
This file consists of the second part of Chapter 2 of MacAnova User’s Guide by Gary W.
Oehlert and Christopher Bingham, issued as Technical Report Number 617, School of
Statistics, University of Minnesota, revised August 1998, describing Version 4.07 of
MacAnova.

This manual is Copyright © 1998 Gary W. Oehlert and Christopher Bingham, all rights
reserved.

Fonts used in this chapter are Palatino, Courier, and Symbol.

For information concerning MacAnova, write University of Minnesota, Department of
Applied Statistics, 352 Classroom Office Building, 1994 Buford Avenue, St. Paul, MN
55108-6042.

kb
This ispart 2 of Chapter 2 of the MacAnova Users' Guide for MacAnova version 4.07. The complete Users' Guide is available at http://www.stat.umn.edu/~gary/macanova/documentationug.htmlPlease notify the authors (kb@stat.umn.edu or gary@stat.umn.edu) of any inaccuracies or typographical errors. What may appear as bold face Greek symbols should be italic.List of PDF files making up manual PDF File PDF FileContents mancntnt.pdf Chapter 8 manchp08.pdfPreface manprfac.pdf Chapter 9 manchp09.pdfChapter 1 manchp01.pdf Chapter 10 manchp10.pdfChapter 2 (a) manchp2a.pdf Chapter 11 manchp11.pdfChapter 2 (b) manchp2b.pdf Appendix A manapdxa.pdfChapter 3 manchp03.pdf Appendix B manapdxb.pdfChapter 4 manchp04.pdf Appendix C manapdxc.pdfChapter 5 manchp05.pdf Appendix D manapdxd.pdfChapter 6 manchp06.pdf Appendix E manapdxe.pdfChapter 7 manchp07.pdf Appendix F manapdxf.pdf

MacAnova Version 4.07

2.11.1 vecread() Function vecread() creates a REAL vector from unstructured
numerical data in a file. The numbers should be separated by blanks or tab characters,
or may be on separate lines. One or more successive question marks (?, ??, ???, ...) in
the file is read as MISSING as are isolated periods (.) and asterisks (*). A exclamation
point “!” is a “stop character” and terminates the read. Any other non-numeric
characters such as letters, commas or slashes are ignored except possibly for printing an
advisory message. The entire file is scanned as far as the first “!”, if any. Here is a
listing of a file myfile.dat containing 30 comma-separated values of a variable x that
might be read by vecread():

Data from trees
600, 555, 361, 489, 640, ?? 644, 297, 481, 612, 522
246, 504, 358, 623, 614, 595, 531, 602, 684, 410, 448
662, 892, 644, ., 431, *, 513, 603f ! 30, 10
10, 20, 3 This line will not be read

The output of vecread() is a REAL vector consisting of the values read.

Cmd> x <- vecread("myfile.dat");x # read from file myfile.dat
WARNING: nonnumeric character(s) ignored on myfile.dat
 (1) 600 555 361 489 640
 (6) MISSING 644 297 481 612
(11) 522 246 504 358 623
(16) 614 595 531 602 684
(21) 410 448 662 892 644
(26) MISSING 431 MISSING 513 603

Note that ??, . and * were read as MISSING and nothing after the “!” was read. The
WARNING message results from the non-numeric first line.

You can specify a different stop character instead of “!” by vecread(filename,
stop:"%"), say. The stop character must be a punctuation character other than “+”,
“-”, “,”, “?” or “.”, that is, any of !"#$%&'()*/:;<=>@[\]^_`{|}~. The stop
character can also be a “non-ascii” character specified in octal form as "\200", "\201",
"\202", ..., or "\377". This might be called for when you want to ensure the whole file
is read, and you know the file does not contain the stop character.

If the file contains lines, all beginning with the same character, say “#”, that should be
ignored, you can use keyword phrase skip:"#" as an argument. Thus, suppose
myfile1.dat looks like

Data on 30 trees
600, 555, 361, 489, 640, ?? 644, 297, 481, 612, 522
246, 504, 358, 623, 614, 595, 531, 602, 684, 410, 448
662, 892, 644, ., 431, *, 513, 603f % 30, 10
10, 20, 3 This line will not be read

Then vecread("myfile1.dat",stop:"%",skip:"#") will return exactly the same
vector as before. If the first line were not skipped, 30 would be read as an item of data.

Another way to control how much of the file is read is by specifying a “go character”
with keyword go. vecread() will stop reading on the first line that does not start
with the go character or the skipping character, if any. Suppose myfile2.dat looks like

2-36

MacAnova Version 4.07

Data on 30 trees
 600, 555, 361, 489, 640, ?? 644, 297, 481, 612, 522
 246, 504, 358, 623, 614, 595, 531, 602, 684, 410, 448
 662, 892, 644, ., 431, *, 513, 603
Data file created 980501

Then vecread("myfile2.dat",go:" ",skip:"#"), will return the same data as
before, the last line not being read because it starts with D rather than a space. If a space
were inserted before “Data file”, then 980501 would be read as an additional data
item. You can’t specify both a go character and a stop character.

Suppose myfile3.dat contains data arranged in columns like the following

Data on 5 variables, n = 6
 600 555 361 489 640
 ? 644 297 481 612
 522 246 504 358 623
 614 595 531 602 684
 410 448 662 892 644
 ? 431 ? 513 603

You can read it into matrix y as follows:

Cmd> y <- matrix(vecread("myfile3.dat",skip:"#",quiet:F),5)'
Data on 5 variables, n = 6 Echoed because of quiet:F

Cmd> y
(1,1) 600 555 361 489 640
(2,1) MISSING 644 297 481 612
(3,1) 522 246 504 358 623
(4,1) 614 595 531 602 684
(5,1) 410 448 662 892 644
(6,1) MISSING 431 MISSING 513 603

The use of keyword phrase quiet:F causes any skipped lines to be printed. Trans-
posing the output of matrix() is necessary because data is read from the file row by
row, but stored in the computer column by column. Thus simply y <-
matrix(vecread("myfile3.dat",skip:"#"),5) would produce a matrix with 5
rows, with each row corresponding to a co lumn of the data in the file.

You can also use vecread() to read CHARACTER data (see also Sec. 7.2). Suppose file
labels.txt contains

Age, Length, Height, Width, , Strength ! labels for data

Then vecread() reads a vector of length 6:

Cmd> labels <- vecread("labels.txt",character:T); labels
(1) "Age"
(2) "Length"
(3) "Height"
(4) "Width"
(5) ""
(6) "Strength"

Note that the two successive commas between Width and Strength are taken to
delimit an empty string "". Keywords skip, stop and go work the same as before.

2-37

MacAnova Version 4.07

You can use keyword phrase silent:T to suppress any warning messages. Thus if the
file starship.txt looks like

Troy 342 67
Tasha 546 53
Beverly 331 49

Cmd> y <- matrix(vecread("starship.txt",silent:T),2)';y
(1,1) 342 67
(2,1) 546 53
(3,1) 331 49

returns the 3 by 2 data matrix without commenting on the row labels.

An alternative method of coping with unreadable items is to use keyword phrase
badvalue:val, where val is a REAL scalar or ?. Any item that does not appear to be a
number is read as if it had this value.

Cmd> y <- matrix(vecread("starship.txt",badvalue:-99),3)';y
(1,1) -99 342 67
(2,1) -99 546 53
(3,1) -99 331 49

The three names could not be read and were replaced by –99. This has the advantage
that you can test to see which items were not readable.

See Sec. 7.2 for information on other ways of using vecread() to read CHARACTER data.
See Sec. 7.3 for using keyword string to “read” from a CHARACTER variable. See Sec.
B.6.6, C.5.6 and D.6.6 for using CONSOLE as a file name.

2.11.2 readcols When a data file such as myfile3.dat contains data on several
variables, the data for each case on a separate line, you sometimes want to read each
variable (column in the file) into a separate MacAnova variable. You often can use
pre-defined macro readcols, which makes use of vecread(), to read such a file and
create REAL vectors, one for each column in the file. The arguments to readcols are
the file name, and the unquoted names of the variables into which the columns
should be placed.

Cmd> readcols("myfile3.dat", x1, x2, x3, x4, x5,skip:"#")

This creates REAL vectors x1, x2, x3, x4, and y containing the data from columns 1
through 5.

Cmd> list(x1,x2,x3,x4,x5)
x1 REAL 6
x2 REAL 6
x3 REAL 6
x4 REAL 6
x5 REAL 6

Cmd> x1 # column (variable) 1
(1) 600 MISSING 522 614 410
(6) MISSING

When the file has a different number of columns from what you expect, readcols
usually prints an error message.

2-38

MacAnova Version 4.07

Cmd> readcols("myfile3.dat",x1, x2, x3, x4,skip:"#")# try 4 cols
ERROR: number of rows must divide length of data

However, if the number of data elements in the file is actually divisible by the number
of variable names you provided, there won’t be an error message, but the variables set
will be of the wrong length and will not correspond to columns in the file.

Cmd> readcols("myfile3.dat", x1, x2, x3, x4, x5, x6,skip:"#")

Cmd> list(x1)
x1 REAL 5 Output from list

Cmd> x1 # x1 has length 5, not 6
(1) 600 644 504 602 644

Macro readcols recognizes vecread() keywords stop, skip, quiet, silent and
badvalue. See Sec. 2.11.1 for details.

2.11.3 matread() and read() A single plain text file can contain several REAL, LOGICAL,
CHARACTER or structure data sets, provided each of them has a header consisting of at
least one line of information specifying a name for the data set and its dimensions
(length for a vector, numbers of rows and columns for a matrix, number of
components for a structure). Optional additional header lines can describe the data set
and provide formatting information. The file can also contain NULL variables. See Sec.
7.1 for details of the file format. You use matread() or read() to read from such a file.
The only difference between them is that matread() prints an warning message if it
finds a macro with the specified name instead of a data set and read() does not.

matread() normally requires two CHARACTER variables or quoted strings as arguments,
the file name and the data set name. Thus

Cmd> x <- matread("data.txt","treedata")

searches file data.txt for a data set named treedata, reads it, and assigns the data to
variable x. If you omit the data set name, matread() assumes that the first non-empty
line in the file is the first header line for the data set. You can create files in the format
readable by matread() using matprint() and matwrite() (see Sec. 7.4). If the named
file is not in the current default directory or folder, matread() searches the directories
or folders in CHARACTER vector DATAPATHS. See Sec. 2.11.6.

File MacAnova.dat distributed with MacAnova contains the data in a form readable by
matread(). One of the data sets is halddata, containing data that has often been used
as an example when demonstrating regression techniques.

Cmd> hald <- matread("macanova.dat","halddata")
halddata 13 5 format
) Hald data from A. Hald, Statistical Theory with Engineering
) Applications, Wiley, New York, 1952, p. 647
) Col. 1: X1 = percent tricalcium aluminate
) Col. 2: X2 = percent tricalcium silicate
) Col. 3: X3 = percent tetracalcium alumino ferrite
) Col. 4: X4 = percent dicalcium silicate
) Col. 5: Y = cumulative heat evolved from cement hardening after
) 180 days. (calories/gm)

2-39

MacAnova Version 4.07

The lines following the command line are printed by matread() and consist of the
name line plus several additional comment l ines (lines starting with “)”) which
come before the data. You can suppress the printing of these lines by including
quiet:T as an additional argument to matread().

Since some commands work only with data vectors rather than matrices, once you
have read in a matrix using matread(), you may want to split it up into separate
vectors, each containing a column of the matrix. Pre-defined macro makecols does
exactly this. For example, you can create vectors from data by

Cmd> makecols(hald, x1, x2, x3, x4, y)

will create vectors x1, x2, x3, x4 and y from the 5 columns of hald.

You can even combine matread() and makecols in a single expression to create
vectors.

Cmd> makecols(matread("macanova.dat","halddata",quiet:T),\
x1,x2,x3,x4,y)

Ordinarily it is considered an error when matread() can’t find a data set. However, if
you include keyword phrase notfoundok:T as an argument, no error will be reported
and the value NULL is returned. This can be useful in writing macros (see Sec. 9.3) that
read data, since it allows you to test whether a data set is available on a file.

Cmd> apples <- matread("macanova.dat","apples") # no apples in file
ERROR: dataset or macro apples not found on file macanova.dat

Cmd> list(apples)
WARNING: apples is not defined

Cmd> apples <- matread("macanova.dat","apples",notfoundok:T)

Cmd> list(apples)
apples NULL

Cmd> isnull(apples)# See Sec. 9.4.2
(1) T

Coordinate labels (see Sec. 8.4) can be included along with data sets readable by
matread() in such a way that they are automatically read (See Sec. 7.1). Whether or
not a data set in a file has labels, you can attach labels by using keyword labels on
matread(). Here is an example, reading halddata; echoing of the header lines is
suppressed by quiet:T:

Cmd> data <- matread("macanova.dat","halddata",quiet:T,\
labels:structure("@", vector("TricalcAlum","TricalcSi",\
"TetrcalAlFe","DicalcSi","CumulHeat")))

Cmd> data # the label "@" translates into row numbers;see Sec. 8.4.1
 TricalcAlum TricalcSi TetrcalAlFe DicalcSi CumulHeat
(1) 7 26 6 60 78.5
(2) 1 29 15 52 74.3
(3) 11 56 8 20 104.3
(4) 11 31 8 47 87.6
(5) 7 52 6 33 95.9
(6) 11 55 9 22 109.2

2-40

MacAnova Version 4.07

(7) 3 71 17 6 102.7
(8) 1 31 22 44 72.5
(9) 2 54 18 22 93.1
(10) 21 47 4 26 115.9
(11) 1 40 23 34 83.8
(12) 11 66 9 12 113.3
(13) 10 68 8 12 109.4

2.11.4 getdata Macro getdata is designed make it easier to work with “libraries” of data
sets in the form readable by matread(). It has a single unquoted argument that is
interpreted as the name of a data set on the file whose name is the value of CHARACTER
variable DATAFILE. When MacAnova is started up, DATAFILE is pre-defined to be
"macanova.dat", but you may assign a new value at any time. getdata uses
matread() to read the file. For example, using the default value of DATAFILE,

Cmd> hald <- getdata(halddata)

would be equivalent to hald <- matread("macanova.dat","halddata"). To use
getdata to retrieve treedata from file data.txt, you would need the following:

Cmd> DATAFILE <- "data.txt"; x <- getdata(treedata)

Subsequent use of getdata would continue to retrieve data from data.txt.

If the file named in DATAFILE is not in the default directory or folder or in one of the
directories or folders specified by CHARACTER vector DATAPATHS (see Sec. 2.11.6), it
should be a complete “path name”, such as "C:/MACANOVA/MACANOVA.DAT" or
"Macintosh Hard Disk:MacAnova:MacAnova.dat". See Appendices B through F.
Note that on DOS/Windows computers you may use “/” instead of “\” in path names.
In fact, if you want to use “\” you have to use “\\” (see Sec. 2.5).

2.11.5 inforead() As exemplified in Sec. 2.11.3, data sets on external files that are readable
by matread() may have associated comment lines with information about the data
(see also Sec. 7.1). The same is true of macros on external files (Sec. 7.5). It can be
helpful to save these comments in a CHARACTER variable so that they are instantly
available for reference. They can also be attached to the variable itself as an informative
note (see Sec. 8.9). You can do this using inforead() which is used much the same as
matread() and read().

inforead(FileName,Name) searches file FileName for a macro or data set with name
Name. If found, inforead() reads the comments (the lines starting with “)”) following
the header line and returns a CHARACTER variable containing these lines, with the
leading “)” stripped off. FileName and Name must be quoted strings or CHARACTER
variables. The actual contents of the data set or macro are ignored and there is no
checking as to whether the header line is in correct format.

inforead(FileName) does the same for the first data set or macro on the file,
assuming that line 1 is the header line.

In versions with windows (Macintosh, Windows, Motif), if FileName is "", you will be
able to select the file using a dialog box.

inforead(FileName[,Name],quiet:T) returns the comments, but suppresses any

2-41

MacAnova Version 4.07

echoing of the header and comment lines of the data set or macro.

Cmd> info <- inforead("macanova.dat","halddata", quiet:T)

Cmd> info # see Sec. 2.11.3.
(1) " Hald data from A. Hald, Statistical Theory with Engineering
 Applications, Wiley, New York, 1952, p. 647
 Col. 1: X1 = percent tricalcium aluminate
 Col. 2: X2 = percent tricalcium silicate
 Col. 3: X3 = percent tetracalcium alumino ferrite
 Col. 4: X4 = percent dicalcium silicate
 Col. 5: Y = cumulative heat evolved from cement hardening after
 180 days. (calories/gm)"

Cmd> attachnotes(data,info)# attach info to data itself (Sec. 8.9.1)

Cmd> getnotes(data) # see Sec. 8.9.1
(1) " Hald data from A. Hald, Statistical Theory with Engineering
 Applications, Wiley, New York, 1952, p. 647
 Col. 1: X1 = percent tricalcium aluminate
 Col. 2: X2 = percent tricalcium silicate
 Col. 3: X3 = percent tetracalcium alumino ferrite
 Col. 4: X4 = percent dicalcium silicate
 Col. 5: Y = cumulative heat evolved from cement hardening after
 180 days. (calories/gm)"

inforead(FileName,Name[,quiet:T],notfoundok:T) behaves identically when
the data set or macro is found. However, when it is not found, no message is printed
and NULL is returned. When used in a macro, this feature allows special action if Name
is not found.

Cmd> applesinfo <- matread("macanova.dat","apples",notfoundok:T)

Cmd> list(applesinfo)
applesinfo NULL

2.11.6 HOME, DATAPATHS and adddatapath When MacAnova starts up, two
CHARACTER variables, HOME and DATAPATHS, are automatically created to make it easier
for MacAnova to find files. On all systems except Unix, these are both initialized to the
complete “path name” of the directory or folder where MacAnova is located. On a
Unix system, HOME is initialized to the name of the user’s home directory
(environmental variable $HOME) and DATAPATHS is initialized to the name of an
installation-dependent directory containing data files. Both HOME and DATAPATHS can
be modified once MacAnova has started up, perhaps in a start up file (See Sec. 7.8). In
particular, you can add other directory or folder names to DATAPATHS, making it a
vector.

If a file name is specified as a simple file name, such as "halddata", with no special
“path” characters such as “:” or “/”, Macanova first attempts to read it in whatever the
current default directory or folder is. If that is not successful, it makes an attempt in
directory DATAPATHS[1]; if not successful there, it looks in DATAPATHS[2], and so on,
giving up only if it is not found in any directory or folder in DATAPATHS. Here is an
example of its use. File Hald is not in the default directory/folder or in DATAPATHS[1]
but is in a sub-directory or folder.

2-42

MacAnova Version 4.07

Cmd> DATAPATHS # one folder name in DATAPATHS
(1) "Macintosh HD:MacAnova Folder:"

Cmd> y <- vecread("Hald") # can't find file Hald there
ERROR: vecread cannot open file Hald

Cmd> DATAPATHS <- vector("Macintosh HD:MacAnova Folder:Data",\
DATAPATHS) # add new folder name at start of DATAPATHS

Cmd> y <- vecread("Hald"); y[run(5)] # Found
(1) 7 26 6 60 78.5

Vector DATAPATHS can be of any length, providing lots of places to look for a file. Pre-
defined macro adddatapath makes it easier to add a folder or directory name to either
the beginning or end of DATAPATHS

Cmd> adddatapath("timeser"); DATAPATHS # add "timeser" at start
(1) "timeser"
(2) "Macintosh HD:MacAnova Folder:Data:"
(3) "Macintosh HD:MacAnova Folder:"

Cmd> adddatapath("mvdata",T);DATAPATHS # add "mvdata" at end
(1) "timeser"
(2) "Macintosh HD:MacAnova Folder:Data:"
(3) "Macintosh HD:MacAnova Folder:"
(4) "mvdata"

These examples use the path separating character “:” appropriate for a Macintosh. On
other computers you would use names like "D:/MACANOVA/DATA/" (DOS/Windows)
or "/users/kb/macanova/data/" (Unix).

Variable HOME comes into play when you use a file name of the form "~:name" (on a
Macintosh) or "~/name" (on other computers). MacAnova looks for the file in the
directory whose name is in HOME.

Cmd> HOME
(1) "Macintosh HD:MacAnova Folder:"

Cmd> y <- vecread("~:Data:Hald") # found

You can change HOME to be the name of any folder or directory.
Cmd> HOME <- "Macintosh HD:MacAnova Folder:Data:"

Cmd> y <- vecread("~:Hald") # found

2.12 Simple statistics While MacAnova is oriented towards the analysis of variance,
multivariate analysis and time series analysis, it provides many simpler statistical
functions as well. In addition to the functions and macros described here, function
tab() allows cross tabulation of data by the levels of integer valued factors. See Sec.
2.12.

2.12.1 describe() When you want simple descriptive statistics of data in variable x, use
describe(x). The default use of describe() computes, for each column of x, the
number of non-missing values, the mean, variance, median, maximum, minimum,
and upper and lower quartiles. Using keyword phrases, additional statistics can be
computed including the standard deviation, g1 and g2 (indices of skewness and

2-43

MacAnova Version 4.07

kurtosis) and moments m 2, m 3 and m 4 about the mean.

The output of describe() is a structure with a component for each statistic computed.
For the default use of describe(), the components are n, min, q1, median, q3, max,
mean, and var.

Cmd> x <- matrix(vector(2,?,4,5,8, 2,3,4,1,7, 8,4,3,6,5),5); x
(1,1) 2 2 8
(2,1) MISSING 3 4
(3,1) 4 4 3
(4,1) 5 1 6
(5,1) 8 7 5

Cmd> describe(x)
WARNING: missing values in input to describe
WARNING: output reflects nonmissing data only
component: n Number of non-missing values
(1) 4 5 5
component: min Minimum value
(1) 2 1 3
component: q1 Lower quartile
(1) 3 2 4
component: median 2nd quartile
(1) 4.5 3 5
component: q3 Upper quartile
(1) 6.5 4 6
component: max Maximum value
(1) 8 7 8
component: mean Average
(1) 4.75 3.4 5.2
component: var Variance
(1) 6.25 5.3 3.7

If you don’t want all the statistics, you can specify the ones you want using keywords
matching the component names.

Cmd> describe(x,mean:T,var:T)
WARNING: missing values in input to describe
WARNING: output reflects non-missing data only
component: mean
(1) 4.75 3.4 5.2
component: var
(1) 6.25 5.3 3.7

If you specify only one statistic (describe(x,mean:T)) you get a scalar or a vector, not
a structure.

If x is a structure, describe(x) computes the statistics for each component. In that
case, each component of describe(x) is itself a structure similar to x:

2-44

MacAnova Version 4.07

Cmd> describe(temperatures, mean:T,var:T)
component: mean
 component: Saturday
(1) 77.6
 component: Sunday
(1) 76.6
 component: Monday
(1) 71.286
component: var
 component: Saturday
(1) 138.49
 component: Sunday
(1) 96.8
 component: Monday
(1) 150.68

Here temperatures is the structure used as an example in Sec. 2.8.16.

There are additional statistics that may be computed only using keyword phrases.

Keyword/component name Statistic

stddev
 k2 =

(x − x)2 /(n − 1)∑

m2
 (x − x)2∑ /n

m3
 (x − x)3∑ /n

m4
 (x − x)4∑ /n

g1 k 3/k 2
3/2

g2 k 4/k 2
2

k 2, k 3 and k4 are Fisher’s k -statistics defined as

k 2 =

S2

n − 1 , k 3 =

nS3

(n − 1)(n − 2) , k 4 =

n(n +1)S4 − 3(n − 1)S2
2

(n − 1)(n − 2)(n − 3)

where Sl = (x − x)l∑ .

g1 and g2 are not identical to b1 = m 3/m 2
3/2 and b2 = m 4/m 2

2 – 3 which are also
often used to measure skewness and kurtosis.

Expressed in terms of m 2, m 3 and m 4 or b1 and b2

 g1 =

n(n − 1)

n − 2

m3

m2
3/2 =

n(n −1)

n − 2
b1

 g2 =

n2 −1

(n − 2)(n − 3)
(
m4

m2
2 − 3 +

6

n + 1
) =

n2 − 1

(n − 2)(n − 3)
(b2 +

6

n +1
)

When n ≤ 2, g1 is computed to be 0. When n ≤ 3, g2 is computed to be 0.

2-45

MacAnova Version 4.07

Cmd> describe(x, m2:T, m3:T, m4:T, g1:T, g2:T)
WARNING: missing values in input to describe
WARNING: output reflects non-missing data only
component: m2
(1) 4.6875 4.24 2.96
component: m3
(1) 3.2812 6.048 2.016
component: m4
(1) 42.27 41.027 17.475
component: g1
(1) 0.56 1.0327 0.59013
component: g2
(1) 0.928 1.1285 -0.021914

g1 and g2 are sometimes used to test the null hypothesis that a sample
comes from a normal population. If the data are a random sample from a
normal distribution, then g1 and g2 have mean 0 and variances

 V[g1] =

6n(n − 1)

(n − 2)(n + 1)(n + 3)
, V[g2] =

24n(n −1)2

(n − 3)(n − 2)(n + 2)(n + 5)

2.12.2 boxplot(), vboxplot, stemleaf() and hist These are intended to give a quick look at
the distribution of one or more samples of data.

boxplot(x) and pre-defined macro vboxplot draw a Tukey box and whisker diagram,
often called a box plot, of the data in x. This is a graphical summary of the distribution
of the values. When x1, x2, ..., xk are several REAL vectors, boxplot(x1,x2,...,xk)
draws parallel horizontal box plots, one box per vector. This can be a very useful way to
compare the distributions of the variables. If you prefer a plot box plot in which the
boxes are oriented vertically, use boxplot(x,vertical:T) or more simply,
vboxplot(x1,x2,...,xk).

A box plot consists of a central box, with a line drawn somewhere between the left
(lower) and right (upper) ends, “whiskers” extending off the ends of the box, and
separately plotted moderate and extreme “outliers”. The ends of the box are drawn at
the lower and upper quartiles of the data, respectively, and the middle line is the
median. Whiskers extend to the furthest (lowest and highest) data values that are still
within the “inner fences”, lower quartile – 1.5 IQR and upper quartile + 1.5 IQR (IQR =
inter-quartile range). Points outside the “outer fences”, lower quartile – 3 IQR and
upper quartile + 3 IQR, are plotted as “o” and points between the inner and outer
fences are plotted as “*”. Points outside the inner fences may be tentatively identified
as outliers.

2-46

MacAnova Version 4.07

Cmd> boxplot(temperatures$Saturday, temperatures$Sunday,\
temperatures$Monday)

1

2

3

50 55 60 65 70 75 80 85 90

Box Plot

Values

B
o
x

N
u
m
b
e
r

Cmd> vboxplot(temperatures$Saturday, temperatures$Sunday,\
temperatures$Monday) # same with vertical orientation

50

55

60

65

70

75

80

85

90

1 2 3

Box Plot

Box Number

V
a
l
u
e
s

The bottom or left box represents the Saturday temperatures, the middle box, the
Sunday temperatures, and so on. No temperatures were outliers so there are no

2-47

MacAnova Version 4.07

symbols beyond the whiskers.

Cmd> boxplot(temperatures$Saturday, temperatures$Sunday,\
temperatures$Monday,vertical:T)

is an alternative way to get vertically oriented boxes.

When str is a structure whose components are REAL vectors, boxplot(str) draws
parallel box plots for each component. Thus, since temperatures is a structure,
boxplot(temperatures) would produce the same display of box plots.

A common way to create a structure for use with boxplot() is to use split() (see Sec.
9.1.1). In the following, temps is a vector combining the data from the three
components of temperatures, and a day is a vector of integers coding Saturday as 1,
Sunday as 2 and Monday as 3

Cmd> print(temps,day,format:"2.0f") #see Sec. 7.4 for use of format
temps:
 (1) 65 71 75 86 91 93 89 78 69 59 61 73 85 83 81 51 65 71 78 83 84
(22) 85 84 81 75 69 64 59 49
day:
 (1) 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3
(22) 3 3 3 3 3 3 3 3

Cmd> split(temps,day) # create structure, splitting up temps by day
component: day1
(1) 65 71 75 86 91
(6) 93 89 78 69 59
component: day2
(1) 61 73 85 83 81
component: day3
 (1) 51 65 71 78 83
 (6) 84 85 84 81 75
(11) 69 64 59 49

Cmd> boxplot(split(temps,day))

This would produce the same horizontally oriented plot as before.

You can print a stem and leaf display of the data in a REAL vector or a n by 1 matrix x by
stemleaf(x):

Cmd> stemleaf(temperatures$Monday)
 1 4.|9
 2 5*|1
 3 5.|9
 4 6*|4
 6 6.|59
 7 7*|1
 7 7.|58
 5 8*|1344
 1 8.|5

 1*|1 represents 11 Leaf digit unit = 1

The numbers to the left of “|” are the “stems” and the numbers to the right of “|” are
“leaves”. The stems are taken from the first digit (sometimes the first 2 digits) of each

2-48

MacAnova Version 4.07

number. There is one single digit leaf for every number in the data set. The value of
each leaf is the digit following the stem in the corresponding number. Because the
values of Monday temperatures range only from 49 to 85, here MacAnova uses “half
digit” stems whose leaves are either 0, 1, 2, 3 or 4 (for stems labelled 5*, 6*, ...) or 5, 6,
7, 8 or 9 (for stems labelled 4., 5., ...).

You can control the number of stems stemleaf() will use by an optional second
argument which allows you to set the maximum number of stems.

Cmd> stemleaf(temperatures$Monday,5) # use at most 5 stems
 1 4|9
 3 5|19
 6 6|459
 (3) 7|158
 5 8|13445

 1|1 represents 11 Leaf digit unit = 1

The first column printed contains the “depth” – cumulative counts from each “tail” of
the distribution, plus, in parentheses, the number of leaves on the stem which includes
the median. Thus, there are 5 cases with values 80 and above, 6 with values less than
70 and 3 values in the 70’s. The leaves are always computed by rounding toward 0, so
that a temperature of 79.9 would show up as a leaf of 9 on stem 7 and would not be
rounded up to 80 (leaf of 0 on stem of 8).

If you don’t want the depth column, use keyword phrase depth:F.

It’s sometimes helpful to have a few summary statistics printed with a stem and leaf
display. Keyword phrase stat:T causes extremes and quartiles to be printed. Here is
an example with no depth column and with the extremes and quartiles:

Cmd> stemleaf(temperatures$Saturday,5,depth:F,stat:T)
n=10, Min=59, Q1=69, M=76.5, Q3=89, Max=93
 5|9
 6|59
 7|158
 8|69
 9|13

 1|1 represents 11 Leaf digit unit = 1

Potential outliers in a stem and leaf diagram are defined the same way as for a box plot,
namely as values outside the “inner fences.” stemleaf() does not ordinarily include
outliers as leaves, but lists them separately. Let’s make the first Monday temperature
an outlier.

Cmd> monday <- temperatures$Monday

Cmd> monday[1] <- 120; stemleaf(monday,5)
 1 4|9
 2 5|9
 5 6|459
 (3) 7|158
 6 8|13445
 High 120
 1|1 represents 11 Leaf digit unit = 1

If you want to outliers to be represented as leaves, use stemleaf(x,outliers:F).

2-49

MacAnova Version 4.07

A histogram is a more conventional way to display the distribution of data points. You
can draw histograms using hist, a pre-defined macro. If you are satisfied to let
MacAnova pick the number of bars in the histogram, just type hist(x), where x is a
REAL vector. If that’s not good enough, stemleaf(x,n) draws a histogram with n bars,
where n is a positive integer. The class limits (bar edges) are chosen so that the bars all
have the same width arbitrarily but will not normally by “neat”. The bar heights are in
the so called density scale – that is for each bar, width × height = the proportional of
values falling in the bar.

Cmd> hist(temperatures$Monday,6) # draw histogram with 6 bars

0

0.01

0.02

0.03

0.04

0.05

50 55 60 65 70 75 80 85

Histogram of temperatures$Monday with total area 1

temperatures$Monday

D
e
n
s
i
t
y

You can, in fact, completely specify the class limits. For example,

Cmd> hist(temperatures$Monday,vector(40,50,60,70,80,85,90))

draws a histogram with unequally spaced class limits 40, 50, 60, 70, 80, 85 and 90.
You can specify a title and X-axis labels for a histogram or for a box plot using keywords
title and xlab. Examples might be

Cmd> boxplot(temperatures,\
title:"Saturday through Monday Temperatures",\
xlab:"Degrees Fahrenheit")

Cmd> hist(temperatures$Monday,vector(40,50,60,70,80,85,90),\
title:"Monday temperatures",xlab:"Degrees Fahrenheit")

Normally, hist assigns a value exactly equal to a class limit to the bar to its left, that is
the right boundary point is considered to be in a bar but not the left.. If you include
leftendin:T as an argument to hist, the left boundary is considered to be in the bar,
but not the right, so that such a value is assigned to the bar to its right. This

2-50

MacAnova Version 4.07

corresponds to a convention used in some statistics text books.

2.12.3 sort(), rank(), grade(), rankits(), and halfnorm() These functions all have to do
with the ordering of data values. They expect a single vector or matrix argument x plus
an optional keyword phrase down:T. All work with REAL data; sort(), rank() and
grade() also work with CHARACTER data. When x is a matrix, they all operate on each
column separately.

For CHARACTER data, ordering is in alphabetical order using the ASCII collating
sequence in which most punctuation and all numerals sort ahead of upper case letters
which sort ahead of lower case letters. A space sorts ahead of all printable characters.
Here is the explicit ordering starting with space:

Sorting order of characters

 !"#$%&'()*+,-./0123456789:;<=>?

@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_

`abcdefghijklmnopqrstuvwxyz{|}~

A null string "" sorts before any other string.

sort(x) returns a vector or matrix, each column of which is the corresponding
column of x arranged in increasing or alphabetical order. sort(x,down:T) orders each
column in decreasing or reverse alphabetical order. In both cases, when x is REAL,
MISSING values are moved to the end.

rank(x) computes the ranks of the non-missing data in each column of x, with the
smallest or alphabetically first value assigned rank 1. rank(x,down:T) does the same,
except the largest or alphabetically last value assigned rank 1. For REAL data, the rank of
a MISSING value is set MISSING.

By default, when there are ties in REAL data, the rank computed for all the elements in
a set of equal (tied) elements is the average of their ranks. Thus rank(vector(1.2,
3.4,1.2,5,3.4,3.4)) is vector(1.5,4,1.5,6,4,4). For CHARACTER data, the
ranks associated with tied elements are distinct and unpredictable. See below for an
alternative treatment of ties with REAL data.

grade(x) computes what might be called inverse ranks of the columns of x. When x
is a vector, after j <- grade(x), j[1] is the index (row number) of the smallest or
alphabetically first element of x, j[2] is the index of the second smallest, and so on. If
length(x) is n, then grade(x)[n] is the index of the largest number (maximum or
last in alphabetical order). Thus x[grade(x)] is the same as sort(x).
x[grade(x[,1]),] returns a matrix the same shape as x containing the rows of x
rearranged so that the first column is in increasing order. This is probably the most
important application of grade(). j <- grade(x,down:T) does the same, except that
j[1] is the index of the largest value or last in alphabetical order. When x is a matrix,
grade(x) processes each column separately. If x is REAL, the indices of any MISSING
values are always put in the last rows of grade(x) and grade(x,down:T).

Function rankits() computes the normal scores or rankits of the non-missing
elements in each column and sets the rankit of a MISSING value to MISSING. When x

2-51

MacAnova Version 4.07

is a vector and there are no ties, rankits(x)[i] is the normal probability point zpi
,

where p i = (rank(x)[i] - .375)/(n + .25). When there are ties, rankits()
breaks them arbitrarily. Note that the order of the elements of x is retained.

Function halfnorm() is similar to rankits() except it computes half normal scores,
that is, when there are no ties, halfnorm(x)[i] is zpi

 where

p i = .5 + .5*(rank(abs(x))[i] - .375)/(n + .25)).

Cmd> x <- matrix(vector(2,?,4,5,8, 2,3,4,1,7, 8,4,3,6,5),5); x
(1,1) 2 2 8
(2,1) MISSING 3 4
(3,1) 4 4 3
(4,1) 5 1 6
(5,1) 8 7 5

Cmd> sort(x)
WARNING: MISSING values in argument to sort
(1,1) 2 1 3
(2,1) 4 2 4
(3,1) 5 3 5
(4,1) 8 4 6
(5,1) MISSING 7 8 MISSING at end

Cmd> rank(x)
WARNING: MISSING values in argument to rank
(1,1) 1 2 5
(2,1) MISSING 3 2
(3,1) 2 4 1
(4,1) 3 1 4
(5,1) 4 5 3

Cmd> rankits(x)
WARNING: MISSING values in argument to rankits
(1,1) -1.0491 -0.4972 1.1798
(2,1) MISSING 0 -0.4972
(3,1) -0.29931 0.4972 -1.1798
(4,1) 0.29931 -1.1798 0.4972
(5,1) 1.0491 1.1798 0

Cmd> grade(x)
WARNING: MISSING values in argument to grade
(1,1) 1 4 3
(2,1) 3 1 2
(3,1) 4 2 5
(4,1) 5 3 4
(5,1) 2 5 1

Cmd> sort(x,down:T)
WARNING: MISSING values in argument to sort
(1,1) 8 7 8
(2,1) 5 4 6
(3,1) 4 3 5
(4,1) 2 2 4
(5,1) MISSING 1 3 MISSING at end

2-52

MacAnova Version 4.07

Cmd> rank(x,down:T)
WARNING: MISSING values in argument to rank
(1,1) 4 4 1
(2,1) MISSING 3 4
(3,1) 3 2 5
(4,1) 2 5 2
(5,1) 1 1 3

Cmd> grade(x,down:T)
WARNING: MISSING values in argument to grade
(1,1) 5 5 1
(2,1) 4 3 4
(3,1) 3 2 5
(4,1) 1 1 2
(5,1) 2 4 3

With any of these functions, if x is an array, the result is an array of the same size and
shape, with the function being applied to every vector specified by fixed values of
subscripts 2, 3

Cmd> ary <- array(vector(27.3,20.8,32.0, 28.8,18.9,28.1,\
22.9,32.4,32.1, 31.4,29.1,31.3), 3, 2, 2)# 3 by 2 by 2

Cmd> ary[,2,2]
(1,1,1) 31.4
(2,1,1) 29.1
(3,1,1) 31.3

Cmd> sort(ary)[,2,2] # same as sort(ary[,2,2])
(1,1,1) 29.1
(2,1,1) 31.3
(3,1,1) 31.4

You can also use any of these functions when x is a structure (Sec. 2.8.16), whose non-
structure components all have the same type, either REAL or CHARACTER. In that case,
each function returns a structure of the same form, each of whose non-structure
components is the result of applying the function to the corresponding component of x.

Cmd> dryandwet <- structure(dry:vector(3.32,2.99,1.61,2.52),\
wet:vector(3.60,4.21,3.63)); dryandwet
component: dry
(1) 3.32 2.99 1.61 2.52
component: wet
(1) 3.6 4.21 3.63

Cmd> sort(dryandwet)
component: dry
(1) 1.61 2.52 2.99 3.32
component: wet
(1) 3.6 3.63 4.21

You can use keyword phrase ties:method to change the the way rank(), rankits(),
and halfnorm() handle tied REAL data. method must be one of "average",
"minimum" or "ignore" which you can abbreviate as "a", "b" and "i". Suppose k
elements in a vector (column) are tied, that is they all have the same value and no
other element has this value, and suppose the ranks these elements would have if

2-53

MacAnova Version 4.07

their values were very slightly changed so as to break the ties while preserving other
ordering would be r, r+1, r+2, ..., r+k –1. The following table describes the ranks
computed by rank() for the tied values for each of the three possible methods.

Value for ties Computed ranks

"average" All ranks = (r+(r+1)+...+(r+k –1))/k = r + (k –1)/2

"minimum" All ranks = r

"ignore" r, r+1, r+2, ..., r+k –1 in an unpredictable order

rankits(x,ties:method) and halfnorm(x,ties:method) are equivalent to finding
the normal probability points corresponding to p i = (rank(x,ties:method)[i] -
.375)/(n + .25) and p i = .5 + .5*(rank(abs(x),ties:method)[i] -
.375)/(n + .25)), respectively. It is hard to imagine a situation in which
ties:"minimum" would be useful with rankits() and halfnorm().

Cmd> rank(vector(3,2,2,1,3),ties:"average") # default
(1) 4.5 2.5 2.5 1 4.5

Cmd> rank(vector(3,2,2,1,3),ties:"minimum")
(1) 4 2 2 1 4

Cmd> rank(vector(3,2,2,1,3),ties:"ignore")
(1) 4 2 3 1 5

Cmd> rankits(vector(3,2,2,1,3),ties:"average")
(1) 0.79164 -0.24104 -0.24104 -1.1798 0.79164

Cmd> rankits(vector(3,2,2,1,3),ties:"ignore") # default
(1) 0.4972 -0.4972 0 -1.1798 1.1798

2.12.4 sum(), prod(), max(), min() These functions compute summary values for a REAL
or LOGICAL vector or for each column of a REAL or LOGICAL matrix. For LOGICAL data,
True is interpreted as 1 and False as 0.

Cmd> sum(x) # same x as was used in Sec. 2.12.3
WARNING: MISSING values found by sum
(1,1) 19 17 26 Sums down columns

Cmd> prod(x)
WARNING: MISSING values found by prod
(1,1) 320 168 2880 Product down cols

Cmd> min(x)
WARNING: MISSING values found by min
(1,1) 2 1 3 Minimum value in col

Cmd> max(x)
WARNING: MISSING values found by max
(1,1) 8 7 8 Maximum value in col

Cmd> sum(x <= 4) # count the numbers <= 4 in each column
WARNING: comparison with missing value(s) near sum(x <= 4)
WARNING: MISSING values found by sum
(1,1) 2 4 2

When there are no MISSING values, sum(x)/nrows(x) computes the column means

2-54

MacAnova Version 4.07

of a REAL matrix x, producing a row vector, that is a matrix with 1 row.

With any of these functions, when the argument is an array, the result is an array with
the same number of dimensions but with the first dimension having length 1. The
function is applied to every vector specified by fixed values of subscripts 2, 3 We
illustrate this use with the array ary created in Sec. 2.12.3.

Cmd> sum(ary) # sum over first dimension.
(1,1,1) 80.1 87.4
(1,2,1) 75.8 91.8

Cmd> max(ary) # maximimum over first dimensions
(1,1,1) 32 32.4
(1,2,1) 28.8 31.4

These functions also accept a list of REAL or LOGICAL scalars or vectors as arguments.
For example, sum(1,vector(3,5)) is equivalent to sum(vector(1,3,5)).

If an argument to these functions is NULL, it is ignored. If all the arguments are NULL,
the result is NULL.

Cmd> sum(NULL,1)
(1) 1

Cmd> @a <- max(NULL, NULL); list(@a)
@a NULL

Finally, any of these functions can take a structure, all whose components are either
REAL or LOGICAL.

Cmd> sum(dryandwet)
component: dry
(1) 10.44
component: wet
(1) 11.44

2.12.5 Computing correlations – cor() If x is a data matrix, cor(x) computes the its
correlation matrix, treating each column as a variable. If x is n by m , cor(x) is m by
m , with 1’s down the diagonal and cor(x)[i,j] the Pearson correlation between
x[,i] and x[,j].

Cmd> w <- matrix(vector(45.5,42.1,53.8,48.5,44.5,\
58.4,74.1,72.0,63.8,67.7, 28.7,35.9,32.1,28.5,28.1),5)

Cmd> w # 3 columns
(1,1) 45.5 58.4 28.7
(2,1) 42.1 74.1 35.9
(3,1) 53.8 72 32.1
(4,1) 48.5 63.8 28.5
(5,1) 44.5 67.7 28.1

Cmd> cor(w) # 3 by 3 matrix
(1,1) 1 0.049932 -0.16287
(2,1) 0.049932 1 0.78611
(3,1) -0.16287 0.78611 1

If x1, x2, ... are vectors or matrices all with the same number of rows, then

2-55

MacAnova Version 4.07

cor(x1,x2,x3,...) is equivalent to cor(hconcat(x1,x2,x3,...)) (see Sec. 2.10.6).

Cmd> makecols(w,w1,w2,w3) # See Sec. 2.11.3;

Cmd> cor(w1,w2,w3) # same as cor(w)
(1,1) 1 0.049932 -0.16287
(2,1) 0.049932 1 0.78611
(3,1) -0.16287 0.78611 1

You can use subscripts (Sec. 2.8.14) to get the correlation between two variables as a
single number:

Cmd> cor(w1,w2)[1,2] # compute a single correlation coef
(1,1) 0.049932

If there are any MISSING values in the arguments, correlations are computed using
only complete cases, effectively deleting any row with any MISSING values.

Cmd> ww <- w; ww[2,3] <- ? # put a MISSING value in row 2

Cmd> cor(ww) # same as cor(w[-2,])
WARNING: 1 cases with missing values deleted in cor
(1,1) 1 0.64695 0.92817
(2,1) 0.64695 1 0.65979
(3,1) 0.92817 0.65979 1

2.12.6 Student’s t related functions and macros – tval(), t2val(), tint(), t2int() and
twotailt There are four functions for statistical analyses based on Student’s t.
Functions tval() and t2val() calculate one- and two-sample t-statistics; tint() and
t2int() compute confidence intervals for the mean of a single sample and the
difference between the means of two independent samples, respectively. Macro
twotailt computes a two-tail P value for a t-statistic.

tval(x), where x is a REAL vector, computes the usual one-sample t-statistic

x

sx / n
 to

test the null hypothesis H0: µx = 0. You can test a different null hypothesis, say H0: µx
= 100 by the statistic computed by tval(x-100).

When x and y are REAL vectors of the same length, tval(x-y) computes the paired
t-statistic which you can use to test the null hypothesis H0:µx = µy.

Cmd> x1 <- vector(3,2,5,4,6,8,6,4,3,7,3)

Cmd> vector(tval(x1), tval(x1 - 5)) # test H0: µ = 0 and H0 µ = 5
(1) 8.0437 -0.63088 1-sample t-statistics

Cmd> x2 <- vector(4,2,5,6,7,9,7,4,3,8,5); tval(x2-x1)
(1) 3.6145 Paired t-statistic

When x and y are REAL vectors, t2val(x,y) computes the two-sample t-statistic

x − y
1

n 1
+ 1

n2
sp

 where

sp

2 =
(n1 − 1)sx

2 + (n2 − 1)sy
2

n1 + n2 − 2
 is a pooled estimate of variance based on the

two sample variances sx
2 and sy

2 with n 1 – n 2 – 2 degrees of freedom. This is often
used to test the null hypothesis H0: µx = µy or, equivalently H0: µx – µy = 0. To test a
different null hypothesis, say H0: µx – µy = 10, use t2val(x-10,y). This use of

2-56

MacAnova Version 4.07

t2val() assumes the samples come from populations with equal variances (σx
2 = σ y

2).
See below for the use of t2val() when you do not assume equal variances.

Cmd> y <- vector(7,9,6,5,7,6,9,8)

Cmd> # test H0:µx = µy and H0:µx-µy = -3

Cmd> vector(t2val(x1,y), t2val(x1-(-3),y))
(1) -3.0795 0.63278 2-sample t-statistics

You can compute two-tail P values for Student’s t statistics using pre-defined macro
twotailt(x,df).

Cmd> twotailt(vector(-3.0795, 0.63278), nrows(x1)+nrows(y)-2)
(1) 0.0067965 0.5353

See Sec. 2.12.7 to see how to compute one-tail P values for these test statistics.

Functions tint() and t2int() return one- or two- sample confidence intervals based
on Student’s t computed from one or two REAL vectors and a specified confidence
level or coverage. In a sense, they are complementary to tval() and t2val(). Their
output is a REAL vector of length 2 containing the lower and upper ends of the
confidence interval.

tint(x,coverage) returns a one-sample confidence interval for the population mean
µx with confidence level coverage (a REAL scalar) based on data in the REAL vector x.
For obvious reasons, 0 < coverage < 1. For instance, you can compute a 95%
confidence interval by tint(x,.95) or tint(x,1-.05).

t2int(x,y,coverage)computes a two-sample confidence interval for the difference
µx – µy of the population means of the data in REAL vectors x and y, where coverage
is as for tint(). Like t2val(), function t2int() assumes equal variances and uses a
pooled estimate of the common variance in computing the standard error of x − y . See
below for usage that does not require equal variances.

Cmd> tint(x1,.95)
(1) 3.3521 5.9207 95% confidence interval for µ

Cmd> t2int(x1,y,.95)
(1) -4.1936 -0.78364 95% confidence interval for µx-µy

Both t2val() and t2int() assume by default that σx
2 = σ y

2 = σ 2 , where σx
2 and σy

2 are
the variances of the two populations being compared. Because of this assumption they

use the estimated standard error of x − y ,

sx −y = sp

1

n1

+
1

n2

, where

sp

2 =
(n1 − 1)sx

2 + (n2 − 1)sy
2

n1 + n2 − 2
 is the “pooled” estimate of σ2 . When the variances cannot be

assumed equal, you can use the “unpooled” standard error

sx −y =

sx
2

n1

+
sy

2

n2

.

2-57

MacAnova Version 4.07

Unfortunately Student’s t-distribution is no longer directly applicable. However, a
good approximation is to use Student’s t with estimated degrees of freedom ƒ =

(vx + vy)2

vx
2

n1 − 1
+

vy
2

n2 − 1

 where vx = sx
2/n1 and vy = sy

2 /n2 (Snedecor and Cochran 1980, Sec. 6.11).

t2val(x,y,pooled:F) computes the two sample t and t2int(x,y,pooled:F) the
confidence interval using this approximation. The result of t2val(x,y,pooled:F) is
a structure with components t and df.

Cmd> t2int(x1,y,.95,pooled:F) # slightly different from before
(1) -4.1205 -0.85676

Cmd> t2val(x1,y,pooled:F) # not assuming same variances
component: t
(1) -3.2186 Value of t-statistic
component: df
(1) 16.926 Estimated degrees of freedom

2.12.7 P-values and cumulative distribution functions - cumxxx() functions MacAnova
has several functions for computing the cumulative distribution functions (CDFs) of
standard probability distributions. You can use them to compute P values associated
with many standard test statistics.

The first argument to these functions is always a value x of the random variable of
interest. This may be followed by the value of parameters and sometimes keyword
phrases as indicated in the following table:

Distribution Usage

Standard normal cumnor(x)

Student’s t on df degrees of freedom cumstu(x,df)

Non-central Student’s t on df degrees of
freedom, noncentrality delta

cumstu(x,df,delta)

χ2 on df degrees of freedom cumchi(x,df)

Non-central χ2 on df degrees of freedom,
noncentrality noncen

cumchi (x,df,noncen)

F on df1 and df2 degrees of freedom cumF(x,df1,df2)

Non-central F on df1 and df2 degrees of
freedom, noncentrality noncen

cumF(x,df1,df2,noncen)

Gamma with shape parameter alpha cumgamma(x,alpha)

Beta with parameters alpha and gamma cumbeta(x,alpha,gamma)

Non-central beta with parameters alpha
and gamma, noncentrality noncen

cumbeta(x,alpha,gamma,noncen)

2-58

MacAnova Version 4.07

Distribution Usage

Binomial with n trials and success
probability p

cumbin(x,n,p)

Poisson with mean lambda cumpoi(x,lambda)

Studentized range for k groups, df error
degrees of freedom

cumstudrng(x,k,df[,epsilon:eps])

Dunnett’s maximum t for k groups, df
error degrees of freedom, group sizes
determined by groupsizes (default all
equal); probability is two sided without
onesided:T.

cumdunnett(x,k,df, [,groupsizes]
 [,onesided:T] [,epsilon:eps])

The noncentral versions of cumchi(), cumstu(), cumF() and cumbeta() are useful in
computing the powers of tests, that is, the rejection probability when the null hypo-
thesis is not true.

Each of these CDF functions compute a lower tail probability, that is, P (X ≤ x),
where X is the random variable and x is a fixed number.

These functions are often used to compute P values based on the observed value xobs
of a test statistic X. The lower tail probability P(X ≤ xobs) that each function computes
can be directly interpreted as a P value for a one-tail test that rejects for values in the
left tail of the test statistic. For upper tail tests such as χ2 and F that reject the null
hypothesis only for large positive values, you often need an upper tail P value
P(X ≥ xobs) = 1 – P(X < xobs). For example, 1 - cumchi(15.3,10) computes the P
value for a χ2 statistic on 10 degrees of freedom with observed value 15.3. Of course,
for the binomial and Poisson distributions which are discrete, when xobs is an integer ,
P(X ≥ xobs) = 1 – P(X ≤ xobs - 1).

To compute a two-tail P value for a z- or t-test, use 2*(1-cumnor(abs(xobs))) or
2*(1-cumstu(abs(xobs),df)). You can compute a two-tail P value for an F-test of
equal variance based on estimated variances var1 and var2 as

 2*min(cumF(var1/var2,df1,df2), 1-cumF(var1/var2,df1,df2)).

All parameters except noncentrality parameters must be positive. Parameter noncen
must be non-negative for cumchi(), cumF() and cumbeta(). Parameter n for
cumbin() and k for cumstudrng() must be integers, but other parameters, including
degrees of freedom, need not be integers. For cumbin(), n must be a positive integer
and p must be between 0 and 1.

Parameter groupsizes for cumdunnett() is optional and differs from other
parameters in that its value may be a vector of group sizes. If its length is less than k,
the number of groups, its last non-zero element is replicated. Thus, when, say, k is 4,
vector(5,3) or vector(5,3,0,0)is equivalent to vector(5,3,3,3). If its length is
longer than the number of groups, the extra elements are ignored, except that it is an
error to have a non-zero element following a zero. Actually, only the relative sizes of
its elements are used so vector(5,3,2) and vector(.5,.3,.4) are equivalent.

2-59

MacAnova Version 4.07

For all functions, either x or any of the parameters (but not keyword values) may be
vectors, matrices or arrays. The sizes and shapes of the arguments must match, except
that x or any of the parameters may always be a scalar, and the result is a variable of the
same size and shape. If x or any of the parameters are scalars, they are treated as if they
were the same size as other arguments with all elements the same. Thus, for example,
cumchi(5,run(3)) is equivalent to cumchi(rep(5,3),run(3)).

It is slightly different for cumdunnett() parameter groupsizes, which is treated as one
or more vectors whose length is the last dimension of groupsizes. When
groupsizes is a true vector (ndims(groupsizes) = 1) it is treated similarly to how
scalar parameters are treated, being replicated to match the dimensions of the result;
when ndims(groupsizes) > 1, groupsizes is treated as an “array” of dimension
ndims(groupsizes)-1 each of whose elements is a vector whose length is the last
dimension of groupsizes. The first ndims(groupsizes)-1 of groupsizes must
match the dimensions of any other non-scalar argument. This is one of the few
situations in which a vector of length m is not treated the same as a m by 1 matrix.
The former is interpreted as specifying sizes for up to m groups while the latter
specifies m scalar values for groupsizes, which would imply equal groups sizes, the
default.

Keyword phrase epsilon:eps on cumstudrng() and cumdunnett() affects the
accuracy of the result. Within limits, the smaller eps is, the more accurate the result,
although the computation may take longer.

Cmd> vector(cumnor(1.96), cumstu(-2.1,10)) # normal, Student's t(10)
(1) 0.975 0.031039

Cmd> 2*(1 - cumstu(abs(-2.1),10)) # 2-tail t P-value
(1) 0.062077

Cmd> vector(1-cumchi(34,25),1-cumF(4.5,2,10)) # chi-squared and F
(1) 0.10791 0.040386

Cmd> 1 - cumstu(2.1,vector(10,20,30,40,50)) # 5 d.f.s at once
(1) 0.031039 0.024309 0.022121 0.021041 0.020398

Cmd> xbar <- vector(150.91,150.77,159.51,156.43,165.54)#enter means

Cmd> spooled <- 15.974 # enter pooled var from k=5 groups of n=20

Cmd> n <- 20; k <- 5

Cmd> studrng <- (max(xbar) - min(xbar))/(spooled/sqrt(n));studrng
(1) 4.1351 Studentized range statistic

Cmd> 1 - cumstudrng(studrng, k, k*(n-1)) # compute P value
(1) 0.034262 Significant at 5% level

Cmd> groupsizes <- matrix(vector(6 ,6, 6, 12, 3, 3),3)';groupsizes
(1,1) 6 6 6
(2,1) 12 3 3

Cmd> cumdunnett(2.5,3, 12, groupsizes)
(1) 0.94979 0.94678

Cmd> vector(cumdunnett(2.5,3,12), cumdunnett(2.5,3,12,vector(4,1)))
(1) 0.94979 0.94678

2-60

MacAnova Version 4.07

The last two commands have the same values because only the ratios of the elements
of the group sizes parameter matter. Thus 12 is equivalent to 6 which is equivalent to
row 1 of groupsizes, and vector(4,1) is equivalent to vector(12,3) which is
equivalent to row 2 of groupsizes.

You can compute binomial and Poisson probabilities of the form P(X = x) by taking
differences of cumulative probabilities.

Cmd> p <- .3; N <- 9

Cmd> p8 <- cumbin(8,N,p) - cumbin(7,N,p); p8
(1) 0.00041334 P(X=8)

Cmd> (N/1)*p^8*(1-p)^(N-8) # (N/1) is binomial coefficient (N 1)
(1) 0.00041334 Confirmation of value

You can even compute P(X = 0),..., P(X = n) in a single line.

Cmd> cdf <- cumbin(run(0,N),N,p); cdf - vector(0,cdf[-(N+1)])
 (1) 0.040354 0.15565 0.26683 0.26683 0.17153
 (6) 0.073514 0.021004 0.0038579 0.00041334 1.9683e-05

The studentized range is R/s, where R = xmax –xmin is the range from a normal
sample of size k with standard deviation σ, and s2 is an independent estimate of σ2

with df degrees of freedom. It is often applied with data from k independent samples

each of size n , with R/s, = { (x)max − (x)min }/{ spooled / n }, where spooled
2 is the error mean

square from an analysis of variance.

Dunnett’s t is

max
2 ≤ j ≤k

t1, j (two-tail) or

max
2 ≤ j ≤k

t1, j (one-tail as specified by onesided:T), where

t1, j =
x 1 − x j

s 1
n1

+ 1
n j

. The x j are sample means of independent random sample of size n j

from a N(0,σ2) population, and s2 is an independent estimate of σ2 with df degrees
of freedom. The optional argument groupsizes corresponds to [n 1,n 2,...,n k]. In most
applications of Dunnett’s t, group 1 is a control which is being compared with k – 1
treatments in groups 2 through k . Often n 1 > n 2 = n 3 = . . . = n k.

Non-central t is the ratio

z + δ
1
f χ f

2
, where z is standard normal, independent of χ f

2 in

the denominator.

Non-central χ f
2(λ) with non-centrality λ is

(zi +δ i)

2

i= 1

f

∑ , where z1, z2, ..., zf are

independent standard normal and

λ = δ i

2

i = 1

f

∑ .

Non-central

Ff , g(λ) =

χ f
2(λ)/ f

χg
2/ g

, where the numerator and denominator are

independent.

2-61

MacAnova Version 4.07

Non-central

βα ,γ (λ) =

χ f
2(λ)

χ f
2(λ) + χ g

2 , f = 2α , g = 2γ , where the two χ2's are independent.

2.12.8 Probability points and inverse cumulatives – invxxx() functions MacAnova can
compute probability points or critical values (inverse cumulatives) for many of the
distributions in Sec. 2.12.7. Most require you to specify degrees of freedom or shape
parameters. The first argument to these functions is always the probability value of
interest. This may be followed by distribution parameters as indicated in the following
table:

Distribution Usage

Standard normal invnor(p)

Student’s t on df degrees of freedom invstu(p,df)

χ2 on df degrees of freedom invchi(p,df)

Non-central χ2 on df degrees of
freedom and non-centrality parameter
lambda

invchi(p,df,lambda [,epsilon:eps])

F on df1 and df2 degrees of freedom invF(p,df1,df2)

Gamma with shape parameter alpha invgamma(p,alpha)

Beta with parameters alpha and gamma invbeta(p,alpha,beta)

Studentized range for k groups, df error
degrees of freedom

invstudrng(p,k,df [,epsilon:eps])

Dunnett’s maximum t for k groups, df
error degrees of freedom, group sizes
determined by groupsizes (default all
equal); appropriate for two-tail test
without onesided:T.

invdunnett(p,k,df [,groupsizes]
 [.onesided:T,epsilon:eps])

In every case, these inverse CDF functions compute a value x0 such that P(x ≤ x0) = p.
That is, they are the inverses of the corresponding CDF functions in Sec. 2.12.7.

The value of p must always be between 0 and 1. All the other parameters except k for
invstudrng(), including degrees of freedom, must be positive but need not be
integers.

When p is a vector or matrix, the inverse CDF is computed for each element of p
producing a vector or matrix. Similarly the parameters (but not keyword values) may
be vectors or matrices. The sizes and shapes of the arguments must match, except that
p or any of the parameters may always be scalars. Optional argument groupsizes for
invdunnett() is an exception; see the discussion of cumdunnett() in Sec. 2.12.7.

Keyword phrase epsilon:eps on invchi(), invstudrng() and invdunnett() affects
the accuracy of the result. Within limits, the smaller eps is, the more accurate the
result, although the computation may take longer.

2-62

MacAnova Version 4.07

Cmd> invnor(vector(.10,.05,.025,.01,.005)) # normal prob points
(1) -1.2816 -1.6449 -1.96 -2.3263 -2.5758

Cmd> invstu(.975,run(5,25,5)) # Student's t on 5, 10, 15, 20, 25 df
(1) 2.5706 2.2281 2.1314 2.086 2.0595

Cmd> invF(.95,5,run(5,25,5)) # F with df1=5, and df2=5,10,15,20,25
(1) 5.0503 3.3258 2.9013 2.7109 2.603

Cmd> invstudrng(1-vector(.1, .05, .01, .001), k, k*(n-1))
(1) 3.5309 3.9328 4.7373 5.7199

Cmd> invdunnett(vector(0.94979,0.94678),3,12,groupsizes)
(1) 2.5 2.5

The invstudrng() output consists of the 10%, 5%, 1% and 0.1% critical values of the
Studentized range statistic based on 5 samples of size 20. The invdunnett()
arguments match those used for cumdunnett() in Sec. 2.12.7. See Sec. 10.8.1 for
another example.

You can actually compute a page of an F-table with a single command. The following
computes the upper 5% point of F for numerator degrees of freedom 1 through 8 and
denominator degrees of freedom 1 through 5 and then prints them out with rows and
columns labeled by degrees of freedom.

Cmd> fvalues <- invF(1-.05,run(8)*rep(1,5)',rep(1,8)*run(5)')

Cmd> setlabels(fvalues,structure(enterchars(1 2 3 4 5 6 7 8),\
enterchars(1 2 3 4 5))); fvalues

 1 2 3 4 5
1 161.45 18.513 10.128 7.7086 6.6079
2 199.5 19 9.5521 6.9443 5.7861
3 215.71 19.164 9.2766 6.5914 5.4095
4 224.58 19.247 9.1172 6.3882 5.1922
5 230.16 19.296 9.0135 6.2561 5.0503
6 233.99 19.33 8.9406 6.1631 4.9503
7 236.77 19.353 8.8867 6.0942 4.8759
8 238.88 19.371 8.8452 6.041 4.8183

See Sec. 8.4.1 for information on setlabels().

2.12.9 Grouping data in class intervals – bin() An important way to summarize a data
set is to compute a grouped frequency distribution. This consists of a table of the
number of values that lie in each of a set of k class intervals defined by class
boundaries b1 ≤ b2 ≤ b3 ≤ ... ≤ bk ≤ bk+1. Class interval j consists of all values between
bj and bj+1. Depending on who is making the definition, either the left end bj or the
right end bj+1 of the interval is considered in the interval. The counts in each interval
are the frequencies. Function bin() allows you to make this summary. It is probably
best explained by example.

Cmd> x <- vector(33,35, 41,41,42,44,47,49,49,50,50,50,\
51,53,53,54,54,54,55,57,58,60 ,61,62,67) # enter sorted data

Cmd> b <- vector(30,40,50,60,70)# or run(30,70,10); class limits

Cmd> bin(x,b) # group x using boundaries b

2-63

MacAnova Version 4.07

component: boundaries
(1) 30 40 50 60 70
component: counts
(1) 2 10 10 3

The first argument, x, contains the data to be grouped; the second, b, is a vector of class
limits. The data don’t need to be sorted, but have been here in order to make it easier to
check that bin() is doing what it should. Vector b defines boundaries for 4 =
length(b)-1 classes or groups. Group 1 consists of all values between b[1] and b[2],
group 2 consists of all values between b[2] and b[3], and so on.

The result is a structure with components boundaries and counts. Component
boundaries is identical with b, while counts[j] is the number of values of x values
in class j, that is, the frequency of the class. Here there are two values (33 and 35) in
class 1, ten values (41, 41, 42, 44, 47, 49, 49, 50, 50, 50) in class 2, and so on. The default
convention is that any value exactly on a class limit at the right or upper end of a class
is counted in that class. For example, the three 50’s are considered to be in class 2
together with 41 through 49, and 60 goes in class 3.

Any value not in any class (here ≤30 or > 70) is not counted, but a warning message is
printed. You can suppress the warning message by including silent:T as an
argument.

Cmd> bin(vector(x,25,75),b) # data vector enlarged by 2 values
WARNING: 1 low and 1 high values not counted by bin()
component: boundaries
(1) 30 40 50 60 70
component: counts
(1) 2 10 10 3

Some statistics books recommend that you include the left or lower end in a class
interval instead of the right end. You can follow this convention by using
leftendin:T as an argument.

Cmd> bin(x,b,leftendin:T) # lower end of interval in class
component: boundaries
(1) 30 40 50 60 70
component: counts
(1) 2 7 12 4

Now the new frequencies reflect the fact that the three 50’s are put in class 3 and the 60
in class 4.

When you want equally spaced boundaries, the usage, bin(x,vector(b0,width)),
can simplify things. b0 is interpreted as a “typical” class limit and width is the desired
class width. Enough boundaries of the form b ± j×width are computed so that all the
data are included. b0 need not be in the range of the data.

Cmd> bin(x,vector(30,10)) # gives the same result as bin(x,b)
component: boundaries
(1) 30 40 50 60 70
component: counts
(1) 2 10 10 3

Instead of vector(30,10), you could use vector(0,10) or even vector(-100,10)

2-64

MacAnova Version 4.07

and still get the same output.

Still easier and OK for quick summaries is bin(x,nclasses), where nclasses is the
number of classes wanted. bin() chooses nclasses+1 equally spaced class limits
which include all the data but they won’t be “neat.”

Cmd> bin(x,4) # bin() chooses boundaries
component: boundaries
(1) 32.15 41.5 50.85 60.2 69.55
component: counts
(1) 4 8 10 3

Even easier is simply bin(x) for which bin() selects both the number of classes and
the width.

Cmd> bin(x)
component: boundaries
(1) 32.15 38.383 44.617 50.85 57.083
(6) 63.317 69.55
component: counts
(1) 2 4 6 8 4
(6) 1

You can use keyword phrase leftendin:T with all these usages.

If x is a REAL matrix, rather than a vector, each column is grouped separately, all with
the same class limits. Component boundaries is as before, but now component
counts is a matrix, with each column containing the frequencies for the data in the
corresponding column of x.

See also tabs() (Sec. 3.12) which summarizes data cross-classified by one or more
positive integer valued variables.

2.13 Random numbers – runi(), rnorm(), rbin() and rpoi() MacAnova has functions for
generating standard normal, uniform, binomial and Poisson pseudo-random numbers.
For each of them, the first argument, N, must be a positive integer.

runi(N) returns a vector of n pseudo-random variables that are uniformly distributed
between 0 and 1. When a and b are scalars, a+(b-a)*runi(N) are uniform between a
and b.

rnorm(N) returns a vector of N pseudo-random variables which have standard normal
(µ = 0, σ = 1) distribution. When mu and sigma are scalars, mu+sigma*rnorm(N) is a
vector of N normal random variables with mean mu and standard deviation sigma.

rbin(N,n,p) returns a vector of N independent binomial pseudo-random variables
with sample size n and probability of “success” p. n must be a positive integer scalar or
a REAL vector of N positive integers. p must be a REAL scalar between 0 and 1 or a REAL
vector of N values between 0 and 1. If n or p is a scalar, it is used for every element of
the result. Otherwise, n[i] and/or p[i] are used for element i of the result.

rpoi(n,lambda) generates a vector of n independent pseudo-random variables with a
Poisson distribution with mean lambda. lambda must either be a REAL scalar ≥ 0 or a
REAL vector of length N with each lambda[i] ≥ 0. A scalar lambda is used for every

2-65

MacAnova Version 4.07

element of the result. Otherwise, element i of the result will be Poisson with mean
lambda[i].

See Sec. 2.13.1 for examples of these functions.

2.13.1 Random number “seeding” – setseeds() and getseeds() The values computed by
runi(), rnorm(), rbin() and rpoi() depend on two positive integer “seeds” which
are updated every time a number is computed. These are internal to MacAnova but
can be set by either setseeds() or setoptions() (Sec. 8.1.2). If the seeds are the same
on two different occasions you will get exactly the same sequence of random numbers.

You can set the seeds by setseeds(vector(seed1,seed2)) or setseeds(seed1,
seed2), where seed1 and seed2 are positive integers between 1 and 2147483399.
setseeds(0,0) initializes the seeds with values based on the date and time. This
provides a more or less random starting point for random numbers. If you don’t
explicitly set the seeds, the first time random numbers are computed the seeds are
initialized as if you had typed setseeds(0,0).

You can retrieve current values of the seeds in a vector of length 2 by function
getseeds(). If getseeds() is vector(0,0), the seeds have not been set. Resetting
the seeds to values previously retrieved makes it possible to generate the same
sequence of random numbers more than once.

Here are some simple examples.

Cmd> runi(5) # 5 uniforms without initializing
WARNING: starting random number seeds are 1979189978 and 1730035780
(1) 0.2765 0.046009 0.27089 0.21016 0.16606

Cmd> rnorm(5) # 5 normals
(1) 1.9504 -0.23464 -0.58285 0.43007 -0.09322

Cmd> rpoi(5,run(5,25,5)) # 5 Poisson with means 5, 10, 15, 20, 25
(1) 6 16 10 16 23

Cmd> rbin(5,50,run(5,25,5)/50) # 5 Binomial, n = 50, same means
(1) 5 7 15 13 25

Cmd> getseeds() # value is "invisible"; output is "side effect"
Seeds are 1255236055 and 150892041

Cmd> setseeds(1979189978,1730035780) #reset earlier seeds,

Cmd> runi(5) #same values as before
(1) 0.2765 0.046009 0.27089 0.21016 0.16606

2.13.2 Generating other random variables Suppose X is a continuous random variable
with cumulative distribution function G(x) = P(X ≤ x) with inverse H(p) = G-1(p),
that is H(G(x)) = x. Then, when U is a random variable uniformly distributed
between 0 and 1, the random variable Y = H(U) has the same distribution as X. You
can use this fact to generate random samples for any continuous random variable for
which you know how to compute the H = G-1. But that is exactly what the functions
such as invstu(), invchi() and invF(), described in Sec. 2.12.8, do. By using
runi(n) as argument p in these inverse CDFs, you can generate pseudo-random
samples of Student’s t, F, �χ2, gamma, and beta distributed random variables, among

2-66

MacAnova Version 4.07

others.

Cmd> invF(runi(5),10,30); # small random sample from F(10,30)
(1) 0.72673 1.6098 2.4452 0.46853 0.76309

Cmd> invchi(runi(5),10,20) # noncentral chi-squared sample, 10 df
(1) 27.926 39.296 21.936 47.4 35.721

A number of distributions of counts can be represented as Poisson random variables
with random mean λ. For example, if λ is a gamma distributed random variable
with mean µ and shape parameter α, and, conditional on λ, X is Poisson with mean
λ, then unconditionally, X has a negative binomial distribution, with mean µ and
index α, that is

P(X = x) =

(1− µ /α)α α (α + 1)...(α + x − 1)

x!

µ
α

x

Here is how you might use this fact to generate a small random negative binomial
sample with mean 20 and index 4.

Cmd> rpoi(5,(20/4)*invgamma(runi(5),4))
(1) 5 9 8 9 19

Other discrete distributions can be represented as binomial random variables with
random success probability p . If p has a beta distribution with density

Γ(α + β)

Γ(α)Γ(β)
pα −1(1− p)β −1 , 0 ≤ p ≤ 1, the resulting distribution is known as the beta-

binomial distribution which has probabilities

P(X = x) =

n!

x!(n − x)!

(α)x(β)n − x

(α + β)n

, x = 0, 1, ..., n .

Here, using rbin() (Sec. 2.13) and invbeta() (Sec. 2.12.8), we generate a small beta-
binomial random sample with n = 30, α = 3 and β = 10.

Cmd> rbin(5,30,invbeta(runi(5),3, 10))
(1) 4 7 3 5 0

2.14 More on rep() and run() Functions run() and rep() are particularly useful for
setting up factor variables in ANOVA models (described in Chapter 3). As described in
Sec. 2.8.12, run() generates equally spaced sequences and rep() replicates its first
argument. We saw there that run(n) returned vector(1,2,...,n) and rep(v,n)
returned vector(v,v,...,v), where there are n repetitions and where v is a scalar or
vector.

Cmd> rep(run(4),3) # 3 replicates of 1,2,3,4
 (1) 1 2 3 4 1
 (6) 2 3 4 1 2
(11) 3 4

There is a more general usage of rep(). Suppose counts is a vector of non-negative
integers of the same length as v. Then, in the output returned by rep(v,counts), the
each v[i] is repeated counts[i] times. In particular, rep(v,rep(m,n)), where n is
the length of v, produces m copies of each element of v.

2-67

MacAnova Version 4.07

Cmd> rep(run(3),rep(4,3)) # 4 copies of each element of run(3)
 (1) 1 1 1 1 2
 (6) 2 2 2 3 3
(11) 3 3

Thus you might use rep(run(4),3) and rep(run(3),rep(4,3)) to generate
treatment number and block numbers associated with a randomized block design with
4 treatments and 3 replicates, when all the data for each block is together, in the order of
treatment number..

Cmd> rep(run(4),vector(2,1,0,6)) # 2 1’s, 1 2, no 3’s and 6 4’s.
(1) 1 1 2 4 4
(6) 4 4 4 4

2.15 Making graphs MacAnova has several functions and pre-defined macros for
making graphs of data. The basic functions are summarized in the following table:

Function or Macro Description

plot(x,y) Scatter plot or impulse plot of y versus x, points
optionally connected by lines

lineplot(x,y) Connected line plot of x versus y, optionally augmented
by “impulses”

chplot(x,y,sym) Scatter plot or impulse plot of y versus x, using user
supplied symbols, points optionally connected by lines

showplot() Redisplay previously plotted graph, possibly with
changed labels or plotting limits

colplot(x) Makes parallel line plots of matrix x against row number

rowplot(x) Makes parallel line plots of matrix x against column
number

“Impulses” are vertical lines connecting points with the x-axis.

plot(), lineplot() and chplot() take at least two arguments x and y, where x is a
REAL vector and y is a REAL vector or matrix; they plot each column of y against the
values of x. The length of x ordinarily must match the number of rows in y, but see
below for a useful exception.

Instead of arguments x and y, you can use a structure with at least two components, the
first two of which are interpreted as x and y. Any extra components are ignored. For
example, plot(x,y) and plot(structure(x,y)) are equivalent.

All plotting commands also recognize several optional keyword arguments which you
can use to specify a title, axis labels, and minimum and maximum values to be plotted.
See Sec. 2.15.5 and 8.5.

In windowed versions of MacAnova (Macintosh, Windows, Motif) high resolution
graphs are drawn in separate windows. In the Macintosh and Windows versions, you
can copy a graph window to the Clipboard and then paste it into a word processor or
graph editor document. You can print graph windows using Print Graph on the File

2-68

MacAnova Version 4.07

menu (see Sec. B.3.2, D.3.1 and F.3.1 B in the Appendices).

2.15.1 plot() plot(x,y) does a simple scatter plot of y versus x. If y has several
columns, a different plotting symbol is used for each column.

Cmd> xstuff <- vector(1,2,3,4,5,6,7)

Cmd> ystuff <- exp(-.5*xstuff) - .5

Cmd> plot(xstuff,ystuff) # simplest usage

-0.4

-0.3

-0.2

-0.1

-0

0.1

1 2 3 4 5 6 7
xstuff

y
s
t
u
f
f

Note that the axes are labelled with the variable names.

2-69

MacAnova Version 4.07

Cmd> plot(xstuff,ystuff,impulse:T) # make impulse plot

-0.4

-0.3

-0.2

-0.1

-0

0.1

1 2 3 4 5 6 7
xstuff

y
s
t
u
f
f

2.15.2 lineplot() lineplot(x,y) draws lines between the successive points plotted, but
does not draw any symbol at the points. Ordinarily, the elements of x should be in
monotonic (increasing or decreasing) order. lineplot() uses different line types
(solid, dashed, dotted, ...) for successive columns of y. You can use keyword linetype
to change the default line types. See Sec. 8.5.1.

2-70

MacAnova Version 4.07

Cmd> lineplot(x:run(10),y:run(10)^(.3*run(5)'),\
title:"Sample line plot") #Note keywords x and y to label axes

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Sample line plot

x

y

2.15.3 chplot() chplot(x,y,sym) is similar to plot(x,y), except that REAL or
CHARACTER vector or matrix sym specifies plotting symbols or characters. When sym is
a matrix, it must have the same number of columns as y.

When sym is REAL, its elements must be integers between 1 and 999 and the numbers
themselves are used as the plotting symbols.

When sym is a CHARACTER vector or matrix, its elements are used as plotting symbols
(actually only the first three characters are used if there are more). For example,
chplot(run(5),run(5)^2, vector("Cat","Dog","Wolf","Sheep","Bird"))
labels the successive points with Cat, Dog, Wol, She and Bir.

Character symbols "\1", "\2", "\3", "\4", "\5", "\6", "\7", "\10" are special and are
interpreted as symbols , , , , , , , and . For example, when y is a vector,
chplot(x,y, "\6") is identical to plot(x,y) and chplot(x,y, "\7") places a dot
at each point.

When sym has a single element as in chplot(x,y,"#"), it is used for all points.

When sym is a vector whose length matches the number of columns in y, then sym[j]
labels all points associated with co lumn j, that is the point y[i,j] is plotted against
x[i] with character or number sym[j]. For example, if y has 3 columns,
chplot(x,y,run(3)), labels all the points from y[,1], y[,2] and y[,3] with "1",
"2" and "3", respectively.

When sym is a vector whose length does not match the number of columns in y, then
sym[j] labels row j, with the symbols repeating cyclically if length(sym) <

2-71

MacAnova Version 4.07

nrows(y).

Finally, when sym is a matrix it must have the same number of columns as y, and
symbols for plotting the values from row i of y are taken from row i of sym, repeating
rows of sym cyclically if necessary.

You can omit sym altogether; when y has only one column, each point is labelled with
the row number and when y has several columns, all the points from a column are
labelled with the column number.

Cmd> chplot(x:run(10),y:run(10)^(.3*run(5)'),\
vector("A","B","C","D","E"), ymin:0,\
title:"Sample plot by chplot()")

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Sample plot by chplot()

x

y

A A A A A A A A A A
B B B B B B B B B B

C
C

C
C

C C
C C C

C

D
D

D
D

D
D

D
D

D

D

E
E

E

E

E

E

E

E

E

E

2-72

MacAnova Version 4.07

Cmd> chplot(x:run(10),y:run(10)^(.3*run(5)'),ymin:0,\
title:"Sample plot by chplot()") # no plotting symbols provided

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Sample plot by chplot()

x

y

1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2

3
3

3
3

3 3
3 3 3

3

4
4

4
4

4
4

4
4

4

4

5
5

5

5

5

5

5

5

5

5

2.15.4 Equally spaced x values The exception to the requirement that x and y have the
same number of rows is a convention you can use when plotting the rows of y against
equally spaced values on the X-axis. When x is a REAL scalar (single number), y[i,]
is plotted against vector(x,x+1,x+2,...), that is they are equally spaced by 1 starting
with x. When x is a vector of length 2, say, vector(x0,d), y[i,] is plotted against
vector(x0,x0+d, x0+2*d,...), that is equally spaced starting with x0 and incre-
menting by d. For example, plot(1,y) is equivalent to plot(run(nrows(y)),y) and
lineplot(vector(1967,1/12),y) might be used to plot monthly values for which
y[1,] was data for January, 1967.

2.15.5 Graphics keywords See Sec. 8.5 for information on the use of keywords xmin,
ymin, xmax, ymax, xlab, ylab, xaxis, yaxis, title, file, keep, and show, and on
how to add information to previously created graphs.

You can draw lines between points plotted by plot() or chplot() by using keyword
phrase lines:T. If you use lines:F on lineplot(), it becomes equivalent to
plot().

On all three commands, you can use impulses:T add “impulses” to the plot. On
plot() but not on chplot(), this suppresses the plotting symbols.

If you use lines:F on lineplot(), it becomes the same as plot().

2.15.6 colplot and rowplot These are pre-defined macros that use chplot() to draw
“interaction plots” of data in a matrix x. colplot(x) draws line plots of each co lumn
of x versus the row numbers run(nrows(x)). Data points are labelled with the

2-73

MacAnova Version 4.07

column number. Similarly rowplot(x) draws line plots of each row of x versus the
column numbers run(ncols(x)). See Sec. 10.12 for an example of the use of colplot.

2.15.7 Low resolution plots You can use keyword phrase dumb:T as an argument with
any plotting command, as in plot(x,y,dumb:T). This results a low resolution plot
made up of letters and other printable symbols. For many purposes this is sufficient to
get a clear picture of the relationships being plotted, and has the advantage that it is
printable on any printer and is written along with other output to a spool file (see. Sec.
2.16).

Cmd> chplot(x:run(10),y:run(10)^(.3*run(5)'),\
vector("A","B","C","D","E"),ymin:0,\
title:"Sample dumb plot by chplot()",dumb:T)
 Sample dumb plot by chplot()
 ++-----+-----+------+-----+-----+------+-----+-----+------++
 | E|
 30+ +
 | |
 | E |
 25+ +
 | |
 | E |
 20+ +
 | E |
 y | D|
 15+ E +
 | D |
 | E D |
 10+ D +
 | E D C C|
 | D D C C |
 5+ E C C B B+
 | E C C B B B B A A|
 0+E.....B.....A......A.....A.....A..........................+
 ++-----+-----+------+-----+-----+------+-----+-----+------++
 1 2 3 4 5 6 7 8 9 10
 x

You can use keywords height and width to override the default plot size. For
example, a graph produced by plot(x,y,dumb:T,height:15,width:50) consists of
15 lines of up to 50 characters, including the title and labels.

2.16 Using spool() to save output You often want to keep track of exactly what you have
done and what were the results. Command spool() allows you to “spool” your
session, that is, save in a file a transcript of what you typed and what MacAnova
printed. Spooling is a little bit like using a tape recorder – everything, wanted or
unwanted is recorded. After leaving MacAnova, you can can print the spool file, or
more usually, incorporate it in a report using a word processor.

spool(fileName), where fileName is a quoted string or CHARACTER variable
containing a legal file name, starts spooling on the named file. From that point on
until you quit MacAnova or suspend spooling, everything you type and everything
MacAnova responds (except high resolution graphs) is written to the file in plain text

2-74

MacAnova Version 4.07

(ASCII) form. In a windowed version (Macintosh, Windows or Motif), if fileName is
the empty name "", you will be able to specify the file using a dialog box. On a
Macintosh, selecting Spool Output To File on the File menu is another way to start
spooling.

If the spool file already exists, spool() normally starts writing at its end. This allows
you to accumulate output from several runs in a single file. If this is not what you
want, use spool(fileName,new:T) which starts transcription at the start of the file,
destroying any information already there.

To suspend spooling, simply type spool(), with no argument. On a Macintosh you
can select Stop Spooling on the File menu. If spooling has been suspended, spool(),
with no argument restarts it. On a Macintosh you can select Resume Spooling on the
File menu.

For example, you might suspend spooling while you experiment with different
analyses of data, and then resume it once you have a better idea of what you plan to do.

Cmd> spool("spool.txt") # start spooling on file 'spool.txt'

Cmd> getseeds() #display current seeds, see Sec. 2.13
Seeds are 946682807 and 873681665

Cmd> x <- runi(5); x # this will be transcribed on spool.txt
(1) 0.38959 0.71524 0.63019 0.55814 0.8608

Cmd> spool() # suspend spooling
Spooling on spool.txt suspended

Cmd> x-3 # this will not be transcribed on spool.txt
(1) -2.6104 -2.2848 -2.3698 -2.4419 -2.1392

Cmd> spool() # resume spooling. This line will not be transcribed
Resume spooling on spool.txt

Cmd> x+1 # this line and following output will be transcribed
(1) 1.3896 1.7152 1.6302 1.5581 1.8608

This is what ends up in file spool.txt.

Cmd> getseeds() #display current seeds, see Sec. 2.13
Seeds are 946682807 and 873681665

Cmd> x <- runi(5); x # this will be transcribed on spool.txt
(1) 0.38959 0.71524 0.63019 0.55814 0.8608

Cmd> spool() # suspend spooling
Spooling on spool.txt suspended

Cmd> x+1 # this line and following output will be transcribed
(1) 1.3896 1.7152 1.6302 1.5581 1.8608

In the windowed versions of MacAnova, it is also possible directly to save the contents
of the command window to a file using Save Window or Save Window As... on the
File menu. See Appendices B, D and F.

2-75

MacAnova Version 4.07

2.17 Using save() and restore() to preserve work between sessions All the variables and
macros you are currently using are referred to collectively as the workspace . During a
MacAnova run, the workspace is in computer memory (RAM) and not in a file on disk.
When you quit MacAnova, unless you take precautions, your workspace and possibly
the result of a lot of work is normally lost. You can preserve everything in your work-
space on disk by save(fileName), where fileName is a quoted string or CHARACTER
variable specifying the name of the file. On a later MacAnova session,
restore(fileName) restores the workspace to the way it was when saved. As usual in
windowed versions, the empty file name "" lets you select a file.

Cmd> x # show that vector x is defined
(1) 0.67374 0.13423 0.82378 0.89615 0.66544

Cmd> save("session1.sav") # save workspace, including vector x
Workspace saved on file session1.sav

Cmd> quit # terminate the run

Now suppose you start a new MacAnova session.

Cmd> x # At this point x is not defined
UNDEFINED

Cmd> restore("session1.sav") # restore the save file
Restoring workspace from file session1.sav
Workspace saved Thu Oct 30 11:52:58 1997

Cmd> x # variable x as we previously saved it is now defined
(1) 0.67374 0.13423 0.82378 0.89615 0.66544

The file created by save() is in a binary format readable only by MacAnova running on
the same type of computer and is useless on any other type of computer. In contrast,
asciisave(fileName) saves your workspace in a form that can be read by MacAnova
on any type of computer. The file it writes is a plain text or ASCII file although it has
an arcane format intended to be read only by a computer. You may even be able to send
it via e-mail with little danger of corruption since there are no non-printable characters
in the file. Command restore() can read either type of file although a file written by
asciisave() may take a little longer to restore. The file created by asciisave() is
often larger than the one created by save(), although that need not be the case.

Another use for save() and restore() is when you are running MacAnova on an
unstable computer, subject to crashes, or running a Unix version over the telephone
using a modem where there is a chance the connection will be broken. If you use
save() every few minutes, you minimize the danger of losing work. To make this
easier, after the first use of save(fileName), simply save(), omitting fileName, saves
to the same file. If the original saving was done by asciisave(), a plain text files will
be written.

To save your workspace on a windowed version, select Save Workspace on the File
menu or press K on a Macintosh or Ctrl+K in the Windows or Motif versions. The
first time you do this, you will be prompted for a save file. Later uses of Save
Workspace will save on the same file with no prompting.

2-76

MacAnova Version 4.07

See Sec. 7.7 for information on partial saves and keywords all, delete, options and
history.

2-77

	2.11 Reading data from files (cont.)
	2.11.1 vecread()
	2.11.2 readcols
	2.11.3 matread() and read()
	2.11.4 getdata
	2.11.5 inforead()
	2.11.6 HOME, DATAPATHS and adddatapath

	2.12 Simple statistics
	2.12.1 describe()
	2.12.2 boxplot(), stemleaf() and hist
	2.12.3 Sorting and ranking
	2.12.4 sum(), prod(), max(), min()
	2.12.5 Computing correlations
	2.12.6 Student’s t related functions and macros
	2.12.7 P-values and CDFs
	2.12.8 Probability pts and inverse CDFs
	2.12.9 Grouping data

	2.13 Random number generation
	2.13.1 Random number “seeding”
	2.13.2 Generating other random variables

	2.14 More on rep() and run()
	2.15 Making graphs
	2.15.1 plot()
	2.15.2 lineplot()
	2.15.3 chplot()
	2.15.4 Equally spaced x values
	2.15.5 Graphics keywords See
	2.15.6 colplot and rowplot
	2.15.7 Low resolution plots
	2.16 Using spool() to save output
	2.17 Using save() and restore()

