhel p
boxcox getdat a mat hhel p resid vboxpl ot

br eaki f get macr os nodel resvsi ndex yhat

cl i preaddat a graphi cshel p nul var hel p resvsrankits

col pl ot hasl abel s readcol s r esvsyhat

consol e hasnot es r eaddat a r owpl ot

You may already have spotted one of the conventions of this document — when a
MacAnova function or macro is referred to by name, it always has a pair of parentheses

attached, as in pri nt ().” Whenever you use it, a function or a macro must be
followed by parentheses enclosing the arguments, or, when there are no arguments, by
an empty pair of parentheses ().

You can use a function or macro returning a value anywhere you can use a simple
number or variable name — in expressions and as an argument to another function or
macro. A simple exampleissqrt(a + 3*boxcox(x,.5)).

3.4 More on Variables - REAL, LOGICAL and CHARACTER data
Named variables can contain several types of data. The most common are numbers
such as 2.4, -1, or 3.1478x10-8. In MacAnova this type is called REAL.

Almost as common are variables which have only two possible values, True and False.
In MacAnova these are called LOG CAL, and True and False are typed or printed simply
as Tand F.

The values of some variables are sequences of characters. In MacAnova they are called
CHARACTER variables. When typing CHARACTER data on the keyboard, the character

7

In previous editions of this Introduction macro names did not include “()”

13

An Introduction to MacAnova

sequences must be enclosed in double quotes.

Example
Cnd> sentence <- "This is CHARACTER data™

Omd> sentence
(1) "This is CHARACTER dat a"

Such a sequence of characters is sometimes called a character string or simply a string.

In some MacAnova output, LOG CAL and CHARACTER are abbreviated to LOG Cand
CHAR Some more advanced data types are STRUCTURE and GRAPH.

You can use | i st () to list the names of variables, together with their data types and
their dimensions; |i st brief () just lists their names. If you use one of the keyword
phrasesreal : T,char: Tor |l ogic: Tasanargumenttolist() orlistbrief(),only
variables of the specified type are listed.

Example
Cm> x <- 1/3; y <= T; z <~ "Hi There!"
Crd> print(x, y, 2)

X:

(1) 0. 33333 REAL dat a

y:

(L) T LOGI CAL dat a

zZ:

(1) "H There!" CHARACTER dat a

Crd> listbrief(x,y,z,P1,DATAFILE,boxcox) #output is alphabetized
boxcox DATAFI LE Pl X y z
Crd> list(x,y,z,P1,DATAFILE,boxcox)

boxcox MACRO (in-line) Order is al phabeti cal
DATAFI LE CHAR 1

Pl REAL 1

X REAL 1

y LA C 1

z CHAR 1

Cnd> list(real:T) # just list numerical variables 8

dat a REAL 8 2

DEGPERRAD REAL 1

DELTAT REAL 1

E REAL 1

Pl REAL 1

X REAL 1

As in this usage, LOd CAL values T and F are usually used to represent “yes” and “no”
or “allow” and “suppress” in keyword phrases specifying options. You’ll see other
examples as you go along.

You can use LOd CAL values in arithmetic expressions and as arguments to a few
functions (but not as arguments to functions like sqrt () or | og()), with True being
treated as 1 and False as 0.

8 You will almost certainly get a different list of REAL variables.

14

An Introduction to MacAnova

Cmd> vector(T, F) + 3 # same as vector(l, 0) + 3
(1) 4 3

Any character is allowed inside a character string, even a Return character which,
although itself invisible, breaks the line in the middle of the sequence of characters.
One common source of trouble is forgetting to add the closing double quote to a
character string and hitting Return. You expect MacAnova to respond but it doesn’t.
Without the closing double quote, MacAnova is just waiting for you to add more
characters to the string you are typing. Type the closing double quote or nothing will
ever happen.

You may include a double quote in a character string by preceding it (escaping it) with a
backslash.

Example

Crd> print(*'Hello™) # quotes delimit string, but are not printed
Hel l o

Crd> print("\ "Hello\'™") # \"™ 1s part of string and prints as "
"Hel | 0"

3.5 Comparisons of numbers and combining LOG I CAL values

One place where LOGd CAL values naturally arise is when you want to compare the
value of one variable with another using the comparison operators “==", “l =7 “<”,
“>11, “<:11 and “>:11'

e “=="means “is equal to”
e “l = means “not equal to.”
= “>”and “<” mean “greater than” and “less than”

= “>="and “<=" mean “greater than or equal to” and “less than or equal to”

Example
Crd> a <- 5; b <- 6; ¢ <- 5 # assign values to a, b and c
Crd> a < b; a > b; a == c # less than, greater than, equal to
(1) T True because a is less than b
(1) F Fal se because a is not greater than b
(1) T True because a equals c

Crd> vector(a >= b, a<=c, b!=c)#a=>b,a<c, bzc
(1) F T T

On a Macintosh you can use “£”, “3” and “1 ” instead of “>=", “<="and *“! =",
There are three logical operators, “! 7, “&&” and “| | .
= “1”jisthe not operator, changing True to False and vice versa.

Crd> 3 <= vector(2,3); (3 <= vector(2,3))
(1) F T 3 < 2 is False, 3 <3 is True
(1) T F not(3 < 2) is True, not(3 < 3) is False

e “&&”isthe and operator. ¢ && d has value True if and only if both ¢ and d have
value True:

15

An Introduction to MacAnova

Cnd> vector(T && T, T & F, F & T, F && F)
(1) T F F F

e “||”istheor operator. ¢ || d hasvalue True if and only if either c or d or both
have value True:

o> vector(T |1 T, TII F, FII T, F Il P
(1) T T T F

3.6 Variables with several values — Vectors and Matrices

In most of the examples so far, a MacAnova variable contains only one value, whether
REAL, LOd CAL, or CHARACTER Such variables are called scalar variables or simply
scalars. Obviously, this does not get you very far in statistics. What you need \are
variables that can contain several numbers or even an entire data set. The simplest
such variable in MacAnova is a vector, a variable which contains several numbers,
several True/False values, or several character strings.

vect or () is the basic function for creating a vector. It can have any number of
arguments, all of the same type. There have been a number of usages of vect or ()
presented without comment above. Here are some more.

Examples
Crd> x <- vector(33.5, 27.3, 36.7, 30.5) # REAL vector

Crd> x # REAL vector of length 4
(1) 33.5 27. 3 36.7 30.5

> w <- vector(T,T,F,T,T,T,F,F,T,T) # might be success & failure

Crd> w # LOGICAL vector of length 10
(1) T T F T T T F F
(9) T T

Crd> dakotas <- vector(*'South Dakota',''North Dakota')

Crd> dakotas # CHARACTER vector of length 2
(1) "South Dakota"
(2) "North Dakota"

You extract elements of a vector using subscripts, values enclosed in square brackets
[...]. Asubscript can be a positive integer scalar or vector, a negative integer scalar or
vector or a LO3d CAL vector.

Examples
= A single positive integer; non-integer subscript is illegal.

Crd> x[3]; w[7] # subscripts that are positive numbers

(1) 36.7 El ement 3 of x
(1) F El ement 7 of w
Cmd> x[3.5]

ERROR. noni nt eger subscript near

X[3. 5]

= A vector of positive integers such as vect or (3, 4) extracts the corresponding
elements of the variable as if you had typed, say, vect or (x[3], X[4]). You can
include duplicates in the subscript vector.

16

An Introduction to MacAnova

Crd> x[vector(3,4)] # vector of positive subscripts
(1) 36.7 30.5 El ements 3 and 4 of x

E:n;j> x[vector(l 1,3)] # Ilke vector(x[l] x[1],x[3])
33 33

A vector of negative integers extracts all the other elements. That is,

x[vector (-1, -2)] extracts all the elements of x except the first and the second.
You can’t have duplicate negative subscripts and you can’t mix them with positive
subscripts.

Crd> x[vector(-1, -2)] # negative subscripts; all except 1 & 2
(1) 36.7 30.5 Agai n, elements 3 and 4 of x

Crd> x[vector(-1,-2,-2)] # this 1s an error
ERROR duplicate negative subscripts near x[vector(-1,-2,-2)]

Crd> x[vector(-1,-2,3)] # this i1s an error
ERROR can't mx positive and negative subscripts near
X[vector(-1,-2,3)]

A LOGI CAL vector extracts only the values in positions correspond to True. A
LOQ CAL subscript vector must be the same length as the vector it is subscripting.

Crd> x[vector(F F,T,T)] # logical subscripts ; same
(1) 36.7 30.5 Yet again, elements 3 and 4 of x

Crd> x[vector(T,T,F,F,T)] # this is an error
ERROR |l ength of LOQd CAL subscript vector nust nmatch di nension near
x[vector (T, T,F, F, T)]

Subscript that is a variable:

Crd> j <- 2; dakotas[]j] # subscript that is a REAL variable
(1) "North Dakota"

Crd> J <- vector(T,F); dakotas[J]
(1) "South Dakota"

Some data sets consist of several variables. It is sometimes convenient to combine
them in a single MacAnova variable in a sort of table form, with rows corresponding to
different cases and columns corresponding to variables. Such a rectangular array is
called a matrix. In this example we create variable prob_1, a MacAnova matrix which
consists of 8 observations on bivariate data.

Example

<-matrix(vector(.34,.35,.39,.39, .41, .41, .49, .68,\
2.8,1.9,3.3,5.6,4.2,5.6,4.2,7.9), 8)

17

An Introduction to MacAnova

Crd> prob_1 # print out the matrix
(1,21 0. 34 2.8
(2,1) 0.35 1.9
(3,1) 0. 39 3.3
(4,1) 0. 39 5.6
(5,1) 0.41 4.2
(6,1) 0.41 5.6
(7,1) 0. 49 4.2
(8,1) 0. 68 7.9

The numbers in parentheses are the row and column number of the first value in the
line. For example(7, 1) indicates .49 is the first element in row 7 of the matrix.

Because there are both rows and columns you need two subscripts to extract a
particular value.

Examples
Crd> prob_1[7,1] # row 7 and column 1
(1,1) 0. 49
Crd> prob_1[4,vector(1,2)] # row 4 of prob 1
(1,1) 0. 39 5.6

= An empty subscript selects all the values of that subscript.

Crd> prob_ 1[4]# another way to specify row 4
5.6

(1,1) 0. 39
Crd> prob_1[,2] # all of column 2
(1,1) 2.8
(2,1) 1.9
(3,1) 3.3
(4,1) 5.6
(5,1) 4.2
(6,1) 5.6
(7,1) 4.2
(8,1) 7.9

= As with vectors, you can use negative subscripts or LOGI CAL vectors as subscripts:

Crd> prob_1[vector(F,F,F,T,F,F,F,F),] # another way to get row 4
(1,1) 0. 39 5.6

Crd> prob_1[-vector(1,2,3,5,6,7,8),] # and yet another
(1,1 0. 39 5.6

As illustrated, you can create a matrix from a vector by function matri x(). The general

formismatri x(v, nr),wherev isavector and nr is the number of rows. The values

in v are entered into the result column by column. The length of v must be divisible by

nr.

Examples
= Length of vector not divisible by number of rows

Cmd> y <- matrix(vector(1.3,2.4,5.6,1.2,2.2),2)
ERROR: nunber of rows nust divide | ength of data

18

An Introduction to MacAnova

= Create vectors corresponding to the columns of prob_1
Omd> x <- vector(prob_1[,1]); y <- vector(prob_1[,2])
Crd> print(x,y)

X.

(1) 0. 34 0.35 0. 39 0. 39 0.41
(6) 0. 41 0. 49 0. 68

y:

(1) 2.8 1.9 3.3 5.6 4.2
(6) 5.6 4.2 7.9

Here vect or () has changed each column to a vector with only 1 subscript. The
numbers in parentheses ((1) and (6)) are the subscripts of the first number on that
line. For example, x[6] has value 0.41.

You can use the comparison operators introduced in Sec. 3.5 to compute LOd CAL
vectors to be used as subscripts. For example, suppose you want to select only the
elements y of corresponding to values of x > .35 and x £ .45. You can use comparison
operators and the “&&” operator.

Example
Crd> y[x > .35 && x <= .45] # same as y|[vector(F,F,T,T,T,T,F,F)]
(1) 3.3 5.6 4.2 5.6

3.7 Missing values

Missing values are common when you work with real data. You may have measure-
ments of both the height and weight of each of 19 people, but for one reason or another,
for two other people, you have only their weights so that two heights are missing. Or,
when entering data for computer analysis, you may notice a value is impossible (for
example, a human height of 61 feet).

MacAnova has a special value, M SSI NG that can be used to replace missing values.
The code you type for M SSI NGis a question mark, “?”, but it prints as M SSI NG

Example
Cmd> a <- vector(3,?,-7,?,4); a
(1) 3 M SSI NG -7 M SSI NG 4

Many commands do something fairly sensible with values of M SSI NG A few give you
awarning:

Example
Cmd> 5 + a
WARNI NG arithnetic with mssing value(s); operation is +
(1) 8 M SSI NG -2 M SSI NG 9

This illustrates that a value of M SSI NGcombined arithmetically with anything else
gives a missing value.

LOA CAL values of M SSI NGare also possible, although the only way to create them is
by a comparison of a number with M SSI NG

19

An Introduction to MacAnova

Example
Cmd> a >0
WARNI NG conparison with mssing value(s) near a > 0
(1) T M SSI NG F MSSING T

You can use i sm ssi ng() to find which values in a REAL or LOG CAL data set are

M SSI NG i smi ssi ng(x) returns a LO3 CAL variable with the same size and shape
(dimensions) as x whose values are True where x is M SSI NG and False where x is not
M SSI NG

Example
Crd> |sm|ssmg(vector(1 ?,3))
(1) F T

4. Building on the Basics

4.1 Combining vectors and matrices — vector(), hconcat() and vconcat()
You learned in Sec. 3.6 how to use vect or () to create vectors from several individual
values. You can also use vect or () to combine several vectors to make a longer vector.

Example
Cmd> al <- vector(1,3,5); a2 <- vector(6,7); a3 <- 10

Crd> vector(al,a2,a3) #make longer vector; like vector(1,3,5,6,7,10)
(1) 1 3 5 6 7

(6) 10
You can also use vect or () to change a matrix to a vector, “unraveling” it column by
column.

Example
Crd> vector(prob_1) # prob_1 is the 8 by 2 matrix used before
(1) 0.34 0.35 0. 39 0. 39 0.41
(6) 0.41 0. 49 0. 68 2.8 1.9
(11) 3.3 5.6 4.2 5.6 4.2
(16) 7.9

First you get all the values in column 1 of dat a, followed by the values in column 2.

Sometimes you will want to make a larger matrix by combining together side by side
two or more vectors or matrices. Obviously all the pieces must have the same number
of rows. For example, suppose you want to put vectors x and y back together in a
matrix, together with a column containing the case numbers.

Example
Crd> datal <- hconcat(vector(1,2,3,4,5,6,7,8),%,y); datal
(1,1 1 0. 34 2.8
(2,1) 2 0.35 1.9
(3,1) 3 0. 39 3.3
(4,1) 4 0. 39 5.6
(5,1) 5 0.41 4.2
(6,1) 6 0.41 5.6
(7,1) 7 0. 49 4.2
(8,1) 8 0. 68 7.9

This has produced the 8 by 3 matrix dat al. The general usage of hconcat () (h is for

20

An Introduction to MacAnova
horizontal) is hconcat (a, b, c, .. .), where each argument is a vector or matrix, all
with the same number of rows.

If you want to combine two or more matrices all with the same number of columns by
stacking them one above the other, you can use vconcat () (v is for vertical).

Example
Cmd> vconcat(datal[vector(S 6,7,8),], datal[vector(1,2,3,4),])
(1, 1) 5 0.41 4.2
(2,1) 6 0. 41 5.6
(3,1) 7 0. 49 4.2
(4,1) 8 0. 68 7.9
(5,1) 1 0.34 2.8
(6,1) 2 0. 35 1.9
(7,1) 3 0. 39 3.3
(8,1) 4 0. 39 5.6

This has reordered the rows of dat a, putting the rows 5 through 8 ahead of rows 1
through 4.

4.2 Creating patterned vectors — run() and rep()

Suppose you want a vector with values 1, 2, 3, 4 and 5. You learned in Sec. 3.6 that you

candothisbyy <- vector(1, 2,3, 4,5). Youcould enter a vector with values 1, 2, 3,
., 100 the same way but it would be tedious and easy to make a mistake. Function

run() provides a short cut. Here is the simplest usage of r un() .

Example
Crd> run(8) # produce vector with values 1, 2, 3, ..., 8
(1) 2 3 4 5
(6) 6 7 8
Here are other, fairly self explanatory, uses of run():
Example
Crd> run(3,11) # values from 3 to 11
(1) 3 4 5 6 7
(6) 8 9 10 11
Crd> run(3.5,5,.5) # values from 3.5 to 5.0 stepping by 0.5
(1) 3.5 4 4.5
Crd> run(5,3.5,-.5) # backwards from 5.0 to 3.5, stepping by -.5
(1) 5 4.5 4 3.5

When you want a vector consisting of all 1’s or some other value, you could use
vector(1,1,1,1,1,1,1), say, togetseven 1’s. Function rep() is easier.

Example
Cnd> rep(1,7) # vector of 7 1%s
(1) 1 1 1 1 1
(6) 1 1

21

An Introduction to MacAnova

Instead of repeating a single number, you can repeat a vector:

Example
Crd> rep(run(4),2) # like vector(run(4),run(4))
(1) 1 2 3 1
(6) 2 3 4

There is a more elaborate use of r ep() that is sometimes useful:

Example
Crd> rep(run(3), rep(2,3)) # same as rep(run(3), vector(2,2,2))
(1) 1 1 2 2 3
(6) 3
Each of the numbers in run(3) is repeated 2 times. The second argument of the
“outer” rep() must be the same length as the first and provides the number of
repetitions. Here is an even fancier usage:

Example
Cmd> rep(run(4),vector(2,3,0,4)) # arg 2 of length 4
(1) 1 1 2 2 2
(6) 4 4 4 4

This repeats 1 two times, 2 three times, 3 zero times and 4 four times.

4.3 Assigning values to the elements of a vector or matrix

When you want to change one or a few elements in a vector or matrix, you can assign
new values directly using subscripts. For example, suppose you learned the value in
row 8 of column 2 of the matrix prob_1 was incorrect and that the correct value should
have been .58 instead of .69. Here’s how you could make the change:

Example
Crd> prob_1[8,1] <- .58
Crd> prob_1
(1,21 0. 34 2.8
(2,1) 0.35 1.9
(3,1) 0. 39 3.3
(4,1) 0. 39 5.6
(5,1) 0.41 4.2
(6,1) 0.41 5.6
(7,1) 0. 49 4,2
(8,1) 0.58 7.9
You would make the same change in vector x by
Example
Omd> x[8] <- .58
Qrd> x
(1) 0. 34 0.35 0. 39 0. 39 0.41
(6) 0.41 0. 49 0. 58

22

An Introduction to MacAnova

You can change several values at once:

Example
Crd> w <- run(5)
Crd> w
(1) 1 2 3 4 5
Cmd> w[run(2)] <- vector(-10, ?)# replace 1 and 2 by -10 and MISSING
Crd> w
(1) -10 M SSI NG 3 4 5
Crd> w[-run(3)] <- 17 # replace all but 1st 3 elements by 17
Crd> w
(1) -10 M SSI NG 3 17 17

For future use we change back prob_1[8, 1] and x[8] to their original values.
Ord> prob 1[8,1] <- .68; x[8] <- .68

4.4 Simple summaries of data in vectors and matrices — sum(), prod(), min(), max(),
sort() and rank()

You use sun(), prod(), m n() and max() to compute the sum of, the product of, the

minimum of, and the maximum of the values in a vector.

Example

Cmd> vector(sum(y), prod(y), min(y), max(y))
(1) 35.5 76723 1.9

Crd> # check sum() and prod() by hand™ calculations

o> 2.8 +1.9+3.3+56+4.2+5.6+4.2+7.9
(1) 35. 5

o> 2.8* 1.9 *3.3*56*4.2*56%*4.2*7.9
(1) 76723

You can use sun() to compute means, variances and standard deviations from the

basic formulas y=Q y,/n and s’ = g’é (y; - y)zgl(n- 1), and max() and mi n() to
i=1 i=1

compute therange V... - Ymin:

Example
Crd> n <- nrows(y); ybar <- sum(y)/n # mean

Crd> yvar <- sum((y- ybar)”2)/(n-1) # variance
Crd> range <- max(y) - min(y)

Cnd> vector(ybar, yvar, range) # mean, variance and range
(1) 4. 4375 3. 6027 6

Function sort () allows you to reorder the elements in a vector in increasing order:

23

An Introduction to MacAnova

Example
Crd> y up <- sort(y); y_down <- sort(y,down:T)

Crd> hconcat(y_up, y _down)

(1,1 1.9 7.9 Col. 1 is y sorted up
(2,1) 2.8 5.6 Col. 2 is y sorted down
(3,1) 3.3 5.6

(4,1) 4.2 4.2

(5,1) 4.2 4.2

(6,1) 5.6 3.3

(7,1) 5.6 2.8

(8,1) 7.9 1.9

These also give you another way to compute the minimum and the maximum:

Cmd> vector(sort(y)[1], sort(y,down:T)[1]D)
(1) 1.9 7.9

This last also shows that you can use subscripts directly on the values of functions.

An important way to summarize a vector of numbers is by the ranks of the elements
in the vector, with the smallest value getting rank 1, the next smallest getting rank 2,
etc. You can do this in MacAnova using function r ank() .

Example

Crd> a <- vector(14.7, 13.1, 16.6, 12.9, 12.5); rank(a)

(1) 4 3 5 2
Since 14.7 is the 4th number in order of size (there are 4-1 = 3 numbers less than 14.7) it
gets rank 4, etc. When there are ties, the ranks of the tied values are the averages of
what would be the ranks of any tied values if they were very slightly changed so as to
break the tie.

Example
Crd> b <- vector(14.7, 13.1, 16.6, 12.5, 12.5)
Crd> rank(b)
(1) 4 3 5 1.5 1.5

If the second 12.5 were modified, say to 12.500001, the two last ranks would be 1 and 2
which average to 1.5.

All these functions can have matrices as arguments. In the case of sun{(), prod(),

m n() and max(), the result is a row vector (a matrix with only one row) which
contains the result of applying the function to each column. Both sort () and rank()
compute a new matrix, the same size as the argument, with the ordered values or ranks
of each column separately. Let’s apply these to prob_1:

Example
Crd> sum(prob_1)
(1,1) 3. 46 35.5 Sunms down col ums
Crd> prod(prob_1)
(1,1) 0. 0010138 76723 Products down col ums

24

An Introduction to MacAnova

Crd> min(prob_ 1)

(1,1) 0.3 1.9 Mnim of colums
Cmd> max(prob__ 1)

(1,1) 0.6 7.9 Maxima of columms
Cmd> hconcat(sort(prob 1), rank(prob_1))

(1,1 0. 34 1.9 1 2
(2,1) 0.35 2.8 2 1
(3,1) 0. 39 3.3 3.5 3
(4,1) 0. 39 4.2 3.5 6.5
(5,1) 0.41 4.2 5.5 4.5
(6,1) 0.41 5.6 5.5 6.5
(7,1) 0. 49 5.6 7 4.5
(8,1) 0. 68 7.9 8 8

In the last, the first two columns are the ordered values in each column of dat a, and
the last two columns are the ranks of each column of dat a.

Other descriptive statistics that are sometimes computed from the ordered values in a
sample are the lower and upper (first and third) quartiles and the median (second
guartile). The median is the central value in order of size if n is odd, and is the average
of the two central values if n is even. A common way to define the lower and upper
guartiles is the medians of the lower and upper halves of the data, putting the middle
value in both halves if n is odd (some textbooks prefer not to put it in either half).

Here we compute the 3 quartiles of y, as well as the inter-quartile range (IQR), a
measure of the spread or dispersion of the sample. Since y has 8 values, the median is
the average of the two middle values in order of size (4th and 5t) and the quartiles are
the averages of the two middle values of the lower and upper halves.

Example
Cmd> gl <- sum(sort(y)[vector(2,3)])/2 # lower quartile

Crd> g2 <- sum(sort(y)[vector(4,5)])/2 # median (ave of 4th & 5th)
Crd> g3 <- sum(sort(y)[vector(6,7)])/2 # upper quartile

Crd> vector(ql, g2, Qg3)
(1) 3.05 4.2 5.6

Crd> iqr <- g3 - ql

Crd> iqr # Interquartile range
(1) 2.55

4.5 Simple descriptive statistics — describe()

In the previous section you learned how to compute some basic descriptive statistics
from their definitions using MacAnova functions such as sun{),max() and m n(). In
fact, if you try hard enough, practically any statistical analysis that you might do using
MacAnova can be accomplished this way. This is sometimes calle “white box”
computing because you can see what is being computed. But, as promised at the outset,
for most analyses there are built-in commands and functions that do complete
analyses without your having to know computing formulas. This provides what
might be called “black box” computing. It provides answers but you don’t see how.

25

An Introduction to MacAnova

descri be() enables you to compute in one line almost all the descriptive summaries
we have seen above. It is best introduced by an example:

Example

Crd> describe(y) # y is the second column of prob_ 1
conponent: n

(1) 8 Sanpl e size

conponent: mn

(1) 1.9 M ni mum

conponent: ql

(1) 3.05 Lower quartile
conponent : medi an

(1) 4.2 Medi an or 2nd quartile
conponent: Q3

(1) 5.6 Upper quartile
conponent: max

(1) 7.9 Maxi mum

conponent: nean

(1) 4. 4375 Mean (average)
conponent: var

(1) 3. 6027 Variance with divisor of n-1

As printed output this is pretty self-explanatory (as usual, the bol df ace output was
not printed by MacAnova). It even looks as if it might have been printed by

descri be() as a “side effect.” However, what is printed is actually the value that
descri be() returns. You can even save the value in a variable.

Example
Ond> results <- describe(y) # nothing printed

Ord> results$mean # extract component “"mean®
(1) 4. 4375 Conmpare with mean above

Crd> results$var # extract component “var-®
(1) 3. 6027 Compare with variance above

resul t s is an example of a new type of variable called a structure (sometimes
abbreviated “ STRUC”).

Cmd> list(results)
results STRUC 8

Structures are made up of one or more named components. Here there are eight
components, n, m n, q1, nedi an, g3, max, nean and var. Individual components can be
extracted by appending $cnane to the name of the structure, where cnane is the
component name. You can find all names of all the components in a structure by
function conpnanes()

26

An Introduction to MacAnova

Example
Crd> compnames(results) # the names of the components of results
1) "n"
(2) "mn"
(3) "ql"
(4) "nedian"
(5) "g3"
(6) "max"
(7) "nean”
(8) "var"

To make descri be() compute just one summary value, say the median, you can use
keyword phrase nmedi an: T as an argument. If you want both the mean and variance,
use mean: T and var : T as arguments.

Example
Cd> descrlbe(y median:T) # or describe(y)$median
(1) 4.

Crd> describe(y,mean:T,var:T) # compute both mean and variance
conponent: mean

(1) 4. 4375 Mean (average)

conponent: var

(1) 3. 6027 Variance with divisor of n-1
You can use descri be() with a matrix (table) argument, too.
Example

Crd> descrlbe(datal[-1]) # summary statistics omitting column 1

conponent :

(1) 8 8

conponent: mn

(1) 0. 34 1.9

conponent: ql

(1) 0. 37 3.05

conponent: mnedi an

(1) 0.4 4.2

conponent: g3

(1) 0. 45 5.6

conponent: max

(1) 0. 68 7.9

conponent: mean

(1) 0. 4325 4. 4375

conponent: var

(1) 0. 012079 3. 6027

Each component is now a vector with one value for each column of the argument
matrix. For example, 0.4 and 4.2 are the medians of columns 2 and 3 of dat al.

descri be() can also compute other statistics, the most important of which is the
standard deviation, the square root of the variance.

Example

Crd> describe(datal[,-1],stddev:T) # square root of variance
(1) 0. 1099 1.8981

27

An Introduction to MacAnova

Type usage(descri be) or hel p(descri be: "?") for more information.

Several other MacAnova functions, including split (), coefs(),secoefs(),

cel Il stats() and regpred(), compute structures as their values. Type

hel p(structures:"?") orsee Sec. 9.1.1 in the Users’ Guide for more information
about structures, including functions st ruct ur e() and changestr () which allow you
to create or modify structures directly.

4.6 Getting help - MacAnova commands help() and usage()

If you need to refresh your memory about any function or command or about general
topics like syntax, you can use MacAnova’s hel p() command. Suppose you wanted
more detail on the function r ound() used in one of the examples above.

Example
Crd> help(round)
round(x) rounds the elenments of the REAL variable x to the nearest
i nteger, producing a vector, matrix, or array with the sane shape as
X.

round(x,n) where n is an integer is equivalent to 10*(-n)*
round(x*10*n). If n >0, this rounds to n decinmal places. If n < 0,
this rounds to the nearest multiple of 10%abs(n). round(x,0) is
equi val ent to round(x).

If x is a structure, so is round(x) or round(x,n). If xi is the i-th
conponent of x, the i-th conponent of round(x) or round(x,n) is
round(xi) or round(xi,n).

Exanpl e: round(3141.593,2) is 3141.59 and round(3141.593,-2) is 3100,
the nearest nultiple of 100 = 10"2.

round(x, p) can also be used when x is a CHARACTER variable and p, if
present, is a quoted string or CHARACTER scal ar or REAL scalar. The
result is a CHARACTER vari able of the sane shape as x describing the
transformation. For exanple, both round(vector("X1","X2"), 3) and
round(vector ("X1","X2"),"3") return vector("round(X1, 3)",
"round(X2,3)"). Any elenent of x that is "" or starts with '@, '(',
T, {, "<, "/" or "\'" is not nodified. This can be useful for
creating labels for a transfornmed vari abl e.

See also topics floor(), ceiling(), 'structures', 'labels'.

Typically, as here, the first line gives the most standard usage, with more complex
usages given later. Often, as in the last line, there are cross references to related topics.

This gives all the help on a topic. Sometimes you are looking for a specific piece of
information and don’t want to see everything (which can be quite long). Most help
topics have named subtopics which can be viewed individually.

28

An Introduction to MacAnova

Example

Crd> help(round, subtopic:"?") # ask for index of subtopics
Avai | abl e subtopics for topic 'round are:

usage

struct ure_ar gunent

exanpl e

char act er _ar gunent

see_al so
Type hel p(round, subt opi c: vect or (" subt opi cA", "subt opi cB",...))

Cmd> help(round,subtopic:vector('usage",
Subt opi ¢ 'usage' of help on 'round
round(x) rounds the elenments of the REAL variable x to the nearest

i nteger, producing a vector, matrix, or array with the sane shape as
X.

example™))

round(x,n) where n is an integer is equivalent to 107(-

n) *round(x*10"n). If n >0, this rounds to n decimal places. If n <
O, this rounds to the nearest nmultiple of 10fabs(n). round(x,0) is
equi val ent to round(x).

Subt opi ¢ 'exanple' of help on 'round'
Exanpl e: round(3141.593,2) is 3141.59 and round(3141.593,-2) is 3100,
the nearest nultiple of 100 = 10"2.

When a topic name is no longer than 10 characters (most are), you can abbreviate this,
for example, by hel p(round: vect or (" usage", "exanpl e")).

Once you understand what a command or function does, command usage() may be
more useful. You use it like hel p() but it gives only a very brief summary of how a
function is used with no clue as to what it does.

Example

Crd> usage(round)
round(x [, ndec]), x REAL or a structure with REAL conponents, ndec
an i nteger

There are hundreds of help topics. Here is how you get a list of all the topics:

Example
Crd> help(™*')
Help is available on the follow ng topics:

abs eval uat e nmacanova sanpl esi ze
acos exp nmacanova3 save
addchar s factor macanova_i ndex scal ars
addhel pfile f ast anova maci nt osh screen
addl i nes file_names macr o secoefs
adddat apat h files macro_files sel ect

addmacrofil e fl oor macr o_synt ax set hi story

29

An Introduction to MacAnova

Crd> help() # with no arguments summarizes help() i1tself

Type ' hel p(foo)' for help on toplc foo

Type ' hel p(foo, subtopics:"?")' for a list of subtopics for topic foo
Type 'heIp(foo,subtopic:"bar")' subt opi ¢ bar of topic foo

Type 'usage(foo)' for very brief information on topic foo

Type "hel p("*")' for a list of all topics

Type 'hel p(hel p:"?")" for a list of subtopics about help().

Type 'hel p(key:"?")' for a list of cross reference keys to topics
Type ' hel p(usage)' for nore information about usage().

Sone general topics are

arithnetic files | aunchi ng nodel s synt ax

assi gnment glm | ogi c not es time_series
cl i pboard gr aphs macanova NULL vari abl es
coment s graph_files nmacros nunber vectors
conpl ex gr aph_keys macro files options wor kspace
custom ze graph_ticks macro_syntax quitting

data files keywor ds matrices structures

desi gn | abel s nmenory subscripts

data files keywor ds matrices structures

desi gn | abel s nmenory subscripts

In windowed versions, selecting Help from the Help menu is equivalent to typing
hel p(). On a Macintosh you can press #H ° or the help key.

The topics available include all the commands and functions, plus some more general
topics such asmat ri ces, subscri pts and transformati ons. To get helpona

particular topic, use hel p() with one or more topics as arguments.1® On the
Macintosh, if you use the mouse to select a topic in the command/output window,
Help from the Help menu or 3H or help gets help on the selected topic.

When you remember only part of the name of a topic, but not the full name, you can
use “wild card” characters “*”” and “?” in a string to get a list of topics matching a
pattern. “*” matches any string of characters, including the empty one; “?” matches
any single topics. For example, "part*","*part"” and "*part *" match topic names
starting with, ending with, or containing par t, and "a????" matches all 5 character
topic names starting with “a”.

Example
Crd> help('res*™) # find all topics starting with “res"
resid restore resvsi ndex resvsrankits resvsyhat

For help on topic foo, enter hel p(foo) or hel p("foo")

Crd> help("*plot*™) # find all topics containing *‘plot"”
boxpl ot col pl ot pl ot showpl ot vboxpl ot
chpl ot I i nepl ot r owpl ot stringpl ot

For help on topic foo, enter hel p(foo) or hel p("foo")

Ord> help(*'a????")
anova array atanh
For help on topic foo, enter hel p(foo) or hel p("foo")

9
10

3EH means the combination of the Command key and the H key.

In versions earlier than December 2000, you have to quote any topic names longer than 12 characters
(for example, hel p("transformati ons")), or the names of control words (whi | e, f or, br eak,
breakal | ,if,el se, el sei f, next).

30

An Introduction to MacAnova

Especially when you’re new to MacAnova, you may not even know enough commands
to use the pattern matching just described. All you know is you want to compute some
descriptive statistics, or make a graph, or do some sort of residual analysis. You can
look for help topics by keys using keyword key.

Example

Crd> help(key:"residuals™) # find some topics about residuals
The following hel p topics concern Residuals

resid resvsi ndex resvsrankits resvsyhat

For help on topic foo, enter hel p(foo) or hel p("foo")

MacAnova found four topics. You could now get help on topic r esi d, say, by typing
hel p(resi d). If you have no idea of what keys are available, just do this:
Example
Cmd> help(key:"?")
Type ' hel p(key: "heading")', where heading is in following list:
ANOVA

CGener al Plotting
Cat egorical Data | nput Probabilities
CHARACTER Vari abl es LOd CAL Vari abl es Random Nunber s
Conbi ni ng Vari abl es NULL Vari abl es Regr essi on
Conpari sons Macr os Resi dual s
Conpl ex Arithnetic Matri x Al gebra Structures
Confidence Intervals M ssi ng Val ues Synt ax
Contr ol Mul tivariate Anal ysis Time Series
Descriptive Statistics Qperations Transf or mati ons
Files Ordering Vari abl es
GM CQut put

When you specify a key, you need only as many letters as will make it unique. Thus
hel p(key: "des") isasgood as hel p(key: "descriptive statistics") (upper and
lower case doesn’t matter here).

hel p() and usage() not only provide information only from the general help file,
MacAnova. hl p, but also from help files associated with files of specialized macros
distributed with Macanova. Alternatively, to get help on macros in these files, you can
use special help macros ar i mahel p(), desi gnhel p(), graphi cshel p(), mat hhel p(),
nmul var hel p(),regresshel p() and tserhel p(). These provide help on macros in
files ari ma. mac, desi gn. mac, gr aphi cs. mac, mat h. mac, nul var . mac, r egr ess. nac
and t ser. mac, respectively.

These special help macros are used essentially the same way as hel p(), except that you
get simple usage information by including keyword phrase usage: T as an argument. If
you use them with no argument, you get a descriptive list of all topics.

Example

Crd> mathhelp(™*"™) # all available topics related to math.mac
Help is available on the follow ng topics:

bf s continfrac i 0 mat hhel p ort hopol y

bi nom df p i1 mat h_i ndex partitions
bl ockdmat econom ze i nvchebcoefs matsqgrt printfactors
br oyden factori al i nvertseries noorepenrose grdconp
chebcoef s factors kr onecker nel der nead

For help on topic foo, enter hel p(foo) or hel p("foo")

31

An Introduction to MacAnova

Crd> help(factorial) # or mathhelp(factorial)

factorial (x) conputes x! (x factorial), where x is a REAL scal ar,
vector, matrix or array. The result is the same size and shape as as
X. |If any elenent is MSSING <= -1 or such that x! is too large to
be conputed, the corresponding elenment of the result is M SSI NG

El enents of x need not be integers. x! is conputed as
exp(l gamma(x+1)), except that if x is an integer <= 20 the val ue
shoul d be exact.

See al so bi nom and | ganma() .

Crd> usage(factorial) # or mathhelp(factorial, usage:T)
factorial (x), x REAL

Crd> help(binom:"?") # or mathhelp(binom:"?""); get subtopic list
Avai | abl e subtopics for topic 'binom are:

usage

exanpl es

see_al so
Type hel p(bi nom subt opi c: vect or (" subt opi cA", "subt opi cB",...))

If you learn how to use hel p(), itisn’t that important to have the Users’ Guide, since
most of the details of commands and macros are summarized in their help entries.

5. Using files

5.1 General

Although you can do a lot of work without using any command that has to do with
files on disk, commands that read or write files add a lot of capability to MacAnova.
You can

= record your session in a file on disk using spool () (Sec. 5.2)

= save all your variables in a file using save() and asci i save() (Sec.5.3)

= read data from a file using r eaddat a, vecr ead() or mat read() (Sec. 5.4)

= write data and results to a file using print () and matwite().

You always need to specify a file name in quotation marks.

Example
Crd> matwrite("'mydata.txt”,prob_1) # write prob_1 to file mydata.txt

Things are easier in windowed versions (Windows, Macintosh, Motif), since you can
always use "" as file name (two double quotes with nothing between them). This
brings up a file navigation dialog box in which you select or specify a file.

Example
Crd> matwrite(""™, prob 1) # write prob_1 to a file to be selected

Note: MacAnova has no special conventions for file names as long as they are legal for
the system on which it is running. File names used in examples below are just that —
examples. There is no need to use the same names, or end them the same way (like

.t xt).

On most file writing commands except save() and asci i save(), when the file you
are writing already exists, what you write to the file is added after what is already there.
If that is not what you want, use the keyword phrase new. T as an argument.

32

An Introduction to MacAnova

Example
Cmd> matwrite('mydata",prob_1,new:T) # prob_1 to end of mydata.txt

In the windowed versions, when you save the command/output window using Save
Window or Save Window As on the File menu, it is always as if you specified new. T.

5.2 Recording your MacAnova session — spool()

When you use MacAnova you may want a record of what you do, or at least a perma-
nent copy of the answers you want to keep. This is quite easy to do using spool () —as
long as you remember to use it! spool () works on all computer systems, Windows,
DOS, Macintosh, Motif or Linux/Unix.

spool () keeps a record in a file of some or all of your MacAnova session. When you
want to start saving stuff, you need to type something like

Crd> spool (“'spool . txt™) # start spooling on file spool.txt

This starts recording (spooling) on file spool . t xt . From now on, everything you type
and everything MacAnova replies except high resolution plots will be written in the
file. Of course, this includes any mistakes you make and your false starts. In the
windowed versions, you don’t need to type the file name but can type

Crd> spool (") # Null file name allowed only iIn windowed versions
If you want to suspend spooling for a while, simply type

Cmd> spool() # with no file name
Spool i ng on spool . txt suspended

When you want to start recording again, type

Crd> spool () # again with no file name
Resume spool i ng on spool .t xt

Once you have started spooling, spool (), with no argument, toggles it off and on.

On a Macintosh, selecting entry Spool Output to File on the File menu is equivalent
to typing spool ("") or spool ().

When you are done with your session, you can read the spool file into almost any word
processor or text editor, edit out what you don’t want to keep and add your commen-
tary.

Here’s a useful tip: If your word processor or editor lets you choose a font, select a font
such as Courier or Monaco that has equal width characters. If you don’t, things that
lined up on the computer screen will not line up in your document and will be hard to
read.

You don’t need spool () as much in a windowed version since all your input and
MacAnova’s output remain in the command/output window. At any time you can

select Save Window (%S or Ctrl+S 1) or Save Window As... on the File menu and
the entire contents of the window are written to disk for later editing. After a window
is saved, the name of the file becomes the window title and you can re-save the

11 Ctrl+S means the combination of the Control key and the S key.

33

An Introduction to MacAnova

window just by pressing 3S (Macintosh) or Ctrl+S (Windows and Motif). It’s a good
idea to do this frequently so as to avoid losing much work in case of a computer crash.

When you quit in windowed versions, a dialog box asks Save Changes to Window
"xxxxx" before closing? To save the command/output window on disk, just click
on the OK button (or the Don’t Save button if you don’t want to).

Important: Saving the window does not save your workspace — your data and other
variables and macros. For that you need commands save() or asci i save() (Sec. 5.3).

You can also use commands print(file:"fil eNane",...) and
wite(file:"fileName",...) to printthe values of individual variables in a file.
See the Users’ Guide or type hel p(print,wite).

5.3 Saving your workspace — save() and asciisave()

Sometimes you may not have time to do everything you want or need to in one
session, and still have more to do when you have to quit. In such a situation you can
use save() and asci i save(). These functions save your “workspace” in a filein a
form that can be restored by r est or e() in a later MacAnova session. Your workspace
consists of all the current variables, macros and graphs in graph windows.

Important: save() and asci i save() do not save your commands and output. Use
spool () or Save Window on the File menu for that (Sec. 5.2).

Example

Crd> save(''savework.sav')
Wr kspace saved on file savework. sav

You can now quit MacAnova. Later, when you restart, you can use r est or e() to get
everything back to the way it was.

Example

Crd> restore(''savework.sav'') # restore('"") In windowed versions
Restori ng workspace fromfile savework. sav
Wr kspace saved Sun Jul 8 23:35:33 2001

In windowed versions, you can use Save Workspace (#K or Ctrl+K) or Save
Workspace As... on the File menu, instead of save().

On a Macintosh, the next time you want to start up MacAnova, just double click on the

#
icon “r’,z of the saved file and MacAnova will be launched with everything restored,

including any graph windows. At the same time you save your workspace in the
windowed versions, you may also want to save the command/output window using

items Save Window (#S or Ctrl+S) or Save Window As... on the File menu.

If you use MacAnova on more than one type of computer, you might occasionally start
on one computer, say a Macintosh, save your work, and then finish it later on another
type, say a Windows computer. For this you should save your workspace using

asci i save() instead of save().

34

An Introduction to MacAnova

Example

Omd> asciisave(''savework.asc')
Wr kspace saved on file savework. asc

This produces an ordinary text file which can be restored by MacAnova on any
computer (by rest ore("savefil e. asc")) or even sent via E-mail.

save() can also be a life saver if your computer is unstable and prone to crashing, or if,
perish the thought, your copy of MacAnova has a bug that sometimes causes a crash. If
you save your workspace and your window from time to time, you never will lose
much if the computer or program goes down.

After you have used save("savewor k. sav") or asci i save("savewor k. sav") once,
you can update the save file simply by save() or asci i save(), without specifying a
file name. In windowed versions, select Save Workspace (#K or Ctrl+K) on the File
menu.

Once you have saved your window, you can refresh the file by selecting Save Window
(%S or Ctrl+S) on the File menu.

5.4 Reading data from files — vecread() , readdata() and matread()

Except when you analyze a small amount of data that you can easily type at the
keyboard, you will probably want to work with data that is in a file on disk. The data
may have been provided by someone else, entered by you using a word processor or
editor or possibly exported from a spreadsheet.

Any data file MacAnova can read must be a plain text file. It might be created in a
word processor such as Microsoft Word or a text editor such as SimpleText (Macintosh)
or Note Pad (Windows). If you use a word processor to create or edit data files, it is
essential that they be saved as Text or ASCII files. How you do it depends on the
program. If afile is not saved as a Text or ASCII file, MacAnova will not be able to read
it.

The simplest type of data file MacAnova can read contains just numbers. Here is a
listing of file r abbi t . t xt containing 12 determinations of the survival time in
minutes of certain rabbit nerves under anaerobic conditions:

16.2 22.5 21.4 19.6 24.8 21.4
19.0 14.7 13.3 23.0 16.8 20.1

Before going further, you might want to use an editor or word processor to create this
file and other example files in this section. Be sure to save them as a plain text
(sometimes called ASCII) files. Copies of the example files are available on the web.

Here’s one way to read these data from the file:

Example

Crd> x <- vecread(“'rabbit.txt™)# form is vecread(fileName)
Read fromfile "KB1l: MacAnova: Datafil es:rabbit.txt"

Crd> x # print out what you®ve read in

(1) 16. 2 22.5 21. 4 19. 6 24. 8
6) 21. 4 19 14. 7 13. 3 23
(11) 16. 8 20. 1

35

An Introduction to MacAnova

vecr ead() reads the numbers in the file sequentially, line by line to the end, and
returns them as a vector.

= A question mark (?) in the file is interpreted as M SSI NG Also an isolated “. 7, “*”
or “NA” is interpreted as M SSI NG

= Any lines starting with “#” are skipped.

« |Ifthereisa“! ” at any point in the file except in a line starting with “#”, vecr ead()
stops reading there.

Suppose rabbi t 1. t xt looks like this:

Survival tinme in mnutes of rabbit nerves
16.2 22.5 21.4 19.6 24.8 21.4
19.0 14.7 13.3 23.0 16.8 20.1

Example

Crd> x <- vecread('rabbitl.txt™)
Read fromfile "KBl: Datafiles:rabbitl.txt"

Ord> x # same as before

(1) 16. 2 22.5 21. 4 19. 6 24. 8
(6) 21. 4 19 14. 7 13. 3 23
(11) 16. 8 20. 1

When vecread() finds anything it can’t read, it skips it, printing a warning message
the first time something unreadable is hit.

Suppose file r abbi t 2. t xt looks like this, with a line without numbers:

Data on twel ve rabbit nerves
16.2 22.5 21.4 19.6 24.8 21.4
19.0 14.7 13.3 23.0 16.8 20.1

Example
Crd> x <- vecread(“'rabbit2.txt™); X

WARNI NG nonnuneric character(s) in KBl:Datafiles:rabbit2.txt ignored
Read fromfile "KBl: Datafil es:rabbit2.txt"

Omd> x # data are correct

(1) 16. 2 22.5 21. 4 19. 6 24. 8
6) 21. 4 19 14. 7 13. 3 23
(11) 16. 8 20. 1

But when another file r abbi t 3. t xt looks like this

Data on 12 rabbit nerves
16.2 22.5 21.4 19.6 24.8 21.4
19.0 14.7 13.3 23.0 16.8 20.1

you will be in trouble because the 12 is read as a number and vecr ead() would return
13 numbers, the value 12 followed by the actual data.

36

An Introduction to MacAnova

Example
Crd> x <- vecread("'rabbit3.txt'"); x
WARNI NG nonnuneric character(s) in KBl:Datafiles:rabbit3.txt ignored
Read fromfile "KB1l: Datafiles:rabbit3.txt"

(1) 12 16. 2 22.5 21. 4 19. 6
(6) 24.8 21. 4 19 14. 7 13. 3
(11) 23 16. 8 20. 1

So, to be on the safe side, a file to be read by vecr ead() should contain only numbers
except in lines starting with “#”.

Many data files have several columns of numbers or symbols, with each column
corresponding to a variable and each line to the data for a case. A typical example
might be file cr ops. t xt :

yields of wheat and potatoes by year

1926 20.1 7.2
1927 23.6 7.1
1928 26.3 7.4
1929 19.9 6.1
1930 16.7 6.0
1931 23.2 7.3
1932 31.4 9.4
1933 33.5 9.2
1934 28.2 8.8
1935 35.3 10.4
1936 29.3 8.0
1937 30.5 9.7

The number in column 1 is a year and columns 2 and 3 are the average yields of wheat
and potatoes, respectively, in each year. You can use r eaddat a() to read cr ops. dat
into three MacAnova variables, year, wheat and pot at oes:

Example

Crd> readdata(’'crops.txt”,year ,wheat, potatoes)
yields of wheat and potatoes by year

Read fromfile "KBl: Datafil es:crops.txt"

year saved as REAL vector

wheat saved as REAL vector

pot at oes saved as REAL vector

Crd> print(year,wheat,potatoes)

year:
(1) 1926 1927 1928 1929 1930
(6) 1931 1932 1933 1934 1935
(11) 1936 1937
wheat :
(1) 20.1 23.6 26. 3 19.9 16. 7
6 23.2 31. 4 33.5 28.2 35.3
(11) 29.3 30.5
pot at oes:
(1) 7.2 7.1 7.4 6.1 6
(6) 7.3 9.4 9.2 8.8 10. 4
(11) 8 9.7

17321

readdat a() uses vecread() to read the file. Consequently it recognizes “?”, “.”,

37

An Introduction to MacAnova

and “NA” as M SSI NG skips lines that start with “#” and stops reading when it finds

readdat a() can also read categorical data and can take the names of the variables
from a file. Suppose nont 5- 1. t xt looks like this:

exanple 5-1 on page 129 of Mont gomnery.
speci men tiptype depth

=

DWONRPRAONRPAONRAWNR
o000 O0OO00OmITI™®E > > > >
COOLOLOOLOOVLOOVLOOOVO

NOONNUIRANOOWAOO AW

=

Example
Crd> readdata('mont5-1.txt") # Note: no variable names are supplied
exanple 5-1 on page 129 of Montgonery.
Read fromfile "KBl:Datafil es:nont5-1.txt"
speci men saved as REAL vector
ti ptype saved as factor
depth saved as REAL vector

Crd> print(specimen,tiptype,depth)

speci nen:
(1) 1 2 3 4 1
(6) 2 3 4 1 2
(11) 3 4 1 2 3
(16) 4
tiptype
A A A A B
B B B C C
C C D D D
D
1 1 1 1 2
2 2 2 3 3
3 3 4 4 4
4
dept h:
(1) 9.3 9.4 9.6 10 9.4
6 9.3 9.8 9.9 9.2 9.4
(11) 9.5 9.7 9.7 9.6 10
(16) 10.2

ti pt ype looks a little different. The actual values are the numbers; the original
character factor codes (A, B, Cand D) have been preserved as case labels. MacAnova

38

An Introduction to MacAnova

prints all the labels of a vector before any of the values.

Example
Crd> describe(tiptype,min:T,max:T)
conponent: mn

(1) 1
conponent : nmax
(1) 4

mat r ead() is designed to read data sets from files containing many data sets. This is
something neither vecr ead() or r eaddat a can easily do. However, each data set must
be in a special format. See the Users’ Guide or type hel p(matread_fil e) for details
on the actual format nat r ead() expects.

All you need to know here is that the first line of every data set contains its name and
dimensions and may be followed by descriptive comments. To read in a particular data
set you specify the name of the file and the name of the data set. In the following
example, file cropsl. t xt contains several data sets including a data set named yi el ds
which contains the same data as cr ops. t xt .

Example
COrd> data <- matread(‘'cropsl.txt”,"yields')
yi el ds 12 3

) Col. 1: year

) Col. 2: wheat = wheat harvest

) Col. 3: potatoes = potato harvest

Read fromfile "KBl:Datafil es:cropsl.txt”

Crd> dim(data) # data is a matrix with 12 rows and 3 columns
(1) 12 3

Crd> yields[vector(1,2),] # cases 1 and 2

(1,1 1926 20.1 7.2
(2,1) 1927 23.6 7.1
The first line printed, “yi el ds 12 3”, is the line in the file with the data set

name and dimensions. The remaining lines, all starting with) ”, are descriptive
comments in the file.) ” serves a similar purpose in files to be read by mat r ead() as
“#” does in files read by r eaddat a() and vecread() .

To get each column in a separate variable, you can either do it “by hand” or use
makecol s():

Example
Crd> year <- data[,1]; wheat <- data[,2]; potatoes <- datal[,3]

Crd> list(year, wheat,potatoes)# you have three 12 by 1 matrices

pot at oes REAL 12
wheat REAL 12 1
year REAL 12 1

Cmd> makecols(data,year ,wheat,potatoes)
Crd> list(year,wheat,potatoes)# now you have three length 12 vectors

pot at oes REAL 12
wheat REAL 12
year REAL 12

39

An Introduction to MacAnova

55 Moving data from and to a spreadsheet

There are lots of reasons why you might have data in a spreadsheet and want to analyze

it in MacAnova. For one thing, it’s probably easier to enter lots of data into a spread-
sheet than directly in MacAnova using vect or (). Conversely, you may want to save
results from a MacAnova analysis in a spreadsheet. Moving numbers either way is

easy to do using the Clipboard in the windowed versions of MacAnova.

The Clipboard is a place for temporarily saving information in one program so it can be

recovered in another program.

Suppose you have the data from file nont 5- 1 in an Excel spreadsheet, and you want to
transfer the dept h data to MacAnova. All you need to do is to use the mouse to select

the data to transfer and then select Copy on the Edit menu to put it on the Clipboard..

Can't Repeat 3EY

P ———— Mont5-1.xls

Cut £ A | B | € | D
Eupuh‘ e [Epecimen tiptype depth
1 1 9.3
Paste U 5 1 v
Clear... #B 3 1 95
Paste Special... 4 1 10.0
Paste Link 1 2 9.4
2 2 9.3
Create Publisher... 3 Z 9.3
Subscribe To... 4 2 =
1 3 9.2
Delete... EK o T 0 4
Insert... #1 3 3 =
Insert Object... 4 3 9.7
1 4 9.7
Fill Right #R 2 & =N
Fill Down 3D 3 4 10.0
- 4 4 10.2

Then switch over to MacAnova and use f rontl i p to create a numerical vector from

what you copied to the Clipboard.
Cnmd> depth <- fromclip()

Crd> depth
(1) 9.3 9.4
6 9.3 9.8
(11) 9.5 9.7
(16) 10.

cl i preaddat a() would also do the job. It works similarly to r eaddat a() except it

“reads” the Clipboard instead of a file.

Crd> clipreaddata(depth)
depth saved as REAL vector

40

woo
~N©o o

1
9.
9.

ONO

©o
ISENEN

An Introduction to MacAnova

You can use frontli p() to move an entire 16 by 3 matrix of numbers:

Can't HEDEﬂt #*Y iEHDHtE-" wls
Cut *H A | B [€] D I
Eupuh; 3EC [specimen tiptype depth
Paste #U ‘ ‘ £he
2 1 9.4
Clear... #B z 1 95
Paste Special... | 1 10.0
Paste Link 1 2 2.4
- 2 2 9.3
Create Publisher... z = a8
Subscribe To... | 2 9.9
1 3 9.2
Delete... HK = z 9 4
Insert... #*1 3 3 9.5
Insert Object... 4 3 9.7
A 1 4 2.7
Fill Right 3R 2 | 9.6
Fill Down) 3 4 10.0
17 4 < 10.2
18
19

Cnd> data <- fromclip(3) # 3 i1s the number of columns
Crd> list(data)

dat a REAL 16 3

Crd> dataf[run(3),] # First three cases

(1,1) 1 1 9.3
(2,1) 2 1 9.4
(3,1) 3 1 9.6

Like r eaddat a(), cl i preaddat a() can also use column names as variable names and
translate character data to factors.

41

An Introduction to MacAnova

Example
Can't Repeat 3% Mont5-1.xls

Cut 3 E | F | G | H]
Co 1] specimen tiptype depth
Py i 4 93
Paste 3#EU 5 4 v
Clear... ¥B T A 96
Paste Special... 4 & 10.0
Paste Link 1 B a4
2 B 0.3
Create Publisher... T E a8
Subscribe To... 4 B a9
1 C Q9.2
Delete... EEK = C g 4
Insert... #1I 3 C a5
Insert Object... 4 L 9.7
1 D a7
Fill Right #R 2 b Q.6
Fill Down #D 3 K 10.0
T)] 10.2

18

19

Cmd> clipreaddata() # reads data on clipboard to variables
speci nen saved as REAL vector

ti ptype saved as factor

depth saved as REAL vector

Crd> list(specimen,tiptype,depth)

dept h REAL 16
speci nen REAL 16
tiptype REAL 16 FACTOR with 4 | evel s

Note that the area selected in the spreadsheet includes the column headings.

Important: If any of the data in the spreadsheet is missing, you must use one of the
MacAnova codes, “?, “. 7, “*” or “NA”, for M SSI NG It won’t work just to leave the
spreadsheet cell empty.

To go in the other direction, from MacAnova to the spreadsheet is just as simple.
Here’s how you would export matrix pr ob_1 to a spreadsheet.

Crd> list(prob_1) # you need the dimensions
prob 1 REAL 8 2

Crd> toclip(prob_1) # puts the matrix on the Clipboard

42

An Introduction to MacAnova

Now you need to switch the spreadsheet program, use the mouse to select a rectangle of
16 cells in 8 rows and 2 columns and then choose Paste from the Edit menu:

Can't Repeat xEY

Cut A

Copy AN

Paste #U L

Clear... =B 4

Paste Spacial... I J - 34| K - El

Paste Link 2 | 0.35 1.9

Create Publisher... |-3_ 0.39 3.3

Subscribe To... i g:i? i:g

Delete... K |6 0.41 5.6

Insert... w1 |- 0.49 4.2
. 8 .65 7.9

Insert Object... g |

Fill Right #p |10

Fill Douwrn 3#0

43

An Introduction to MacAnova

6. Visualizing numbers — drawing graphs

6.1 Basic graphing commands

It’s easy go make simple high resolution graphs in MacAnova, and not much harder to
make more complicated graphs.

Example
Cd> x <- run(10);y <- x*.3 # y iIs x to the 0.3 power

Crd> plot(x,y,lines:T,xlab:"X-axis label",ylab:"Y-axis label",\
title:"Sample plot of x*.3 vs Xx')

Sampl e plot of x".3 vs x

2_|

v 1. 8f
a
X
i 1. 6f
S
|
a 1. 4¢
b
e
|

1.2f

l- L L L L L I-
1 2 3 4 5 6 7 8 9 10
X-axi s | abel

This plots vector y against vector x using a default plotting symbol. Because | i nes: Tis
an argument, the points are connected with lines. Keyword ti t| e specifies the title
above the graph, and keywords x| ab and y| ab specify X-axis and Y-axis labels below
and to the left of the graph. You can make some plots as simply as typing pl ot (x, y) if
you don’t want to specify a title or axis labels.

There are several commands for drawing graphs, all of which have similar usage.
Some come in pairs, one command to start a new plot and a similar command to add
information to an existing plot.

44

An Introduction to MacAnova

Command Description

pl ot (X, Y) Plot each column of vector or matrix y against
vector x using standard symbols

addpoi nts(x, y) Add points to a previously plotted graph using
standard symbols

chpl ot (x, y, synbol s: synb) Like pl ot () except you can specify plotting symbols
specified by synb

addchar s(x, y, synbol s: synb) Add points to a previously plotted graph using
custom symbols

l'i nepl ot (X, YY) Like pl ot () without plotting symbols but with
connecting lines

addl i nes(x,y) Add lines to a previously plotted graph

stringplot(x,y,strings:s) Like pl ot () but drawing character strings specified
by s

addstrings(x,y, strings:s) Add character strings to previously plotted graph

showpl ot () Redisplay the most recent plot, possibly with new

labels and changed minima or maxima.

vboxpl ot (x), vboxpl ot (str) Make parallel vertical or horizontal boxplots of data
boxpl ot (x), boxpl ot (str) in columns of matrix x or components of structure
str

For the x-y plotting commands (pl ot () through addstri ngs()), x must be a REAL
vector and y must be a REAL vector or matrix (only a vector for st ri ngpl ot () and
addstrings()). The values in each column of y are plotted against the values in x.

Ordinarily, x and y must have the same number of rows. For chpl ot () and
addchar s(), synb is a CHARACTER vector or a vector of integers between 0 and 999. For
stringpl ot () and addstri ngs(), s isa CHARACTER scalar or vector.

For stringpl ot () and addstri ngs(), x and y must be vectors of the same length.
For the other x-y plotting commands, x can be a scalar or vector of length 2, regardless
of the length of y.

e When x is just one number x0, it is implicitly expanded to vect or (x0, x0+1,...)
with the same number of rows asy. For example, pl ot (1, y) plots y against 1, 2, 3,
...and pl ot (100, y) plots y against 100, 101, 102,

e When x is vect or (x0, i nc) of length 2, it is implicitly expanded to vect or (x0,
x0+i nc, x0+2*inc,...) with the same number of rows asy. For example,
pl ot (vector (0, 1/ 60), y) plots y against 0, 1/60, 2/60, and
I i nepl ot (vector (1967, 1/12),y) plotsy against 1967, 1967+1/12, 1967+2/12,
You might use this last when the rows of y are monthly values starting January
1967 and you want to plot y against time in years.

Help topic gr aphs includes a lot of information about graphing. Start out by typing
hel p(graphs: " ?") to get a list of subtopics and then hel p(gr aphs: " nanme"), where

45

An Introduction to MacAnova

"nane" is a subtopic name such as " basi c_pl ot ti ng_comrands"” (can be abbreviated
to just hel p(graphs: "basi c")). You can get more details on the individual plotting
commands by typing, say, hel p(li nepl ot).

6.2 Using keywords to control the appearance of graphs

All the graphing commands recognize many of the same keywords. Here is a list of
keyword phrases that affect the appearance of graphs.

Keyword phrases Description

title:"Title for graph"” Graph title (up to 75 characters)

x|l ab: " X-axi s | abel " X-axis label (up to 50 characters)

yl ab: "Y-axi s | abel " Y-axis label (up to 20 characters)

xm n: xM nVal Minimum value for x-axis.

xmax: x MaxVal Maximum value for x-axis.

ym n: yM nVal Minimum value for y-axis.

ymax: yMaxVal Minimum value for y-axis.

| ogx: T Use log scale for x-axis

| ogy: T Use log scale for y-axis

xaxi s: F Do not draw x axis (liney =0).

yaxi s: F Do not draw y axis (line x =0).

I mpul se: T Draw lines from y = 0 line to points

lines: T Connect points with lines

i netype: n Sets the linetype to n, default is 1. n must be integer
1 £n <100

t hi ckness: w Sets the line thickness to wtimes normal thickness,
if possible; wmust be between 0.1 and 10 with default
1

dunb: T Use printable characters only, producing a low res-
olution plot suitable for printing on a line printer.

These are generally self-explanatory. Some are illustrated in examples in later sections.
Keywords | i net ype and t hi ckness are legal only on plots on which lines are drawn,
and their effect depends on the particular Macanova version. Keyword dunb is
particularly useful on DOS or Linux/Unix where it may be difficult to get hard copy of
high resolution graphics.

The example in Sec. 6.1 illustrated the use of ti t| e, x| aband yl ab to label the graph.

This list omits keyword bor der s (controls which sides of the frame should be drawn),
and keywords t i cks, xti cks, yti cks, xti ckl abs, yti ckl abs, xti ckl enand

yti ckl en (control where and how tick marks should be drawn and labelled). Type
usage(graph_keys) for a list of all keywords. You can get help on an individual
keyword by hel p(graph_keys: "keynane") where keynane is the keyword name.

46

An Introduction to MacAnova

Example

Cmd> help(graph_keys:"borders'™)

Subt opi ¢ ' borders' of help on 'graph_keys'

borders: Wrd Controls which sides of the graph
borders will be drawn. Wrd can

be "all", "none", , or a
conbi nati on of one or nore of "B",
“pb", "L", "t*, "7, "t", "R, "r".
See topic 'graph_border'.

6.3 GRAPH variables and modifying graphs

Normally, whenever MacAnova draws a graph, it also creates variable LASTPLOT

which encapsulates all the information used to create the plot. LASTPLOT has the

special type GRAPH.

You can’t calculate with a GRAPH variable, but you can assign it to another variable (for
example, pl ot 1 <- LASTPLOT) and you can print it to produce a low resolution plot
similar to that produced by the plotting commands when dunb: T is used.

More importantly, you can redisplay the graph encapsulated in a GRAPH variable,
possibly with changed labeling information and/or additional data.

Crd> showplot()
redisplays the graph in LASTPLOT, that is, the most recent graph.
Crd> showplot(xlab:"'x", ylab:"Power of x', ymin:z0)

displays it with new x- and y-axis labels, and with 0 as the y-axis minimum. It also
modifies LASTPLOT to include the new information. You can use all the keyword
phrases listed above except | i nes, i npul se, | i netype and t hi ckness to change or
add labelling information or to set the minimum or maximum values to appear in the
graph.

Crd> addpoints(x1l, yl)

redisplays LASTPLOT, adding additional points from the data in x1 and y1. You can
similarly use addl i nes(), addchars(), and addstri ngs() to display the graph
encapsulated in LASTPLOT with additional data included in the plot.

Crd> plotl <- LASTPLOT # duplicate of GRAPH variable LASTPLOT

Crd> showplot(plotl,title:"Redisplayed with a new title”)

This displays the graph encapsulated in pl ot 1. You can use the usual keywords. It
doesn’t change pl ot 1, but updates LASTPLOT to reflect the new graph.

Crd> addpoints(plotl, x2, y2) # redisplays plotl with more data

47

An Introduction to MacAnova

Here is an example in which we redo the plot in Sec. 6.1 and add more line-connected
points using several keywords, interpreted as follows:

synbol s: "\ 1" Plot the data using a special plotting symbol; symbol "\ 1" is
diamond; "\ 6" is the default symbol; "\ 7" is a dot
l[ines: T Connect the points with lines
ymn: 0 Minimum for y axisis 0
ymax: y[10] 2 Maximum for y axis is y[10] *2
title:" ... " Provides a new title replacing the original one
Example

Crd> plot(x,y,lines:T,xlab:"X-axis label",ylab:"Y-axis label",\
title:"Sample plot of x*.3 vs X", show:F) # see below for show:F

Cmd> addchars(x,y”2,symbols:"\ 1", lines:T,\
title:"Plot redrawn using addchars'™, ymin:0,ymax:y[10]"2)

Pl ot redrawn usi ng addchars

4FT T T

"<

n "X o
N
2]

- ® T —

5 :
X-axis | agel

48

An Introduction to MacAnova

Cmd> showplot(dumb:T,title:"Plot redrawn using dumb:T",\
height:23,width:70)
Pl ot redrawn using dunb: T

e S Fommm - Fommm - Fommm - Fommm - +omm e +omm - Fommm - +ommm -
4+
I
| ...0.

3.5+ ...0..

Y | ...0..

- 3+ ...0..

a | . 0..

X 2.5+

i | ...0.

S 2+ . 0.. R
| LR oL *

I 1.5+ . 0. LR *

a | . *,

b 1+o0

e I

I 0.5+
O
e S Fommm - Fommm - Fommm - Fommm - Fommm - +omm - Fommm - +ommm -

1 2 3 4 5 6 7 8 9

X-axi s | abel

The second plot illustrates how to use showpl ot () with argument dunb: T to make a
low resolution plot using ordinary typographical symbols. hei ght: 23 and wi dt h: 70
specify the number of rows (lines) and columns (characters per line). The default
values are 24 and 80. The smaller values were used so it would fit on this page.

A “dumb” plot like this is not as elegant as a high resolution graph, but can be printed
on any printer, and included in any word processor document. If you are using

spool () to save your input and output, any “dumb” plots are written to the spooling
file, but high resolution plots are not.

Here are two additional keywords related to modifying or redisplaying graphs:

Keyword phrases Description
keep: F Do not save plot as LASTPLOT.
show. F Do not display plot, only save.

When a graph is complicated, LASTPLOT can use a lot of room in your workspace. If
you don’t plan to modify the plot you can save memory by including keep: F as an
argument on any graphics command.

When you are building a complicated graph in stages by adding different types of
information, you may not want to see the graph until it is finished. If so, use show. F
on every plotting command except the last one. This was illustrated in producing the
plot on the preceding page.

It is an error to use both show. F and keep: F.

49

An Introduction to MacAnova

6.4 Graphs in a windowed version

In the windowed versions (Windows, Macintosh, Motif), there are eight basic graph
windows, Graph 1, Graph 2, ..., Graph 8. A new plot normally goes in the lowest
numbered available window, but keyword phrase wi ndow. n, where n is an integer
between 0 and 8 puts it in window n (Wi ndow: O puts it in the most recently used
window). When the window is in front, you can print it by selecting Print Graph on
the File menu. You can copy the graph to the Clipboard using Copy on the Edit menu
(not Motif).

On a Macintosh, but not the other versions, there are two additional windows, Panel
of Graphs 1-4 and Panel of Graphs 5-8 which display the contents of the regular
graph windows in reduced size. Copy on the Edit menu and Print Graph on the File

work with these, too. When a Panel of Graphs window is in front, clicking on any of
the panels brings the corresponding graph window to the front.

You can switch to any graph window by clicking in it, selecting it on the Windows
menu or by pressing an appropriate combination of keys.

On a Macintosh, you switch to a graph window by pressing one of #£1, 32, ..., 38, or

#F1, ..., or 3F8. Pressing #G displays a Panel of Graphs window or toggles between
such windows.

In Windows, you press Ctrl+F1, Ctrl+F2, ..., or Ctrl+F8 to switch to a graph window.
In Motif, you press Ctrl+1, Ctrl+2, ..., or Ctrl+8 to switch to a graph window.

When a graph window is in front, hitting Return or Enter brings the command/output
window forward.

The size of a dumb graph is determined by the size of the command/output window,
but can be modified by keywords hei ght and wi dt h, as illustrated in the example in
Sec. 6.3.

6.5 Plotting under DOS

When running under DOS, there is only one window. A high resolution plot replaces
its contents. Hitting Return, erases the graph and returns to command mode, refreshing
any commands and output that were on the screen before the plot.

DOS has no automatic facilities for doing anything with a graph. However, when
running a DOS version under Windows 95/98/NT you can copy the graph to the
clipboard by pressing ALT-PrintScreen.

6.6 Plotting under Linux/Unix

MacAnova on Linux or Unix (non-Motif) assumes that you are using a terminal that
can emulate a Tektronix 4014 terminal, a once popular graphical device. MacAnova
translates the information to be plotted, including plot frames, boundary ticks, labels,
lines and points into the arcane sequences of characters that a Tektronix 4014 terminal
expects.

In particular, the popular xt er mpseudo VT100 window on many workstations can
emulate a Tektronix 4014, but not some more modern replacements like dt t er mand

50

An Introduction to MacAnova

hpt er m If MacAnova is running in a xt er m window, a Tektronix graphics window is
opened and drawn to. After a Return is hit, it then switches back to the VT100 window.
If you get just a sequence of funny characters when you try to make a high resolution
plot in Linux or Unix, it probably means Tektronix emulation is not enabled.

Since few users now use Tektronix 4014 emulators, no further details are given here.
Type hel p(tek, vt, options: "tekset") for some further information.

6.7 Incorporating a graph in word processor document
The only universally applicable way to do this is to write a “dumb” plot to a file and
then open the file in the word processor.

If you have started spooling your output using spool (), “dumb’ plots are automat-
ically included in the spooled output. Alternatively, you can use showpl ot () to write
a GRAPH variable to a file as a low resolution plot. Thus

Example
Crd> showplot(file:"myplots.txt”,dumb:T)

writes the plot encapsulated in LASTPLOT to file nypl ot s. t xt as a “dumb” plot. See
Sec. 6.8 for other ways to write graphs to a file.

On a Macintosh or in Windows you can copy high resolution graphs to the Clipboard.

When a graphics window is the front window, select Copy on the Edit menu (3C or
Ctrl+C). Then switch to a word processor document or a graphics editor window and

select Paste on the Edit menu (3€V or Ctrl+V).

In the DOS versions, under Windows 95/98/NT you can copy a high resolution graph
to the Clipboard by pressing ALT-PrintScreen while the MacAnova plot is on the screen.
Under DOS without Windows, no such direct copying of the graphics screen is possible.

6.8 Writing graphs to files

Besides a dumb plot, there are other forms in which you can write a graph to a file. The
most important way is as PostScript commands. PostScript is a powerful page
description language recognized by certain printers, including Apple LaserWriters. It
can represent any graph that MacAnova can produce.

Other forms are as a Pl CT file (Macintosh only), a PCXfile (extended memory DOS
version only) or as a sequence of Tektronix 4014 commands (Linux and Unix only).

o1

An Introduction to MacAnova

Here are keywords phrases associated with writing graphs to files:

Keyword phrases Description

file:fil eNane Write PostScript to file f i | eNane without displaying the
plot.

file:fileNanme, dunb: T Write a low resolution plot to file fi | eNane without
displaying the plot.

new. T Clear file fi | eNarre before writing

| andscape: T PostScript plot will be rotated so as to fill a 8.5" by 11" page.
(used only with fil e)

ps: F Suppresses PostScript when writing a plot to a file. On a
(used only with fil e) Macintosh a PICT file is written; on Linux and Unix,

Tektronix 4014 plotting commands are written to the file; on
other computers, a “dumb” plot is written to the file.

screendunp: fil eName On a Macintosh a PICT file is written; on extended memory
DOS version a PCX file is written; illegal in other versions.

epsf: T On a Macintosh, when used with fil e: fi | eNane, an
encapsulated PostScript file is written

Example
Crd> showplot(file:"myplots.ps',new:T)

This writes a PostScript description of the graph encapsulated in LASTPLOT to file
nypl ot s. ps. On the firstuse of fil e: "nypl ot s. ps", you should include new. T as an
argument. Subsequent writes should omit new. T or have new. F.

It is beyond the scope of this document to explain what to do with the PostScript file
when you leave MacAnova. On some Linux and Unix computers, the file can be
printed using command | pr. Macintosh program Drop<PS distributed with
MacAnova can be used to send PostScript directly to a LaserWriter. In addition, there
exist various programs for displaying postscript and for translating it into various other
graphics formats. It is possible to include PostScript directly into documents processed
by some programs, including LaTeX.

7. Examples of statistical analyses

7.1 Introduction

This section includes some examples of statistical analyses using MacAnova. There is
little discussion of the analyses or explanation of the commands illustrated. See a
statistics textbook for information about the statistical techniques illustrated and use
hel p() or see the Users’ Guide to get details of the general use of these commands.

7.2 Histogram and pseudo-random number generation (rnorm(), setseeds(), getseeds(),
describe(), hist)

In statistics courses we usually learn about normal or Gaussian data and especially

about the standard normal distribution with mean 0 and standard deviation 1.

Although it has been said that no real data are 100% normal, in MacAnova you can

52

An Introduction to MacAnova

generate artificial data which really come from a normal distribution. Here’s how you
might generate 5 independent standard normal random variables.

Example

Crd> rnorm(5) # rnorm(n) generates n N(O,1) random numbers
NOTE: random nunber seeds set to 1025450084 and 305694887
(1) -0. 45119 -1. 6091 -1.8971 0. 34239 -0.52302

The line after the command clues us in to an important feature of the way MacAnova
actually generates random numbers. Under the hood, as it were, there are two “seeds”,
numbers that are used to generate random numbers and which are updated every time
rnor () is used. If they haven’t been set before the first time you use r nor n() , they are
set automatically using the time and date, as was the case here when the starting seeds
were set to 1,025,450,084 and 305,694,887. You can retrieve the current values with

get seeds():

Example

Crd> getseeds()
Seeds are 1095363896 and 358403176

They are not the same as previously printed; after generating 5 normals, the seeds have
been updated to 1,095,363,896 and 358,403,176.

You can set the seeds yourself using set seeds() :

Example
Omd> setseeds (1025450084 ,305694887) # same as was previously chosen

Crd> rnorm(5) # the same random numbers were generated.
(1) -0.45119 -1. 6091 -1.8971 0. 34239 - 0. 52302

This illustrates the principle that when you start with the same seeds, you get the same
random numbers.

We use rnor n() to generate artificial data to demonstrate how to use MacAnova to
draw histograms. First the seeds are reset to specific values so that you can exactly
reproduce the output by starting r nor n() at the same place.

Example
Crd> setseeds(67871,32211) # reset seeds to some arbitrary values

Omd> x <- 85 + 10 * rnorm(100) # normal mu = 85, sigma = 10

Crd> describe(x,mean:T,stddev:T,min:T,max:T)
conponent: mn

(1) 58. 477

conponent: nmax

(1) 112. 94

conponent: nean

(1) 84.776 Pretty close to mu = 85
conponent : st ddev

(1) 9.8114 Pretty close to sigma = 10

53

An Introduction to MacAnova

Crd> hist(x,run(55,115,5),x1ab:"N(85,10"2)" ,relfreq:T, title:\
"Histogram of normal data with mean 85 and standard deviation 10')

H st ogram of nornmal data with nean 85 and standard devi ati on 10

R
le 0.2¢ -
a
t
i
v 0.15¢ -
e
f
rooo.1f -
e
q
u
e
n 0.05f 1
C
y

ol T 1

60 70 80 90 100 110
N(85, 10"2)

The first argument to hi st is the variable you are making a histogram of.

The second argument specifies the class boundaries or limits. Since run(55, 115, 5)
is vect or (55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115), the limits are 55,
60, ..., 115.

You can also specify equally spaced class boundaries by vect or (anchor, wi dth),
where anchor is one of the boundaries wanted and wi dt h is the class width. In this
case vect or (55, 5) or even vect or (0, 5) gives the same boundaries, automatically
choosing the first and last boundary so as to include all the data.

Keyword phrase r el freq: T specifies a relative frequency histogram with bar height
= count/(sample size). Instead you can use freq: T to get a frequency histogram
with bar height = count. With neither, you get a density scale histogram, with bar
height = count/(n(bar width)), bar area count/n and total area 1. This is the only
acceptable form when the class widths are not all the same.

A simpler usage is hi st (x, 10 ...). This tells MacAnova you want 10 bars in the
histogram, but leaves it up to MacAnova to pick the boundaries. This is good for a
guick look at the data, but you probably won’t like the boundaries MacAnova picks. For
these data, the boundaries MacAnova selects are 55.754, 61.745, 67.736, ...,115.66, equally
spaced with width 5.991.

7.3 Paired t analysis (stemleaf(), describe(), twotailt(), tint())

Table 6.3.1 of Snedecor and Cochran (7th Edition, lowa State Press 1980) gives the
number of lesions on each of two halves of eight tobacco leaves. One half of each leaf
was exposed to one preparation of a virus extract and the other half was exposed to

54

An Introduction to MacAnova

another preparation. To study the difference, if any, in the mean number of lesions
from the two preprations, a paired analysis based on the differences between the two
halves of each leaf is appropriate.

Example
Cmd> x1 <- vector(31,20,18,17,9,8,10,7) # Data for preparation 1

Cmd> x2 <- vector(18,17,14,11,10,7,5,6) # Data for preparation 2
Cmd> d <- x1 - x2; d # differences

(1) 13 3 4 6 -1
(6) 1 5 1
Crd> stemleaf(d) # or stemleaf(x1-x2); make stem and leaf display
1 -0*| 1
3 +0*| 11
4 +0t | 3
4 +0f | 45
2 +0s]| 6
H gh 13

1*|1 represents 11 Leaf digit unit =1

Crd> stemleaf(d,depth:F) # omit "'depth™ columns
-0*| 1
+0*| 11
+0t | 3
+0f | 45
+0s| 6
H gh 13
1*| 1 represents 11 Leaf digit unit =1

Crd> summary <- describe(d, n:T, mean:T, stddev:T); summary
conponent: n

(1) 8
conponent: mean
(1) 4
conponent : st ddev
(1) 4. 3095

Omd> summary$mean/ (summary$stddev/sqgrt(summary$n)) #paired t-stat
(1) 2.6253

Instead of explicitly computing the t-statistic from summary (a “white box”
computation), you can use t val (), a function designed specifically for this problem (a
“black box” computation). No matter how you compute t, you can then use
twotailt() tocompute a P-value.

Example
Omd> tt <- tval(d-0) # (or tval(x1-x2)) t-statistic
Cmd> tt
(1) 2. 6253 t-statistic same as just conputed

Od> n <- nrows(d); twotailt(tt, summary$n - 1) # two-tail P-value
(1) 0. 034145 2 tail P-value

The Student’s t-statistic computed by t val () tests the null hypothesis H, that the
expected difference is zero. Since the P-value = 0.034144 < .05 you can reject H, at the a

55

An Introduction to MacAnova

= .05 significance level.

tint () computes a confidence interval based on the Student’s t-distribution:

Example
Crd> tint(d, .95) # compute 95% confidence interval
(1) 0. 3972 7.6028

With confidence 95% the expected difference is between 0.3972 and 7.6028.

The P-value and confidence interval assume the differences are a normal random
sample.

7.4 Two-sample t-test and confidence interval (describe(), t2val(), t2int(), twotailt())
We analyze data on the weight gains in grams of 19 female rats, 12 on a high protein
diet and 7 on a low protein diet, from Table 6.9.1 of Snedecor & Cochran:

Example
Omd> high <- vector(134,146,104,119,124,161,107,83,113,129,97,123)

Cmd> low <- vector(70,118,101,85,107,132,94)

Crd> nl <- nrows(Chigh); n2 <- nrows(low); vector(nl,n2)
(1) 12 7 Sanpl e sizes

Crd> describe(makestr(high,low), n:T, mean:T, var:T)
conponent: n
conponent : hi gh

(1) 12 Sampl e size for high protein sanmple
conponent: | ow
(1) 7 Sanmpl e size for |ow protein sanple

conponent: mean
conponent : hi gh

(1) 120 Mean for high protein sanple
conponent: | ow
(1) 101 Mean for |ow protein sanple

conponent: var
conponent : hi gh

(1) 457. 45 Variance for high protein sanmple
conponent: | ow
(1) 425. 33 Variance for |ow protein sanmple

You could use these results to calculate a two-sample t-test or compute a confidence
interval for the difference between the means. It’s easier to use t 2val ():

Example
Crd> tt <- t2val(high,low) # test statistic to test HO: pl = p2

Crd> vector(tt, twotailt(tt,nl+n2-2)) # value of t and P-value
(1) 1.8914 0.07573 Not significant at 5% | evel

Crd> t2int(high,low, .95) # 95% confidence interval for pl - p2
(1) -2.1937 40.194 Includes O

t2val () and t 2i nt () assume independent random samples with the same variance
and estimate the common variance by “pooling” variance estimates from the two
samples. Many statisticians prefer a method that doesn’t pool the two variances or
assume equal variances. You can use this method by include pool ed: F as an

56

An Introduction to MacAnova

argument.

Crd> result <- t2val(high,low, pooled:F); result
conponent: t

(1) 1.9107 val ue of t-statistic

conponent : df

(1) 13. 082 approxi mate degrees of freedom
Ord> twotailt(result$t, resultsdf) # P-value

(1) 0. 078208

Crd> t2int(high, low, .95,pooled:F)

(1) -2. 4691 40.469 | ncludes O

7.5 Simple linear regression and scatter plot (regress(), plot(), secoefs(), betalimits())

Here we analyze data from Table 9.7.1 of Snedecor and Cochran which gives the

percentage of wormy fruit (pcwor ny) and the number of apples harvested, in 100’s,

(cropsi ze) for 12 apple trees. The goal is to predict or explain the amount of wormy

fruit in terms of the number of applies on the tree by a simple linear regression of
pcwor my on cr opsi ze.

Crd> cropsize <- vector(8,6,11,22,14,17,18,24,19,23,26,40)
Crd> pcwormy <- vector(59,58,56,53,50,45,43,42,39,38,30,27)

A first step is a scatter plot of cr opsi ze against pcwor ny.
Example
Crd> plot(pcwormy, cropsize, ymin:0,\
xlab:"Percent Wormy Apples'™, ylab:"Crop size",title:\

"Plot of crop size in 100"s vs percent wormy for 12 apple trees'™)

Pl ot of crop size in 100's vs percent worny for 12 apple trees

401*

35

30

25

T o~

20

15

O N~ W

10

30 35 20 25 50 55
Percent Wbrny Appl es

57

An Introduction to MacAnova

There is a fairly strong negative and roughly linear relationship between pcwor ny and
cropsi ze. Notice the use of keyword phrases with keywordstitl e, xl ab, yl aband
ym n to control the appearance of a plot. These are not really necessary, but it is always
a good idea to label your graphs informatively. Keyword phrase | i nes: T would
connect successive points with lines, or you could use command | i nepl ot (). You can
select the plotting symbols used with command chpl ot () or by using keyword

synbol s. See Sec. 6.2.

Now we do the actual regression analysis

Example

Crd> regress('pcwormy=cropsize') # basic regression command
Model used is pcworny=cropsi ze

Coef St dErr t
CONSTANT 64. 247 3. 6029 17.832
cropsi ze -1. 013 0.17215 -5.8842

N. 12, MBE: 27.384, DF: 10, R*2: 0.77590
Regression F(1,10): 34.624, Durbin-Wtson: 1.6899
To see the ANOVA table type 'anova()

The row labelled CONSTANT pertains to the intercept and the row labeled cr opsi ze
pertains to the slope. The column headed Coef contains the least squares estimates of
the intercept and slope. The column headed t contains t-statistics (Coef /St dEr r)
which can be used to test the null hypotheses that the intercept or slope is 0. You can
find the P-values using twotai I t ().

Example

Crd> twotailt(vector(17.832, -5.8842), 10)
(1) 6.5683e-09 0.00015431 P-values for t-stats

Both coefficients, the intercept and the slope, are significantly different from zero at the
5% significance level (P-value < .05). If you include pval s: T as an argument to
regress(), these P-values are printed automatically.

Example

Omd> regress(('pcwormy=cropsize',pval:T) # basic regression command
Model used is pcworny=cropsize

Coef St dErr t P- Val ue
CONSTANT 64. 247 3. 6029 17.832 6.5686e-09
cropsi ze -1.013 0. 17215 -5.8842 0.00015431

N 12, MSE: 27.384, DF. 10, R*2: 0.77590
Regression F(1,10): 34.624, P-val ue: 0.00015431, Durbin-Watson: 1.6899
To see the ANOVA table type 'anova()'

The general usage for simple linear regression is regress("y=x"), where x and y are
vectors which contain the independent and dependent variables, respectively.

After you have computed the regression, you can retrieve the coefficients and their
standard errors using function secoef s() which computes a structure. To get just the
coefficients you can use secoef s(se: F) as an argument, while to get just the standard
errors, you can use secoef s(coefs: F):

58

An Introduction to MacAnova

Example

Crd> secoefs() # this gets both coefficients and std. errors

conponent : CONSTANT I ntercept and its standard error
conponent: coefs

(1) 64. 247
conponent: se

(1) 3. 6029

conponent: cropsize Sl ope and its standard error
conponent: coefs

(1) -1.013
conponent: se

(1) 0.17215

Cnmd> beta <- secoefs(se:F); ses <- secoefs(coef:F) #get separately
Crd> # beta contains coefficients, ses contains standard Errors
Crd> # Compute lower and upper 95% confidence limits

Crd> n <- nrows(cropsize)# sample size

Crd> critval <- invstu(1-.025, n-2) # Student®s t critical value

OCrd> beta - critval*ses # lower confidence limits
conponent : CONSTANT

(1) 56. 219
conmponent: cropsi ze
(1) - 1. 3966

Cmd> beta + critval*ses # upper confidence limits
conponent : CONSTANT

(1) 72. 275
conmponent: cropsi ze
(1) -0. 62941

You can also use macro betal i mts() in file regress. nac.

Example

Cnd> betalimits(cropsize,.95) # find confidence limits for slope
WARNI NG searching for unrecogni zed nmacro betalimts near betalimts(
(1) -1. 3966 -0. 62941

The warning message informs you that bet al i m t s() was not in memory. After
MacAnova found it and read it from file r egr ess. nac, betal i m t s() computed 95%
confidence limits for the slope, the coefficient of cr opsi ze. The next time you use
betal i mts() there will be no warning message.

7.6 One-way Analysis of Variance and box plot (anova(), vboxplot(), factor(), tabs())
Here is a table of yields of four varieties of wheat, each grown on several plots with
similar soils (Table 48 of Biometricheskiye Metodi of V. Yu. Urbakh, Science Press,
Moscow 1964):

Variety 1 170 172 161 170 16.8
Variety 2 158 170 164

Variety 3 174 166 162 156 155 17.2
Variety 4 157 168 151 152

59

An Introduction to MacAnova

Here is a partial analysis of these data using the t abs(), vboxpl ot () and anova()
commands. The response vector yi el d with final length 18 is entered in stages using
vector ().

Example
Cnd> yield <- vector(17,17.2,16.1,17,16.8) # enter yield data,

Crd> yield <- vector(yield,15.8,17,16.4) # making one long vector
Crd> yield <- vector(yield,17.4,16.6,16.2,15.6,15.5,17.2)

Crd> yield <- vector(yield,15.7,16.8,15.1,15.2)

Crd> #Now generate variety numbers as another vector of length 18
Crd> variety <- factor(rep(run(4), vector(5,3,6,4)))

Cd> # 5, 3, 6 and 4 are the sample sizes

Cnd> # or variety <- vector(i,1,1,1,1,2,2,2,3,3,3,3,3,3,4,4,4,4)
Crd> hconcat(variety, yield)lg look at them together

(1, 1) 1
(2,1) 1 17.2
(3,1) 1 16. 1
(4,1) 1 17
(5,1) 1 16. 8
(6,1) 2 15.8
(7,1) 2 17
(8,1) 2 16.4
(9,1) 3 17. 4
(10, 1) 3 16. 6
(11, 1) 3 16. 2
(12,1) 3 15.6
(13,1) 3 15.5
(14, 1) 3 17.2
(15, 1) 4 15. 7
(16, 1) 4 16. 8
(17, 1) 4 15. 1
(18, 1) 4 15. 2
Crd> list(variety,yield) # variety is a factor
variety REAL 18 FACTOR with 4 |evels

yi el d REAL 18

Crd> tabs(yield, variety) # compute variety means and variances
conponent: mean

(1) 16. 82 16. 4 16. 417 15. 7
corrponent .ovar

(1) 0. 182 0. 36 0. 63367 0. 60667
corrponent . count

(1) 5 3 6 4

Although the sample sizes are rather small, a box plot shows what is going on better
than the numbers do.

60

An Introduction to MacAnova

Example
Crd> vboxplot(split(yield,variety),xlab:"Yield",\
ylab:"Variety number, title:"Yield of wheat by variety')
Yield of wheat by variety

Vv 17_ |
a
r |
i
e
t 16. 5
y
n
o
u 16} ‘
m
b
e
r
15. 5t
1
T 2 3 4

Yield
Command boxpl ot () does the same, except the boxplots are oriented horizontally.

There appears to be a difference among varieties. To test for its reality, you can
compute an analysis of variance.

Example
Crd> anova(“'yield=variety', fstat:T) #one-way ANOVA
Model used is yield=variety
WARNI NG summaries are sequenti al

DF SS M5 F P-val ue
CONSTANT 1 4821. 6 4821.6 10487.75390 0
variety 3 2.8237 0.94122 2.04730 0. 15348
ERRORL 14 6. 4363 0. 45974

For one-way ANOVA, the argument to anova() is a string of the form "r esponse =
factor", where f act or was created using function f act or (). Since the P-value for
the null hypothesis that all the means are the same is .15348, you cannot reject the null

hypothesis at any significance level o <.15348.

Important: If you don’t use f act or () to create the vector of category levels, you will
get the wrong answer.

Without f stat: T in anova(), no F-statistics or P-values are printed. You could
compute them “by hand,” because anova() creates several “side effect” variables,
among them vectors SS and DF, containing the sums of squares and their degrees of
freedom, respectively. You can find mean squares as SS/ DF.

61

An Introduction to MacAnova

Example
Crd> hconcat(DF,SS,SS/DF) # compare with ANOVA table
(1) (2) (3)
CONSTANT 1 4821. 6 4821. 6
variety 3 2.8237 0.94122
ERROR1 14 6. 4363 0. 45974
Cmd> MS <- SS/DF; MS # ANOVA mean squares
CONSTANT variety ERRCORL
4821. 6 0.94122 0. 45974

Crd> T <- MS[2]/MS[3] # F-statistic

Cmd> vector(f,l-cumF(f, DF[2],DF[3])) # F statistic and P-value
(1) 2.0473 0. 15348

The row labels were automatically generated from the term names as part of the side
effect variables DF and SS.

7.7 Randomized Block (Two-way) Analysis of Variance (anova(), factor(), tabs())

Here are data from Table 14.2.1 of Snedecor and Cochran from an experiment in which
four seed treatments and a check (no treatment) were compared in a randomized block
design with 4 replicates. The response is the percentage of seedlings in each plot that
failed to emerge.

Block Number
Treatment 1 2 3 4 5
Check 8 10 12 13 11
Arasan 2 6 7 11 5
Spergon 4 10 9 8 10
Semasan,Jr 3 5 9 10 6
Fermate 9 7 5 5

First, enter the data as one long vector, treatment by treatment (row by row). Then
create factors containing the replicate numbers and treatment numbers.

Example
Cnd> fairlures <- vector(s,10,12,13,11, 2,6,7,11,5,\
4,10,9,8,10, 3,5,9,10,6, 9,7,5,5,3)

Cmd> reps <- factor(rep(run(5),5))#vector(1,2,3,4,5,1,2,3,4,5,...,)
Crd> treatment<-factor(rep(run(5),rep(5,5)))#vector(1,1,1,1,1,2,..)

62

An Introduction to MacAnova

Crd> hconcat(reps, treatment, failures) # see them all
1,1) 8
10
12
13
11
2
6
7
11
5
4

NFPOOONOUPRWNRPOOONOOIAWN

NN N NN NN NN NN NN
RPRRRPRRRRRPRRRPREPRRPREPBREP R R
N N N N N e e e e e e’ e’ e e e e e e e e " " "’
AWNRUODMWNRUMAWNRUODMWNRUOAMAWNER
COUIORARDRMRDRMWWWWWNNNNNRRRRR
©

UgIOINOOYOOuUITWw

—~
NN
B w

Crd> tabs(failures,treatment,mean:T,count:T) # treatment means
conponent: mean

(1) 10. 8 6.2 8.2 6.6 5.8
conponent: count
(1) 5 5 5 5 5

Crd> tabs(failures, reps, mean:T,count:T) # block means
conponent: mean

(1) 5.2 7.6 8.4 9.4 7
conponent: count
(1) 5 5 5 5 5

Cmd> anova('failures = reps + treatment',fstat:T) # do ANOVA
Model used is failures = reps + treatnent

DF SS [Y/S) F P-val ue
CONSTANT 1 1413. 8 1413. 8 261. 32348 2.4752e-11
reps 4 49, 84 12. 46 2.30314 0.1032
t r eat ment 4 83. 84 20. 96 3.87431 0. 021886
ERRCORL 16 86. 56 5.41

Cnd> # compute F-statistic and P-value “by hand”
Cmd> f <- (SS[3]1/DF[3])/(SS[4]/DF[4]) # F-statistic

Crd> vector(f,1 - cumF(Ff,DF[3],DF[4])) # F-statistic and P-value
(1) 3.8743 0. 021886 Significant at 5% | evel

The general form of anova() for a randomized block command is anova("r esponse
= bl ocks + treatnent"), whereresponse is the variable being analyzed, and

bl ocks and t r eat nent s are vectors of block number and treatment number created by
function fact or (). This same method works even with incomplete blocks.

63

An Introduction to MacAnova

7.8 Multiple Regression (regress(), anoval(), secoefs(), resid(), betalimits(), resvsrankits())
As an example we analyze a data set due to Hald which has been widely used to
demonstrate statistical methods. Itis in matread() format (see Sec. 5.4) as data set

hal ddat a in file MacAnova. dat distributed with MacAnova.

Example
Crd> hald <- matread(‘'macanova.dat™,'*halddata’™)
hal ddat a 13 5 format | abels
) Hald data fromA Hald, Statistical Theory w th Engi neering
) Applications, WIley, New York, 1952, p. 647
) Col. 1. X1 = percent tricalciumalumnate
) Col. 2: X2 = percent tricalciumsilicate
) Col. 3: X3 = percent tetracalciumalumno ferrite
) Col. 4. X4 = percent dicalciumsilicate
) Col. 5: Y = cunulative heat evolved fromcenent hardening after
) 180 days. (cal ories/gm

Read fromfile "KBl: MacAnova: nracanova. dat "

Crd> makecols(hald,x1,x2,x3,x4,y); list(x1,x2,x3,x4,y)
x1 REAL 13

X2 REAL 13
X3 REAL 13
x4 REAL 13
y REAL 13

Cnmd> regress('y = x1 + x2 + x3 + x4", pval:T)
Model used is y = x1 + x2 + x3 + x4

Coef StdErr t P- val ue
CONSTANT 62. 405 70. 071 0. 8906 0. 39913
x1 1.5511 0. 74477 2.0827 0. 070822
X2 0.51017 0.72379 0. 70486 0. 5009
X3 0.10191 0.75471 0. 13503 0. 89592
x4 - 0. 14406 0. 70905 -0. 20317 0. 84407

N. 13, MBE 5.983, DF: 8, R*2: 0.98238
Regression F(4,8): 111.48, P-value: 4.7562e-07, Durbin-Watson: 2.0526
To see the ANOVA table type 'anova()'

The estimated variance is MSE = 5.983. The unadjusted multiple R2 is R*2 =.98238.
The overall regression F on 4 and 8 degrees of freedom is F(4, 8) =111.48. Itis highly
significant (P =.000000476). You can easily get a corresponding ANOVA table.

Example
Crd> anova(,fstat:T) # also look at the sequential ANOVA table
Model used is y = x1+x2+x3+x4
WARNI NG summaries are sequenti al

DF SS VS F P- val ue
CONSTANT 1 1.1837e+05 1.1837e+05 19784.92710 0
x1 1 1450. 1 1450. 1 242.36792 2.8876e-07
X2 1 1207. 8 1207. 8 201. 87053 5. 8633e-07
X3 1 9. 7939 9. 7939 1. 63696 0. 2366
x4 1 0. 24697 0. 24697 0. 04128 0. 84407
ERRCR1 8 47. 864 5.983

Important: When you don’t provide an explicit “model” to r egr ess() and anova(),
they use the most recent model.

64

An Introduction to MacAnova

By default, anova() computes “sequential” sums of squares. These measure the
contribution of each variable after fitting the preceding variables, but ignoring later
variables. These are sometimes called Type | sums of squares. If you want sums of
squares of each variable after fitting all the others (Type 11l sums of squares), use
keyword phrase mar gi nal : T.

Example
Crd> anova(,fstat:T, marginal:T)
Model used is y = x1+x2+x3+x4

WARNI NG SS are Type Il suns of squares

DF SS VB F P-val ue
CONSTANT 1 4. 7455 4. 7455 0. 79317 0. 39913
x1 1 25. 951 25.951 4.33747 0. 070822
X2 1 2.9725 2.9725 0. 49682 0. 5009
x3 1 0. 10909 0. 10909 0. 01823 0. 89592
x4 1 0. 24697 0. 24697 0. 04128 0. 84407
ERRORL 8 47. 864 5.983

You can recover the coefficients and their standard errors using secoef s() and
compute critical values using i nvstu().

Example
Crd> beta <- secoefs(se:F); ses <- secoefs(coef:F)

Cmd> critval <- invstu(1-.05/2,DF[6]); critval
(1) 2. 306 Critical value for t on 8 d.f.

Crd> errormargins <- critval*ses

Crd> beta - errormargins # lower limits
conponent : CONSTANT

(1) -99. 179
conponent: x1
(1) - 0. 16634
conponent: x2
(1) -1.1589
conponent: x3
(1) -1. 6385
conponent: x4
(1) -1.7791

Crd> beta + errormargins # upper limits
conponent : CONSTANT

(1) 223.99
conponent: x1
(1) 3. 2685
conponent: x2
(1) 2.1792
conponent: x3
(1) 1. 8423
conponent: x4
(1) 1.491

Alternatively you can use bet al i m t s() to find confidence limits for a coefficient.

Crd> betalimits(x1, -95)
(1) -0. 16634 3. 2685

65

Crd> betalimits(x2,

(1)

An analysis of residuals should be part of most regression analyses. resi d() computes

-1. 1589

An Introduction to MacAnova

.95)
2.1792

several quantities related to residuals for each case.

Example
Cmd> resid() # type help(resid:"description_of output') for details
Depvar St dResi ds H | Cook's D t-stats
(1) 78.5 0.0029021 0.55028 2.0612e-06 0.0027147
(2) 74. 3 0. 75662 0. 33324 0. 057225 0. 73453
(3) 104. 3 -1. 0503 0.57694 0. 30086 -1. 0581
(4) 87.6 -0. 84108 0. 29524 0. 05927 - 0. 82404
(5) 95.9 0.12791 0.3576 0.0018214 0.11977
(6) 109. 2 1.7148 0. 12416 0. 083369 2. 017
(7) 102. 7 -0. 74445 0. 36708 0. 064285 -0.72182
(8) 72.5 -1.6878 0. 40854 0. 39353 -1. 9675
(9) 93.1 0. 6708 0. 29431 0. 037532 0. 6459
(10) 115.9 0.21029 0. 7004 0. 020677 0. 19726
(11) 83.8 1.0739 0. 42551 0.17084 1. 0859
(12) 113.3 0. 46335 0. 26298 0. 015322 0. 43936
(13) 109. 4 -1.1241 0. 30372 0.11024 -1. 1459

resvsrankits(),resvsyhat () and resvsi ndex() make plots of standardized
residuals against normal scores (rankits), predicted value and case number.

Omd> resvsrankits(title:\
"Normal Scores (rankit) plot of residuals from Hald data'™)

1

0.

ODON—TQOT DALY

- 0.

wa—unoy

-1.

5k

Nor mal Scores (rankit) plot of residuals fromHald data

%*

1.5 °1 0.5 0 0.5 1 1.5
Nor mal Scores

This shows no obvious signs of non-normality in the residuals. Substantial curvature
or a big “hook” at the end would be a warning that the residuals might not be normal.

66

An Introduction to MacAnova

You can plot unstandardized residuals using keyword phrase st andr es: F. 12
Crd> resvsyhat(standres:F,title:\

"Non-standardized residuals from Hald data vs fitted values™)

Non- st andardi zed residuals fromHald data vs fitted val ues

4- * T T

wa—unuo:m

|* 1 1

Fitted Val ues (Yhat)

Crd> resvsindex(title:\
"Standardized residuals from Hald data vs case number'™)

St andar di zed residuals from Hal d data vs case nunber

75 80 85 90 95 700 105 110 115

%
1.5f

0. 5r *

ODON—TQ-®DAOSY (WY
*

wa—uao:my

-1.5F

1 '* 1 1

2 4 6 8 10 12
Case Nunbers

12" New feature, July 2001

67

	Table of Contents
	1. Introduction
	1.1 What is MacAnova?
	1.2 The purpose of this document
	1.3 Differences among MacAnova versions
	1.4 Obtaining MacAnova

	2. Getting started
	2.1 Launching Macanova
	2.2 Typing and editing commands
	2.3 Quitting
	2.4 Learning more about MacAnova – documentation

	3. The Basics
	3.1 MacAnova as a numerical calculator
	3.2 MacAnova as symbolic calculator
	3.3 MacAnova as computing language – functions and macros
	3.4 More on Variables – REAL, LOGICAL and CHARACTER data Named variables can contain several types of data. The most common
	3.5 Comparisons of numbers and combining LOGICAL values
	3.6 Variables with several values – Vectors and Matrices
	3.7 Missing values

	4. Building on the Basics
	4.1 Combining vectors and matrices – vector(), hconcat() and vconcat()
	4.2 Creating patterned vectors – run() and rep()
	4.3 Assigning values to the elements of a vector or matrix
	4.4 Simple summaries of data in vectors and matrices
	4.5 Simple descriptive statistics – describe()
	4.6 Getting help – MacAnova commands help() and usage()

	5. Using files
	5.1 General
	5.2 Recording your MacAnova session – spool()
	5.3 Saving your workspace – save() and asciisave()
	5.4 Reading data from files
	5.5 Moving data from and to a spreadsheet

	6. Visualizing numbers – drawing graphs 6.1 Basic graphing commands
	6.1 Basic graphing commands
	6.2 Using keywords to control the appearance of graphs
	6.3 GRAPH variables and modifying graphs
	6.4 Graphs in a windowed version
	6.5 Plotting under DOS
	6.6 Plotting under Linux/Unix
	6.7 Incorporating a graph in word processor document
	6.8 Writing graphs to files

	7. Examples of statistical analyses
	7.1 Introduction
	7.2 Histogram and pseudo-random number generation
	7.3 Paired t analysis
	7.4 Two-sample t-test and confidence interval
	7.5 Simple linear regression and scatter plot
	7.6 One-way Analysis of Variance and box plot
	7.7 Randomized Block (Two-way) Analysis of Variance
	7.8 Multiple Regression
	Residual analysis

