
MacAnova Version 4.07

This file consists of Chapter 7 of MacAnova User’s Guide by Gary W. Oehlert and
Christopher Bingham, issued as Technical Report Number 617, School of Statistics,
University of Minnesota, revised August 1998, describing Version 4.07 of MacAnova.

This manual is Copyright © 1998 Gary W. Oehlert and Christopher Bingham, all rights
reserved.

Fonts used in this manual are Palatino, Courier, and Symbol.

For information concerning MacAnova, write University of Minnesota, Department of
Applied Statistics, 352 Classroom Office Building, 1994 Buford Avenue, St. Paul, MN
55108-6042.

kb
This is Chapter 7 of the MacAnova Users' Guide for MacAnova version 4.06 or later. The complete Users' Guide is available at
 http://www.stat.umn.edu/~gary/macanova/documentationug.html

Please notify the authors (kb@stat.umn.edu or gary@stat.umn.edu) of any inaccuracies or typographical errors. What may appear as bold face Greek symbols should be italic.

List of PDF files making up manual
 PDF File PDF File
Contents mancntnt.pdf Chapter 8 manchp08.pdf
Preface manprfac.pdf Chapter 9 manchp09.pdf
Chapter 1 manchp01.pdf Chapter 10 manchp10.pdf
Chapter 2 (a) manchp2a.pdf Chapter 11 manchp11.pdf
Chapter 2 (b) manchp2b.pdf Appendix A manapdxa.pdf
Chapter 3 manchp03.pdf Appendix B manapdxb.pdf
Chapter 4 manchp04.pdf Appendix C manapdxc.pdf
Chapter 5 manchp05.pdf Appendix D manapdxd.pdf
Chapter 6 manchp06.pdf Appendix E manapdxe.pdf
Chapter 7 manchp07.pdf Appendix F manapdxf.pdf

MacAnova Version 4.07

7. Files

7.1 Format of data readable by matread() and read() Functions matread() and read()
(Sec. 2.11.3) expect that data will be in a plain text or ASCII file in a specific format,
described in this section. Most word processors have an option for saving text or ASCII
files.

Here is a listing of file data.txt containing several data sets that matread() and
read() can read. It illustrates most aspects of the required format.

y1 3 4
) Sample 3 by 4 matrix with 1 missing value
) MISSING -1
)) Comment line that will not normally be echoed
)) Such lines might give very extensive background information
)"%f %f %f %f"
 3.31662 3.00000 3.46410 3.31662
 3.16228 3.46410 2.00000 -1.00000
 2.44949 3.74166 2.82843 1.73205

y2 3 4 LOGICAL COLUMNS FORMAT
) This is the matrix (y1 > 3)
) MISSING -99
)"5x%f %f %f"
(5x,4f13.0)
Col.1 1 1 0
Col.2 0 1 1
Col.3 1 0 0
Col.4 1 -99 0

y3 2 2 4
) 2 by 2 by 2 array
) Rows in order are y3[1,1,],y3[1,2,],y3[2,1,],y3[2,2,]
) MISSING -99
)"%f %f %f %f"
 53.222 56.057 44.683 46.343
 36.147 56.357 47.651 54.889
 49.979 62.120 -99.000 35.926
 45.278 31.604 27.964 54.206

people 2 2 CHARACTER
) 2 by two matrix of unquoted CHARACTER elements with no embedded
) blanks or tabs
)"%s %s"
Tom Harry
Dick Elizabeth

experinfo 3 CHARACTER
) Each line of data is a CHARACTER element
Data were obtained in a randomized complete block experiment
in 7 replicates. Treatments were control plus 3 levels of
Nitrogen.

7-1

MacAnova Version 4.07

Desserts 3 QUOTED COLUMNS
) Data are quoted CHARACTER elements
)"%s %s %s"
"Ice cream" "Strawberries" "Short cake
with whipped cream"

nulldata NULL
) This is a null data set. It must be followed by a blank line

mystruc 2 STRUCTURE
) This is a structure with two components, a and b
) The blank line before the header of each component is required

mystruc$a 2 QUOTED COLUMNS
) CHARACTER vector of length 2
) Two quoted fields
"The quick brown fox" "Jumps over the lazy dog"

mystruc$constants 2 STRUCTURE
) This component is a structure with two components, pi and e

mystruc$constants$pi 1 1
) 1 by 1 matrix
3.14159265358979

mystruc$constants$e 1
) vector of length 1
2.71828182845905

labelled 4 3 COLUMNS LABELS NOTES
) Small REAL data set with one missing value coded as -99.
) Each line contains data for one column (COLUMNS on header)
) MISSING -99
) '4x' in the following format skips 4 characters (variable label)
)"4x%f %f %f %f"
Temp 34.5 45.2 23.1 20.1
Conc .170 -99 .883 .401
Secs 3.5 4.7 3.2 5.8

labelled$LABELS 7 QUOTED COLUMNS
) Labels for sample data in quoted format by columns
)"%s %s %s %s %s %s %s"
"@" "@" "@" "@" "Temp" "Conc" "Secs"

labelled$NOTES 2 CHARACTER
) Notes for sampledata in "by line" format
Small REAL data set with row and column labels.
There is one missing value.

The first line or name line of each data set contains its name, together with dimension
information or number of components and sometimes other information. Here the
first two data sets are 3 by 4 matrices, a REAL matrix with name y1 and a LOGICAL
matrix with name y2. The next one is 2 by 2 by 3 REAL array y3. Next come three
CHARACTER data sets, a 2 by 2 matrix people and vectors, experinfo and Desserts,
each of length 3. Data set nulldata represents a NULL variable. Data set mystruc is a
structure with two components, one of which is itself a structure. Its components have
the same form as other data sets, but their names reflect their position in the structure.

7-2

MacAnova Version 4.07

The last data set, labelled, is a REAL matrix with labels for rows and columns (Sec. 8.4)
as well as attached descriptive notes (Sec. 8.9). The labels and notes are CHARACTER
vectors named labelled$LABELS and labelled$NOTES, respectively, and are in the
same form as other data sets.

The name line is the only required header line. It may optionally be followed by
comment lines and then lines containing data. See below

Information on the name line in addition to the name and dimensions is in the form
of keywords. Here is a table of the recognized keywords.

Keyword Meaning

CHARACTER The data set is a CHARACTER variable in either "by fields" or
"by lines" format (see below)

COLS or COLUMNS The data follow in transposed form. For a matrix, this is in
column by column order, each column starting on a new line.

FORMAT Indicates that a Fortran format starting with '(' will follow the
last comment line. It is ignored by MacAnova but would be
helpful for a program written in Fortran to read the data.

LABELS The data set has coordinate labels which follow the data in the
file (see below)

LOGICAL The data are to be interpreted as LOGICAL with False and True
coded as 0 and 1, respectively (Sec. 7.1.1).

NOTES The data set has attached descriptive notes which follow the
data in the file (see below).

NULL The data set is a NULL variable, containing no data, although
there may be comment lines. There can be no other keywords.

QUOTED The data set is a CHARACTER variable in "by quoted fields"
format (see below).

REAL The data set is a REAL variable. Since this is the default, REAL
is never required (Sec. 7.1.1).

ROWS The data follow a row at a time (constant value for first
subscript), each row starting on a new line. Since this is the
default, ROWS is never required

STRUCTURE The data set is a structure.

REAL, LOGICAL, CHARACTER, NULL and STRUCTURE on the name line specify the type of
variable. QUOTED also implies CHARACTER variable. Since the default is REAL data,
keyword REAL is never required.

When neither COLUMNS or COLS is on the name line, the data, whether REAL, LOGICAL
or CHARACTER will be expected to be ordered so that the last subscript changes fastest,
and whenever the next to last subscript changes, data start on a new line. For a vector,
each element is on a separate line. For a matrix, this means that the data are read row
by row, with each row starting on a new line. For example the first row of y1 consists of

7-3

MacAnova Version 4.07

the numbers 3.31662, 3.00000, 3.46410, and 3.31662, the first row of numbers. This order
can also be signalled by ROWS on the name line, but this is never required.

When either COLUMNS or COLS is on the name line, the data are in the file column by
co lumn , that is with the first subscript changing most rapidly, and a new line starting
whenever the second subscript, if any, changes. For a vector, all the elements are on a
single line, unless split between several; see below. Thus, although y2 is 3 by 4, it is on
the file in transposed form with 4 lines of 3 values each, with the first line of data being
column 1 of matrix y2. Note that Desserts, with COLUMNS, puts the entire vector on
one line, except that the last element spills over to a second line. Here is how array y3
would be with COLUMNS on the name line.

y3 2 2 4 COLUMNS
) 2 by 2 by 2 array
) Rows in order are y3[,1,1],y[,2,1],y[,1,2],y[,2,2],
) y3[,1,3],y[,2,3],y[,1,4],y[,2,4]
) MISSING: -99
)"%f %f"
 53.222 49.979
 36.147 45.278
 56.057 62.120
 56.357 31.604
 44.683 -99.000
 47.651 27.964
 46.343 35.926
 54.889 54.206

Each line of data corresponds to a different value of the last subscript.

Following the name line may be comment l ines starting with with “)” at the start of
the line. The purpose of comment lines is to provide descriptive and/or formatting
information about the data set. The only time a comment line is required is when
there are MISSING values in the data set; see below.

matread() and read() normally echo comment lines except lines starting with “))”,
to output when the data set is found. You can suppress this echoing by including
quiet:T as an argument (Sec. 7.1.5). You can force echoing of all lines starting with
“)” by including quiet:F as an argument. The suppression of echoing lines starting
with “))” is to allow you to include extensive comments with a data set without them
all being echoed. Matrix y1 in the file contains such lines.

Cmd> y <- matread("data.txt", "y1") # '))' lines not echoed.
y1 3 4
) Sample 3 by 4 matrix with 1 missing value
) MISSING -1

Cmd> y <- matread("data.txt", "y1", quiet:F) #echo '))' lines
y1 3 4
) Sample 3 by 4 matrix with 1 missing value
) MISSING -1
)) Comment line that will not normally be echoed
)) Such lines might give very extensive background information

7-4

MacAnova Version 4.07

7.1.1 REAL and LOGICAL data The absence of LOGICAL, CHARACTER, QUOTED, NULL, and
STRUCTURE or the presence of REAL on the name line means the data set is a REAL
vector, matrix or array. The presence of LOGICAL on the name line indicates the data
set is LOGICAL with 1 translated as True and 0 as False. Any other numerical values
will be treated as True and a warning message printed. Note that the values must be
numerical and not “T” and “F”.

FORMAT is also legal on the name line of REAL or LOGICAL data sets, but has no special
meaning in MacAnova. It indicates the presence of a Fortran style format specification
after the comment lines but before the data. A computer program written in the
Fortran programming language might use this information to retrieve data from the
file.

For y1, y2 and y3, the comment lines “) MISSING -1” or “) MISSING -99” informs
matread() or read() that data items with value –1 or –99 should be considered to be
missing. Any value that does not otherwise appear in the data set can be used, but
preferably an integer.

For compatibility with earlier versions of MacAnova, an apparently REAL data set with
a comment line of the form

) LOGICAL

is considered to be LOGICAL even the first line doesn’t contain LOGICAL.

A comment line of the form)"%f %f ..." or)"%lf %lf ..." has a special
meaning. What matters is the number m of repetitions of %f or %lf. m is the
definitive specification of the maximum number of REAL or LOGICAL data items on any
line in the data set in the file. Usually m will be the same as the number of columns
(or the number of rows, if COLUMNS was specified). However, when m is smaller, this
indicates each row or column is split among several lines, each, except possibly the last,
with m values. For example, if each row of y1 were split between two lines, with the
first line having m = 3 numbers and the second 1 number,)"%f %f %f" would be
required for it to be read correctly. If m is larger than what the name line specifies, the
name line specification prevails.

As exemplified by data set y2, the)"%f ... line can also be of the form, say,
)"5x%f %f %f". The “5x” specifies that the first 5 characters of each line should be
skipped, perhaps because, as is the case here, they provide labeling information for the
line.

The line following the)"%f..." line for y2 is the optional Fortran format line starting
with “(” whose presence was signalled by FORMAT on the first line. This is ignored by
MacAnova except as a signal that there are no more comment lines.

The data immediately follow the optional comment and Fortran format lines. Data
items must be separated by blanks or tabs; each change of the second subscript (or next
to last subscript when COLUMNS is on the name line) must start on a new line. Unless
COLUMNS is on the name line, each element of a vector must be on a separate line.
Non-numerical items in a line (including “T” and “F” for LOGICAL data) stop the
scanning of the line, with any further items expected in the line set to MISSING.

7-5

MacAnova Version 4.07

7.1.2 CHARACTER data The presence of QUOTED or CHARACTER on the name line
indicates that the data set is a CHARACTER variable.

QUOTED on the name line signals that every element is enclosed in double quotes
("..."). There is no restriction on what can be inside the quotes, except that you must
use \" and \\ to include double quotes and backslashes. A single element can in fact
span several lines until terminated by a closing ‘"’. For example the third element of
Desserts consists of two lines. In the default form, each element must start on a
separate line.

CHARACTER on the name line indicates CHARACTER data that will not be enclosed in
double quotes. The default form is one element per line with no restrictions on what
can be in the line. A CHARACTER data element can be split between two or more lines by
ending every line but the last with “\”. See the next paragraph for how you can specify
several items per line.

For CHARACTER data a comment line of the form)"%s %s ... " has a special
meaning. If m is the number of “%s” in the line, then m is the maximum number of
CHARACTER elements per line. When CHARACTER appears on the name line, each word
(sequence of non blank characters including quotation marks) is read as a single
element. If QUOTED appears on the name line, elements of CHARACTER data are expected
to be enclosed in quotation marks ("...") and a single element can actually span
several lines in the file, as is the case with data set Desserts.

A comment line of the form, for example,)"4x%s %s" specifies the first 4 characters in
each line are to be skipped.

When CHARACTER is on the name line and there is no comment line of the form)"%s
%s ... ", the entire contents of a line (or several lines, when a line is continued by
ending it with “\”) forms a single data element. This is referred to as “by lines” format.
Data set Desserts could also have been in the following form.

Desserts 3 CHARACTER
) Data are in by lines format
Ice cream
Strawberries
Short cake\
with whipped cream

If QUOTED is on the first line, and there is no)"%s %s ... " comment line, each
element is quoted and must start on a new line regardless of the dimensions.

Following the header and comment lines come the CHARACTER data. Each row of data
(column if COLUMNS was specified) must start on a separate line. If there is a line of the
form)"%s ... , multiple data items in a line must be separated by blanks or tabs.

7.1.3 Structures The presence of STRUCTURE on the name line indicates the data set is a
structure. After comments lines, if any, come the components. Each component is in
the standard form for a REAL, LOGICAL, CHARACTER or NULL data set or is itself a
structure. As shown in the sample file, each component data set’s name is of the form
structurename$compname, analogously to how you reference structure components
by name. If a structure component is itself a structure, its components have names of

7-6

MacAnova Version 4.07

the form structurename$compname1$compname2 (for example,
mystruc$constants$pi).

Each component of a structure can be read separately by specifying its full name.

Cmd> matread("data.txt","mystruc$constants$pi")
mystruc$constants$pi 1 1
) 1 by 1 matrix
(1,1) 3.1416

7.1.4 Labels and notes Coordinate labels (Sec. 8.4) and descriptive notes (Sec. 8.9)
attached to a variable can be included as CHARACTER vectors in the file in a similar
format as structure components.

The presence of labels or notes attached to a variable is signalled by LABELS or NOTES on
the name line. If the name of the data set is x, say, the names of its labels and notes, if
any, is x$LABELS and x$NOTES. If a structure component, say y$time, has labels or
notes, they have names y$time$LABELS and y$time$NOTES.

x$LABELS and/or x$NOTES must follow all the content of a variable. If x is a structure,
x$LABELS and/or x$NOTES must follow all the information, data, labels and notes, of
the last component of x.

The length of the CHARACTER vector x$LABELS must match the sum of the dimensions
of x. The elements of the vector are the labels for the first dimension, followed by the
labels for the second dimension, if any, and so on. Generally, since labels tend to be
short, the name line for x$LABELS should contain QUOTED and COLUMNS and there
should be a comment line of the form)"%s %s ...%s" specifying how many labels
are expected per line. See Sec. 7.1.2.

There are no limitations on the length of CHARACTER vector x$NOTES. The will usually
in unquoted “by lines” format signalled by CHARACTER on the name line and no
comment line of the form)"%s %s ...%s". See Sec. 7.1.2.

Because labels and notes are CHARACTER data sets in their own right, they can be read
directly by, say, matread(fileName,"x$LABELS") and matread(fileName,
"x$Notes").

Here is an example consisting of reading data set labelled in file data.txt listed in
Sec. 7.1.

Cmd> labelled <- read("data.txt","labelled")
labelled 4 3 COLUMNS LABELS NOTES
) Small REAL data set with one missing value coded as -99.
) Each line contains data for one column (COLUMNS on header)
) MISSING -99
) '4x' in the following format skips 4 characters (variable label)

7-7

MacAnova Version 4.07

Cmd> labelled
 Temp Conc Secs
(1) 34.5 0.17 3.5
(2) 45.2 MISSING 4.7
(3) 23.1 0.883 3.2
(4) 20.1 0.401 5.8

Cmd> getnotes(labelled) # see Sec. 8.9.1
(1) "Small REAL data set with row and column labels."
(2) "There is one missing value."

Cmd> read("data.txt","labelled$LABELS") # just read labels
labelled$LABELS 7 QUOTED COLUMNS
) Labels for sample data in quoted format by columns
(1) "@"
(2) "@"
(3) "@"
(4) "@"
(5) "Temp"
(6) "Conc"
(7) "Secs"

Cmd> read("data.txt","labelled$NOTES") # just read notes
labelled$NOTES 2 CHARACTER
) Notes for sampledata in "by line" format
(1) "Small REAL data set with row and column labels."
(2) "There is one missing value.

7.1.5 matread() and read() keywords Here are is a table of keyword phrases that can be
used as arguments to matread() and read().

Keyword Phrase Meaning

quiet:T Header and descriptive comments will not be printed

quiet:F All header and descriptive comments will be printed

echo:T Data lines will be printed as they are read

silent:T Print only error messages; incompatible with quiet:F or echo:T

notfoundok:T Failure to find data set is not an error

When notfoundok:T is an argument and the wanted data set is not found, no error
message is printed and the value returned by matread() and read() is NULL.

In addition to these, you can use keyword string to “read” from a CHARACTER variable
rather than a file. See Sec. 7.3.

7.2 Reading CHARACTER data from files matread(), read() and vecread() can read
CHARACTER data from a file.

matread() and read() can read a named CHARACTER data set, which may be a scalar,
vector, matrix or array in the special format described in Sec. 7.1.2. Here is an example
reading from the file data.txt listed in Sec. 7.1.1-7.1.4.

7-8

MacAnova Version 4.07

Cmd> desserts <- matread("data.txt","Desserts") # or read(...)
Desserts 3 QUOTED COLUMNS
) Data are quoted CHARACTER elements

Cmd> desserts
(1) "Ice cream"
(2) "Strawberries"
(3) "Short cake
with whipped cream"

No distinction is made between upper and lower case letters in the names of data sets
in a file, so matread("data.txt","desserts") or matread("data.txt",
"DESSERTS") would also retrieve Desserts. See Sec. 7.1.2 for full information on how
to format CHARACTER data in a file so that it can be read by matread() and read().

You can also read CHARACTER data using vecread(). You must include one of the
keyword phrases bywords:T, bylines:T or bychars:T as an argument in addition to
the file name. character:T means the same as bywords:T. Here is a listing of file
chardata.txt which will be used as an example.

#data on 2 children
Henry Male 67.3,10.5
Susan Female 59.2,15.1
 !
Other stuff ...

vecread(fileName,bywords:T) or vecread(fileName,character:T) reads
CHARACTER data from a file with each “word” – a sequence of visible characters,
excluding commas and the “stopping” character – being read as a single CHARACTER
element. “Words” may be separated by spaces, tabs or commas (see also Sec. 2.11.1). As
when reading REAL data, scanning of the file is terminated by a “stop character” which
by default is “!”.

Cmd> vecread("chardata.txt",bywords:T) # or character:T
 (1) "#data"
 (2) "on"
 (3) "2"
 (4) "children"
 (5) "Henry"
 (6) "Male"
 (7) "67.3"
 (8) "10.5"
 (9) "Susan"
(10) "Female"
(11) "59.2"
(12) "15.1"

Note that vecread() did not retrieve "Other", "stuff" and "..." because they came
after the stop character “!”.

You can change the stop character to “$”, say, by keyword phrase stop:"$". To ensure
the entire file will be read, change the stop character to one you know is not in the file.
A good bet is stop:"\377" but you can use any non-ascii character between "\200"
and "\377" that does not occur in the file. Skipped lines will be echoed to the screen if

7-9

MacAnova Version 4.07

you use quiet:F.

Cmd> words <- vecread("chardata.txt",bywords:T,stop:"\377")

Cmd> words[-run(11)] # this time we got everything
(1) "15.1"
(2) "!"
(3) "Other"
(4) "stuff"
(5) "..."

You can use also keywords skip, go and quiet as when reading REAL data (Sec. 2.11.1).

Cmd> words <- vecread("chardata.txt",bywords:T,skip:"#",quiet:F)
#data on 2 children Printed because of quiet:F

Cmd> words
(1) "Henry"
(2) "Male"
(3) "67.3"
(4) "10.5"
(5) "Susan"
(6) "Female"
(7) "59.2"
(8) "15.1"

vecread(fileName,bylines:T) reads CHARACTER data from a file, treating each line
in the file as a separate item. The stop character terminates the reading only when it
occurs at the start of the line.

Cmd> lines <- vecread("chardata.txt",bylines:T,skip:"#",quiet:T)

Cmd> lines
(1) "Henry Male 67.3,10.5"
(2) "Susan Female 59.2,15.1"
(3) " !"
(4) "Other stuff .."

The “!” did not stop the read because it was not the first character in the line. The line
starting with “#” was skipped, but not printed because of quiet:T.

vecread(fileName,bychars:T) reads CHARACTER data from a file, returning a
CHARACTER vector each element of which is an individual character in the file. As
with bylines:T, the stop character terminates the reading only when it is the first
character in the line. All characters, in the file including end-of-line characters "\n"
are returned.

Cmd> chars <- vecread("chardata.txt",bychars:T,skip:"#",quiet:T)

chars is a CHARACTER vector equivalent to

vector("H","e","n","r","y"," "," "," ","M","a","l","e"," "," "," ",\
"6","7",".","3",",","1","0",".","5","\n","S","u","s","a","n"," ",\
" "," ","F","e","m","a","l","e"," ","5","9",".","2",",","1","5",\
".","1","\n"," "," "," "," ","!","\n","O","t","h","e","r"," ","s",\
"t","u","f","f"," ",".",".",".","\n")

7-10

MacAnova Version 4.07

7.3 “Reading” from CHARACTER variables All commands that read files (except
batch() and restore()) can also “read” from a quoted string or CHARACTER variable
which is the value of keyword string. Some examples are the following.

Cmd> x <- vecread(string:"1 3 2 7 10.11"); x
(1) 1 3 2 7 10.11

Cmd> x <- vecread(string:vector("1 3","2 7","10.11"));x
(1) 1 3 2 7 10.11

Cmd> charx1 <- "x1 1 5
) 1 by 5 matrix with up to 3 numbers per line
)\"%f %f %f \"
2 5 2
7 13.21" # this is a single quoted string, a CHARACTER scalar

Cmd> x1 <- matread(string:charx1,"x1")
x1 1 5 Lines echoed
) 1 by 5 matrix with up to 3 numbers per line by matread()

Cmd> x1 # Here's what was read
(1,1) 2 5 2 7 13.21

Cmd> charx2 <- vector("x 1 5",\
") 1 by 5 matrix with up to 3 numbers per line",\
")\"%f %f %f \"","1 3 1","8 17.1") # this is a CHARACTER vector

Cmd> x2 <- matread(string:charx2,"x")
x 1 5
) 1 by 5 matrix with up to 3 numbers per line

Cmd> x2
(1,1) 1 3 1 8 17.1

As two of these examples show, the value of string can be a vector and the last two
examples show that you can even read a named matrix from a CHARACTER variable. If
the value of string is a vector, every element is read as a single line in a file (or
several lines if there are embedded end-of-line characters.)

On a windowed version (Macintosh, Windows, Motif), the value of string can be
CLIPBOARD, allowing easy importing of data from other applications. For example, if
you select a 20 by 5 array of numbers in a spreadsheet program such as Excel™, and
copy it to the Clipboard using Copy on the Edit menu, you can create a matrix in
MacAnova by

Cmd> data <- matrix(vecread(string:CLIPBOARD),5)' # note transpose

Predefined macro fromclip makes this easier.

Cmd> data <- fromclip(5) # argument is number of columns

vecread(string:CharVec,bylines:T), where CharVec is a CHARACTER vector, treats
each element of CharVec as starting a new line.

Cmd> vecread(string:vector("Line 1","Line 2","Line 3"),bylines:T)
(1) "Line 1"
(2) "Line 2"
(3) "Line 3"

7-11

MacAnova Version 4.07

vecread(string:CharVec,bychars:T) inserts an empty string ("") between each of
the elements of charvec.

Cmd> vecread(string:vector("ab","mn","yz"),bychar:T)
(1) "a"
(2) "b"
(3) ""
(4) "m"
(5) "n"
(6) ""
(7) "y"
(8) "z"

7.3.1 “Decoding” a CHARACTER variable Here is an example showing how to use
vecread() to extract information from predefined CHARACTER variable VERSION which
contains information on the version number and compilation date for the copy of
MacAnova you are using.

Cmd> VERSION
(1) "MacAnova 4.07 of 08/12/98 (Power Macintosh [CW])"

Cmd> tmp <- vecread(string:VERSION,bywords:T);tmp #see Sec. 7.2
(1) "MacAnova"
(2) "4.07"
(3) "of"
(4) "08/12/98"
(5) "(Power"
(6) "Macintosh"
(7) "[CW])"

Cmd> versionNo <- vecread(string:tmp[2]); versionNo
(1) 4.07

Cmd> date <- vecread(string:tmp[4],silent:T); date
(1) 8 12 98

Note the use of silent:T to suppress the warning message that would normally occur
because of the /’s in the data. See Sec. 2.11.1.

The ability to read a file as CHARACTER data and then take apart the lines sometimes
makes it possible to to read text files that have non-standard formats. For example,
suppose file presdent.txt looks like the following:

G. Washington 1789 1797 VA 2/22/1732 12/14/1799 Episcopalian
J. Adams 1797 1801 MA 10/30/1795 7/4/1826 Unitarian
T. Jefferson 1801 1809 VA 4/13/1743 7/4/1826 Deist

Then you can create variables containing information from specific fields of each line.
Here are some examples (see Sec. 9.2.3 for the use of for(...){...}).

Cmd> data <- vecread("presdent.txt",bylines:T) #See Sec. 7.2

Cmd> data
(1) "G. Washington 1789 1797 VA 2/22/1732 12/14/1799 Episcopalian"
(2) "J. Adams 1797 1801 MA 10/30/1795 7/4/1826 Unitarian"
(3) "T. Jefferson 1801 1809 VA 4/13/1743 7/4/1826 Deist"

7-12

MacAnova Version 4.07

Cmd> names <- rep("",3) # create big enough variable

Cmd> for(i,run(3)){ names[i] <- \
paste(vecread(string:data[i],bywords:T)[run(2)]);;}

Cmd> # See Sec. 9.2.3 for for(...){...}; Sec. 8.3.1 for paste()

Cmd> names
(1) "G. Washington"
(2) "J. Adams"
(3) "T. Jefferson"

Cmd> terms <- matrix(rep(0,6),3) # create matrix of right size

Cmd> for(i,run(3)){ # Sec. 9.2.3
@tmp <- vecread(string:data[i],char:T)[run(3,4)]
terms[i,] <- vecread(string:@tmp)[run(2)]';;}

Cmd> terms
(1,1) 1789 1797
(2,1) 1797 1801
(3,1) 1801 1809

Cmd> birthyear <- rep(0,3) # create vector of right size

Cmd> for(i,run(3)){
@tmp <- vecread(string:data[i],char:T)[6]
birthyear[i] <- vecread(string:@tmp,silent:T)[3];;}

Cmd> birthyear
(1) 1732 1795 1743

In each case, we start by creating a variable of the right size and shape to hold the data
extracted. See Sec. 8.3.1 for the use of paste().

Here is an example where we separate the left and right hand sides of a GLM model (see
Sec. 3.4), squeezing out any spaces.

Cmd> cmodel <- vecread(string:"y = a + b",bychars:T)

Cmd> if (match("=", cmodel, 0) == 0){# See Sec. 9.2.2, 9.4.1
print("ERROR: no \"=\" in the model")

} else {
for (i,1,length(cmodel)){#See Sec. 9.2.3

if(cmodel[i] == "="){break}
}
leftside <- if (i == 1) {""} else {cmodel[run(i-1)]}
rhs <- if (i == length(cmodel)) {""} else {cmodel[-run(i)]}
lhs[lhs == " "] <- ""; lhs <- paste(lhs,sep:"")
rhs[rhs == " "] <- ""; rhs <- paste(rhs,sep:"")
print(lhs,rhs) # See Sec. 7.4

}
lhs:
(1) "y"
rhs:
(1) "a+b"

7.3.2 Finding ASCII codes for a CHARACTER variable – getascii() In your computer’s
memory, every character, letter, number or punctuation, of a CHARACTER variable is

7-13

MacAnova Version 4.07

represented by a number between 0 and 255, its ASCII code. For certain specialized
purposes, you may want to determine the codes correponding to particular characters.
That’s what getascii() allows you to do. It’s probably best explained by examples.

Cmd> getascii("ABCDE") # ascii code of 'A' is 65, etc.
(1) 65 66 67 68 69

This is the simplest usage, and usually the only one needed. getascii() returns the
ASCII codes of the characters in it’s CHARACTER scalar argument. 65 is the code for A, 66
is the code for B, and so on. See Sec. 7.4.3 for a table of the ASCII codes for printable
characters. getascii("") returns NULL.

When there are several CHARACTER vectors as arguments, they are all pasted together
before decoding:

Cmd> getascii(vector("AB","C"), "DE") # same as preceding
(1) 65 66 67 68 69

You can include in a string any character, even one you cannot type directly, using the
so called escaped octal representation of its ASCII code. Thus, since 1×8 + 5 = 13, 15 is
the octal (base 8) representation of decimal 13, "\15" or "\015" is the character (usually
interpreted as a Return character) with code 13. Similarly, because 123 is the octal
representation for 1×82 + 2×8 + 3 = 83, the ASCII code for “S”, "\123" is equivalent to
"S". You can use getascii() to confirm that these codes are generated.

Cmd> getascii("\123")
(1) 83

Cmd> getascii("\001\002\003\004\005") #or getascii("\1\2\3\4\5")
(1) 1 2 3 4 5

Function putascii() with keyword phrase keep:T (Sec. 7.4.3) can be viewed as an
inverse to getascii().

7.4 Writing data to the screen and to files There are several commands for writing data
in human readable form. These include print(), write(), matprint(), and
matwrite(). The first two of these normally write to the screen or output window,
while the remainder write plain text or ASCII files. All require one or more MacAnova
variables or expressions as arguments and allow you to specify the format in which
information is written using keyword phrases.

write() and matwrite() differ from their twins print() and matprint() only in
the default format that is used for REAL and LOGICAL data. The default format for
print() and matprint() is taken from option format; the default format for write()
and matwrite() is taken from option wformat (See Sec. 8.1). These defaults are
initialized to "12.5g" and "16.9g", that is, floating point format with 5 and 9
significant digits, respectively. Thus commands ending in print normally provide 5
significant digits, and those ending in write provide 9 significant digits.

matprint(), and matwrite() write to files. Their first argument is a quoted string or a
CHARACTER variable specifying the file name. Their default action is to add information
to the end of an existing file, not disturbing anything already in the file. However, if
you include keyword phrase new:T as an argument, writing starts at the beginning of

7-14

MacAnova Version 4.07

the file, overwriting any information in the file. An example of their use might be

Cmd> matwrite("myfile",a,b,logb:log(b),new:T)

This also illustrates another use of keywords on all these commands – to specify a
name to label a printed item. Without the keyword logb, log(b) would have been
given a generic label such as NUMBER or VECTOR.

If you use variable CONSOLE in place of a file name, output will be written to the screen
and not to a file. This can be helpful for exploring the format of data sets written by
matprint() and matwrite(). The value of CONSOLE is ignored.

You can modify the format used on all output commands using keywords nsig and
format.

Keyword phrase Meaning

nsig:n Number of significant digits will be positive integer n

format:Format Format used taken from CHARACTER scalar Format

An argument of either form affects how subsequent arguments are printed until
another nsig or format keyword phrase, if any, resets the formatting. Format must be
a quoted string or CHARACTER variable. See the discussion of option format in Sec. 8.1.3
for details on the value of Format.

When nsig:n or format:Format follows all data argument in the command (for
example, print(x,y,nsig:15) or matprint("myfile",x,y, nsig:15)), it is used
as if it preceded all other arguments (except the file name) (print(nsig:15,x,y) or
matprint("myfile", nsig:15,x,y)). See Sec. 7.4.1 for examples of keywords
format and nsig.

Keywords nsig and format affect only the current command and have no effect on
option settings.

7.4.1 print() and write() These both write to the screen or output window and have
identical usage, print(var1,var2,...) and write(var1,var2,...), possibly with
interspersed nsig and format keyword phrases (see Sec. 7.4). Arguments var1, var2, ...
can be arbitrary expressions, variables or macros, even variables of type GRAPH.

Cmd> x <- 1000*PI

Cmd> print(x,format:"16.9g",x1:x,format:".4g",y:x,\
format:"10.3f",z:x)

x:
(1) 3141.6 Default print format 12.5g
x1:
(1) 3141.59265 Format 16.9g
y:
(1) 3142 Format .4g = 11.4g (11 is 4+7)
z:
(1) 3141.593 Format 10.3f, fixed with 3 decimal places

Cmd> write(x)
x:
(1) 3141.59265 Uses default write format 16.9g

7-15

MacAnova Version 4.07

There are several keywords besides nsig and format.

Keyword Phrase Meaning

header:F Suppress writing data set name as header

labels:F Suppress writing index labels

name:CharScalar Use CharScalar instead of variable name in header

missing:CharScalar Substitute for MISSING for missing values

file:fileName Write to file fileName instead of screen or window

new:T Overwrite contents of files (used only with file)

The value for name affects only the next variable printed; the values for header,
labels and missing affect all following variables, unless changed by a new value. If
name, header, labels or missing follow all variables being printed, they are treated as
if they were before them.

If a variable printed is a structure, all its components are printed using any keywords
affecting the printing of the variable itself.

Here header:F and labels:F are used together to suppress both the name and the
index labels.

Cmd> print(sqrt(matrix(run(9),3)),header:F,labels:F)
 1 2 2.6458
 1.4142 2.2361 2.8284
 1.7321 2.4495 3

Here is an example of output omitting missing and including it.

Cmd> print(vector(1,3,?,2.5,2))
VECTOR:
(1) 1 3 MISSING 2.5 2

Cmd> print(vector(1,3,?,2.5,2),missing:"??")
VECTOR:
(1) 1 3 ?? 2.5 2

Functions print() and write() normally write to the screen, but can write to a file.
Here is how you might write to a file, overwriting anything already there.

Cmd> print(sqrt(matrix(run(9),3)),file:"results.txt",new:T)

new:T insures that any information in the file is deleted before writing. Without
new:T, output is written at the end of the file.

Normally, unless you use header:F, each item printed by print() and write() is
preceded by its name. If the item is an expression or the result of a function, a generic
name like MATRIX is used. As illustrated above, you can replace these names by
specifying the item in a keyword phrase.

Cmd> print(sqrtpi:sqrt(PI))
sqrtpi:
(1) 1.7725

7-16

MacAnova Version 4.07

Such a name must be a legal keyword name, that is, up to 10 characters starting with a
letter and containing only letters, digits or “_”. You can provide longer and more
descriptive names using keyword name.

Cmd> print(name:"Square root of pi",sqrt(PI),name:"Log(pi)",log(PI))
Square root of pi:
(1) 1.7725
Log(pi):
(1) 1.1447

You may use name several times, but each value is used just once for the next item
being printed (or the first, if name:Name follows all the items being printed).

Because of the header line, data written to a file by print(...,file:fileName) and
write(...,file:fileName) normally cannot be reread correctly by MacAnova.
However, if x is a REAL variable,

Cmd> print(x,header:F,labels:F,file:fileName,new:T) # or write()

creates a file with no header or row labels that can be read by vecread() as well as by
many programs that can read data from plain text or ASCII files.

7.4.2 matprint() and matwrite() These write their arguments to a file in a form that can
be read by matread() and read(). See Sec. 7.1 and 7.1.1-7.1.3 for a description of the
file format. The standard usages are identical:

Cmd> matprint(fileName,arg1,arg2,...)

and

Cmd> matwrite(fileName,arg1,arg2,...)

The arguments arg1, arg2, ... to be written can be of any type, including CHARACTER,
NULL and structures. Each will be written as a named data set with the same name as
the argument. You can specify a name different from the variable name using a
keyword. For example,

Cmd> x <- run(5); y <- vector(1,2,3,5,8)

Cmd> matwrite("mydata.txt",sqrtx:sqrt(x'),logy:log(y'),\
format:"8.6f")

creates the file mydata.txt as listed here.

sqrtx 1 5
)"%lf %lf %lf %lf %lf"
 1.000000 1.414214 1.732051 2.000000 2.236068

logy 1 5
)"%lf %lf %lf %lf %lf"
 0.000000 0.693147 1.098612 1.609438 2.079442

7-17

MacAnova Version 4.07

You can use the following keywords in addition to nsig and format.

Keyword Phrase Meaning

header:F Suppress first header line of data set

name:CharScalar Use CharScalar instead of data set name in header

comments:CharVector Elements of CharVector written as comments

missing:RealScalar Value to be written for missing values

sep:SingleChar Separator between values in line

new:T Overwrite contents of file

When new:T is an argument, any data currently in the file will be discarded before
writing.

The values for name and comments affect only the next following variable being
written. The value for missing applies to all following variables, unless replaced by a
new instance of missing.

Unless you supply an alternative value using keyword missing, any MISSING values
in a variable will be printed exactly as -99999.9999, regardless of the format, and a
comment line of the form “)MISSING -99999.9999” will be written to the file before
the data. When matread() or read() read the variable you have written, this value
or the value specified by missing will be translated back to MISSING. Note that this
usage is different from the use of missing in print() and write() (Sec. 7.4.1). On
those commands you use missing to specify a CHARACTER code such as "NA" or "?" for
MISSING data; on matprint() and matwrite() you use missing to specify a REAL code
for MISSING.

In the following examples, the file name is given as CONSOLE, resulting in writing the
the screen or output window.

Cmd> y <- sqrt(matrix(vector(11,10,6,9,12,14,12,4,8,11,?,3),3))
WARNING: missing values in argument(s) to sqrt()

Cmd> matprint(CONSOLE,missing:-1,y) # print to screen (CONSOLE)
y 3 4
) MISSING: -1 Because of missing:-1
)"%lf %lf %lf %lf"
 3.3166 3 3.4641 3.3166
 3.1623 3.4641 2 -1
 2.4495 3.7417 2.8284 1.7321

Cmd> matwrite(CONSOLE,y,format:"9.5f",missing:-99,ysq:y^2)
WARNING: arithmetic with missing value(s); operation is ^
y 3 4 Default value of missing applies
) MISSING: -99999.9999 to first matrix printed
)"%lf %lf %lf %lf"
 3.31662479 3 3.46410162 3.31662479
 3.16227766 3.46410162 2 -99999.9999
 2.44948974 3.74165739 2.82842712 1.73205081

7-18

MacAnova Version 4.07

ysq 3 4
) MISSING: -99.00000 Specified value of missing
)"%lf %lf %lf %lf" applies to second printed
 11.00000 9.00000 12.00000 11.00000
 10.00000 12.00000 4.00000 -99.00000
 6.00000 14.00000 8.00000 3.00000

Here is an example of the use of header:F.

Cmd> matprint(CONSOLE,missing:-1,y,header:F)
 3.3166 3 3.4641 3.3166
 3.1623 3.4641 2 -1
 2.4495 3.7417 2.8284 1.7321

Any program that can read data items separated by spaces will be able to read a file that
looks like this. When writing to a file rather than to CONSOLE, you would normally use
new:T to ensure that nothing precedes the data in the file.

Keyword sep allows you to write files that can be read by programs, such as some
spreadsheets, that expect data items to be separated by commas or some other character
such as tab. The value of sep should be a single quoted character, for example "," or
"\t" (tab).

Cmd> matprint(CONSOLE,missing:-1,y,sep:",") # comma-separated
3.3166,3,3.4641,3.3166
3.1623,3.4641,2,-1
2.4495,3.7417,2.8284,1.7321

Cmd> matprint(CONSOLE,missing:-1,y,sep:"\t") # Tab-separated
3.3166 3 3.4641 3.3166
3.1623 3.4641 2 -1
2.4495 3.7417 2.8284 1.7321

As you can see, the use of sep automatically suppresses the header. If for some reason
you want a header, use header:T.

In a Windowed version (Macintosh, Windows, Motif), if you write data with sep:"\t"
to the output window by specifying CONSOLE as file name, and then Copy it to the to the
Clipboard using Copy on the Edit menu, it may be possible to paste it directly into a
spreadsheet.

When you don’t use header:F as an argument, keyword name allows you to specify
longer and non-standard names to be put in the header.

Cmd> matprint(CONSOLE,name:"sqrt(data)",y,missing:-99)
sqrt(data) 3 4
) MISSING: -99
)"%lf %lf %lf %lf"
 3.3166 3 3.4641 3.3166
 3.1623 3.4641 2 -99
 2.4495 3.7417 2.8284 1.7321

Any CHARACTER scalar or quoted string can be used for the name. However, if it
contains any spaces or starts with any character other than a letter, “_” or “@”, you won’t
be able to read it back in using matread(). Non-alphabetic and non-numeric characters
after the first are OK. You may use name several times, but each value is used only once

7-19

MacAnova Version 4.07

for the next item being printed (or the first, if name:Name follows all the items being
printed).

If you are using matprint() or matwrite() to create a library of data sets, it is helpful
to be able to include descriptive comment lines. This can be done by including keyword
comments whose value must be a CHARACTER scalar or vector. Here is an example.

Cmd> matprint(CONSOLE,y,missing:-99,\
comments:vector("Sample data","which includes 1 MISSING value"))

y 3 4
) Sample data
) which includes 1 MISSING value
) MISSING: -99
)"%lf %lf %lf %lf"
 3.3166 3 3.4641 3.3166
 3.1623 3.4641 2 -99
 2.4495 3.7417 2.8284 1.7321

Here the value of comments is a vector of length 2, each element of which, preceded by
“) ”, becomes a line. The line giving a value for MISSING was added by matprint().

7.4.3 putascii() Command putascii() is rather specialized. It allows you to output
arbitrary symbols, even ones that are not normally printable. Its original purpose was
to allow you to do such things as clear the screen or ring the bell on a terminal but if
you are creative you may find other uses for it.

putascii(codes) where codes is a vector of integers between 1 and 255 “emits”
length(codes) characters specified by codes[1], codes[2], ... , interpreted as ASCII
codes (see Sec. 7.3.2).

putascii(code1,code2,...), where the arguments are integer scalars or vectors is
equivalent to putascii(vector(code1,code2,...)).

Code 7 is usually an audible signal like a bell or a beep, code 9 is the tab character ("\t"),
code 10 (13 on a Macintosh) is the new line character ("\n") and code 32 is a space.
Codes between 33 and 126 are the following normal visible printable characters.

Codes Characters

33 to 63 ! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

64 to 95 @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _

96 to 126 ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

Cmd> putascii(7,7,7) # rings bell or "beeps" 3 times

Cmd> putascii(run(65,90)) # uppercase alphabet
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Cmd> putascii(77,97,99,65,110,111,118,97)
MacAnova

In a non-Motif Unix version, putascii() may be helpful in switching between
different terminal emulations. For example, when running in an xterm window,
putascii(vector(29,27,56)) switches to Tektronix 4014 emulation mode and

7-20

MacAnova Version 4.07

putascii(vector(27,50)) switches back to VT100 emulation mode.

See Sec. 8.3.4 for the use of putascii() to create a CHARACTER variable.

putascii(x,keep:T) can be viewed as an inverse to getascii(c), in the sense that
putascii(getascii(c),keep:T) returns c and getascii(putascii(x,keep:T))
returns x, where c is a CHARACTER scalar and x is a REAL vector of integers between 1
and 255, inclusive.

Cmd> getascii(putascii(run(30,34),keep:T))
(1) 30 31 32 33 34

Cmd> putascii(getascii("MacAnova"),keep:T)
(1) "MacAnova"

7.5 Macro files A powerful feature of MacAnova is its ability to use libraries of macros
in files. You can retrieve macros from a file using command macroread() and
predefined macro getmacros. You can use macrowrite() to write macros to a file in a
form readable by macroread() and getmacros. Files MacAnova.mac, Tser.mac and
Design.mac distributed with MacAnova are libraries of macros that extend the power
of MacAnova. See Sec. 9.3 for details on what goes on in a macro.

When macroread() and getmacros do not find a specific macro file in the default
directory or folder, they look for it in the directories or folders whose names are in
CHARACTER vector DATAPATHS. See Sec. 2.11.6.

7.5.1 macroread(), read() and the format of macro files Commands macroread() and
read() read macros from a file in a standard format. Here macroread() is used to
retrieve macro covar from file macanova.mac.

Cmd> compcovar <- macroread("macanova.mac","covar")
covar 12 MACRO
) usage: d <- covar(x), x a matrix, computes structure with components
) n (scalar), mean (row vector), and covariance (matrix)

This reads covar from file macanova.mac and saves it in the workspace under the
name compcovar. The lines printed are header lines for the macro in the file. Lines
starting with “)” usually contain descriptive or usage information. They are normally
echoed unless they start with “))” or you use keyword phrase quiet:T.

Cmd> compcovar <- macroread("macanova.mac","covar",quiet:T)

does the same, without printing these lines. To force echoing of lines starting with
“))”, use keyword phrase quiet:F.

Each macro that macroread() can read from a file must be in one of two similar forms.
They are best illustrated by examples. Here is a listing of a file containing two macros,
fences and standardize, one in each form (see Sec. 9.3 for an explanation of symbols
such as $1, $S and @x$$):

7-21

MacAnova Version 4.07

fences 8 MACRO
) macro with line count on the name line
) usage: d <- fences(x), compute inner and outer
) fences of vector x
)) This is a comment that will not be echoed unless quiet:F is used
)) Such lines can be used to include extensive documentation that
)) it would not be desirable to echo whenever read.
usage: d <- $S(x)
@x$$ <- $1
if (!isvector(@x$$) || !isreal(@x$$)){

error("ERROR: $1 is not a REAL vector")}
@stats$$ <- describe($1, q1:T, q3:T)
@iqr$$ <- @stats$$$q3 - @stats$$$q1
vector(@stats$$$q1 - vector(3, 1.5)*@iqr$$,\
 @stats$$$q3 + run(1.5, 3)*@iqr$$)

standardize MACRO OUTOFLINE
) macro with no line count but with special line to terminate it
) usage: d <- standardize(x)
usage: d <- $S(x)
@x$$ <- $1
@dims$$ <- dim(@x$$)
@dims$$[1] <- 1
@mean$$ <- array(describe(@x$$,mean:T),@dims$$)
@sd$$ <- sqrt(array(describe(@x$$,var:T),@dims$$))
(@x$$ - @mean$$)/@sd$$
%standardize%

Macro fences is in a format for which the first header line specifies its length in lines.
The first line, the name line, contains the name of the macro at the start of the line,
followed by the number of lines of commands in the macro and keyword MACRO. The
number of lines does not include the name line and lines starting with “)”.

The absence of a line count on the name line for standardize signals that its end will
be indicated by a line starting %standardize%, that is, the name of the macro preceded
and followed by “%”. In this format, too, keyword MACRO is required.

Keyword OUTOFLINE on the name line specifies that the macro is to be expanded “out
of line”, rather than “in line” (see Sec. 9.3).

The name line can also contain NOTES, just as with data sets readable by matread() and
read() (see Sec. 7.1 and 7.1.4).

In searching the file for a line starting with the macro name and containing “MACRO”,
MacAnova ignores case, so , for example, the first line of fences could be replaced by

Fences 8 MACRO

Lines starting with “)” immediately after the name line are comment l ines (there are
three in fences) and are part of the header and not part of the macro. After these is the
text of the macro itself, consisting of MacAnova commands, possibly including lines
starting with “#”. If the number of lines was specified on the name line as it was for
fences, there must be exactly that many lines. Quotation marks do not need to be
preceded by “\” and indeed should not be, unless they themselves are part of a quoted
string as in print("\"Hello\"").

7-22

MacAnova Version 4.07

You can have any number of macros in a file, as long as each has one of these forms. If
you do not provide a macro name to macroread() (for example,
macroread("myfile.mac")), the first macro in the file is read. Macros can even be
interspersed with data sets of the form readable by matread() (See Sec. 7.1).

It is not an error for a macro on a file to have 0 lines. In that case macroread() prints
the header lines and returns NULL. It is a useful idea to have the first macro in a file
have zero lines but with comment lines that list the actual macros available in the file.
Then you can obtain a brief catalogue of what’s in the file by macroread(fileName),
with no data set specified.

Here are keyword phrases that can be used as additional arguments to macroread().

Keyword Phrase Meaning

quiet:T Header and descriptive comments will not be printed

quiet:F All header and descriptive comments will be printed

echo:T Macro will be printed as it is read

silent:T Print only error messages; incompatible with quiet:F or echo:T

notfoundok:T Failure to find macro is not an error

When notfoundok:T is an argument and the wanted macro is not found, no error
message is printed and the value returned by macroread() is NULL.

7.5.2 macrowrite() You can write macros to a file in a format that macroread() can read
using command macrowrite(). Its usage is macrowrite(fileName,macro1,
macro2,...), where fileName is a CHARACTER variable or quoted string and macro1,
macro2, ... are macros to be written. If the file already exists, the default behavior is to
write the macros at the end, not changing anything already in the file. If the keyword
phrase new:T is an argument, any information in the file is discarded and the macros
are written at the beginning.

Cmd> macrowrite(CONSOLE,colplot,rowplot)
colplot MACRO
#$S(y [,title:"Title of your choice]")
if($N<1){error("ERROR: $S needs at least 1 argument")}
chplot(1,$01,lines:T,$K,xlab:"Row Number")
%colplot%

rowplot MACRO
#$S(y [,title:"Title of your choice]")
if($N<1){error("ERROR: $S needs at least 1 argument")}
chplot(1,y:($01)',lines:T,$K,xlab:"Column Number")
%rowplot%

writes pre-defined macros colplot and rowplot to the screen because fileName is
CONSOLE. If, say, "Myfile.mac" were substituted for CONSOLE, the macros would be
written to file Myfile.mac, in which case you would probably want to include new:T as
an argument so as to make a new start on the file. If you prefer to write macros in the
older style, with a line count in the header line, use keyword phrase oldstyle:T.

7-23

MacAnova Version 4.07

Cmd> macrowrite(CONSOLE,colplot,oldstyle:T)
colplot 3 MACRO
#$S(y [,title:"Title of your choice]")
if($N<1){error("ERROR: $S needs at least 1 argument")}
chplot(1,$01,lines:T,$K,xlab:"Row Number")

You can use a keyword to provide a different macro name to be used in the file.

Cmd> macrowrite("trnsform.mac",transform:mymacro)

writes mymacro to file trnsform.mac giving it the name transform.

You can also use the following keywords. Their usage is identical to that in
matprint() and matwrite() (Sec. 7.4.2):

Keyword Phrase Meaning

header:F Suppress first header line of macro

name:CharScalar Use CharScalar instead of macro name in header

comments:CharVector Elements of CharVector written as comments

new:T Overwrite contents of file

7.5.3 getmacros Predefined macro getmacros is a shortcut that uses macroread() to
retrieve one or more macros from the files whose names are in CHARACTER vector
MACROFILES. The default value of MACROFILES is vector("macanova.mac",
"tser.mac","design.mac"). If MACROFILES does not exist, the file whose name is in
CHARACTER scalar MACROFILE is read.

Cmd> MACROFILES # default value
(1) "macanova.mac"
(2) "tser.mac"
(3) "design.mac"

Cmd> getmacros(groupcovar,detrend)
groupcovar 15 MACRO
) groupcovar(groups,y), N by 1 vector groups, N by p matrix y
detrend 22 MACRO
) usage: detrend(x [,degree]), remove polynomial trend from cols of x

Here groupcovar and detrend were read from files macanova.mac and tser.mac,
respectively.

Cmd> getmacros(groupcovar,detrend,quiet:T)

does the same, suppressing the echoing of the header lines.

7.5.4 addmacrofile As mentioned in Sec. 7.5.3, getmacros() scans the files whose
names are in CHARACTER vector MACROFILES When MacAnova is launched, this is
pre-defined to be vector("macanova.mac","tser.mac","design.mac"), containing
the names of the macro files distributed with MacAnova. Since MACROFILES is just an
ordinary variable, you can modify it or re-define it in any way that you find convenient.

Pre-defined macro addmacrofile allows you easily to add the name of a file to
MACROFILES so that the file will also be searched by getmacros.

7-24

MacAnova Version 4.07

addmacrofile(FileName) adds the name to the start of MACROFILES and
addmacrofile(FileName,T) adds the name at the end . If MACROFILES does not
already exist, addmacrofile(FileName) creates it. FileName must be a quoted string
or CHARACTER scalar.

Cmd> MACROFILES # here is the current default list
(1) "macanova.mac"
(2) "tser.mac"
(3) "design.mac"

Cmd> addmacrofile("survival.mac") # add file name at start

Cmd> MACROFILES # updated list
(1) "survival.mac"
(2) "macanova.mac"
(3) "tser.mac"
(4) "design.mac"

Cmd> addmacrofile("multivar.mac",T) # add file name at end

Cmd> MACROFILES # updated list
(1) "survival.mac"
(2) "macanova.mac"
(3) "tser.mac"
(4) "design.mac"
(5) "multivar.mac"

With the final form of MACROFILES, getmacros(macroname) will search up to five
files, starting with survival.mac and ending with multivar.mac. If a macro with
name macroname is on more than one file, the first one found will be read. It is clearly
advantageous to have the file you will reference most often at the head of the list.

You can use pre-defined macro adddatapath to add to CHARACTER variable DATAPATHS
the name of a directory or folder where macroread() and getmacros will look for
macro files. See Sec. 2.11.6.

7.6 Executing commands in a file – batch() Command batch() is a way to execute
many commands together. Its usage is batch(fileName), where fileName is a quoted
string or CHARACTER variable that specifies the name of a file containing a sequence of
MacAnova commands. The file must be a text (ASCII) file and may contain any
MacAnova commands, including other batch() commands. As usual, on a
windowed version (Macintosh, Windows, Motif), if fileName is the null file name "",
you can select the file using a dialog box.

The commands in the file are read line by line and executed exactly as if they were typed
on the keyboard, with the output being written to the screen. In addition, the
commands in the file are echoed to the screen, preceded by a “prompt” constructed
from the name of the file.

You cannot use batch() in a macro or in a for or while loop (Sec. 9.2.3). It is an error
if any commands follow batch() on the same line or in the same compound
command.

Suppose file mybatch.txt contains the following four lines:

7-25

MacAnova Version 4.07

Sample batch file of MacAnova commands
data <- matread("macanova.dat","halddata",quiet:T)
makecols(data,x1,x2,x3,x4,y)
regress("y=x1+x2+x3+x4") # regress column 5 on 1st 4

Here is output produced when mybatch.txt is executed using batch():

Cmd> batch("mybatch.txt") # initiate executing commands in file

mybatch.txt> data <- matread("macanova.dat","halddata",quiet:T)

mybatch.txt> makecols(data,x1,x2,x3,x4,y)

mybatch.txt> regress("y=x1+x2+x3+x4") # regress column 5 on 1st 4
Model used is y=x1+x2+x3+x4
 Coef StdErr t
CONSTANT 62.405 70.071 0.8906
x1 1.5511 0.74477 2.0827
x2 0.51017 0.72379 0.70486
x3 0.10191 0.75471 0.13503
x4 -0.14406 0.70905 -0.20317

N: 13, MSE: 5.983, DF: 8, R^2: 0.98238
Regression F(4,8): 111.48, Durbin-Watson: 2.0526
To see the ANOVA table type 'anova()'

mybatch.txt> (end of file on mybatch.txt)

Cmd> # continue with input at the prompt level

The echoed commands are not in italics to emphasize that they are printed by
MacAnova and not typed in.

You can suppress the echoing of commands by batch(fileName,echo:F) or by
setoptions(batchecho:F) (see Sec. 8.1.3):

Cmd> batch("mybatch.txt",echo:F) # echoing of commands suppressed
Model used is y=x1+x2+x3+x4
 Coef StdErr t
CONSTANT 62.405 70.071 0.8906
x1 1.5511 0.74477 2.0827
x2 0.51017 0.72379 0.70486
x3 0.10191 0.75471 0.13503
x4 -0.14406 0.70905 -0.20317

N: 13, MSE: 5.983, DF: 8, R^2: 0.98238
Regression F(4,8): 111.48, Durbin-Watson: 2.0526
To see the ANOVA table type 'anova()'

You can temporarily change the default prompt using keyword prompt:

Cmd> batch("testfiles/mybatch.txt",prompt:"What? ")

What? # Sample batch file of MacAnova commands

What? data <- matread("macanova.dat","halddata",quiet:T)

What? makecols(data,x1,x2,x3,x4,y)
***** Interrupt ***** Output terminated by interrupt

When launching MacAnova under Unix , DOS or Windows, when -b fileName

7-26

MacAnova Version 4.07

appears on the command line, MacAnova will first do the equivalent of
batch("fileName") before the first regular prompt (see Appendices C, D, E and F). If,
in addition, -bprompt "What? ", the command executed will be batch("fileName",
prompt:"What? "). Alternatively, under Unix and DOS when MacAnova is started up
by macanova < fileName, commands will be read from file fileName until the end of
the file, at which point MacAnova will terminate. The output will be printed on the
screen or can be redirected to a file by macanova < fileName > output.txt. You can
specify the prompt printed by, say, prompt "Next? " on the command line.

When launching MacAnova on a Macintosh, if you hold down you will be given an
opportunity to specify a batch file to execute and a file to which output will be written.
See Appendix B.

7.7 Additional options on save() and restore() Commands save() and asciisave()
(Sec. 2.17) normally save your entire workspace. If you want to save only a few
variables and macros you can just include the items to be saved as arguments to
save() or asciisave(). For example,

Cmd> save("variables.sav",names,terms,birthyear)#or asciisave(...)

saves only the variables names, terms and birthyear (see Sec. 7.3). This is sometimes
called a partial save. You can save a variable under a different name using a keyword
phrase. For example, save(saveFile, height:x) will save variable x in such a way
that it will be restored as variable height.

Ordinarily when you do a complete save, the current values of all the options (Sec.
8.1.3), including the random number seeds (Sec. 2.13.1) are also saved to be later
restored by restore(). If you don’t want them saved, use options:F on save() or
asciisave().

Cmd> save("savefile.sav", options:F)

Most versions of MacAnova maintain a command history, an internal CHARACTER
vector containing some number of recent command lines. See Sec. 8.8.2 and 8.8.3.
These can be recalled and re-executed, possibly after editing. When you do a complete
save, these lines are automatically saved together with the workspace. When the file is
restored, these commands normally replace the current history. When you use
keyword phrase history:F on save() or asciisave(), the history of commands is
not saved. When you use history:F on restore(), any history of commands in the
file are ignored.

If you find this feature inconvenient or confusing, you can suppress it by setting
options savehistry to False by setoptions(savehistry:F). See Sec. 8.1.3. If you do
this, keyword phrase history:T will force saving the command history.

There are some things that save() and asciisave() do not normally save. After
executing a GLM command (see Chapters 3 and 4), MacAnova preserves a lot of
information that is not put in side effects variables such as RESIDUALS (Sec. 3.7). This
information is used by commands such as secoefs() (Sec. 3.13) and regpred() (Sec.
3.18) and can be retrieved by modelvars() (Sec. 3.24.1) and modelinfo() (Sec. 3.24.4).
After using restore() to recover your workspace, you can recreate this information by

7-27

MacAnova Version 4.07

repeating the linear model command, perhaps as simply as typing anova() or
regress() which will use the restored value of STRMODEL. However, if the model was
large and the computation took a long time, you may not want to repeat the comput-
ation. In that case, you can use keyword phrase all:T on a save() or asciisave()
command to save the additional additional linear model related information along the
workspace in the file.

Cmd> save("workspac.sav",all:T) # or asciisave("workspac.asc",all:T)

A subsequent use of restore() restores all this information so that functions liek
coefs() and modelinfo() work.

Cmd> restore("workspac.sav")
Restoring workspace from file workspac.sav
Workspace saved Sat Aug 8 11:25:33 1998

Cmd> coefs()$x2 # works because all:T used when saving
(1) 0.51017

This option should be used with caution, because the inclusion of the additional infor-
mation can make for a very large file.

When restoring from a complete save file, or any save file produced by a version earlier
than 4.07, restore() normally deletes all the variables in the current workspace before
restoring variables from a file. Sometimes, this may not be what you want. You can
suppress this behavior by keyword phrase delete:F.

Cmd> delete(birthyear) # birthyear was saved on variables.sav

Cmd> restore("variables.sav", delete:F)
Restoring workspace from file variables.sav
Workspace saved Sat Feb 8 09:48:21 1997

Cmd> list(birthyear,y) # birthyear restored, y still there
birthyear REAL 3
y REAL 13

Nothing is deleted when delete:F is an argument, although any variables with the
same names as those in the file are replaced. delete:F is not necessary when restoring
from a partial save file produced by MacAnova 4.07 or later. You can use delete:T if
you really want to delete existing variables.

Some users prefer the delete:F behavior be the default on restore(). This can be
accomplished by setting option restoredel to False. See Sec. 8.1.3.

Cmd> getoptions(restoredel:T) # default value of restoredel is T
(1) T

Cmd> setoptions(restoredel:F) # change it to F

Cmd> restore("variables.sav") # note absence of delete:F
Restoring workspace from file variables.sav
Workspace saved Sat Feb 8 09:48:21 1997

Cmd> list(y) # y not deleted
y REAL 13

 Keyword phrase list:T is another option that is sometimes helpful. This causes
restore() to report what it is restoring.

7-28

MacAnova Version 4.07

Cmd> restore("variables.sav", delete:F,list:T)
Restoring workspace from file variables.sav
Restoring names CHAR 3
Restoring terms REAL 3 2
Restoring birthyear REAL 3
Restoring option values
Workspace saved Sat Feb 8 09:48:21 1997

As MacAnova has evolved, the format of both save and asciisave files has changed.
However, previous formats are still recognized and can be restored. Moreover,
although is is hard to see why you would want to, you can use keyword phrases to
direct save() or asciisave() to create files that earlier MacAnova versions can
restore. Versions 2.4x and older can restore asciisave files saved with v24:T;
versions 3.0 and 3.1x can restore files saved using v31:T; version 3.35 can restore files
saved using v335:T and versions 4.0 through 4.06 can restore files saved using v406:T.

7.8 Customizing MacAnova There are many default variables and options in
MacAnova. Because these may not always be optimal for your use MacAnova, there
are ways you can change some of them. Specifically, you can provide a special “start
up” file and, in all versions except Macintosh, define the environmental variable
MACANOVA.

7.8.1 Using a start up file As you get to know MacAnova better you may find some
defaults, for example, the number of significant digits in the output, are not what you
prefer. Or you may develop some favorite macros that you almost always need. You
can always take a few minutes when you start up to set things up to your liking.
Having a customized start up file allows you to do this automatically.

The first thing MacAnova does when it starts up is to look for a start up file containing
MacAnova commands. If the file is found, MacAnova simulates a batch() command
with echo:F as second argument (see Sec. 7.6), silently executing all the commands in
the file. Under DOS, Windows or Windows 95 and on a Macintosh the start up file
must be named MacAnova.ini and must be located in the directory or folder where the
executable or application file (MACANOVA.EXE or MacAnova) is located. On Unix,
including the Motif version, the start up file must have name .macanova.ini (the
leading period is important) and must be located in your home directory.

Typically a start up file defines some macros, sets some options, and perhaps deletes
some predefined macros or variables that you don’t want. It is also a good place to
redefine certain standard CHARACTER variables such as DATAFILE and MACROFILE
which are used by macros getdata and getmacros. Here is a possible start up file.

start up file for MacAnova
setoptions(nsig:4, angles:"cycles") #(see Sec. 8.1.3)

add additional standard macro file
addmacrofile("survival.mac",T) # (see Sec. 7.5.4)

macros defining Unix-like aliases for certain functions
rm <- macro("delete($0)") # (see Sec. 9.3.1)
ls <- macro("listbrief($0)")
ll <- macro("list($0)")

7-29

MacAnova Version 4.07

macro to print the first few lines of a vector or matrix
head <- macro("#head(x [,nlines])
@y$$ <- $1
@n$$ <- dim(@y$$)[1]
@y$$[run(min(@n$$,{if($N > 1){$2}else{10}})),]")

macro to print the last few lines of a vector or matrix
tail <- macro("#tail(x[,nlines])
@y$$ <- $1
@n$$ <- dim(@y$$)[1]
@y$$[run(max(@n$$-{if($N>1){$2}else{10}}+1,1),@n$$),]")

macro to make it easy to reset default output format
setformat <- macro("setoptions(format:\"$2$1\")")

This file changes two options, adds a file to the list of files getmacros searches, and
defines six macros. See Sec. 9.3 for information on writing macros.

The start up file is not read if MacAnova starts up by restoring a save or asciisave
file. On DOS, Windows or Unix this happens when the command line includes “-r
savefile”. On a MacIntosh this happens when MacAnova is started up by double
clicking on a save or asciisave file.

7.8.2 Environmental variable MACANOVA In all versions for which you can use
command line arguments (all except the Macintosh), MacAnova recognizes and uses
the value of an environmental variable MACANOVA.

The value of MACANOVA should be a list of command line options, for example
-l 26 -w 75 -q. These options are scanned by MacAnova before the command line
options and thus are overridden by any options on the command line. By setting
MACANOVA appropriately, you can change the default values of several pre-defined
variables and options. See Appendices C, D, E and F for full information about
command line arguments.

To use this feature on DOS/Windows/Windows 95 computers, you need to put a line
like the following in your AUTOEXEC.BAT file.

SET MACANOVA=-l 26 -q -dpath c:\macanova\macros

This specifies a screen height of 26 lines (-l 26), that you don’t want to see the
“banner” at start up (-q) and that "c:\\macanova\\macros" should be added to
DATAPATHS. Include only options or file or path names whose defaults you want to
change.

On Unix, if your shell is csh or a variant such as tcsh, you should put a line similar to
the following in file .cshrc in your home directory:

setenv MACANOVA '-l 26 -w 75 -mpath ~/macanova/macros'

If your Unix shell is sh or a variant such as ksh, you should put a line similar to the
following in file .profile in your home directory:

MACANOVA='-l 26 -w 75 -mpath ~/macanova/macros';export MACANOVA

One purpose of this option is to make it easier to use a Unix binary executable file on a
computer configured differently from the one for which it was compiled. By including

7-30

MacAnova Version 4.07

-help helpFile -mpath macroPath -dpath dataPath

in environmental variable MACANOVA, where helpFile includes the complete path
name (directory and file name) for the help file, and macroPath and dataPath are the
complete path names for directories where macro and data files are kept, all installation
dependent information is suppressed. It's o.k. for macroPath and dataPath to be the
same.

7-31

	7.1 Format of matread() & read() files
	7.1.1 REAL and LOGICAL data
	7.1.2 CHARACTER data
	7.1.3 Structures
	7.1.4 Labels and notes

	7.2 Reading CHARACTER data from files
	7.3 “Reading” from CHARACTER variables
	7.3.1 “Decoding” a CHARACTER variable
	7.3.2 ASCII codesof a CHARACTER variable

	7.4 Writing data to the screen and to files
	7.4.1 print() and write()
	7.4.2 matprint() and matwrite()
	7.4.3 putascii()

	7.5 Macro files
	7.5.1 macroread() and the format of macro files
	7.5.2 macrowrite()
	7.5.3 getmacros
	7.5.4 addmacrofile

	7.6 Executing commands in a file – batch()
	7.7 Additional save() and restore() options
	7.8 Customizing MacAnova
	7.8.1 Using a start up file
	7.8.2 Environmental variable MACANOVA

