
This file consists of Chapter 8 of MacAnova User’s Guide by Gary W. Oehlert and
Christopher Bingham, issued as Technical Report Number 617, School of Statistics,
University of Minnesota, revised August 1998, describing Version 4.07 of MacAnova.

This manual is Copyright © 1998 Gary W. Oehlert and Christopher Bingham, all rights
reserved.

Fonts used in this manual are Palatino, Courier, and Symbol.

For information concerning MacAnova, write University of Minnesota, Department of
Applied Statistics, 352 Classroom Office Building, 1994 Buford Avenue, St. Paul, MN
55108-6042.

kb
This is Chapter 8 of the MacAnova Users' Guide for MacAnova version 4.07. The complete Users' Guide is available at
 http://www.stat.umn.edu/~gary/macanova/documentationug.html

Please notify the authors (kb@stat.umn.edu or gary@stat.umn.edu) of any inaccuracies or typographical errors. What may appear as bold face Greek symbols should be italic.

List of PDF files making up manual
 PDF File PDF File
Contents mancntnt.pdf Chapter 8 manchp08.pdf
Preface manprfac.pdf Chapter 9 manchp09.pdf
Chapter 1 manchp01.pdf Chapter 10 manchp10.pdf
Chapter 2 (a) manchp2a.pdf Chapter 11 manchp11.pdf
Chapter 2 (b) manchp2b.pdf Appendix A manapdxa.pdf
Chapter 3 manchp03.pdf Appendix B manapdxb.pdf
Chapter 4 manchp04.pdf Appendix C manapdxc.pdf
Chapter 5 manchp05.pdf Appendix D manapdxd.pdf
Chapter 6 manchp06.pdf Appendix E manapdxe.pdf
Chapter 7 manchp07.pdf Appendix F manapdxf.pdf

MacAnova Version 4.07

8 Advanced Features

8.1 MacAnova options MacAnova’s behavior is in part controlled by the value of
certain “options.” Things affected include the default format for output (Sec. 7.4.1 and
7.4.2), the prompt that is used, seeds used by rnorm(), runi() and rpoi() (Sec. 2.13.1),
and whether or not F-statistics will be computed and printed in an Analysis of
variance (Sec. 3.7, 3.8).

8.1.1 getoptions() The current values of all options can be retrieved by str <-
getoptions() which saves them in a structure whose components have the same
names as the options.

Cmd> setoptions(default:T) # see Sec. 8.1.3

Cmd> str <- getoptions(); print(str) # Macintosh defaults
component: seeds
(1) 0 0 Values at start up
component: nsig
(1) 5
component: format
(1) "12.5g"
component: wformat
(1) "16.9g"
component: angles
(1) "radians"
component: height
(1) 25
component: width
(1) 80
component: errors
(1) 0
component: prompt
(1) "Cmd> "
component: batchecho
(1) T
component: restoredel
(1) T
component: dumbplot
(1) F
component: scrollback
(1) F
component: missing
(1) "MISSING"
component: warnings
(1) T
component: fstats
(1) F
component: pvals
(1) F
component: fontsize
(1) 9
component: font
(1) "McAOVMonaco"

8-1

MacAnova Version 4.07

component: maxwhile
(1) 1000
component: labelabove
(1) F
component: labelstyle
(1) "("
component: inline
(1) T
component: savehistry
(1) T
component: history
(1) 100

See Sec. 8.1.3 for explanations of these options.

You can retrieve the values of specific options by, for example,

Cmd> getoptions(format:T,wformat:T)
component: format
(1) "12.5g"
component: wformat
(1) "16.9g"

If you name more than one option as was done here, getoptions() returns a structure
with appropriately named components. Otherwise it returns a scalar or vector.

Cmd> str <- getoptions(all:T,format:F,wformat:F)

returns the values of all options except format and wformat.

8.1.2 setoptions() You change options using command setoptions(). Here is a typical
usage:

Cmd> setoptions(nsig:7, missing:"NA")

This sets the default number of significant digits that are printed to 5 and specifies that
a MISSING value will be printed as “NA” instead of “MISSING” .

Each option is set with a keyword phrase of the form optionName:value, where
optionName is the name of the option to be set to value which may be REAL, LOGICAL,
or CHARACTER depending on the option. See Sec. 8.1.3 for a list of all options.

If Options is a structure with component names matching any or all of the legal option
names, setoptions(Options) sets the options from the component values. Thus

Cmd> setoptions(structure(nsig:7, missing:"NA"))

does the same as the previous example. This usage also allows you to save all options,
change one or more and then restore the original values.

Cmd> getoptions(angles:T)
(1) "radians"

Cmd> str <- getoptions() # save all option values

Cmd> setoptions(angles:"degrees")

8-2

MacAnova Version 4.07

Cmd> getoptions(angles:T)
(1) "degrees" Option angles has changed

Cmd> setoptions(str) # restore all option values

Cmd> getoptions(angles:T)
(1) "radians" Option angles is as originally

You can reset all options to their default values by setoptions(default:T).

8.1.3 List of available options Not all of the following are meaningful in all MacAnova
versions. They are listed in alphabetical order.

angles, value is CHARACTER scalar "radians", "degrees" or "cycles"
setoptions(angles:units) specifies the angular units assumed for sin(),
cos(), tan(), asin(), acos(), and atan() (Sec. 2.8.6), as well as cpolar(),
hpolar(), crect(), hrect(), and unwind() (Sec. 5.2.4). The legal values for
units are the strings "radians" (the default), "degrees" (360° equivalent to 2π
radians), and "cycles" (1 cycle equivalent to 2π radians).

Cmd> setoptions(angles:"degrees");vector(acos(.5),cos(150))
(1) 60 -0.86603

batchecho, value is T or F
setoptions(batchecho:F) suppresses the normal echoing of the commands
read from a batch files (see Sec. 7.6). setoptions(batchecho:T) enables such
echoing. The value of option batchecho is ignored when keyword echo is used
on batch().

dumbplot, value is T or F
setoptions(dumbplot:T) makes all graphs “dumb” printer plots unless you use
keyword phrase dumb:F on a plotting commands. See Sec. 8.5.2. The value of
option dumbplot is ignored when keyword dumb is used on a plotting command.

errors , value is non-negative integer
setoptions(errors:n) sets the maximum number of errors tolerated to n. n = 0
means errors will not be counted. See Sec. 8.2 for information on how this option
affects how MacAnova handles errors.

format and wformat, values are CHARACTER scalars
setoptions(format:Format), sets the default format for printing to the value of
Format, a quoted string or CHARACTER scalar. For example, after
setoptions(format:"9.4g") or setoptions(format:"g9.4"), most numbers
will be printed in floating point form with 4 significant digits and a width of at
least 9 characters. Format must have one of the forms "w.dg" or "w.df" (or
"gw.d" or "fw.d"), where w and d are integers. For both, w is the width, that
is, the minimum number of character positions normally used. If w is omitted, as
in ".8g" or "g.8"), it is computed as w = d+7.

The specified width is actually only a minimum. If more space is required to
provide d significant digits or decimals, numbers printed will be wider than w.

If the format is "w.dg" or "gw.d" , output will be in floating point form with d

8-3

MacAnova Version 4.07

significant digits.

Cmd> setoptions(format:"14.7g"); vector(1e4*PI,-1e-7*PI)
(1) 31415.93 -3.141593e-07

If Format is "w.df" or "fw.d", output will be in fixed point form with d digits
after the decimal point; if d is zero, no decimal point will be printed.

Cmd> setoptions(format:"14.7f"); vector(1e4*PI,-1e-7*PI)
(1) 31415.9265359 -0.0000003

The printing of numbers by print() (Sec. 7.4.1) and matprint() (Sec. 7.4.2) as
well as many other commands such as anova(), regress(), and cluster(), is
controlled by this format.

Setting this option also sets option nsig to d.

Cmd> setoptions(format:"5.3f"); getoptions(nsig:T)
(1) 3.000 Width 5 with 3 digits after decimal

setoptions(wformat:Format) sets the default format just for commands
write() and matwrite(). It has no effect on option nsig.

Cmd> setoptions(wformat:".19g");write(vector(1e4,-1e-7)*PI)
VECTOR:
(1) 31415.9265358979319 -3.141592653589793221e-07

The value options format and wformat are ignored when keywords format or nsig
are used on output commands (Sec. 7.4.1, 7.4.2).

font and fontsize, values are CHARACTER scalar and positive integer, respectively
setoptions(font:"Courier"), say, changes the font used in the current
command window to Courier. In place of "Courier" you can use the name of
any available font. Although no check is made, you should always use a non-
proportional font (all characters have the same width).

setoptions(font:"Courier 10"), say, changes the font and the font size.

setoptions(fontsize:12), say, changes the font size to 12.

At present, these options are available only in the Macintosh version.

fstats and pvals, values are T or F
setoptions(pvals:T) changes the default behavior of many GLM commands to
compute and print the P-values of various F, χ2 and Student’s t test statistics
under standard assumptions.

setoptions(fstats:T) changes the default behavior of GLM commands
producing analysis of variance tables to compute and print the values of F-
statistics. Unless suppressed by pvals:F on the GLM command, P-values will
also be printed by default.

height and width, values are positive integers
setoptions(height:n) sets the assumed number of lines on the screen to be n.
n = 0 means no limit. In non-windowed versions of MacAnova, if n > 0, when
output from a command fills up the screen, MacAnova will pause and print

8-4

MacAnova Version 4.07

 Hit RETURN to continue or q RETURN to go to next command line:

or

 Press 'q' to quit, 'j' or 'n' to see next line, any other key to continue

to keep output from scrolling off the screen. In all versions, option height also
affects the default maximum number of stems in a stem and leaf display (Sec.
2.12.2) and the size of a “dumb” plot (see Sec. 8.5.2). For compatibility with earlier
versions, lines is recognized as a synonym for height.

setoptions(width:n) sets the assumed number of characters on a line to be n.
The value of n must be at least 30. This number, together with the current
formatting option, determines how many items are printed per line and the width
of “dumb” plots.

On windowed versions, height and width may be changed when you resize the
command window.

The value of options height and/or width are ignored if keywords height
and/or width are used on plotting or printing commands.

history, value is non-negative integer
setoptions(history:75) specifies that the number of previous commands that
will be saved for recall and possible editing is 75. This is operative on windowed
versions (Macintosh, Windows, Motif) versions, the extended memory version
for DOS, and most non-windowed Unix versions. See Sec. 8.8.2, 8.8.3.

inline, value is T or F
setoptions(inline:F) sets the default expansion mode for macros to be out-of-
line rather than in-line. setoptions(inline:T) restores the usual default.
When defining a macro using macro(), keyword inline takes precedence over
this option. See Sec. 9.3.5.

labelabove, value is T or F
setoptions(labelabove:F) specifies that, when non-labeled variables are
printed, the labels for the last coordinate (the only coordinate for vectors) are
printed across the top, rather than on the left side. It has no effect on the printing
of CHARACTER variables or of variables with labels (See. Sec. 8.4).

Cmd> array(run(16),2,2,4) # default labeling
(1,1,1) 1 5 9 13
(1,2,1) 3 7 11 15
(2,1,1) 2 6 10 14
(2,2,1) 4 8 12 16

Cmd> setoptions(labelabove:T)

Cmd> array(run(16),2,2,4)
 (1) (2) (3) (4)
(1,1) 1 5 9 13
(1,2) 3 7 11 15
(2,1) 2 6 10 14
(2,2) 4 8 12 16

8-5

MacAnova Version 4.07

labelstyle, value is CHARACTER scalar, one of "(", "[", "{", "<", "/" or "\\"
setoptions(labelstyle:"["), for example, specifies that, when non-labeled
variables are printed, coordinate indices are of the form [3], or [3,4]. This
operates independently of option labelabove.

Cmd> setoptions(labelstyle:"{", labelabove:T)

Cmd> array(run(16),2,2,4)
 {1} {2} {3} {4}
{1,1} 1 5 9 13
{1,2} 3 7 11 15
{2,1} 2 6 10 14
{2,2} 4 8 12 16

This option also affects the way a label of the form rep("@",n) is expanded when
it is printed. See Sec. 8.4.1.

maxwhile, value is integer ≥ 10
setoptions(maxwhile:2000) specifies that that the maximum allowed
repetitions of a while loop is 2000 instead of the default 1000. See Sec. 9.2.3.

missing, value is CHARACTER scalar with no more than 20 characters
setoptions(missing:"NA"), for example, changes the representation of
MISSING values (See Sec. 2.7) in output to NA instead of the default MISSING. You
can use any CHARACTER scalar instead of "NA".

nsig, value is positive integer
setoptions(nsig:d) specifies that all output except that produced by write()
and matwrite() (see Sec. 7.4.1, 7.4.2), should be in floating point format with d
significant digits and is equivalent to setoptions(format:w.dg), where w =
d+7. Changing option nsig has no effect on option wformat.

Cmd> setoptions(nsig:6); print(PI)
PI:
(1) 3.14159

Cmd> getoptions("format")
component: format
(1) "13.6g"

Option nsig is ignored when formatting information is supplied on print() and
matprint().

prompt, value is CHARACTER scalar
setoptions(prompt:newPrompt) changes the prompt from "Cmd> " to
newPrompt, where newPrompt is a quoted string or CHARACTER scalar no more
than 20 characters long.

Cmd> setoptions(prompt:"Next? ")

Next?

When setoptions(prompt:Prompt) is executed in a batch file (see Sec. 7.6), the
new prompt remains in effect only until the commands in the file are finished.
Since a start up file (Sec. 7.8.1) is executed as a batch file, this option cannot be
usefully set in a start up file since the prompt is forgotten when the batch file is

8-6

MacAnova Version 4.07

completed.

scrollback, value is T or F
setoptions(scrollback:T) changes the default behavior so that when the
output generated by a command is so long that its beginning scrolls out of sight,
the output window is automatically scrolled back to show the previous prompt
after the next prompt is printed. This is available only on windowed versions
(Macintosh, Windows, Motif). setoptions(scrollback:F), suppresses such
automatic scrolling back. After such a scrolling back, typing anything scrolls the
new prompt into view. The value of option scrollback is ignored on help()
when keyword scrollback is used.

savehistry, value is T or F
setoptions(savehistry:F) changes the default behavior of save() and
asciisave() so that the history of recent command lines will be not be saved.
setoptions(savehistry:T) restores the normal behavior so that such a history
is automatically saved and will be automatically restored by restore(); when the
value is False, the history is not saved. Option savehistry is ignored when
keyword history is used on save() and asciisave(). The default value of
savehistry is True except in non-interactive mode.

seeds, value is a vector of two positive integers
setoptions(seeds:vector(m,n)) is equivalent to setseeds(m,n), except that
setoptions(seeds:vector(0,0)) doesn’t initialize the seeds based on the date
and time. See Sec. 2.13.1.

warnings, value is T or F
setoptions(warnings:F) suppresses the printing of any lines starting
“WARNING:” and setoptions(warnings:T) enables the printing of such lines.
This can be useful, for example, if you are doing a lot of arithmetic with variables
containing MISSING values which normally generates warning messages.
However, setoptions(warnings:F) can be quite dangerous in that many
important messages take the form of warnings.

8.2 Treatment of errors MacAnova attempts to keep track of the number of errors that
occur. What it actually counts is the number of printed messages starting with
“ERROR:”. If the count reaches a certain threshold, execution is terminated. In
interactive mode, the default limit is infinite, so that errors in typing commands
should never cause MacAnova to shut down. The default limit is 1 while commands
in a batch file are being executed, so that just one error will terminate reading the batch
file and return to the prompt level.

You can change the limit for batch files by option errors on the setoptions()
command (Sec. 8.1). setoptions(errors:0) or setoptions(errors:1) specifies the
default behavior, while setoptions(errors:n) where n is an integer ≥ 2 raises the
limit. When setoptions(errors:n) is executed in a batch file, the new value is
forgotten when MacAnova returns to the prompt level, but is inherited by any nested
batch() commands.

8-7

MacAnova Version 4.07

Here is a brief example. Suppose file, mybatch.txt looks like the following with a
missing “)”on the first line:

delete(indvar # this is an error: missing ')'
indvar <- run(10) # we've gotten past the error
depvar <- rnorm(10)
regress("depvar=indvar",silent:T)

Here is an example of what happens when option errors has value 0 and a larger
number.

Cmd> setoptions(errors:0) # or setoptions(errors:1)

Cmd> batch("mybatch.txt")

mybatch.txt> delete(indvar # this is an error: missing ')'
ERROR: missing ')' near delete(indvar
WARNING: too many errors on batch file mybatch.txt

Cmd> # back at the input prompt because of error in batch file

Cmd> setoptions(errors:10) # now allow up to 10 errors

Cmd> batch("mybatch.txt")

mybatch.txt> delete(indvar # this is an error: missing ')'
ERROR: missing ')' near delete(indvar

mybatch.txt> indvar <- run(10) # we've gotten past the error

mybatch.txt> depvar <- rnorm(10)

mybatch.txt> regress("depvar=indvar",silent:T)

mybatch.txt> (end of file on mybatch.txt)

Cmd> # back at the input prompt because batch file finished

8.3 Creating CHARACTER variables The simplest way to create a CHARACTER variable is
to enter it directly using double quotes.

Cmd> labels <- vector("height","weight","age")

When all the elements being entered are single words, with no embedded spaces or
commas, you can use pre-defined macro enterchars whose arguments should not be
quoted and need not be separated by commas. If you do use quotes, they will be treated
as part of the word. Successive commas or a trailing comma result in entering null
strings ("").

Cmd> enterchars(height weight,,"age",)
(1) "height"
(2) "weight"
(3) "" Because of ,,
(4) "\"age\"" Note quotes are part of value
(5) "" Because of trailing ,

You can also combine CHARACTER, REAL, and LOGICAL data into a CHARACTER scalar or
vector using paste() (Sec. 8.3.1, 8.3.2, 8.3.3), create CHARACTER variables consisting of
arbitrary characters using putascii() (Sec. 8.3.4), and read CHARACTER data from a file
using vecread() and matread() (Sec. 7.2).

8-8

MacAnova Version 4.07

8.3.1 Building custom CHARACTER variables – paste() paste() allows you to
construct complex CHARACTER variables “to order.” You can use it to combine quoted
strings or CHARACTER variables and the values of REAL and LOGICAL variables into a
single CHARACTER variable. The resulting variable can then be printed, perhaps as an
error message or as part of a customized table of statistical results, or used to label a
graph (Sec. 8.5.1) or the coordinates of a variable (Sec. 8.4).

The basic usage of paste() is

Cmd> result <- paste(v1,v2,...) # or print(paste(v1,v2,...))

Here v1, v2, ... may be REAL or LOGICAL variables or expressions, quoted strings or
CHARACTER variables, or macros. Numerical values are translated to strings of
characters such as "3.14159", logical values are translated to "T" or "F", and
CHARACTER variables and macros are left as is. All the items in the argument list are
“pasted” together to make a single CHARACTER variable. The structure of matrices and
arrays is ignored, that is, paste(x) and paste(vector(x)) produce the same string.

Cmd> paste("The value of PI is",PI)
(1) "The value of PI is 3.1416"

Cmd> x <- matrix(run(6),2); paste("x is",x)
(1) "x is 1 2 3 4 5 6" Matrix structure is ignored

By default, the arguments are separated by a single space in the output. You can specify
a different separator or even several separators or no separator using keyword sep.

Cmd> paste(sep:"*",run(7),sep:"=",prod(run(7))) # use 2 separators
(1) "1*2*3*4*5*6*7=5040"

Cmd> paste("M","a","c","A","n","o","v","a",sep:"") # no separator
(1) "MacAnova"

The last of these shows that sep:"" indicates no separation, and also that a sep
keyword phrase that is the last argument is treated as if it were before the first
argument.

The default format used for numbers is the same as for print() (see Sec. 7.4.1), except
that integers are always formatted as integers and leading and trailing blanks are
squeezed out. Missing values are printed as “MISSING” (or the current value of option
missing, if different; see Sec. 8.1.3). You can override this default using keyword
phrase missing:"?", say, to print missing values as “?”.

Cmd> x <- vector(1,3,5,?,11);paste(x,missing:"?")
(1) "1 3 5 ? 11"

8.3.2 Formatting paste() output You can customize the format using keywords format,
intwidth, charwidth and justify (but not nsig).

Keyword phrase intwidth:w, where w is a positive integer, specifies that all integer
REAL values will be printed using at least w characters, with leading spaces inserted if
necessary. Similarly, charwidth:w specifies that all CHARACTER values will be padded
on the right with enough spaces to make their width at least w, but will not trim them if
they are longer than w.

8-9

MacAnova Version 4.07

When you specify a width for CHARACTER values that is wider than a CHARACTER
argument requires, the argument is normally padded with blanks on the right – that is,
it is left justified. You can modify this behavior by using justify:"right" or
justify:"center" as an argument (justify:"r" or justify:"c" are also
recognized). You can restore the default using justify:"left" (or justify:"l").

Cmd> print(paste(sep:"","|",charwidth:12,"Source",sep:"|",\
justify:"r","DF",justify:"c","SS",""))

|Source | DF| SS |

Keyword format is used as on print() (Sec. 7.4.1, 8.1.3), except that when the format is
of the form ".df" or ".dg" where d is an integer (for example, ".5g" or ".4f"), any
leading blanks are trimmed away. If the format is of the form "w.df" or "w.dg"
(for example, "12.5g" or "7.4f"), where w and d are integers, leading blanks are
kept. Moreover, if intwidth has not been specified, all integers will be padded with
blanks on the left to bring the width to w.

Cmd> paste(format:".10f", "PI =", PI,\
"sqrt(PI) =", format:".5f", sqrt(PI))# 2 formats used
(1) "PI = 3.1415926536 sqrt(PI) = 1.77245"

Cmd> paste("sqrt(PI) =", sqrt(PI), format:"10.5f")
(1) "sqrt(PI) = 1.77245" Number width is 10 characters

Cmd> dfb <- 5; dfe <- 13; ssb <- 33.245; sse <- 25.039

Cmd> print(paste(charwidth:8,format:"13.6g",intwidth:2,\
"Blocks",dfb,ssb,ssb/dfb,format:"7.3f",(ssb/dfb)/(sse/dfe)))
Blocks 5 33.245 6.649 3.452

Lines similar to the last example might be used to compute and print a customized
ANOVA table for a randomized block design.

An important use of paste() is in creating titles and axis labels for plots (see Sec. 8.5.1).
Here is a simple example (see Sec. 9.2.3 for information on the use of for(...){...}).

Cmd> powers <- run(-.5,1.5,.5)

Cmd> for(@p,powers){
plot(X:x, NewY:boxcox(y,@p),\
title:paste("Plot of boxcox(y,",@p,") vs x",sep:""))

}

This plots five graphs with titles “Plot of boxcox(y,-0.5) vs x”, “Plot of
boxcox(y,0) vs x”, ..., “Plot of boxcox(y,1.5) vs x”.

The uses of paste() are limited only by your ingenuity. For example, suppose you
have 3 variables, y1, y2 and y3, and you want to compute regressions of each on
independent variables x1, x2, x3 and x4.

Cmd> for(i,run(3)){regress(paste("y",i,"=x1+x2+x3+x4",sep:""))}

This produces regression output for the regression models "y1=x1+x2+x3+x4",
"y2=x1+x2+x3+x4" and "y3=x1+x2+x3+x4" (Sec. 3.4, 3.8).

Suppose you want to split apart structure temperatures in Sec. 2.8.16, with each
component going into a separate variable day_1, day_2 and day_3..

8-10

MacAnova Version 4.07

Cmd> for(@i,run(ncomps(temperatures))){
<<paste("day",@i,sep:"_")>> <- temperatures[@i];;}

Cmd> list("day_*") # See Sec. 2.9.1
day_1 REAL 10
day_2 REAL 5
day_3 REAL 14

See Sec. 9.5 on indirect specification of variables by <<...>>.

8.3.3 Creating CHARACTER vectors using paste() You can also use paste() to create a
CHARACTER vector instead of a scalar. If var is a REAL, LOGICAL or CHARACTER variable,
paste(var,multiline:T) returns a CHARACTER vector with of length nrows(var),
with each element a character representation of a row of var. There can be only one
non-keyword argument when you use multiline:T. Keyword format is recognized,
but the width of the format is ignored (format:"12.5f" is equivalent to
format:".5f"). Keywords charwidth and intwidth are ignored except for printing
an advisory message.

Cmd> x <- matrix(2*run(8),2); paste(x,multiline:T,format:".1f")
(1) "2.0 6.0 10.0 14.0"
(2) "4.0 8.0 12.0 16.0"

You can use keyword sep with multiline:T, but its value must be single character.
In particular, its value cannot be the null string "".

Cmd> paste(x,multiline:T,format:".1f",sep:",")
(1) "2.0,6.0,10.0,14.0"
(2) "4.0,8.0,12.0,16.0"

Finally, keyword linesep allows you to combine the lines in a single CHARACTER
scalar, with each line separated by a character you specify. This is best illustrated by
examples.

Cmd> paste(x,multiline:T,format:".1f",sep:",",linesep:"/")
(1) "2.0,6.0,10.0,14.0/4.0,8.0,12.0,16.0"

Cmd> paste(x,multiline:T,format:".1f",linesep:"\n")
(1) "2.0 6.0 10.0 14.0
4.0 8.0 12.0 16.0"

In the second example "\n" indicates the normal end-of-line character, and each line of
x becomes a separate line of the result. The line-separating character is not appended to
the last line.

8.3.4 Creating a CHARACTER variable using putascii() Normally putascii() just
outputs characters to the screen or terminal (Sec. 7.4.3). When keyword phrase keep:T
is an additional argument, putascii() returns a CHARACTER scalar containing the
characters specified by the codes instead of printing them.

Cmd> alphabet <- putascii(run(65,90),run(97,122),keep:T)

Cmd> alphabet
(1) "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

8-11

MacAnova Version 4.07

Cmd> asciicodes <- rep("",127)

Cmd> for(@i,run(127)){asciicodes[@i] <- putascii(@i,keep:T);;}

Cmd> paste(asciicodes[vector(77,97,99,65,110,111,118,97)],sep:"")
(1) "MacAnova"

See Sec. 9.2.3 for use of for and Sec. 8.3.2 for paste().

8.4 Coordinate labels When vectors, matrices and other variables are printed, each row
normally starts with a numerical label in parentheses, say (2,6), indicating all the
subscripts for the first element in the row. You can use setoptions(labelabove:T) to
change the behavior so that the labels for the last coordinate go across the screen, above
the data, and setoptions(labelstyle:"["), say, to use produce default labeling like
[2,6] instead of (2,6); see Sec. 8.1.3.

If you wish, you may replace these default labels entirely with more informative ones.
Specifically, you can add arbitrary labels for the coordinates (rows, columns, ...) of
vectors, matrices and arrays, and for the components of structures. A label is a
CHARACTER vector of the appropriate length – the dimension of the coordinate or the
number of components. If a matrix or array x has any labels it must have labels for all
dimensions, although a label can be of the form rep("",n). However, a labelled
structure can have unlabeled components without labels and an unlabeled structure
can have components with labels.

The primary function of coordinate and component labels is to make printed output
more informative.

In many cases, when x has labels, they are propagated to new variables computed from
x in the many situations. See Sec. 8.4.3 for details.

8.4.1 Adding labels to a variable – setlabels() You attach labels to an existing variable
using setlabels() or create a variable with labels using vector(), matrix(),
array(), structure(), strconcat(), matread() and read().

The general usage for setlabels() is
setlabels(var, labs)

where var is an existing variable and labs is a CHARACTER scalar or vector or, when
ndims(var) > 1, a structure whose components are CHARACTER scalars or vectors
specifying the labels for the different coordinates.

Cmd> x <- matrix(hconcat(run(3,5),run(3,5)^2))

Cmd> x # x has no labels as yet
(1,1) 3 9
(2,1) 4 16
(3,1) 5 25

Cmd> setlabels(x, structure(vector("Case 1","Case 2", "Case 3"),\
vector("X", "X squared"))) # Add 3 row labels, 2 column labels

8-12

MacAnova Version 4.07

Cmd> x
 X X squared
Case 1 3 9
Case 2 4 16
Case 3 5 25

Normally, as in this example, the value for labels is a structure with as many
components as the variable being labeled has dimensions. When there is only one
dimension, the value of labels can be a vector instead of a structure. Except for
CHARACTER variables, labels for the last dimension always go across the top, regardless
of the value of option labelabove (Sec. 8.1.3).

If x already has labels, they are replaced by setlabels().

It is not an error if the number of label vectors or scalars supplied does not match the
number of dimensions although a warning message is printed. Extra labels are ignored
and missing ones are assumed to be "@" (see below) and will print as coordinate
numbers.

Cmd> setlabels(x, vector("Case 1","Case 2", "Case 3"))
WARNING: too few vectors of labels supplied to setlabels(); missing
assumed "@"

Cmd> x # the implied "@" labels label columns with numbers
 (1) (2)
Case 1 3 9
Case 2 4 16
Case 3 5 25

Cmd> setlabels(x, structure(vector("Case 1","Case 2", "Case 3"),\
vector("X", "X squared"),"extra")) # 3 components in structure

WARNING: extra vectors of labels supplied to setlabels() are ignored

The warning message can be suppressed by silent:T:

Cmd> setlabels(x, structure(vector("Case 1","Case 2", "Case 3"),\
vector("X", "X squared"),"extra"),silent:T) # no warning msg

It is an error if the length of a vector of labels supplied for a dimension is more than 1
but does not match that dimension:

Cmd> setlabels(x,labels:structure(vector("Case 1","Case 2"),\
vector("x1","x2"))) # only 2 labels for dimension 1

ERROR: sizes of labels do not match dimensions on setlabels()

In this case, the labels for x are not changed.

setlabels(var,NULL) removes any labels from var. It is not an error if var has no
labels.

You can use a single quoted string or CHARACTER scalar to generate an entire vector of
labels for a coordinate as follows. Assume the labels are for coordinate i of variable x.

8-13

MacAnova Version 4.07

CHARACTER scalar Expansion

"" rep("",dim(x)[i])

"@anything" rep("@anything",dim(x)[i])

"#" vector("1","2",...)

"[" vector("[1]","[2]",...)

"(" vector("(1)","(2)",...)

"{" vector("{1}","{2}",...)

"<" vector("<1>","<2>",...)

"/" vector("/1/","/2/",...)

"\\" vector("\\1\\","\\2\\",...)

Anything else, say "base" vector("base1","base2",...)

In the table, "@anything" stands for any CHARACTER scalar starting with “@”, including
"@".

Cmd> setlabels(x,structure("#","[")); x
 [1] [2]
1 3 9
2 4 16
3 5 25

Cmd> setlabels(x, structure("(","Column ")); x
 Column 1 Column 2
(1) 3 9
(2) 4 16
(3) 5 25

Cmd> y <- array(run(16),2,2,4) # See Sec. 2.8.15

Cmd> setlabels(y, structure("A","B","C")); y
 C1 C2 C3 C4
A1 B1 1 5 9 13
 B2 3 7 11 15
A2 B1 2 6 10 14
 B2 4 8 12 16

A label vector of the form rep("@",n) or rep("@anything",n) as would be expanded
from "@" or "@anything" (see table) is treated specially at the time it is used to label
output. At that time it is further expanded similarly to the way scalar labels that do not
start with “@” are expanded when they are created.

rep("@#", n) prints as 1, 2,

rep("@[", n) prints as [1], [2], ..., and rep("@(", n) prints as (1), (2), ..., and
similarly with "@{", "@<", "@/",and "@\\". rep("@", n) also prints as (1), (2),

rep("@anythingelse", n) prints as anythingelse1, anythingelse2,

Moreover, if successive coordinates have the same type of “bracket” label starting with
“@” created by, say, labels:structure("@[","[@","["), the printed labels are

8-14

MacAnova Version 4.07

combined to form a multi-index label such as, say, [1,2].

Cmd> setlabels(x,structure("@(","Column ")); x
 Column 1 Column 2
(1) 3 9
(2) 4 16
(3) 5 25

Cmd> setlabels(y,structure("@(","@(","@(")); y # or ("@","@","@")
 (1) (2) (3) (4)
(1,1) 1 5 9 13
(1,2) 3 7 11 15
(2,1) 2 6 10 14
(2,2) 4 8 12 16

A label vector of the form rep("",n) to which the scalar "" expands effectively deletes
any labelling of that coordinate.

Cmd> setlabels(x, structure("[","")); x# no column labels
[1] 3 9
[2] 4 16
[3] 5 25

Although they sometimes appear the same, there is a difference between the labels
generated from, say, "(" or "[" and those generated from "@(" or "@[". In the first
place, adjacent labels generated from "(" or "[" do not combine. Compare the
following with the example above where labels were specified by
structure("@(","@(","@(").

Cmd> setlabels(y,structure("[","[","[")); y
 [1] [2] [3] [4]
[1] [1] 1 5 9 13
 [2] 3 7 11 15
[2] [1] 2 6 10 14
 [2] 4 8 12 16

In addition, although labels “propagate” properly when using subscripts (see Sec. 8.4.4),
a vector of the form rep("@(",n) or rep("@[",n) remains a vector of the same form,
except possibly with a different length. When printed, this always produces labels
"(1)", "(2)", ... or "[1]", "[2]", ...with no gaps. However, although a vector of labels
generated from "(" or "[" starts out this way, elements may be skipped when
subscripts are used, resulting in gaps in the numerical sequence. Compare the
following two examples.

Cmd> setlabels(y,structure("A","@[","@[")); y[,2,vector(1,4)]
 [1] [2]
A1 [1] 3 15
A2 [1] 4 16

Cmd> setlabels(y,structure("A","[","[")); y[,2,vector(1,4)]
 [1] [4]
A1 [2] 3 15
A2 [2] 4 16

You can attach labels to a variable when it is created by including keyword phrase
labels:labs as an extra argument to one of the functions vector(), matrix(),

8-15

MacAnova Version 4.07

array(), structure(), strconcat(), matread() and read(). labs is a CHARACTER
scalar or vector or a structure whose components are CHARACTER scalars or vectors
exactly as for setlabels(). Here is an alternative way to do the first setlabels()
example above:

Cmd> x <- matrix(hconcat(run(3,5),run(3,5)^2),\
labels:structure(vector("Case 1","Case 2", "Case 3"),\
vector("X", "X squared")))

Cmd> x
 X X squared
Case 1 3 9
Case 2 4 16
Case 3 5 25

Here we attach column labels, but no case labels, to data read from a file:

Cmd> iris <- matread("MacAnova.dat","irisdata",\
labels:structure("",\
vector("Variety","Sep_len","Sep_wid","Pet_len","Pet_wid")),\
quiet:T)

Cmd> iris[run(3),] # no row labels
 Variety Sep_len Sep_wid Pet_len Pet_wid
 1 5.1 3.5 1.4 0.2
 1 4.9 3 1.4 0.2
 1 4.7 3.2 1.3 0.2

As with setlabels() it is not an error to provide too many or too few sets of labels.
Unlike setlabels(), it is not an error to supply a label vector of the the wrong length.
If you do, a warning message is printed, but the operation is carried out ignoring the
labels.

Cmd> x <- matrix(x,labels:structure(vector("Case 1","Case 2"),\
vector("x1","x2"))); x# only 2 labels for dimension 1

WARNING: sizes of labels do not match dimensions on matrix(); ignored
(1,1) 3 9
(2,1) 4 16
(3,1) 5 25

As with setlabels(), you can suppress warning warning messages by silent:T.

You can remove labels from a variable by setting them to NULL.

Cmd> x1 <- array(x,labels:NULL) #works for vector, matrix or array x

Cmd> str1 <- strconcat(str,labels:NULL) # works for structure str

For a structure, this does not remove labels from any component with labels.

See Sec. 2.8.10, 2.8.13, and 2.11.3 for other examples of the use of keyword labels.

8.4.2 Retrieving labels from a variable – getlabels() and haslabels Function
getlabels() allows you to access the labels, if any, of a variable, and pre-defined
macro haslabels lets you test whether a variable has labels.

getlabels(x) retrieves the labels, if any, associated with all coordinates of variable x.
When x is a vector or structure, the result is a CHARACTER scalar or a CHARACTER vector

8-16

MacAnova Version 4.07

of length ncomps(x) or length(x). Otherwise the result is a structure with
CHARACTER components named dim1, dim2, Each component is either a scalar or a
vector of length dim(x)[i]. A scalar consisting of the first label for a coordinate is
returned only when all the labels for that coordinate are identical and either are "" or
start with "@". Effectively, non-essential elements are trimmed from a vector of labels.
When x has no labels, getlabels(x) returns NULL and prints a warning message.

When x is a vector or structure, the result is a CHARACTER vector. Otherwise the result
is a structure with CHARACTER vector components named dim1, dim2,

getlabels(x,trim:F) does the same, except non-essential elements are not trimmed
from a vector of labels that are all "" or all the same and starting with "@".

Cmd> temp <- getlabels(iris); list(temp)
temp STRUC 2

Cmd> compnames(temp)
(1) "dim1"
(2) "dim2"

Cmd> temp
component: dim1
(1) "" Only 1 label because all labels are ""
component: dim2
(1) "Variety"
(2) "Sep_len"
(3) "Sep_wid"
(4) "Pet_len"
(5) "Pet_wid"

Cmd> temp <- getlabels(iris,trim:F); length(temp$dim1)
(1) 150 All 150 copies of "" returned with trim:F

getlabels(x,2 [,trim:F]), for example, retrieves the labels associated with
dimension 2 of x. The second argument must be a positive integer or vector of positive
integers.

Cmd> paste(getlabels(iris,2)) # use paste to pack them in 1 line
(1) "Variety Sep_len Sep_wid Pet_len Pet_wid"

haslabels(x) is True if and only if x has labels.

Cmd> vector(haslabels(iris),haslabels(matrix(iris,labels:NULL)))
(1) T F

On getlabels() or any command adding labels using keyword labels, you can
suppress warning messages by keyword phrase silent:T.

Cmd> setlabels(y, NULL) # remove labels from y

Cmd> ylabs <- getlabels(y); list(ylabs)
WARNING: argument to getlabels() has no labels From getlabels()
ylabs NULL From list()

Cmd> getlabels(y,silent:T) # no warning message printed.

8-17

MacAnova Version 4.07

8.4.3 Transforming labels Because many of the mathematical functions such as log()
and cos() accept CHARACTER arguments, you can sometimes use them to generate
appropriate labels for transformed variables. In the following example iris is the
matrix of iris data used in Sec. 8.4.1 and 8.4.2.

Cmd> irislabs <- getlabels(iris)

Cmd> logiris <- matrix(log10(iris[,-1]),\
labels:structure(irislabs[1],log(irislabs[2][-1])))

Cmd> logiris[run(3),]
 log(Sep_len) log(Sep_wid) log(Pet_len) log(Pet_wid)
 0.70757 0.54407 0.14613 -0.69897
 0.6902 0.47712 0.14613 -0.69897
 0.6721 0.50515 0.11394 -0.69897

Elements of a
The use of subscripts to extract the components of irislabs is explained in Sec. 2.8.16.

8.4.4 Propagation of labels MacAnova tries appropriately to label output or side effect
variables created from labelled input variables.

The labels of a portion of a variable selected using subscripts are the appropriate
portions of the original labels.

Cmd> setlabels(x, structure("Case ",vector("X", "X squared"))); x
 X X squared
Case 1 3 9
Case 2 4 16
Case 3 5 25

Cmd> x[1,-1]
 X squared
Case 1 9

The result of cos(x), sqrt(x), and other transformations of x listed in Sec. 2.8.6 have
the same labels as x.

Cmd> sqrt(x)
 X X squared
Case 1 1.7321 3
Case 2 2 4
Case 3 2.2361 5

x' has the same label vectors as x but in reverse order

Cmd> x'
 Case 1 Case 2 Case 3
X 3 4 5
X squared 9 16 25

sum(x), min(x), and other transformation that operate along the first dimension of x
have labels for the last ndims(x) - 1 dimensions matching those of x. The first
dimension is given "@" as a label so that it is printed as "(1)".

8-18

MacAnova Version 4.07

Cmd> sum(x)
 X X squared
(1) 12 50

+x, -x and !x all have the same labels as x.

Suppose OP is a binary operator such as +, -, *, ==, ..., (Sec. 2.8.3 and 2.8.4), but not a
matrix operator such as %*%, %c%, %C%, %/% and %\% (Sec. 2.10.4 and 2.10.5) and x and y
are variables with compatible dimensions. Then if x has labels, x OP y often has the
labels of the left hand operand x. When x does not have labels, x OP y may have the
labels of y. The exceptions have to do with operations combining variables with
different sizes (see Sec. 2.10.2). Combination with a scalar preserves labels.

Cmd> 3*x
 X X squared
Case 1 9 27
Case 2 12 48
Case 3 15 75

This can lead to unexpected results. For instance, after regress("y = x1+x2"), side
effect variable COEF (See Sec. 3.6) is labelled:

Cmd> COEF # elements are labeled with term names
 CONSTANT x1 x2
 1.3 -5.1 4.1

If you use COEF to compute a predicted value, the result will be labelled but the label
depends on the order of the terms, since when both operands are labelled, the label of
the left operand is used.

Cmd> COEF[1] + COEF[2]*7 + COEF[3]*4
 CONSTANT
 -18

Cmd> COEF[3]*4 + COEF[2]*7 + COEF[1]
 x2
 -18

In both cases, the label is the label associated with the left most term.

If matrices x and y both have labels then x %*% y, x %c% y, and x %C% y have labels
taken from the row and or column labels of x and y in the obvious way.

Cmd> x' %*% x
 X X squared
X 50 216
X squared 216 962

Cmd> x %*% x'
 Case 1 Case 2 Case 3
Case 1 90 156 240
Case 2 156 272 420
Case 3 240 420 650

When one operand has no labels, the corresponding labels of the product are all "@",
yielding numerical labels when printed.

8-19

MacAnova Version 4.07

Cmd> rep(1,nrows(x))' %*% x # numerical row labels
 X X squared
(1) 12 50

Cmd> x %*% rep(1,ncols(x)) # numerical column labels
 (1)
Case 1 12
Case 2 20
Case 3 30

When a is a square matrix with labels, the row and column labels solve(a) are the
column and row labels of a, respectively.

When b is a compatible matrix with labels, the row and column labels of solve(a,b)
(a %\% b) are the column labels of a and b, respectively, and the row and column
labels of rsolve(a,b) (b %/% a) are the row labels of b and a, respectively. If b has no
labels, labels of the form rep("@",m) are assumed. See 2.10.5

When x is a matrix with labels, eigen(x)$vectors and releigen(x,y)$vectors
(Sec. 6.2.1 and 6.2.3) have the same row labels as x. Similarly the row labels of the
matrices of left and right singular vectors computed by svd() (Sec. 6.3) are the row and
column labels of x, respectively. For all three functions, the column labels of matrices
of eigenvectors and singular vectors are of the form vector("(1)","(2)",...),
where the parentheses or brackets actually used are determined by option labelstyle
(Sec. 8.1.3).

When x is a matrix with labels, cor(x) (Sec. 2.12.5) has row and column labels
matching the column labels of x. cor(x,y,...) has no labels.

When x is a matrix with labels, rft(x) and hft(x) (Sec. 5.10) have the same column
labels as x with row labels of the form rep("@",m). The same is true for cft(x) when
ncols(x) is even.

When x is a response variable in a GLM command such as regress() or poisson(),
its labels are propagated to side effect variables RESIDUALS, WTDRESIDUALS, and HII
(Sec. 3.6).

After regress(), COEF and XTXINV are labelled with the names of the variables
(including "CONSTANT" when appropriate) (Sec. 3.6).

After manova() (Sec. 3.22) with a response matrix with labels, SS is labeled with
TERMNAMES and two copies of the column labels of the response. Also, the column
labels of the response are attached to the last dimension of each vector, matrix, or array
returned by coefs() and secoefs() (Sec. 3.13).

When any term names are longer than 12 characters (the maximum size for a structure
component name), the components of coefs() and secoefs() are labelled with the
full term names.

8.5 More on plotting A brief introduction to making graphs was given in Sec. 2.15 -
2.15.6. This section gives details on keyword use, modifying and replotting graphs, and
saving graphical information on files.

8-20

MacAnova Version 4.07

8.5.1 Keywords affecting appearance and bounds All the plotting commands recognize
but do not require several keyword phrases. Here is a list of keywords affecting graph
appearance and bounds, together with brief descriptions. “X-axis” and “Y-axis” refer to
the horizontal and vertical axes of a graph.

Key words affecting appearance and bounds

Keyword Phrase Explanation

title:"Your title" Title above graph, up to 75 characters

xlab:"X-axis label" X-axis label, up to 50 characters

ylab:"Y-axis label" Y-axis label, up to 20 characters

xmin:xMinVal Minimum value for X-axis

xmax:xMaxVal Maximum value for X-axis

ymin:yMinVal Minimum value for Y-axis

ymax:yMaxVal Maximum value for Y-axis

xaxis:F Do not draw X-axis (line y = 0)

yaxis:F Do not draw Y-axis (line x = 0)

xticks:xTickPositions REAL vector of positions of X-axis tick marks. NULL means
no tick marks or labels; ? means default positions.

yticks:yTickPositions REAL vector of positions of Y-axis tick marks or labels.
NULL means no tick marks; ? means default positions.

xticklen:xTickLength Length ≥ –1 of X-axis tick marks; value < 0 gives ticks
outside frame; 0 gives tick labels but no ticks; value > 2
gives full grid lines across plot; 1 gives the default length.

yticklen:yTickLength Length ≥ –1 of Y-axis tick marks; value < 0 gives ticks
outside frame; 0 gives tick labels but no ticks; value > 2
gives full grid lines across plot; 1 gives the default length.

impulse:T Draw vertical lines from points to y = 0 line

lines:T Connect points with straight lines

linetype:n On commands that draw lines, sets the line type to n,
default is 1 (solid); n must be integer 1 ≤ n < 100.

thickness:w On commands that draw lines, sets the line thickness to w
times normal thickness, default is 1. w must be between .1
and 10; has no effect when when dumb:T or where
otherwise not feasible; not implemented in all versions.

If the values for xmin and xmax and/or ymin and ymax are the same (for example,
xmin:0,xmax:0), bounds for the X and/or Y axis are computed from all the data in the
plot.

8-21

MacAnova Version 4.07

8.5.2 Other graphics keywords These keywords allow saving graphs in files, directing
them to specific windows, and adding information to previously created plots. Here is
a list of the remaining graphics keywords.

Other Graphics Keywords

Keyword Phrase Explanation

dumb:T Use printable characters only to produce a low
resolution plot suitable for typewriter-like printing

height:nlines Number of lines in a “dumb” plot

width:nchars Width of a “dumb” plot in character positions.

keep:F Do not save plot as LASTPLOT (see Sec. 8.5.3)

show:F Do not display plot, only save it as LASTPLOT (see Sec.
8.5.3)

add:T Add information to most recent plot

file:fileName Write Postscript to file fileName (see Sec. 8.5.4)

new:T Overwrite fileName (see Sec. 8.5.4)

ps:F Suppresses PostScript when writing a plot to a file (see
Sec. 8.5.4). On Unix this results in the Tektronix
plotting commands being written to the file; on a
Macintosh, a PICT file is written; on other computers, a
“dumb” plot is written.

epsf:T Encapsulated PostScript file will be written instead of
PostScript (Macintosh only).

landscape:T PostScript plot will be rotated so as to fill 8.5" by 11"
page.

window:n Draw plot in window n (1 ≤ n ≤ 8). If n is 0, use the
window most recently used; only on windowed
versions (Macintosh, Windows or Motif).

pause:T (Mac,Window,
Motif)
pause:F (DOS,Unix)

Forces (T) or suppresses (F) a pause after the graph is
drawn. pause:T is when plotting many graphs in a
loop with window:0.

screendump:FileName Save a copy of graph being plotted in file FileName (see
Sec. 8.5.4). In the Macintosh version a PICT file is
written; in the extended memory DOS version, a bit
map PCX file is written. Not legal in other versions.

notes:Notes Attach CHARACTER vector or scalar Notes to LASTPLOT
(see Sec. 8.5, 8.9).

Most are self explanatory; keep and show are explained in Sec. 8.5.3, file and new are
explained in Sec. 8.5.4 and notes is explained in Sec. 8.9.

Here are some examples of the use of tick mark related keywords.

8-22

MacAnova Version 4.07

Cmd> plot(x,y,xticks:vector(1,2,4),yticks:NULL,xticklen:1.5)

gives X-axis ticks 1.5 times normal at x = 1, 2 and 4 and suppresses all y-axis ticks and
their labels.

Cmd> plot(x,y,xticklen:3,yticklen:-.5)

draws full grid lines (value for xticklen > 2) perpendicular to the x-axis and half
length ticks along the outside of left edge of the frame.

Here is an example of a plot produced using dumb:T.

Cmd> @x<-run(-2.5,2.5,.1); lineplot(@x,\
Normal:exp(-@x^2/2)/sqrt(2*PI),\
dumb:T,title:"Plot of normal curve using
\"dumb:T\"",width:72,height:28)

 Plot of normal curve using "dumb:T"
 +-----+-----------+----------+----------+-----------+------+
 0.4+ . +
 | ..:.. |
 | ... : ... |
 0.35+ . : . +
 | . : . |
 | . : . |
 0.3+ . : . +
 | . : . |
 | . : . |
 0.25+ . : . +
 N | .. : .. |
 o | . : . |
 r 0.2+ . : . +
 m | . : . |
 a | . : . |
 l 0.15+ . : . +
 | . : . |
 | . : . |
 0.1+ .. : .. +
 | . : . |
 | .. : .. |
 0.05+ .. : .. +
 |... : |
 +-----+-----------+----------+----------+-----------+------+
 -2 -1 0 1 2
 x

When xticklen or yticklen is used in making a “dumb” plot, the only values that
have an effect are 0 (tick marks but not labels are suppressed) and > 2 (grid lines are
drawn). For all other values the tick marks are as just illustrated.

8.5.3 Replotting graphs and GRAPH variables As a side effect, all plotting commands
create a variable with name LASTPLOT of special type GRAPH. LASTPLOT encapsulates all
the information used to create the plot. This information includes axis labels and title,
minima, maxima, and indeed everything set by keywords affecting appearance and
bounds when the plot was created (Sec. 8.5.1). LASTPLOT can be assigned to another
variable (for example, graph1 <- LASTPLOT) or redisplayed, possibly with changed

8-23

MacAnova Version 4.07

limits or labelling information, using showplot(). You can add information to it
using addpoints(), addlines(), addchars(), and addstrings() or keyword phrase
add:T on a regular plotting command. You can print LASTPLOT (as a “dumb” plot)
using print() or write(). In fact, just typing the name of a GRAPH variable causes a
“dumb” rendition to be printed.

Command showplot() recognizes all the keywords in Sec. 8.5.1 and 8.5.2 except
impulse, lines, linetype, thickness and add, and updates LASTPLOT accordingly
(unless keep:F is an argument), thus allowing labelling information and plotting
limits to be changed.

Here are descriptions of the commands that may be used to add information to a plot in
LASTPLOT or another GRAPH variable. If the GRAPH variable does not exist it is an error.

addpoints(x,y) is the same as plot(x,y,add:T). It redraws the graph in LASTPLOT
while adding new points to it.

addchars(x,y,c) is the same as chplot(x,y,c,add:T). It redraws the graph in
LASTPLOT while adding character labelled points to it.

addlines(x,y) is the same as lineplot(x,y,add:T). It redraws the graph in
LASTPLOT while adding line plots to it. addlines(x,y,lines:F) is the same as
addpoints(x,y).

addstrings(x,y,charVec) draws charVec[i] at position (x[i],y[i]) in the graph
in LASTPLOT. charVec must be a CHARACTER vector of the same length as x and y. In
contrast with other plotting commands, both x and y must be vectors of the same
length. By default, each string is written centered at (x[i],y[i]) . However, if
justify:"left" or justify:"right" is an argument following charVec, each string
will be positioned with its left or right or right end at (x[i],y[i]).

On windowed versions of MacAnova (Macintosh, Windows, Motif), these commands
automatically redraw the most recently drawn window, unless keyword window is used
to specify another window (Sec. 8.5.2).

On any of these, to force the minimum or maximum on an axis to be recomputed, use,
say, xmin:?,ymin:?. This computation takes into account the minimum and
maximum of all previous data as well any new data being added.

All four commands recognize a GRAPH variable as argument preceding any others, for
example, addpoints(graph,x,y). The new information or labels will be added to the
plot encapsulated in graph instead of LASTPLOT. In addition, plot(graph,x,y),
chplot(graph,x,y,c), and lineplot(graph,x,y) act identically to
addpoints(graph,x,y), addchars(graph,x,y,c), and addlines(graph,x,y),
respectively. You don’t need keyword phrase add:T.

As with plot(), chplot() and lineplot(), you can replace arguments x and y by a
structure whose first two components are interpreted as x and y.

The following assumes that LASTPLOT was created by the dumb:T example above. Note
the use of keywords to change the axis labels and titles.

8-24

MacAnova Version 4.07

Cmd> normal <- LASTPLOT # save a copy of the GRAPH variable

Cmd> addstrings(normal,.45,.37,"N(0,1) density curve",\
justify:"left",ymin:0,xlab:"z-score",ylab:"Normal density",\
title:"Standard plot of normal curve")

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-2 -1 0 1 2

Standard plot of normal curve

z-score

N
o
r
m
a
l

d
e
n
s
i
t
y

N(0,1) density curve

GRAPH variable normal has not been changed, but LASTPLOT now encapsulates all the
components of this graph.

All plotting commands, including showplot(), addpoints(), addlines(),
addchars(), addstrings() and boxplot(), recognize keyword phrases keep:F and
show:F. keep:F specifies that LASTPLOT is not to be created or updated and show:F
directs that the graph is not displayed. The latter is useful when you are building a
graph in several steps and don’t want to see anything until the final product. For
example, the preceding plot could be created by

Cmd> @x<-run(-2.5,2.5,.1);lineplot(@x,\
exp(-@x^2/2)/sqrt(2*PI),show:F)

Cmd> addstrings(.45,.37,"N(0,1) density curve",\
justify:"left",show:F)

Cmd> showplot(ymin:0,xlab:"z-score",ylab:"Normal density",\
title:"Standard plot of normal curve")

Using both keep:F and show:F doesn’t make sense and is an error.

8.5.4 Writing graphs to a file All plotting commands recognize keyword phrase
file:fileName, where fileName is a quoted string or CHARACTER variable. This
suppresses the display of the graph. Instead, plotting information is written as
PostScript commands to the file specified by fileName. (PostScript is a page description

8-25

MacAnova Version 4.07

language that is recognized by many printers, include Apple LaserWriters.) It may be
possible to the print the PostScript commands later on a LaserWriter or incorporate
them in a document. You may write several graphs to the same file. You should use
new:T when saving the first one. Without new:T, if the file already exists, Postscript
commands are added at its end. On windowed versions (Macintosh, Windows, Motif)
you can use "" as file name, specifying the file in a dialog box. File name CONSOLE is
not treated specially by the plotting commands.

Note: If you add PostScript to a file that was written in a previous MacAnova run,
some programs designed to read the PostScript may be unable to read the new plots. In
particular this is true of Unix program ghostview.

Actually, you can suppress the writing of Postscript by keyword phrase ps:F. What is
written in this case depends on the MacAnova version. On Unix, high resolution
graphs are available only if you are using a Tektronix 4014 emulator (the xterm
interface under X-windows is one such) and MacAnova emits special Tektronix 4014
character sequences. ps:F causes the Tektronix 4014 codes to be written to the file
instead of Postscript. When ps:F is used on a Macintosh a so called PICT file is written
that can be read by many graphics programs. On other systems, when ps:F is present,
just a “dumb” plot is written to the file.

In versions where it is implemented (Macintosh and protected mode DOS), keyword
phrase screendump:fileName provides an alternative way to save a graph. A file is
written to the file in a binary format specific to the type of computer. On a Macintosh a
PICT file is written; in the protected mode DOS version a bit map PCX file is written.
Such files can be imported into certain word processors and graphics editing programs.

8.6 More on help() and usage() help() and usage() have additional features not
mentioned in Sec. 2.9. You can switch between two different help files and find out
what’s new in the version of MacAnova you are using.

8.6.1 Using more than one help file help() and usage() read information in a special
format from a text (ASCII) file. On non-Unix systems this file is MacAnova.hlp and is
normally in the same directory or folder where MacAnova itself is located . On Unix, it
will be in an installation-dependent location and may have an alternative name. The
format is described near the start of MacAnova.hlp.

It is possible to create additional files in the same format, perhaps providing help on a
library of macros (see Sec. 7.5), or specific help on one or more statistical methods. For
example, files design.mac and tser.mac, which are distributed with MacAnova,
contain macros useful in experimental design and time series, respectively. Help files
design.hlp and tser.hlp, also distributed with MacAnova, provide help for these
macros.

You can use keywords file, orig and alt on help() to switch between help files.
This is probably best illustrated by example.

8-26

MacAnova Version 4.07

Cmd> help(file:"design.hlp") # start using design.hlp as help file

Cmd> help(confound3) # help on topic will be read from design.hlp
confound3(basis) confounds a three series factorial into blocks based
on the generators given in the matrix basis. Results are returned in
a structure with component names 'block1', 'block2', etc. Each
component has a CHARACTER vector of factor/level combinations for
that block.

The p x k matrix basis contains the generators for the confounding,

***** Interrupt ***** Interrupted to stop output

Cmd> usage(randt) # usage information from design.hlp
randt(dvec, m [,trials:n]), REAL vector dvec, positive integer n

Cmd> help("*") # all topics on design.hlp
Help is available on the following topics:
aliases2 allaliases2 confound3 mixed randt
aliases3 boxcoxvec design_index pairedcomp rscanon
all3anova choosegen2 ems quadmax typeIIIss
all4anova confound2 ffdesign2 randsign varcomp
For help on topic foo, enter help(foo) or help("foo")

Cmd> help(key:"?") # index keys for design.hlp
Type 'help(key:"heading")', where heading is in following list:
Aliasing ANOVA Design Permutation test
Analysis Confounding Factorial Random effects

design.hlp will remain the source for help() and usage() until you change it.

help(orig:T) switches you back to the standard help file; help(alt:T) returns you
the most recent alternative help file.

Cmd> usage(orig:T) # or help(orig:T)

Cmd> usage(boxcox) # usage info now from macanova.hlp
boxcox(x,power), x a REAL vector or matrix, power a REAL scalar

Cmd> help(alt:T) # switch back to most recent alternate help file

Cmd> usage(boxcoxvec) # usage info again from design.hlp
boxcoxvec(rhs_model,y,powers:pow), CHARACTER scalar rhs_model, REAL
 vectors y and pow.

You can combine other possible arguments with these keywords. For example,
help(alt:T,key:"factorial") both switches to the alternate file and lists the topics
associated with index key factorial in that file.

8.6.2 Finding what’s new MacAnova is an evolving system and is not likely to remain
unchanged for long. Changes may be bug fixes, the addition of new functions or
macros, or the enhancement of existing ones. Whenever a substantive change is made,
including important bug fixes, a record is made in the help file under the general topic
news, along with the date the change was made. Especially when you start using a new
version, you will probably want a quick synopsis as to what has changed.

help(news) lists in reverse chronological order items about MacAnova development
starting with the most recent entry back for three months from the most recent date.

8-27

MacAnova Version 4.07

help(news:971001) gives you information about changes since October 1, 1997.

help(news:vector(970101,970630)) lists in reverse chronological order items
dated between January 1 and June 30, 1997.

Cmd> help(news:vector(980725,980731)) # between July 25 and 31, 1998
980731 keyvalue() argument specifying the keyword name can contain
the "wild card" character '*' so that, for example, keywords 'pow',
'power', and 'powers' will all match "pow*".

980727 New functions setlabels(), attachnotes() and appendnotes()
allow attaching labels and notes to existing variables. New pre-
defined macro hasnotes tests whether a variable has notes.

From time to time, older news items are moved from the standard help file to file
macanova.nws which is distributed with MacAnova. This is in the form of an
alternate help file. help(file:"macanova.nws",news) will list the most recently
added items to this file. You can again specify dates to select ranges of items.

help(update) prints a summary of most changes between the various versions of
MacAnova, in reverse chronological order, going back to Version 2.0.

8.7 Running other programs from within MacAnova In the windowed versions of
MacAnova (Macintosh, Windows and Motif) you can switch to a non-MacAnova
window and start up one or more programs running in parallel with MacAnova. If
such a program is a word processor or editor you can transfer text and graphical output
to the program by using Copy and Paste on the Edit menu.

When running a non-windowed version in a windowed environment (for example, a
DOS version in a Windows 95 DOS window), you can start up parallel programs in the
other windows and may be able cut and paste from or to another program’s window.

In addition to this capability, in some versions you can run other programs directly
from MacAnova. The most versatile method uses command shell(). Somewhat
simpler to use but less versatile is a “shell escape”, a command line whose first
character is “!.”

Neither shell() nor shell escapes are available on the Macintosh.

8.7.1 shell() In its simplest form, shell(cmd), runs the system (Unix, DOS/Windows,
VMS) command or program in cmd, a quoted string or CHARACTER variable. Here is a
simple Unix or Unix Motif example:

Cmd> shell("ls userfun") # list directory userfun
Userfun.h
dynload.h
foo.c
fooeval.c
foosymh.c
goo.c

If the operating system allows it, cmd can contain more than one command to be run.
Here is a Unix example:

8-28

MacAnova Version 4.07

Cmd> shell("echo line 1;echo line 2") # or use '\n' instead of ';'
line 1
line 2

You cannot execute multiple commands in this way on DOS or Windows.

At present (August 1998), shell() does not work predictably in the Windows version.

8.7.2 shell() keyword phrases interact:T and keep:T The simplest usage doesn’t work
right if the user needs to interact with the program being run as would be necessary
with an editor. Keyword phrase interact:T enables such interaction. For example,
on Unix,

Cmd> shell("vi mymacro.mac",interact:T)

would allow you to edit file mymacro.mac using program vi. Without interact:T,
what you want to edit may not be displayed. In Motif, interaction normally takes place
in the window from which you launched MacAnova, not the MacAnova window
itself.

Depending on the system, with a non-interactive command you may get output
formatted slightly differently with interact:T than without it. Compare the
following with the example in Sec. 8.7.1:

Cmd> shell("ls userfun",interact:T)
Userfun.h dynload.h foo.c fooeval.c foosymh.c goo.c

Sometimes you would like to be able to save the output of a system command or
program in a MacAnova variables. This is possible using keyword phrase keep:T as a
second argument to shell(). It this usage, no output is printed, but what would have
been printed is returned as a CHARACTER vector, with each line of output, including
blank lines, in an element of the vector.

Cmd> shell("ls userfun",keep:T)
(1) "Userfun.h"
(2) "dynload.h"
(3) "foo.c"
(4) "fooeval.c"
(5) "foosymh.c"
(6) "goo.c"

No interaction with the command or program being run is possible when you use
keep:T.

Use of keep:T in the limited memory DOS version of MacAnova is an error.

8.7.3 Lines starting with “!” An alternative way to execute a system command or
program interactively is with the shell “escape” character “!” in the first character
position after the prompt.

Cmd> !ls userfun
Userfun.h dynload.h foo.c fooeval.c foosymh.c goo.c

This is exactly equivalent to shell("ls userfun", interact:T).

8-29

MacAnova Version 4.07

Because of this feature, if you want to start a MacAnova command with “!”, you must
precede it with a space. This is true in all versions, not just those with an operative
shell() command.

8.8 Recalling previous commands All versions of MacAnova save the most recent
command line as a macro named LASTLINE. In addition, most versions (the limited
memory DOS version is one exception) maintain a “history,” an internal list of the
most recent command lines. If N is the value of option history (see Sec. 8.1.3), up to
N commands are remembered. They can be retrieved using function gethistory(),
by pressing certain key combinations, or, in windowed versions (Macintosh, Windows,
Motif) by selecting a menu item. You can replace the internal list using sethistory().
In addition, by default, save() saves the current history and restore() replaces it.

8.8.1 LASTLINE and macros redo and REDO Just before executing a command line,
MacAnova creates a macro LASTLINE whose text is the command line.

Cmd> PI*run(4) # some command
(1) 3.1416 6.2832 9.4248 12.566

Cmd> LASTLINE
(1) "PI*run(4) # some command"

Cmd> LASTLINE # now has a new value
(1) "LASTLINE"

Cmd> run(3)
(1) 1 2 3

Cmd> LASTLINE() # previous line reexecuted
(1) 1 2 3

As this last command shows, this allows you to re-run the previous command line
without re-typing it. You can do so only once, since, for example, after the last
command, the value of LASTLINE is "LASTLINE()". If you try to run this, LASTLINE
recursively tries to execute itself, leading to the following error message:

ERROR: Parser stack overflow; probably too deep macro recursion

Pre-defined macro redo takes advantage of this feature to make it easier to repeat the
previous command. All redo does is to create macro REDO by REDO <- LASTLINE and
then to execute REDO. You can now use REDO one or more times to execute it yet again.

Cmd> sqrt(2)+PI
(1) 4.5558

Cmd> redo()
(1) 4.5558

Cmd> REDO() # redoes the same thing
(1) 4.5558

Using redo (but not REDO) on two command lines in a row is an error, since it then
tries to run itself.

8-30

MacAnova Version 4.07

8.8.2 Keyboard and menu recall In addition to LASTLINE, most MacAnova versions
maintain a “history,” an internal list of recent command lines that can be recalled to
the current command line using certain key combinations or menu items. Here is a
table of the permissible key combinations on the various versions.

Version Up History Keys Down History Keys

Macintosh Option+↑ or F7 Option+↓ or F8

Windows Ctrl+↑ or F7 Ctrl+↓ or F8

DOS extended memory ↑ or Ctrl+P ↓ or Ctrl+N

DOS limited memory Not available Not available

Motif Ctrl +Keypad ↑ or F7 Ctrl +Keypad ↓ or F8

Unix (most versions) ↑ or Ctrl+P ↓ or Ctrl+N

You move backward through the list using the Up History Keys and forward using the
Down History Keys. In all the windowed versions you can also select items Up
History and Down History on the Edit menu instead of using key combinations. As
you successively move back, previous commands appear after the prompt. These can
be executed “as is” or edited in place and then executed.

The number of lines you can go back is controlled by the value of option history with
default value 100. See Sec. 8.1.3.

8.8.3 gethistory() and sethistory() On versions that maintain a history of recent
commands, gethistory(n) returns the n most recent commands and gethistory()
returns all available commands. Here is output obtained just after launching Mac-
Anova, so there is no history available.

Cmd> gethistory() # first command after launching
(1) "" Returns "" when there is no history available

Cmd> 1+1 # a command
(1) 2

Cmd> 1+2 # another command
(1) 3

Cmd> gethistory()
(1) "gethistory() # first command after launching"
(2) "1+1 # a command"
(3) "1+2 # another command"

Cmd> gethistory(2) # get 2 most recent commands
(1) "1+2 # another command"
(2) "gethistory()"

One use is as a “scripting” device to create a macro from several previously typed
commands. Suppose we want to compute a simple macro that will compute the
regression coefficients and residual sum of squares from a cubic polynomial regression
of y on x.

Cmd> x <- run(7);y <- vector(-0.23,-2.20,-0.37,-1.41,0.49,0.42,0.28)

8-31

MacAnova Version 4.07

Cmd> x2 <- x*x; x3 <- x*x2

Cmd> regress("y=x+x2+x3",silent:T);vector(COEF,SS[4])
(1) 2.2386 -3.6367 1.0558 -0.0825 1.4701

Cmd> doit <- macro(paste(gethistory(2),multiline:T,linesep:"\n"))

Cmd> doit # here’s the macro that was created
(1) "x2 <- x*x; x3 <- x*x2
regress(\"y=x+x2+x3\",silent:T);vector(COEF,SS[4])"

Cmd> # type in new data

Cmd> x <- vector(1, 3, 4, 7, 8); y <- vector(3.2,4.1,7.6,1.5,2.0)

Cmd> doit() # do the regression with the new data
(1) -0.75573 4.5773 -0.94795 0.051388 0.79738

See Sec. 8.3.3 for the use of paste() and Sec. 9.3.1 for the use of macro().

If commands is a CHARACTER vector with elements that are or could be MacAnova
command lines, then sethistory(commands) replaces the history list with the
elements of commands.

Cmd> commands <- vector("z <- 3+4","print(x[run(5)])","\"Hello\"")

Cmd> sethistory(commands)

Cmd> gethistory() # this retrieves the history just set
(1) "z <- 3+4"
(2) "print(x[run(5)])"
(3) "\"Hello\""

A complete save() normally saves the current command history, and restore()
restores it. See Sec. 7.7 for information on save() and restore() keyword history
and option savehistry which can modify this default behavior. Because the
command history is saved, if you type gethistory() immediately after restoring a
complete workspace, you can see a record of just what you were doing before the
workspace was saved. And you can use the arrow keys to re-execute these commands,
possibly after editing.

8.9 “Notes” attached to variables You can attach CHARACTER vectors as descriptive
“notes” to almost any variable, including GRAPH variables and macros. Such notes
might describe the origin of the variable or graph or give information on macro usage.

You attach notes to a variable using function attachnotes() or by including
notes:CharVec as an argument to vector(), matrix(), array(), structure() or
any of the plotting commands (Sec. 8.5.2). You can add additional notes to a variable
using appendnotes(). You can retrieve notes from a variable using getnotes() and
can test whether a variables has descriptive notes using pre-defined macro hasnotes.

Since all operations and functions except for a getnotes(), matprint(), matwrite(),
macrowrite(), save() and asciisave() completely ignore notes, having notes
attached to to a variable has no effect on any operations involving it.

matprint(), matwrite() and macrowrite() automatically write any attached notes

8-32

MacAnova Version 4.07

in a form that is readable by read(), matread() and macroread(). See Sec. 7.1, 7.4.1,
7.5.1, 7.5.2.

8.9.1 attachnotes(), appendnotes(), getnotes() and hasnotes When x is an existing
variable of any type except NULL, and Notes is a CHARACTER vector,
attachnotes(x,Notes) “attaches” Notes to x. Normally Notes will document what
x is. If x is a GRAPH variable (Sec. 8.5.3), Notes might describe the variables plotted, or
give information as to how they were computed. When x is a macro, Notes might be
information on its usage. If x has been read from a file by read(), matread() or
macroread(), a possible source for Notes might be the comment information
retrieved by inforead() (Sec. 2.11.5). attachnotes(x,NULL) removes any notes
attached to x.

appendnotes(x,Notes) appends additional notes to a variable x. If x has no attached
notes, appendnotes(x,Notes) is the same as attachnotes(x,Notes).
appendnotes(x,NULL) does nothing.

If x has attached notes, getnotes(x) retrieves them as a CHARACTER scalar or vector. If
x has no such notes, getnotes(x) returns NULL and gives a warning message.
getnotes(x,silent:T) does the same except that the warning message is suppressed
when x has not notes.

Cmd> iris <- matread("macanova.dat","irisdata",quiet:T)

Cmd> # attach comment lines from data set in file as notes

Cmd> attachnotes(y, inforead("macanova.dat","irisdata",quiet:T))

Cmd> getnotes(y) # let's see them
(1) " Data from R. A. Fisher, The use of multiple measurements in
 taxonomic problems, Annals of Eugenics 7 (1936) 376-386
 Col. 1: Variety number (1 = I. Setosa, 2 = I. Versicolor,
 3 = I.Virginica)
 Col. 2: X1 = Sepal length
 Col. 3: X2 = Sepal width
 Col. 4: X3 = Petal length
 Col. 5: X4 = Petal width
 Rows 1-50: Group 1 = Iris Setosa
 Rows 51-100: Group 2 = Iris Versicolor
 Rows 101-150: Group 3 = Iris Virginica"

Cmd> varieties <- factor(iris[,1])

Cmd> irisdepv <- matrix(iris[,-1],notes:getnotes(y))

Cmd> appendnotes(irisdepv,\
"Variety number has been removed; Col. 1 is now Sepal Length")

Cmd> getnotes(irisdepv)[2] # element 2 of notes
(1) "Variety number has been removed; Col. 1 is now Sepal Length"

Another way to attach notes is by including keyword phrase notes:Notes as an
argument to vector(), matrix(), array(), structure(), macro() or any of the
plotting commands, where Notes is a CHARACTER scalar or vector. Here are a couple of
examples.

8-33

MacAnova Version 4.07

Cmd> rainfall <- vector(21.5,21.1,19.9,19.7,18.4,16.1,\
26.6,16.8,14.2,23.3, notes:"1937 - 1946 Rainfall")

Cmd> plot(year:1937, rainfall, show:F,\
notes:"Plot of rainfall vs year") # don't display

Cmd> getnotes(rainfall)
(1) "1937 - 1946 Rainfall"

Cmd> getnotes(LASTPLOT)
(1) "Plot of rainfall vs year"

The notes in plot() are attached to GRAPH variable LASTPLOT.
Pre-defined macro hasnotes allows you to test whether a variables has notes attached.

Cmd> vector(hasnotes(iris),hasnotes(PI),hasnotes(LASTPLOT))
(1) T F T

8-34

	8.1 MacAnova options
	8.1.1 getoptions()
	8.1.2 setoptions()
	8.1.3 List of available options

	8.2 Treatment of errors
	8.3 Creating CHARACTER variables
	8.3.1 Building custom CHARACTER variables
	8.3.2 Formatting paste() output
	8.3.3 Using paste() to create CHARACTER vectors
	8.3.4 Using putascii() to create a CHARACTER variable

	8.4 Coordinate labels
	8.4.1 Adding labels to a variable
	8.4.2 Retrieving labels from a variable
	8.4.3 Transforming labels
	8.4.4 Propagation of labels

	8.5 More on plotting
	8.5.1 Keywords affecting appearance
	8.5.2 Other graphics keywords
	8.5.3 Replotting graphs
	8.5.4 Writing graphs to a file

	8.6 More on help() and usage()
	8.6.1 Using another help file
	8.6.2 Finding what’s new

	8.7 Running other programs
	8.7.1 shell()
	8.7.2 shell() keywords
	8.7.3 Lines starting with “!”

	8.8 Recalling previous commands
	8.8.1 LASTLINE, redo and REDO
	8.8.2 Keyboard and menu recall
	8.8.3 gethistory() and sethistory()

	8.9 “Notes” attached to variables
	8.9.1 Working with notes

