
This file consists of Chapter 6 of MacAnova User’s Guide by Gary W. Oehlert and
Christopher Bingham, issued as Technical Report Number 617, School of Statistics,
University of Minnesota, revised August 1998, describing Version 4.07 of MacAnova.

This manual is Copyright © 1998 Gary W. Oehlert and Christopher Bingham, all rights
reserved.

Fonts used in this manual are Palatino, Courier, and Symbol.

For information concerning MacAnova, write University of Minnesota, Department of
Applied Statistics, 352 Classroom Office Building, 1994 Buford Avenue, St. Paul, MN
55108-6042.

6-0

kb
This is Chapter 6 of the MacAnova Users' Guide for MacAnova version 4.07. The complete Users' Guide is available at http://www.stat.umn.edu/~gary/macanova/documentationug.htmlPlease notify the authors (kb@stat.umn.edu or gary@stat.umn.edu) of any inaccuracies or typographical errors. What may appear as bold face Greek symbols should be italic.List of PDF files making up manual PDF File PDF FileContents mancntnt.pdf Chapter 8 manchp08.pdfPreface manprfac.pdf Chapter 9 manchp09.pdfChapter 1 manchp01.pdf Chapter 10 manchp10.pdfChapter 2 (a) manchp2a.pdf Chapter 11 manchp11.pdfChapter 2 (b) manchp2b.pdf Appendix A manapdxa.pdfChapter 3 manchp03.pdf Appendix B manapdxb.pdfChapter 4 manchp04.pdf Appendix C manapdxc.pdfChapter 5 manchp05.pdf Appendix D manapdxd.pdfChapter 6 manchp06.pdf Appendix E manapdxe.pdfChapter 7 manchp07.pdf Appendix F manapdxf.pdf

MacAnova Version 4.07

6. Other functions

6.1 Linear model computations using swp() Although the linear models commands
such as anova(), manova() and regress() provide a powerful facility for fitting least
squares models and summarizing the results, you may sometimes want to do the
computations yourself, perhaps to convince yourself that a result is correct, or because
you are writing a macro for which regress() and/or anova() is inadequate. Function
swp() is an asymmetric implementation of the Beaton SWP operator (Beaton 1964)
that is particularly useful for least squares computations starting with a cross product
matrix.

Suppose A = [a ij] is a m by n matrix and k is an integer between 1 and min(m ,n).
Then, if the pivotal element akk ≠ 0, an asymmetric Beaton SWP on row and column
k of A produces a m by n matrix D = [d ij] = SWP(A , k) where

d ij = a ij – a ikakj/akk, i ≠ k , j ≠ k
d ik = a ik/akk, i ≠ k
dkj = –akj/akk, j ≠ k
dkk = 1/akk

If k 1, k 2, ..., k r are r integers between 1 and min(m ,n), the matrix SWP(A , k 1, k 2,
..., k r) is defined to be SWP(... (SWP(SWP(A , k 1),k 2)...),k r). We say that A is swept
on rows and columns k 1, k 2, ..., k r.

It can be shown mathematically that the order of the k i’s doesn’t matter, so that, for
example, SWP(A ,k 2, k 1, ..., k r) = SWP(A ,k 1, k 2, ..., k r). Moreover, if k i = k j, with
i ≠ j, the effects of their SWP’s cancel out. For example, SWP(A , 1, 1, 2, 3, 3, 4) =
SWP(A , 2, 4), since both 1 and 3 are repeated, and SWP(A , 1, 1, 2, 3, 3, 3) = SWP(A , 2,
3) since after the second 3 has cancelled the first, A is once again swept on row and
column 3.

Now suppose that A =
A11 A12

A21 A22

 is partitioned, where A ij is m i by n j, with m 1 = n 1

(that is, A 11 is square), m 1 + m 2 = m and n 1 + n 2 = n . Then if D =
D11 D12

D21 D22

 =

SWP(A ,1,2,..,m 1) is partitioned the same way as A , it can be shown that, provided
A 11 is non singular,

D11 = A11
− 1, D12 = −A11

−1A12 , D21 = A21A11
−1, and D22 = A22 − A21A11

−1A12 .

Although it is difficult to describe it compactly, a similar result holds whenever A is
swept on any other set of distinct rows and columns.

These last identities are what makes SWP useful for regression and ANOVA
computations. Suppose X and Y are respectively N by m 1 and N by m 2 data

matrices, and let A = [X Y ′] [X Y] =
′ X X ′ X Y

′ Y X ′ Y Y

 be the matrix of sums of squares and

products of all the m 1 + m 2 variables. Then

6-1

MacAnova Version 4.07

SWP(A,1,2,..., m1) =
(′ X X)−1 −(′ X X)−1 ′ X Y

′ Y X(′ X X)−1 ′ Y Y − ′ Y X(′ X X)− 1 ′ X Y

The submatrices of this matrix are important quantities in the least squares regression
of the columns of Y as dependent variables on the columns of X as independent
variables. The least squares regression coefficients for column j of Y are in column j

of the m 1 by m 2 matrix ˆ β = (′ X X)−1 ′ X Y , the negative of the upper right hand block of
SWP(A ,1,2,..,m 1) and the transpose of the lower left hand block; and the matrix of
sums of squares and products of the least squares residuals in these regressions is

(Y − X ˆ β ′) (Y − X ˆ β) = ′ Y Y − ′ Y X(′ X X)−1 ′ X Y ,

the lower right hand block of SWP(A ,1,2,..,m 1). Moreover, if the errors in the

regression of column j of Y are independent with variance σ j
2 , the covariance matrix

of the estimated regression coefficients is σ j
2(′ X X)−1, which is proportional to the upper

left hand block of SWP(A ,1,2,..,m 1). Thus from a single application of SWP you can
estimate the regression coefficients, find residual sums of squares and products, and
compute the factors necessary to compute standard errors of the coefficients. If the
regression has a constant term (intercept) then the first column of X should be a
column of 1’s.

MacAnova function swp() implements SWP and its usage is essentially the same as
the mathematical notation. If a is an m by n REAL matrix, and k1, k2, ..., kr are
integers with values between 1 and min(m ,n), d <- swp(a,k1,k2,...,kr)
computes the swept version of a. If, in the course of the computation, a pivotal
element is found to be too close to zero, that row and column is not swept and an
advisory message is printed.

Actually, arguments k1, k2, ... to swp() can be vectors of integers each of whose
elements designates a row and column to sweep. Thus, in particular, swp(a,
vector(k1,k2,...,kr)) yields the same result as swp(a,k1,k2,...,kr) and
swp(a,run(k)) yields the same result as swp(a,1,2,...,k).

Here are some examples illustrating the properties stated above.

Cmd> a <- matrix(vector(9,9,8, 4,11,13, 20,2,12),3); a
(1,1) 9 4 20
(2,1) 9 11 2
(3,1) 8 13 12

Cmd> swp(a,2) # sweep on row and column 2
(1,1) 5.7273 0.36364 19.273
(2,1) -0.81818 0.090909 -0.18182
(3,1) -2.6364 1.1818 9.6364

We can check this by doing the sweep “by hand.” The first line creates a new matrix d
the same size as a and computes d ij = a ij – a i2a2j/a22, i ≠ 2, j ≠ 2. The next line
computes d i2 = a i2/a22, i ≠ 2, and d2j = –a2j/a22, j ≠ 2, and the next computes d22 =
1/a22 and displays d.

Cmd> d <- 0*a; d[-2,-2] <- a[-2,-2] - a[-2,2] %*% a[2,-2]/a[2,2]

6-2

MacAnova Version 4.07

Cmd> d[-2,2] <- a[-2,2]/a[2,2]; d[2,-2] <- -a[2,-2]/a[2,2]

Cmd> d[2,2] <- 1/a[2,2]; d # same as swp(a,2)
(1,1) 5.7273 0.36364 19.273
(2,1) -0.81818 0.090909 -0.18182
(3,1) -2.6364 1.1818 9.6364

Cmd> # swp() on several k’s is the same as successive swps():

Cmd> swp(a,run(3)) - swp(swp(swp(a,1),2),3)
(1,1) 0 0 0
(2,1) 0 0 0
(3,1) 0 0 0

Cmd> # Repeated columns cancel out:

Cmd> swp(a,1,2,1) # equivalent to swp(a,2) above
(1,1) 5.7273 0.36364 19.273
(2,1) -0.81818 0.090909 -0.18182
(3,1) -2.6364 1.1818 9.6364

We use swp() to carry another regression analysis of the Hald data analyzed in Sec.
3.20.

Cmd> setoptions(format:"9.5g") # change the default format

Cmd> hald <- matread("macanova.dat","halddata",quiet:T)

Cmd> # Add labels to hald (See Sec. 8.4.1)

Cmd> setlabels(hald,structure("@",enterchars(x1,x2,x3,x4,y)))

Cmd> augmented <- hconcat(rep(1,13),hald)#add col of 1’s at left

Cmd> setlabels(augmented,structure("@",\
vector("CONSTANT", getlabels(hald, 2))))# See Sec. 8.4.1

Cmd> cp <- augmented' %*% augmented; cp # Matrix of SS and SP
 CONSTANT x1 x2 x3 x4 y
CONSTANT 13 97 626 153 390 1240.5
x1 97 1139 4922 769 2620 10032
x2 626 4922 33050 7201 15739 62028
x3 153 769 7201 2293 4628 13982
x4 390 2620 15739 4628 15062 34733
y 1240.5 10032 62028 13982 34733 1.2109e+05

Element cp[1,1] is N = 13; the remaining elements of the first row and column are
the sums of variables x1 through y. Everything else are sums of squares and products
of elements from these vectors. For example 10032 is sum(x1*y) and 15062 is
sum(x4^2).

Cmd> ans <- swp(cp,run(5));ans # sweep on indep vars including const
 CONSTANT x1 x2 x3 x4 y
CONSTANT 820.65 -8.4418 -8.4578 -8.6345 -8.2897 -62.405
x1 -8.4418 0.09271 0.085686 0.092637 0.084455 -1.5511
x2 -8.4578 0.085686 0.08756 0.087867 0.085598 -0.51017
x3 -8.6345 0.092637 0.087867 0.095201 0.086392 -0.10191
x4 -8.2897 0.084455 0.085598 0.086392 0.084031 0.14406
y 62.405 1.5511 0.51017 0.10191 -0.14406 47.864

6-3

MacAnova Version 4.07

Cmd> xxinv <- ans[-6,-6]; beta <- -ans[-6,6]; rss <- ans[6,6]

Cmd> mse <- rss/(13 - 5);mse # mean square error
 y
y 5.983

Cmd> stderr <- sqrt(mse*diag(xxinv))# std errors of coefficients

Cmd> matrix(hconcat(beta,stderr,beta/stderr),\
labels:structure(getlabels(cp,1)[-6],\
vector("Coef", "StdErr","t stat")))# See Sec. 8.4.1

 Coef StdErr t stat
CONSTANT 62.405 70.071 0.8906
x1 1.5511 0.74477 2.0827
x2 0.51017 0.72379 0.70486
x3 0.10191 0.75471 0.13503
x4 -0.14406 0.70905 -0.20317

Cmd> # Now check results using regress()

Cmd> makecols(hald,x1,x2,x3,x4,y)

Cmd> regress("y=x1+x2+x3+x4") # See Sec. 3.8
Model used is y=x1+x2+x3+x4
 Coef StdErr t
CONSTANT 62.405 70.071 0.8906
x1 1.5511 0.74477 2.0827
x2 0.51017 0.72379 0.70486
x3 0.10191 0.75471 0.13503
x4 -0.14406 0.70905 -0.20317

N: 13, MSE: 5.983, DF: 8, R^2: 0.98238
Regression F(4,8): 111.48, Durbin-Watson: 2.0526
To see the ANOVA table type 'anova()'

6.1.1 Computing a more accurate cross product matrix – bcprd() When column 1 of a
matrix is the constant 1, sweeping row and column 1 of the cross product matrix is
essentially the so called shortcut formula for computing mean corrected sums of

squares and products xij − x j()
i =1

N

∑ xik − x k() = x ijxik −
i =1

N

∑ 1

N
x ij

i =1

N

∑ x ik
i =1

N

∑ . Use of this formula

(and hence this use of swp()) can lead to serious cancellation and thus loss of accuracy.
You can use function bcprd() (border cross product) to avoid this problem. bcprd()
also makes it easier to set up things for swp() when doing regression or ANOVA
computations.

When data is a REAL matrix, the assignment cp1 <- bcprd(data) is mathematically
equivalent to

@tmp <- hconcat(rep(1,nrows(data)),data);cp1 <- swp(@tmp %c% @tmp,1),

6-4

MacAnova Version 4.07

except it uses a more accurate algorithm. Specifically, when X is N by k and x is the
k by 1 vector of column means, then bcprd(x) computes the matrix k + 1 by k + 1

matrix
1/ N − ′ x

x (X − 1N ′ x ′) (X − 1N ′ x)

 , where X −1N ′ x is the matrix of the residuals from

the sample mean and (X −1N ′ x ′) (X − 1N ′ x) is the matrix of sums of squares and products
of the these residuals, computed directly by subtracting means, multiplying and
summing. Thus the following sequence also computes ans in Sec. 6.1.

Cmd> cp1 <- bcprd(hald)
 CONSTANT x1 x2 x3 x4 y
CONSTANT 0.076923 -7.4615 -48.154 -11.769 -30 -95.423
x1 7.4615 415.23 251.08 -372.62 -290 775.96
x2 48.154 251.08 2905.7 -166.54 -3041 2293
x3 11.769 -372.62 -166.54 492.31 38 -618.23
x4 30 -290 -3041 38 3362 -2481.7
y 95.423 775.96 2293 -618.23 -2481.7 2715.8

Cmd> # This result is equivalent to swp(cp, 1); See. Sec. 6.1

Cmd> ans <- swp(cp1,run(2,5)); ans # like swp(cp,run(5))
 CONSTANT x1 x2 x3 x4 y
CONSTANT 820.65 -8.4418 -8.4578 -8.6345 -8.2897 -62.405
x1 -8.4418 0.09271 0.085686 0.092637 0.084455 -1.5511
x2 -8.4578 0.085686 0.08756 0.087867 0.085598 -0.51017
x3 -8.6345 0.092637 0.087867 0.095201 0.086392 -0.10191
x4 -8.2897 0.084455 0.085598 0.086392 0.084031 0.14406
y 62.405 1.5511 0.51017 0.10191 -0.14406 47.864

We sweep only on columns 2 through 5 since bcprd() has already implicitly swept on
column 1.

An alternate usage for bcprd() is bcprd(x1,x2,...). This is equivalent to
bcprd(hconcat(x1,x2,...)). All the arguments must be REAL vectors or matrices
with the same number of rows and no MISSING values.

6.2 Computation of eigenvalues and eigenvectors MacAnova has several commands
for computing eigenvectors and eigenvalues of symmetric matrices.

6.2.1 Ordinary eigenvalues and eigenvectors – eigenvals() and eigenvectors() Let A be
a m by m square matrix. Then if a m by 1 vector u satisfies Au = λu for some
scalar λ, the vector u is said to be an eigenvector of A with eigenvalue λ. Other
names for these concepts are proper vector and proper value or characteristic vector
and characteristic value. With arbitrary square matrices, eigenvalues and eigenvectors
may be complex (involving imaginary numbers). However, when A = A ’ is
symmetric, there are always m linearly independent eigenvectors u 1, u 2, ..., u m with
associated real eigenvalues λ1, λ2, ... ,λm. By convention we can assume that the
subscripts are assigned in such a way that λmax = λ1 ≥ λ2 ≥ ... ≥ λm = λmin. The
eigenvectors u 1, u 2, ..., u mcan always be found so that, when U = [u 1, u 2, ..., u m], U
satisfies the following identities:

6-5

MacAnova Version 4.07

U’AU = Λ ≡

λ1 0 0 ... 0

0 λ2 0 ... 0

0 0 λ3 ... 0

...

0 0 0 ... λm

, and U ′ U = ′ U U = Im =

1 0 0 ... 0

0 1 0 ... 0

0 0 1 ... 0

...

0 0 0 ... 1

,

That isU is a orthogonal matrix, with each u i satisfying u i’u i = ui

2
 = 1 and u i’u j = 0, i

≠ j. Because U’U = Im, U–1 = U’ and AU = ΛU.

Some of the important properties of eigenvectors and values are the following.

(i) A has rank r if and only if there are exactly r non-zero eigenvalues.
(ii) A is positive definite if and only if λi > 0, i = 1, ..., m .
(iii) max

u 2 = 1
′ u Au = λ1 = λmax and min

u 2 = 1
′ u Au = λm = λmin

(iv) tr(A) = trace of A = aii
i =1

m

∑ = λ ii
i=1

m

∑

(v) det(A) = λi
i =1

m

∏ , where det(A) is the determinant of A .

In MacAnova, if a is a square m by m symmetric square matrix, then eigenvals(a)
computes the eigenvalues of a in decreasing order in a REAL vector of length m . If
you want the diagonal matrix Λ, you compute it as dmat(eigenvals(a)). To
compute both eigenvalues and eigenvectors of a, use eigen(a), which returns a
structure with components values (the eigenvalues in a vector) and vectors (the m
by m matrix U whose columns are the eigenvectors of a). You cannot use either
eigenvals() or eigen() to compute the eigenvalues and eigenvectors of a matrix that
is not symmetric.

We illustrate the use of eigenvals() and eigen() with some computations using the
matrix of corrected sums and squares of products of the Hald data.

Cmd> a <- bcprd(hald)[-1,-1]# leave off row and col 1

Cmd> eigenvals(a) # compute the eigenvalues of a
(1) 8344.5 1341 184.13 18.666 2.6534

Cmd> eigs <- eigen(a) # compute the eigenvalues and vectors of a

Cmd> eigs
component: values
(1) 8344.5 1341 184.13 18.666 2.6534
component: vectors columns are the eigenvectors
 (1) (2) (3) (4) (5)
x1 0.095089 -0.48809 -0.2635 0.59666 0.57209
x2 0.57346 0.26733 0.59386 -0.080656 0.49041
x3 -0.061069 0.53759 -0.62282 -0.29039 0.4848
x4 -0.61793 -0.33676 0.32387 -0.45501 0.43912
y 0.52587 -0.53655 -0.29171 -0.58833 -0.06595

6-6

MacAnova Version 4.07

Cmd> (a %*% eigs$vectors) / eigs$vectors # defining property
 (1) (2) (3) (4) (5)
x1 8344.5 1341 184.13 18.666 2.6534
x2 8344.5 1341 184.13 18.666 2.6534
x3 8344.5 1341 184.13 18.666 2.6534
x4 8344.5 1341 184.13 18.666 2.6534
y 8344.5 1341 184.13 18.666 2.6534

Cmd> eigs$vectors' %*% eigs$vectors # eigenvectors are orthonormal
 (1) (2) (3) (4) (5)
(1) 1 -2.6114e-17 1.4412e-16 1.0589e-17 2.3842e-16
(2) -2.6114e-17 1 -2.1556e-16 -1.3628e-16 1.9262e-16
(3) 1.4412e-16 -2.1556e-16 1 -2.1329e-16 1.2139e-16
(4) 1.0589e-17 -1.3628e-16 -2.1329e-16 1 -6.7158e-18
(5) 2.3842e-16 1.9262e-16 1.2139e-16 -6.7158e-18 1

Cmd> vector(sum(eigs$values),trace(a)) # trace(a) = sum(eigs$values)
(1) 9891 9891

Cmd> vector(prod(eigs$values),det(a)) # det(a) = prod(eigs$values)
(1) 1.0205e+11 1.0205e+11

An important statistical application of eigenvalues is in computing the so called
principal components of a data set. These are linear combinations of variables whose
vectors of coefficients are the eigenvectors of the estimated covariance matrix S.
These eigenvectors are also the eigenvectors of the matrix, (X −1N ′ x ′) (X − 1N ′ x), of
corrected sums of squares and products. For example, if X is a data matrix and u 1 is
the first eigenvector of S or of (X −1N ′ x ′) (X − 1N ′ x), the vector Xu1 is the vector of
values of the first principal component, and the columns XU are all m principal
components. If xi is the data vector for case i (xi’ is row i of X), then u 1’xi is the
value of the first principal component for case i. For the Hald data, we can compute
the principal components as follows:

Cmd> princomps <- hald %*% eigs$vectors # compute princ. components

6.2.2 Eigenvalues and eigenvectors of a tridiagonal matrix – trideigen() In certain
specialized situations (for example, multitaper spectrum estimation; see Sec. 5.4.7), you
may need the eigenvalues and vectors of a symmetric tridiagonal matrix, that is a
symmetric matrix whose only non-zero values are on or immediately above or below
the diagonal. MacAnova function trideigen() computes the eigenvalues and
eigenvectors of a such a matrix. By default, trideigen(), like eigen(), returns a
structure with components values and vectors.

The simplest usage is trideigen(d1,d2), where d1 is the REAL vector of diagonal
values and d2 is a REAL vector of the sub-diagonal and super-diagonal values. You
must have either length(d2) = length(d1) - 1, or length(d1) = length(d2). In
the latter case, d2[1], the first element of d2, is ignored.

Cmd> d1 <- run(5);d2 <- rep(1,4) # diagonal and super/sub diagonal

Cmd> trideigen(d1,d2) # length(d1) = 5, length(d2) = 4 = 5-1
component: values
(1) 5.7462 4.2077 3 1.7923 0.25384

6-7

MacAnova Version 4.07

component: vectors
(1,1) 0.014027 0.10388 0.30151 0.54249 -0.77705
(2,1) 0.066575 0.33322 0.60302 0.4298 0.5798
(3,1) 0.23537 0.63178 0.30151 -0.63178 -0.23537
(4,1) 0.5798 0.4298 -0.60302 0.33322 0.066575
(5,1) 0.77705 -0.54249 0.30151 -0.10388 -0.014027

Cmd> # Explicitly construct the tridiagonal matrix and use eigen()

Cmd> # See Sec. 2.8.17 for the use of matrix subscripts

Cmd> w <- matrix(rep(0,25),5) # make an all zero matrix

Cmd> i <- run(5);w[hconcat(i,i)]<-d1 # set diagonal

Cmd> # next set sub diagonal and super diagonal

Cmd> i <- run(4); w[hconcat(i,i+1)] <- w[hconcat(i+1,i)] <- d2;w
(1,1) 1 1 0 0 0
(2,1) 1 2 1 0 0
(3,1) 0 1 3 1 0
(4,1) 0 0 1 4 1
(5,1) 0 0 0 1 5

Cmd> eigen(w) # eigen gets same results except for eigenvector signs
component: values
(1) 5.7462 4.2077 3 1.7923 0.25384
component: vectors
(1,1) 0.014027 -0.10388 -0.30151 -0.54249 0.77705
(2,1) 0.066575 -0.33322 -0.60302 -0.4298 -0.5798
(3,1) 0.23537 -0.63178 -0.30151 0.63178 0.23537
(4,1) 0.5798 -0.4298 0.60302 -0.33322 -0.066575
(5,1) 0.77705 0.54249 -0.30151 0.10388 0.014027

You can suppress the computation of either component by keyword phrases values:F
or vectors:F.

Cmd> trideigen(d1,d2,vectors:F) # just compute eigenvalues
(1) 5.7462 4.2077 3 1.7923 0.25384

In certain applications, you don’t need for all the eigenvalues and/or eigenvectors. You
can limit the eigenvalues and eigenvectors computed by including 1 or 2 additional
integer arguments:

Cmd> trideigen(d1,d2,1,3,vectors:F) # eigen values 1 through 3
(1) 5.7462 4.2077 3

Cmd> trideigen(d1,d2,3,vectors:F) # equivalent to the preceding
(1) 5.7462 4.2077 3

6.2.3 Relative eigenvectors and eigenvalues of a symmetric matrix – releigenvals() and
releigen() Certain multivariate statistical procedures require what are sometimes
called relative eigenvalues and eigenvectors. If A and B are m by m symmetric
square matrices and B is positive definite, a vector u is an eigenvector of A relative
to B with relative eigenvalue λ if Au = λBu . There are always m linearly
independent real relative eigenvectors with real relative eigenvalues. Moreover, the
m relative eigenvectors can always be found to satisfy

6-8

MacAnova Version 4.07

′ U AU =

λ1 0 0 ... 0

0 λ2 0 ... 0

0 0 λ3 ... 0

...

0 0 0 ... λm

, and

′ U BU =

1 0 0 ... 0

0 1 0 ... 0

0 0 1 ... 0

...

0 0 0 ... 1

,

where the columns of U are the relative eigenvectors associated with relative
eigenvalues λ1,λ2,...,λm. If u i is column i of U, these matrix equations are
equivalent to

u i’Au i = λi, u i’Bu i = 1, and u i’Au j = u i’Bu j = 0, i ≠ j.

Relative eigenvalues and eigenvectors are also ordinary eigenvalues and eigenvectors
of B−1A . However, because this matrix is usually non-symmetric, eigen() cannot be
used. Instead, MacAnova provides functions releigenvals() and releigen().

In the multivariate analysis of variance (MANOVA), typically A is a hypothesis matrix
and B is an error matrix. See Sec. 10.16 for the use of releigen() in this context.

Relative eigenvalues satisfy the following identities

λi
i =1

m

∑ = tr(B−1 A) = trace of B−1A and (1+ λ i) = det(A + B)/det(B)
i=1

m

∏ .

Here is a short example of the use of releigen.

Cmd> a <- matrix(vector(15.25,-0.89, -0.89,30.90),2) # symmetric

Cmd> b <- matrix(vector(120.74,12.97, 12.97,120.28),2) # symmetric

Cmd> print(a,b)
a:
(1,1) 15.25 -0.89
(2,1) -0.89 30.9
b:
(1,1) 120.74 12.97
(2,1) 12.97 120.28

Cmd> releigs <- releigen(a,b); releigs #relative eigen things
component: values
(1) 0.26618 0.12312
component: vectors
(1,1) -0.023317 0.088519
(2,1) 0.090687 0.013681

Cmd> (a %*% releigs$vectors)/(b %*% releigs$vectors)
(1,1) 0.26618 0.12312
(2,1) 0.26618 0.12312

Cmd> releigs$vectors' %*% a %*% releigs$vectors # U’AU
(1,1) 0.26618 -4.7762e-18
(2,1) -6.8887e-19 0.12312

6-9

MacAnova Version 4.07

Cmd> releigs$vectors' %*% b %*% releigs$vectors # U’BU
(1,1) 1 3.672e-17
(2,1) 4.7331e-17 1

6.3 Singular value decomposition – svd() If X is an n by m matrix with n ≥ m , it
can always be represented as X = LSR’, where L is n by m , S is m by m diagonal
with non-negative diagonal elements, and R is m by m , and where L’L = R’R =
Im, the m by m identity matrix. When the diagonal elements of S are in decreasing
order, this is the singular value decomposition or SVD of X. The diagonal elements
of S are the singular values of X, the columns of L are the left singular vectors of
X, and the columns of R are the right singular vectors of X. The restrictions on L
and R imply that the sets of left and right singular vectors are each orthonormal. That

is, if L = [l1, ..., lm] and R = [r1, ..., rm], then li

2
 = li’li = 1, ri

2
 = ri’ri = 1 and li’lj =

ri’rj = 0, i ≠ j.

The singular values and left singular vectors are, respectively, the square roots of the
first m eigenvalues and the first m eigenvectors of XX’. In addition, the singular
values and right singular vectors are, respectively, the square roots of the eigenvalues
and the eigenvectors of X’X. Since XR = LS, a matrix whose columns are
proportional to those of L, the columns of L are closely related to the principal
components of X considered as a data matrix.

These definitions can be extended to the case when m > n , in which case the last m –
n singular values are 0.

MacAnova function svd() computes the elements of the SVD of a matrix x with
nrows(x) ≥ ncols(x).

Cmd> x <- matrix(vector(12,2,12,9,10, 1,7,3,2,9, 5,11,12,14,8),5);x
(1,1) 12 1 5
(2,1) 2 7 11
(3,1) 12 3 12
(4,1) 9 2 14
(5,1) 10 9 8

Cmd> svd(x) # just computes the singular values
(1) 32.108 9.5365 6.72

Cmd> sqrt(eigenvals(x' %*% x)) # sqrt of eigen values of x'x
(1) 32.108 9.5365 6.72

Cmd> svd(x,left:T) # singular values and left singular vectors
component: values Singular values
(1) 32.108 9.5365 6.72
component: leftvectors Left singular vectors
(1,1) -0.3587 0.63489 0.12448
(2,1) -0.3475 -0.73774 0.017009
(3,1) -0.53179 0.19903 -0.20279
(4,1) -0.50696 -0.072113 -0.58736
(5,1) -0.45909 -0.088545 0.77337

Cmd> svd(x,right:T,left:T) #entire SVD
component: values
(1) 32.108 9.5365 6.72

6-10

MacAnova Version 4.07

component: leftvectors Left singular vectors
(1,1) -0.3587 0.63489 0.12448
(2,1) -0.3475 -0.73774 0.017009
(3,1) -0.53179 0.19903 -0.20279
(4,1) -0.50696 -0.072113 -0.58736
(5,1) -0.45909 -0.088545 0.77337
component: rightvectors Right singular vectors
(1,1) -0.63955 0.73371 0.22943
(2,1) -0.29689 -0.51102 0.80667
(3,1) -0.70911 -0.44779 -0.54466

Cmd> tmp <- svd(x,right:T,left:T)

Cmd> tmp$leftvectors %*% dmat(tmp$values) %*% tmp$rightvectors'
(1,1) 12 1 5 Reproduce x as
(2,1) 2 7 11 L S R'
(3,1) 12 3 12
(4,1) 9 2 14
(5,1) 10 9 8

You can also use keyword phrase all:T to get all the pieces of the SVD, suppressing
unwanted components with phrases like values:F.

Cmd> svd(x,all:T,values:F,right:F) # just left singular vectors
(1,1) -0.3587 0.63489 0.12448
(2,1) -0.3475 -0.73774 0.017009
(3,1) -0.53179 0.19903 -0.20279
(4,1) -0.50696 -0.072113 -0.58736
(5,1) -0.45909 -0.088545 0.77337

6.4 QR decomposition – qr() Another important matrix decomposition that is useful in
regression analysis is the QR decomposition. Any full rank m by n matrix X with m
≥ n can be decomposed as X = Q R ,

X = QR =

q11 q12 … q1n

q21 q22 … q2 n

q31 q32 … q3 n

… … … …
qm 1 qm2 … qmn

r11 r12 … r1, n−1 r1, n

0 r22 … r2, n −1 r2, n

… … … … …
0 0 … rn −1,n −1 rn− 1, n

0 0 … 0 rn, n

where Q is m by n with orthonormal columns (that is Q’Q = In), and R = [rij] is a
n by n upper triangular matrix, that is rij = 0, i > j.

Function qr(x) uses a version of Linpack subroutine dqrdc to compute the QR
decomposition of a matrix x. It returns a structure with components qr and qraux as
described in the Linpack manual (Dongarra et al. 1979) This is not quite the QR
decomposition in the form just described. Although R can be directly read off as the
elements result$qr[i,j] with i ≤ j, Q is in a coded form. Macro qrdcomp in file
MacAnova.mac distributed with MacAnova uses qr() and then decodes its results to
compute Q and R . We illustrate with the same matrix x as in Sec. 6.3.

6-11

MacAnova Version 4.07

Cmd> qr(x)
component: qr
(1,1) -21.749 -7.8166 -19.863
(2,1) 0.09196 -9.105 -6.8903
(3,1) 0.55176 -0.014819 -10.391
(4,1) 0.41382 -0.038572 0.74483
(5,1) 0.4598 0.70155 -0.58675
component: qraux
(1) 1.5518 1.7114 1.3177

Cmd> getmacros(qrdcomp,quiet:T) # retrieve macro qrdcomp

Cmd> qrd <- qrdcomp(x); qrd # true QR decomposition
component: r
(1,1) -21.749 -7.8166 -19.863
(2,1) 0 -9.105 -6.8903
(3,1) 0 0 -10.391
component: q
(1,1) -0.55176 0.36386 0.33229
(2,1) -0.09196 -0.68986 -0.42538
(3,1) -0.55176 0.1442 -0.19572
(4,1) -0.41382 0.1356 -0.64619
(5,1) -0.4598 -0.59373 0.50276

Cmd> qrd$q %*% qrd$r # reproduce x as q times r
(1,1) 12 1 5
(2,1) 2 7 11
(3,1) 12 3 12
(4,1) 9 2 14
(5,1) 10 9 8

For reasons of numerical stability, it is sometimes desirable to reorder the columns of x
according to the magnitudes of certain pivotal elements. This can be done implicitly by
adding a second argument to qr() and/or qrdcomp.

Cmd> qrdcomp(x,T)
component: r
(1,1) -23.452 -18.421 -9.2956
(2,1) 0 11.562 -0.1063
(3,1) 0 0 7.5882
component: q
(1,1) -0.2132 0.6982 -0.11961
(2,1) -0.46904 -0.57429 0.33986
(3,1) -0.51168 0.22267 -0.22834
(4,1) -0.59696 -0.17266 -0.47013
(5,1) -0.34112 0.32142 0.77268
component: pivot
(1) 3 1 2

Component pivot gives the reordering. Components q and r are actually the QR
decomposition of x[,vector(3,1,2)].

Cmd> qrdcomp(x[,vector(3,1,2)])$r
(1,1) -23.452 -18.421 -9.2956
(2,1) 0 11.562 -0.1063
(3,1) 0 0 7.5882

6-12

MacAnova Version 4.07

6.5 Cholesky decomposition – cholesky() When A is a n by n positive semi-definite
(all eigenvalues ≥ 0) symmetric matrix (A’ = A) , then A can always be factored in the
form A = R’R, where R = [rij] is a n by n upper triangular matrix, that is, with rij = 0,
when j < i. This is known as the Cholesky decomposition of A . When A is
positive definite (all eigenvalues > 0), R is unique except for multiplying by –1. If A =

X’X, where X is m by n has the QR decomposition X = Q
˜ R , then, because Q’Q = In,

X’X =
˜ ′ R ′ Q Q ˜ R = ˜ ′ R ˜ R , a Cholesky decomposition of X’X. Thus the upper triangular

part of the QR decomposition of X also defines the Cholesky decomposition of X’X.

If MacAnova variable a represents a positive definite symmetric matrix, cholesky(a)
computes the upper triangular factor in the Cholesky decomposition.

Cmd> a <- x' %*% x; a # same x as in Sec. 6.3 and 6.4
(1,1) 473 170 432
(2,1) 170 144 218
(3,1) 432 218 550

Cmd> r <- cholesky(a);r # compare -r with QR decomp in Sec. 6.4
(1,1) 21.749 7.8166 19.863
(2,1) 0 9.105 6.8903
(3,1) 0 0 10.391

Cmd> r' %*% r # same as a within rounding error.
(1,1) 473 170 432
(2,1) 170 144 218
(3,1) 432 218 550

It is an error if the argument to cholesky() has any negative eigenvalues:

Cmd> b <- a - dmat(3,60); eigenvals(b)
(1) 970.9 30.944 -14.842

Cmd> cholesky(b)
ERROR: argument to cholesky() is not positive definite
 Problem found while pivoting column 2

If a has an eigenvalue that is 0 or close to 0, the result of cholesky(a) is unreliable.

6.6 Working with triangular matrices – triupper(), trilower() and triunpack() There are
three functions that make it easier to work with triangular matrices such as are
produced by qrdcomp and cholesky(). triupper() and trilower() extract the
diagonal and elements above it (triupper()) or below it (trilower()); triunpack()
creates triangular matrices and symmetric matrices from a vector of length m (m +
1)/2.

triupper(a) returns a matrix d of the same size and shape as a with d[i,j] = a[i,j]
for i ≤ j (on or above the diagonal) and d[i,j] = 0 for i > j (below the diagonal).

triupper(a,square:T) returns a triangular m by m square matrix, where m =
min(nrows(a),ncols(a)).

trilower(a) returns a matrix d of the same size and shape as a with d[i,j] = a[i,j]
for i ≤ j (on or below the diagonal) and d[i,j] = 0 for i < j (above the diagonal).
Keyword square cannot be used with trilower().

6-13

MacAnova Version 4.07

For both triupper(a) and trilower(a), argument a must be a matrix but need not be
square. If a is a CHARACTER matrix, elements above or below the diagonal are set to
empty quoted strings ("") instead of 0’s.

A m by m upper or lower triangular matrix is determined by the m (m +1)/2
elements consisting of m diagonal elements and m (m –1)/2 elements above or
below the diagonal. triupper(a,pack:T) and trilower(a,pack:T) return these
elements in a vector of length m (m +1)/2. For this usage, a must be square.

Cmd> a <- matrix(run(12),4); a
(1,1) 1 5 9
(2,1) 2 6 10
(3,1) 3 7 11
(4,1) 4 8 12

Cmd> triupper(a)
(1,1) 1 5 9
(2,1) 0 6 10
(3,1) 0 0 11
(4,1) 0 0 0

Cmd> triupper(a,square:T)
(1,1) 1 5 9
(2,1) 0 6 10
(3,1) 0 0 11

Cmd> triupper(a,pack:T)
ERROR: input matrix must be square when pack is T

Cmd> v <- triupper(a[run(3),],pack:T); v # a[run(3),] is square
(1) 1 5 6 9 10
(6) 11

Cmd> trilower(a)
(1,1) 1 0 0
(2,1) 2 6 0
(3,1) 3 7 11
(4,1) 4 8 12

Similarly a m by m symmetric matrix is determined by the m (m +1)/2 elements on
and above the diagonal. triunpack(v) creates a square symmetric matrix from vector
v whose length must be of the form m (m +1)/2. The result is a m by m symmetric
matrix whose upper triangle (including the diagonal) is determined by v.
triunpack(v,lower:T) and triunpack(v,upper:T) produce lower and upper
triangular matrices, respectively.

Cmd> triunpack(v)
(1,1) 1 5 9
(2,1) 5 6 10
(3,1) 9 10 11

Cmd> triunpack(v,upper:T)
(1,1) 1 5 9
(2,1) 0 6 10
(3,1) 0 0 11

6-14

MacAnova Version 4.07

Cmd> triunpack(v,lower:T)
(1,1) 1 0 0
(2,1) 5 6 0
(3,1) 9 10 11

When v is a CHARACTER vector, empty strings ("") are used instead of 0’s in the other
half.

6.7 Cluster analysis cluster() computes a hierarchical agglomerative cluster analysis
of the rows of a data matrix or of objects whose inter-object dissimilarity or similarity
coefficients are provided. kmeans() computes a k -means analysis directly on the data,
starting with randomly assigned clusters, pre-specified clusters, or a matrix of means
vectors used as “seeds.”

6.7.1 Hierarchical analysis – cluster() When using cluster(), you can specify any of 7
methods for computing the distance between clusters. cluster() prints a class table,
that is a table of cluster membership, and a dendrogram showing the history of
agglomeration. You can save the class table and/or the values of the distance or
similarity coefficient between clusters at each agglomerative step. The cluster code was
adapted from Fortran program hcl written by F. Murtagh.

cluster(x,method:Meth), where x is a n by p matrix, clusters the rows of x
considered as multivariate observations and Meth is a quoted string or CHARACTER
scalar specifying the agglomeration method used. Legal values for Meth are "ward",
"single", "complete", "average", "mcquitty", "median" and "centroid". When
method:Meth is omitted, method:"average" is assumed. "average", "complete"
and "single" specify the average, complete and single linkage methods, respectively;
"ward" and "mcquitty" specify Ward’s incremental sums of squares method and
McQuitty’s weighted average link method, respectively; and "centroid" and
"median" specify the centroid and median methods, respectively. See Gordon (1987)
for details and further references.

By default, the columns of x are standardized by subtracting column means and
dividing by column standard deviations before distances are computed. If this is not
desired, use cluster(x,method:Meth,standard:F).

The join points of the dendrogram are labelled in the left margin with the value of the
criterion used, either derived from the Euclidean distances among the rows of x or
from dissimilarity matrix d or similarity matrix s (see below). When you are clustering
the rows of x and distance:"euclidsq" is an argument, these will be labelled with
squared Euclidean distance. This affects only output, not the clustering itself.

cluster() displays only the final stages of the agglomeration process. By default this is
is the history from a stage with 9 (or fewer) clusters to the next to final stage at which
there remain 2 clusters. Keyword phrase nclust:m sets the maximum number of
clusters displayed to m, that is it shows the history starting with the stage when there are
m clusters.

Cmd> setseeds(67871,32211) # set values of seeds (see Sec. 2.13.1)

6-15

MacAnova Version 4.07

Cmd> x <- rnorm(5); x# generate miniscule data set
(1) 0.32218 -0.0020892 -1.3853 -0.47216 0.60574

Cmd> cluster(x,method:"ward")
 Case Number of Clusters Class table
 No. 2 3 4 5
 ---- -- -- -- --
 1 1 1 1 1
 2 1 3 3 3
 3 2 2 2 2
 4 1 3 4 4
 5 1 1 1 5

 Criterion Dendrogram or tree
 +
 1.7166 +-----------+
 0.89782 +-----+ |
 0.42566 | +--+ |
 0.25677 +--+ | | |
 Cluster No. 1 5 3 4 2
 Clusters 1 to 5 (Top 4 levels of hierarchy).
 Clustering method: Ward's minimum variance
 Distance: Euclidian (standardized)

Cmd> cluster(x,nclust:3,method:"ward") #limit no of clusters shown
 Case Number of Clusters
 No. 2 3
 ---- -- --
 1 1 1 1st 2 columns of class table
 2 1 3 above
 3 2 2
 4 1 3
 5 1 1

 Criterion
 + This is equivalent to the top
 1.7166 +-----+ of the preceding dendrogram
 0.89782 +--+ |
 Cluster No. 1 3 2
 Clusters 1 to 3 (Top 2 levels of hierarchy).
 Clustering method: Ward's minimum variance
 Distance: Euclidian (standardized)

cluster(dissim:d,method:Meth), where d is a n by n matrix of dissimilarity
coefficients (distances) between n objects, clusters the objects. Likewise, when s is a n
by n matrix of similarity coefficients between the objects, you can cluseter them by
cluster(similar:s,method:Meth). The elements of d are treated computationally
as if they were (non-squared) Euclidean distances. The use of similar:s is
algorithmically equivalent to the use of dissim:sqrt(2*(max(vector(s))–s)).

Cmd> d <- abs(x-x') # Euclidean distances because ncols(x) = 1

6-16

MacAnova Version 4.07

Cmd> cluster(dissim:d, method:"ward")
 Case Number of Clusters
 No. 2 3 4 5
 ---- -- -- -- --
 1 1 1 1 1
 2 1 3 3 3
 3 2 2 2 2
 4 1 3 4 4
 5 1 1 1 5

 Criterion
 +
 1.3405 +-----------+
 0.70108 +-----+ |
 0.33239 | +--+ |
 0.2005 +--+ | | |
 Cluster No. 1 5 3 4 2
 Clusters 1 to 5 (Top 4 levels of hierarchy).
 Clustering method: Ward's minimum variance
 Distance: Input dissimilarity matrix

Because d is identical to the Euclidean distances between the cases as computed from
non-standardized data, this last example gives output the identical to that of
cluster(x,method:"ward",standard:F) .

For all agglomeration methods, the clustering algorithm initially forms n clusters,
each consisting of a single object. Over the course of n – 1 stages at each of which two
clusters are merged, all objects are combined into a single cluster. At each stage, the two
nearest or most similar clusters are merged. The various methods differ in how they
determine the distance between two clusters.

Nothing is printed until the clustering is complete. Then cluster() assigns numbers
to clusters in such a way that that at each stage one of the clusters that is merged has the
hightest number remaining. Thus, when there are k clusters, their numbers are 1, 2,
..., k , and then cluster k and cluster j < k are merged into a new cluster j. The
cluster membership table above shows that initially clusters C1 through C5 are C1

 =

{1}, C2
 = {3}, C3

 = {2}, C4
 = {4}, and C5

 = {5}. The first merge combines C1 and C5 to
form a new cluster C1 = {1,5}. Then C3 and C4 are merged to form a new cluster C3 =
{2,4}. At the next stage, C1 and C3 are merged to form a new cluster C1 = {1,2,4,5}. The
final stage is not shown but consists of a new cluster C1 = {1,2,3,4,5}. There is little
relationship between case number and cluster number, even when there are n clusters.

The dendrogram or tree also shows the merging pattern. Reading from the bottom up,
C1 and C5 whose dissimilarity is 0.2568 merge to form a new C1. Then C3 and C4

whose dissimilarity is 0.4257 merge to form a new C3, and so on.

By default, cluster() prints both the class table and dendrogram. You can suppress
printing the former by class:F and the latter by tree:F.

6-17

MacAnova Version 4.07

Cmd> cluster(x,method:"ward",tree:F) # suppress dendrogram
 Case Number of Clusters
 No. 2 3 4 5
 ---- -- -- -- --
 1 1 1 1 1
 2 1 3 3 3
 3 2 2 2 2
 4 1 3 4 4
 5 1 1 1 5

The lines in the class table are normally in the same order as the cases or objects being
clustered. Keyword phrase reorder:T changes the order printed so that similar cases
are together. It does not change the dendrogram.

Cmd> cluster(x,method:"ward",tree:F,reorder:T)
 Case Number of Clusters
 No. 2 3 4 5
 ---- -- -- -- --
 1 1 1 1 1
 5 1 1 1 5
 2 1 3 3 3
 4 1 3 4 4
 3 2 2 2 2

Ordinarily cluster() returns a NULL value. However, when a keyword phrase of the
form keep:charVec is an argument, where charVec is a CHARACTER vector, printed
output is suppressed and certain results are returned as value. Legal values for the
elements of charVec are the following:

Value of keep What is saved

 "distances" Computed distances

"classes" n by (nclust-1) class membership matrix

"crit" vector of criterion values at each of the last nclust - 1 merges

"all" Distances, class membership matrix, and criterion values.

When more than one type of result is requested, they are saved in a structure with
components distances, classes, and/or criterion. The order of rows in the class
table that is returned is not affected by reorder:T.

When keep is used, nothing is normally printed. You can force printing of both the
class table and dendrogram by keyword phrase print:T, or just one or the other by
class:T or tree:T. These keyword phrases should follow keep if it is used.

Cmd> result <- cluster(x,keep:"all",method:"ward"); result
component: distances
(1,1) 0 0.41527 2.1866 1.0172 0.36312
(2,1) 0.41527 0 1.7713 0.60198 0.77839
(3,1) 2.1866 1.7713 0 1.1693 2.5497
(4,1) 1.0172 0.60198 1.1693 0 1.3804
(5,1) 0.36312 0.77839 2.5497 1.3804 0

6-18

MacAnova Version 4.07

component: classes
(1,1) 1 1 1 1
(2,1) 1 3 3 3
(3,1) 2 2 2 2
(4,1) 1 3 4 4
(5,1) 1 1 1 5
component: criterion
(1) 1.7166 0.89782 0.42566 0.25677

Cmd> result<-cluster(x,keep:vector("classes","criterion"),\
method:"ward",tree:T)

 Criterion
 +
 1.7166 +-----------+
 0.89782 +-----+ |
 0.42566 | +--+ |
 0.25677 +--+ | | |
 Cluster No. 1 5 3 4 2
 Clusters 1 to 5 (Top 4 levels of hierarchy).
 Clustering method: Ward's minimum variance
 Distance: Euclidian (standardized)

Cmd> compnames(result) # result has two components
(1) "classes"
(2) "criterion"

6.7.2 K-means analysis – kmeans() Function kmeans() performs k -means clustering
of the rows of a REAL matrix using an algorithm programmed by Douglas Hawkins.
After k initial clusters have been determined, cases are reallocated among clusters in
an attempt to minimize the sum of the within-cluster sums of squares. Initial clusters
may be pre-specified, selected randomly, selected so as to optimally cluster the first
variable, or selected to be nearest to the rows of a matrix as putative mean vectors to be
used as “seeds.”

You can specify a range k min ≤ k ≤ k max for k . In this case, kmeans() firsts finds k max

clusters; it then merges the two closest clusters to get k max – 1 new starting clusters and
does a new clustering, and so on. The output is a structure with components
criterion, a vector containing the minimized value of the within-cluster sums of
squares for each number of clusters, and classes, a class membership matrix of
integers whose columns successively define cluster membership for k max, k max – 1, ...,
k min cluster solutions. By default, the data are standardized before clustering.

Unless you suppress it by keyword phrase quiet:T, kmeans() prints a brief history of
the merging process, including the values of the criterion being minimized.

The simplest usage is kmeans(y,kmax:k1,kmin:k2), where y is a REAL matrix and k1
≥ k2 ≥ 1 are positive integers. This selects initial clusters randomly using the same
pseudo random number generator as is used by runi() and rnorm() (see Sec 2.13.1).

You use keyword start with permissible values "random", "optimal", "means" and
"classes", to specify alternative ways of determining the initial clusters.

kmeans(y,kmax:k1,kmin:k2,start:"random") is identical to kmeans(y,

6-19

MacAnova Version 4.07

kmax:k1,kmin:k2).

kmeans(y,kmax:k1,kmin:k2,start:"optimal") attempts to select the initial
clusters so as to minimize the within-cluster sums of squares for column 1 of y.

kmeans(y,means,kmin:k2,start:"means"), where means is a REAL matrix with
ncols(y) columns each row of which is a putative cluster “seed.” kmeans() selects as
initial cluster j those rows of y that are closer (using Euclidean distance) to row j of
means than to any other row of means. The initial number k1 =k max of clusters is the
number of distinct rows of means. The rows of means should be in the units of y, not
standardized units.

kmeans(y,classes,kmin:k2,start:"classes"), uses classes, a vector of
nrows(y) positive integers ≤ 255, to specify initial clusters. The initial number k1 =
k max of clusters is the number of distinct integers in classes. If there are empty
classes (not all integers between 1 and max(classes) are present), the empty classes are
“squeezed out.”

In all these usages, kmin:k2 is omitted, k2 = k min is assumed the same as k1 = k max.

There are three additional keywords phrases.

Keyword Phrase Meaning

standard:F Do not standardize before clustering

weights:wts Use weighted means and sums of squares where wts is
a REAL vector of length nrows(y) with w[i] > 0

quiet:T Suppress printing of clustering history

Here is an example of the use of kmeans() with two variables artificial data set of size

n = 100. All rows are bivariate normal with variance matrix

25 0

0 25

 . Rows 1 - 35

have mean [20, 25], rows 36-65 have mean [25,20], and rows 65 - 100 have mean [30,30].

Cmd> truegroups <- vector(rep(1,35),rep(2,30),rep(3,35))

Cmd> mu1 <- vector(20,25);mu2 <- vector(25,20);mu3 <- vector(30,30)

Cmd> mu <- vconcat(rep(1,35)*mu1',rep(1,30)*mu2',rep(1,35)*mu3')

Cmd> setseeds(1009295761,91594389)# so you can reproduce the results

Cmd> y <- mu + matrix(5*rnorm(200),100)

6-20

MacAnova Version 4.07

Cmd> results <- kmeans(y,kmax:5,kmin:3)
Cluster analysis by reallocation of objects using Trace W criterion
Variables are standardized before clustering
Initial allocation is random
 k Initial Final Reallocations
 5 187.44 63.617 76
 5 63.617 50.694 18
 5 50.694 49.371 7
 5 49.371 48.466 4
 5 48.466 48.376 2
 5 48.376 48.172 2
 5 48.172 48.172 0
Merging clusters 1 and 3; criterion = 67.543
 k Initial Final Reallocations
 4 67.543 58.955 11
 4 58.955 58.335 4
 4 58.335 57.867 3
 4 57.867 57.867 0
Merging clusters 3 and 4; criterion = 84.621
 k Initial Final Reallocations
 3 84.621 79.947 7
 3 79.947 78.709 6
 3 78.709 74.861 8
 3 74.861 74.755 1
 3 74.755 74.755 0

Cmd> compnames(results) # names of components of output
(1) "classes"
(2) "criterion"

Cmd> dim(results$classes) # results$classes is 100 by 3
(1) 100 3

Cmd> max(results$classes)#columns give 5, 4, and 3 cluster solutions
(1,1) 5 4 3

Cmd> results1 <- kmeans(y,hconcat(mu1,mu2,mu3)',start:"means")
Cluster analysis by reallocation of objects using Trace W criterion
Variables are standardized before clustering
Initial allocation is by nearest candidate mean
 k Initial Final Reallocations
 3 78.809 76.568 7
 3 76.568 75.92 6
 3 75.92 75.215 6
 3 75.215 74.755 3
 3 74.755 74.755 0

Cmd> print(format:"1.0f",truegroups,width:70,labels:F)
truegroups: "True" cluster membership
 1
 2 3 3 3 3 3
 3

6-21

MacAnova Version 4.07

Cmd> print(format:"1.0f",vector(results$classes[,3]),width:70,\
labels:F)
VECTOR: 3-cluster solution from random choice of 5 clusters
 3 3 3 1 1 3 3 3 3 1 3 3 1 2 3 3 3 1 1 3 3 1 3 3 3 3 3 3 1 3 3 1 1 3 2
 1 3 3 1 1 2 1 1 1 3 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 2 2 2 2
 1 2 1 1 2 2 1 2 2 2 2 1 1 1 2 1 2 2 2 1 2 2 1 2 1 2 1 2 2 2

Cmd> print(format:"1.0f",vector(results1$classes[,1]),width:70,\
labels:F)
VECTOR: 3-cluster solution starting with true means
 1 1 1 2 2 1 1 1 1 2 1 1 2 3 1 1 1 2 2 1 1 2 1 1 1 1 1 1 2 1 1 2 2 1 3
 2 1 1 2 2 3 2 2 2 1 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 1 2 2 2 2 3 3 3 3
 2 3 2 2 3 3 2 3 3 3 3 2 2 2 3 2 3 3 3 2 3 3 2 3 2 3 2 3 3 3

Cmd> # Note that random starting and "seeding” with mean vectors led

Cmd> # to same clusters but with numbered differently

Cmd> chars <- vector("\1","\2","\3") # plotting chars for clusters

Cmd> chplot(y[,1],y[,2],chars[truegroups],\
xlab:"y1",ylab:"y2",title:"True Clusters")

Cmd> chplot(y[,1],y[,2],chars[results$classes[,3]],\
xlab:"y1",ylab:"y2",title:"kmeans Clusters with random start")

15

20

25

30

35

40

10 15 20 25 30 35

True Clusters

y1

y
2

15

20

25

30

35

40

10 15 20 25 30 35

kmeans Clusters with random start

y1

y
2

See Sec. 2.15.3 for the use of chplot().

6.8 Factor rotation – rotation() Several statistical procedures, including factor analysis
and principal components analysis (PCA), involve determining a matrix p by m
matrix L with p > m whose columns are orthonormal, that is L’L = Im. In factor
analysis the elements in row i of L are the “loadings” of variable i on each of the m

factors. That is, variable xi is assumed to be representable as xi = µ i + lij
j =1

m

∑ Fj + ei , where

Fj is an unobserved random variable – a factor – and e i is uncorrelated with F1, ..., Fm.
In addition, e 1, e 2, ..., e p are themselves assumed uncorrelated. In matrix notation,
the factor analysis representation can be written x = µ + LF + e , where F = [F1, ...,
Fm]’.

6-22

MacAnova Version 4.07

In PCA, the columns of L are the first m eigen vectors of the covariance matrix and
the elements in column j are the coefficients multiplying each variable in computing
the jth principal component. In PCA, too the elements can be considered loadings in

that variable xi can be represented

x i = µ i + lij

j = 1

m

∑ z j + ˜ e i, where z j is the jth principal

component and ˜ e i =

lij
j =m + 1

p

∑ z jis a linear combination of the last p – m principal

components and is uncorrelated with z1, ..., zm. This representation differs from the
factor analytic representation in that ˜ e 1, ˜ e 2 , ..., ˜ e p cannot be mutually uncorrelated since
they are linear combinations of only p – m random variables. In matrix notation, we
have x = µ + LZ + ˜ e , where Z = [z1, z2, ..., zm]’.

A common feature of both these problems is that often what is important about L is
not the individual elements but the m dimensional subspace the columns of L span.

From the point of view of representing x, any p by m matrix ˜ L satisfying ˜ ′ L ˜ L = Im and

whose columns span the same subspace will do just as well, since x = µ + ˜ L ̃ F + e or

x = µ + ˜ L ̃ Z + ˜ e , where ˜ F = ′ R F and ˜ Z = ′ R Z , with R = ′ L ˜ L orthogonal (′ R R = Im) satisfying

LR = ˜ L . The problem of rotation is to determine an orthogonal matrix R so that
˜ L = LR so that the elements of ˜ F or ˜ Z are likely to be “interpretable.” There are many

methods of factor rotation used, among them varimax and quartimax (Morrison
1990).

rotation(l,method:methodName) computes the rotated version of l using the
rotation method methodName which must be a quoted string or CHARACTER scalar. That
is, an orthogonal matrix R is found so that l %*% R maximizes a criterion. The
value returned is l %*% R . l must be a REAL matrix with nrows(l) ≥ ncols(l). The
result is a REAL matrix with the same dimensions as l. Matrix R can be recovered as
l' %*% rotation(l). If keyword method is not used, the default is
"method:varimax". (At present the only legal value for methodName is "varimax".)

rotation(l,verbose:T) prints the value of the criterion before and after rotation.

rotation(Loadings,reorder:T) enables post-processing that multiplies each
column of the result to make its sum positive and reorders columns in decreasing
order of the column sums of squares.

We illustrate it by rotating the first three vectors of loadings derived from the first three
eigenvectors of the correlation matrix of hald.

Cmd> eigs <- eigen(cor(hald))

Cmd> l <- eigs$vectors[,run(3,1)] * sqrt(eigs$values[run(3,1)])';l
 (3) (2) (1)
x1 0.25911 0.64338 0.7189
x2 -0.1739 -0.51422 0.83919
x3 0.30094 -0.76334 -0.5715
x4 -0.046327 0.56129 -0.82488
y 0.094213 -0.0042761 0.99173

6-23

MacAnova Version 4.07

Cmd> l1 <- rotation(l,method:"varimax",verbose:T); l1
Varimax starting criterion = 0.42614, final criterion = 1.773
6 iterations and 18 rotations
 (1) (2) (3)
x1 0.47841 0.85818 0.1804
x2 -0.066239 0.09318 0.99289
x3 0.079765 -0.99587 -0.041619
x4 -0.13875 0.0010823 -0.98913
y 0.2901 0.52743 0.79378

Cmd> r <- solve(l' %*% l, l' %*% l1);r # rotation matrix
 (1) (2) (3)
(3) 0.97122 -0.22065 -0.089641
(2) 0.12807 0.80119 -0.58455
(1) 0.2008 0.55625 0.80639

Cmd> l %*% r # Same as l1; l1 %*% r' is same as l
 (1) (2) (3)
x1 0.47841 0.85818 0.1804
x2 -0.066239 0.09318 0.99289
x3 0.079765 -0.99587 -0.041619
x4 -0.13875 0.0010823 -0.98913
y 0.2901 0.52743 0.79378

Cmd> rotation(l,reorder:T)
 (1) (2) (3)
x1 0.1804 0.85818 0.47841
x2 0.99289 0.09318 -0.066239
x3 -0.041619 -0.99587 0.079765
x4 -0.98913 0.0010823 -0.13875
y 0.79378 0.52743 0.2901

Caution: Do not confuse rotation() with rotate() (Sec. 5.2.5) which shifts the rows
of its first argument up or down, wrapping around the end.

6-24

	6.1 Linear model analysis using swp()
	6.1.1 Computing cross product matrix – bcprd()

	6.2 Computation of eigenvalues and eigenvectors
	6.2.1 Ordinary eigenvalues and eigenvectors
	6.2.2 Tridiagonal matrix eigenthings
	6.2.3 Relative eigenvectors and eigenvalues

	6.3 Singular value decomposition
	6.4 QR decomposition
	6.5 Cholesky decomposition
	6.6 Working with triangular matrices
	6.7 Cluster analysis
	6.7.1 Hierarchical analysis
	6.7.2 K-means analysis

	6.8 Factor rotation

