
This file consists of the first part of Chapter 2 of MacAnova User’s Guide by Gary W.
Oehlert and Christopher Bingham, issued as Technical Report Number 617, School of
Statistics, University of Minnesota, revised August 1998, describing Version 4.07 of
MacAnova.

This manual is Copyright © 1998 Gary W. Oehlert and Christopher Bingham, all rights
reserved.

Fonts used in this manual are Palatino, Courier, and Symbol.

For information concerning MacAnova, write University of Minnesota, Department of
Applied Statistics, 352 Classroom Office Building, 1994 Buford Avenue, St. Paul, MN
55108-6042.

2-0

kb
This ispart 1 of Chapter 2 of the MacAnova Users' Guide for MacAnova version 4.07. The complete Users' Guide is available at
 http://www.stat.umn.edu/~gary/macanova/documentationug.html

Please notify the authors (kb@stat.umn.edu or gary@stat.umn.edu) of any inaccuracies or typographical errors. What may appear as bold face Greek symbols should be italic.

List of PDF files making up manual
 PDF File PDF File
Contents mancntnt.pdf Chapter 8 manchp08.pdf
Preface manprfac.pdf Chapter 9 manchp09.pdf
Chapter 1 manchp01.pdf Chapter 10 manchp10.pdf
Chapter 2 (a) manchp2a.pdf Chapter 11 manchp11.pdf
Chapter 2 (b) manchp2b.pdf Appendix A manapdxa.pdf
Chapter 3 manchp03.pdf Appendix B manapdxb.pdf
Chapter 4 manchp04.pdf Appendix C manapdxc.pdf
Chapter 5 manchp05.pdf Appendix D manapdxd.pdf
Chapter 6 manchp06.pdf Appendix E manapdxe.pdf
Chapter 7 manchp07.pdf Appendix F manapdxf.pdf

MacAnova Version 4.07

2. The Basics
2.1 Getting Started You first need to launch MacAnova. Read the appropriate
Appendix (B for Macintosh, C for DOS™, D for Windows™, E for Unix™ and F for
Motif) for detailed information on how to do this on your computer. The following
table briefly summarizes this information.

Computer How to Start

Macintosh Double click on icon

IBM compatible with Windows Double click on MacAnova for Windows icon
in MacAnova program group

IBM compatible with Windows 95 Select item MacAnova for Windows on
MacAnova entry under Programs on Start
menu

IBM compatible DOS versions Type macanodj (extended memory) or
macanobc (limited memory) at DOS prompt

Unix Motif version Type macanovawx at Unix prompt

Unix non-Motif version Type macanova at Unix prompt

After MacAnova has been launched and a start-up message displayed, the prompt

Cmd>

appears.

You tell MacAnova what to do by typing commands (instructions) after the prompt,
followed by Return or Enter. You can use the delete or backspace keys to correct
mistakes. On windowed versions (Macintosh, Windows, and Motif) you can use arrow
keys or the mouse to re-position the cursor to edit a command before executing. You
can also use arrow keys on the Unix version and the extended memory DOS version.
Until Return or Enter is pressed, a command is not executed and may be changed. On
the Macintosh, Enter differs from Return in that it moves the cursor to the end of the
command line and then enters a Return. In the Motif and Windows versions,
Ctrl+Enter does what Enter does on a Macintosh.

During the course of a MacAnova run you can type in data or read it from a file, do
standard statistical analyses such as Analysis of Variance or Regression, and create new
variables which contain transformed data or the results of your analysis. In the
windowed versions, everything you type and all results go into a command/output
window which you can save in a file at any time using entries Save Window or Save
Window As on the File menu.

Data that have been typed or read into MacAnova are contained in a workspace in
your computer’s memory, together with other variables. On all versions you can save a
copy of your workspace on disk using commands save() or asciisave().

2.2 Quitting You end your MacAnova run by typing quit, end, stop, bye or exit. On
windowed versions you can also select Quit on the File menu. When you exit

2-1

MacAnova Version 4.07

MacAnova, your workspace , consisting of all of the data and results in MacAnova's
memory, will disappear unless you have saved it to disk by commands save() or
asciisave() (see Sec. 2.17). In the windowed versions, when you quit, you are
automatically asked if you want to save your workspace and any command/output
windows in files unless you type quit(F).

2.3 Functions and macros You tell MacAnova to do what you want by typing
commands after the Cmd> prompt rather than by clicking on “buttons” or selecting
items on menus.

MacAnova commands can be described as “functional” – they have arguments
(inputs) and return values or results (outputs). You enclose a function’s arguments
in parentheses following the function’s name, separating them by commas (Example:
rep(1,10) runs function rep() with two arguments, 1 and 10).

Some functions have “side effects” – printing or plotting information and/or creating
or deleting variables – in addition to returning a value. For example, linear model
commands such as anova() and regress() normally print the results of the statistical
analysis and create variable RESIDUALS containing the residuals from the model fitted.
Both the printing and the variable creation are considered to be side effects.

You may sometimes find it helpful to think of MacAnova as a statistical programming
language, although you do not need to understand programming to use MacAnova
effectively.

In this manual, whenever a MacAnova function is referred to by name, the name will
be followed by (), as in anova(). Functions in MacAnova include statistical functions
such as anova() (which does analysis of variance calculations) and describe() (which
computes descriptive statistics like mean and variance); mathematical functions such
as log(), exp(), and cos(); commands such as print() and plot() for printing and
graphing results; and housekeeping functions such as vecread(), vector() and
delete() for reading data from files, creating and combining variables, deleting
variables and so forth.

When the output from one function makes sense as input to another, the functions
may be composed (strung together). Thus describe(log(x+3)) takes the data in x,
adds 3 to it, takes the logarithm of the sum, and then computes descriptive statistics on
the logged values.

We often use the word command to refer to functions such as print(), matread(),
or delete() that are not primarily involved with changing or manipulating data. We
sometimes call symbols such as + and – arithmetic operators and symbols such as >
and <= comparison operators.

Besides functions, MacAnova has macros that, like functions, produce results from
arguments. In fact, they are used identically, that is as a name followed by arguments
enclosed in parentheses and separated by commas as in boxcox(x,1/3). There are
many macros such as hist, resvsrankits and boxcox that are pre-defined. You can
read other macros from files using macroread() (Sec. 7.5.1) and getmacros (Sec. 7.5.3).
Files MacAnova.mac, Tser.mac and Design.mac that are distributed with MacAnova
contain many useful macros. Finally, you can create your own macros to extend the

2-2

MacAnova Version 4.07

range of what MacAnova can do (Sec. 8.4).

2.4 Variables Data are stored in ordinary or temporary variables which have names
such as x or height of up to 12 characters. Ordinary names consist of letters (a - z and
A - Z), numbers (0 - 9), and the underscore character _ but must start with a letter or _
(var_2 but not 2_var). Once created, ordinary variables exist until they are explicitly
deleted or until the MacAnova session ends. The names of temporary variables start
with the character @ followed by a letter or _ (@mean_2 but not @2_mean). Temporary
variables are deleted the next time the prompt is printed.

Variables with names starting with _ or @_ are “invisible”; see also Sec. 2.8.7.

All names are case sensitive, that is, for example, residuals, Residuals, and
RESIDUALS are three different names. It is a good idea to avoid names with all capital
letters, as MacAnova deletes and creates certain variables with all capital names (for
example, RESIDUALS).

You can get an alphabetized listing of some or all active variables using commands
listbrief() or list() (Sec. 2.8.9).

One way you can display the value of a variable is to type its name:

Cmd> PI # PI is a predefined REAL variable
(1) 3.1416

This also illustrates that a command line can include a descriptive comment –
anything starting with the character #.

You assign a value to a variable using the left pointing arrow “<-” (less than followed
by hyphen).

Cmd> euler <- .577215664; euler # semi-colon used as separator
(1) 0.57722

This also illustrates that you do more than one thing on a single command line if you
separate commands and expressions with a semi-colon. First euler <- .577215664
assigns a value to variable euler. Then, euler after the semi-colon displays the value
as if it had been after the prompt in a new command line.

2.5 Data types – REAL, LOGICAL, and CHARACTER MacAnova variables can represent
data of several types. The most common types are REAL, LOGICAL, and CHARACTER.

REAL data are just numbers like 2.4, -1, and 3.14159. They are entered just by typing
their values.

LOGICAL data have values True or False which are typed and printed as T and F.

Cmd> untrue <- F; untrue
(1) F

CHARACTER data consist of letters or other characters – letters, digits, spaces, and
punctuation. The basic element of CHARACTER data is known as a string, consisting of
one or more characters. When typing a string on the keyboard, it must be surrounded
by double quotes, for example, "this is a character string"; single quotes won’t
do. Similarly a string is normally printed surrounded by double quotes.

2-3

MacAnova Version 4.07

Cmd> greetings <- "Hello!"

Cmd> greetings # typing the variable name prints the variable
(1) "Hello!"

In some MacAnova output, LOGICAL and CHARACTER are abbreviated to LOGIC and
CHAR.

Note: Any character you can type is allowed inside a string, even the character
produced by pressing the Enter key (Return on a Macintosh). A common error is to
forget to add the closing double quote to a string you are entering. When you press
Enter or Return, you think you are done and expect MacAnova to respond with a
prompt or other output, but it doesn’t. Until you type the closing quote, MacAnova
doesn’t know you are finished and is waiting for you to type more characters to add to
the string variable. If you don’t type the closing quote nothing will ever happen.

If you want to include a double quote in a string, you must precede it with a backslash.

Cmd> print("\"Hello\"") # inner double quotes are part of string
"Hello"

This use of a backslash is sometimes called “escaping” the double quote. If you want to
include a backslash in a string, you must “escape” it, that is precede it with a backslash,
yielding a double backslash.

Cmd> print("\\Hello\\") #backslash is escaped.
\Hello\

It is possible to have a variable that has no associated data. Such a variable is a NULL
variable. You can create a NULL variable a by

Cmd> a <- NULL

In additions to types REAL, LOGICAL, CHARACTER and NULL, there are several more
specialized data types. These are STRUC, the data type a structure (Sec. 2.8.16), MACRO, the
data type of macro (Sec. 9.3), GRAPH (Sec. 8.5.3) and LONG (Sec. 9.7.3, 9.7.4).

You can use list() (Sec. 2.8.9) to list active variables together with their data types and
dimensions.

2.6 Shapes of variables – scalars, vectors, matrices, arrays REAL, LOGICAL, and
CHARACTER data can be organized as scalars (a single number, logical value or string),
vectors (several numbers, logical values or strings with no further structure),
matrices (a two dimensional table of values), and more generally as arrays of up to 31
dimensions.

The basic command for creating a vector from several items is vector() (Examples:
vector(1,7,5), vector(T,F,T), and vector("A","B","C") create REAL, LOGICAL,
and CHARACTER vectors of length three). A synonym for vector() is cat(). Macros
enter and enterchars are also useful for creating vectors. See Sec. 2.8.10.

You can refer to individual elements of a vector, matrix or array using subscripts, that
is, indices in [...] after its name (Examples: x[4], y[2,3], w[2,2,4]). See Sec. 2.8.11.

There are several pre-defined variables including REAL variables E (e 1 = 2.718281828...),

2-4

MacAnova Version 4.07

PI (π = 3.14159265...), DEGPERRAD (the number of degrees per radian = 180/π) and
CHARACTER variables DATAFILE, MACROFILES and MACROPATHS.

2.7 Missing values REAL and LOGICAL data may have “missing values”. When typed
from the keyboard, the code for a REAL missing value is a question mark “?”. When
printed, a missing value normally prints as MISSING. Although you cannot enter
missing LOGICAL data directly, missing LOGICAL values may be created by a comparison
involving missing data, for example

Cmd> 10 > ? # comparison of a REAL with a MISSING
WARNING: arithmetic comparison with missing values(s)
(1) MISSING

You can use ismissing(x) to find which values in a REAL or LOGICAL data set x are
MISSING. It returns a LOGICAL variable with the same size and shape (dimensions) as x
whose values are True where x is MISSING, and False where x is not missing. If x is a
CHARACTER variable, ismissing(x) treats empty strings ("") as MISSING.

Cmd> ismissing(vector(1,?,3)) # 1 MISSING REAL
(1) F T F

Cmd> ismissing(vector("Hello","","World")) # "" treated as missing
(1) F T F

Function anymissing() returns True or False depending on whether its argument has
any MISSING values or empty strings as elements.

Cmd> anymissing(vector(1,?,5)) # one or more missing values
(1) T

Cmd> anymissing(vector(1,3,5)) # no missing values
(1) F

Cmd> anymissing(vector("Hello","","World?")) # "" treated as missing
(1) T

2.8 Introduction to MacAnova syntax As a statistical “language,” MacAnova has a well
defined syntax based on operators such as +, * and > and functions. Operators and
functions are alike in that both transform input into output. For an operator, the
inputs are known as operands . For example, in a + b, a and b are operands. For a
function, the inputs are arguments. For example, in cos(x/DEGPERRAD),
x/DEGPERRAD is an argument. The output is of course just the result of the
computation.

The syntax involving operators such as +, - or / is borrowed from algebra. You can
make free use of ordinary parentheses (and) and braces { and } to clarify what is
wanted. For example, (3 * x + 5)/7 is a legal MacAnova expression. You cannot
substitute square brackets [...] for (...) or {...}. See Sec. 2.8.11 and 2.8.16 for the use of
square brackets and Sec. 9.2.1 - 9.2.3 for the use of braces to delimit compound
commands.

As mentioned earlier, you invoke a function or macro by typing its name, followed by a
list of arguments, separated by commas and enclosed in parentheses. Arguments may
be variables, as in hconcat(x1,x2,x3) (the name is hconcat, the arguments are x1,

2-5

MacAnova Version 4.07

x2 and x3), or may be expressions, possibly involving other functions such as sqrt()
as in boxcox(x+sqrt(3),1/3) (the name is boxcox, the arguments are x+sqrt(3)
and 1/3).

You can have several commands or functions in a single line if they are separated by
semicolons:

Cmd> (3 + 4)*sqrt(2); 3+4*sqrt(2) # 2 commands separated by ';'
(1) 9.8995 Output from (3 + 4)*sqrt(2)
(1) 8.6569 Output from 3+4*sqrt(2)

When the line you are entering becomes too long to fit on the screen, you can just keep
typing. In all versions except those for Windows or Motif or extended memory DOS,
the line you are typing will “wrap around” to the next line. In the Windows and Motif
versions, the contents of the window scrolls to the left while in the extended memory
DOS version, the line shifts left. Alternatively, outside of a quoted string, you can type
a backslash (\) followed by Return or Enter and continue typing on the following line.
This is illustrated in several examples below. In the limited memory DOS version, it is
sometimes essential to use a backslash and start a new line since no single DOS input
line can contain more than 128 characters.

This section covers only the most basic aspects of MacAnova syntax. See Chapter 7 for
discussion of more advanced features, including the use of for(...){} and
while(...){...} loops (Sec. 9.2.3) and if(...){...}elseif(...){...}else{...}
(Sec. 9.2.2).

2.8.1 Spaces and comments Spaces are generally ignored outside of quoted strings,
except you cannot embed a space in a name or number. For example:

Cmd> x <- 23 456.7 # embedded space in number is error.
ERROR: problem with input near x <- 23 456.7

Cmd> des cribe(x) # embedded space in command name is error.
ERROR: problem with input near des cribe

You must have a space after the special assignment operators <-+ and <-- (a <-+3
without a space is interpreted as a <- +3), see Sec. 2.8.8.

Anything typed after # on a line is ignored unless it forms part of a quoted string. This
allows you to add descriptive or explanatory comments to a line. We have already used
this feature and will continue to do so.

2.8.2 Keywords The arguments to some functions and macros may be keyword
phrases of the form name:value. For example, keywords may be used to label axes in
a graph (Example: plot(Time:x,Distance:y)), to label printed output (Example:
print(average:sum(x)/n)), or to specify options (Example: sort(x,down:T)). The
keyword name may have no more than 10 characters, and the value may be a variable
or expression. Many keywords have values T or F, with T meaning “yes” or “enable”,
and F meaning “no” or “disable”.

2.8.3 Arithmetic expressions It is simple to do arithmetic with REAL data. You may add,
subtract, multiply, divide, and raise to a power in natural expressions by using the

2-6

MacAnova Version 4.07

operators +, -, *, /, and ^, respectively. Instead of ^, you can use ** to raise to a power.

Cmd> vector(3 + 4, -7/8, 2*PI, 3^.5)
(1) 7 -0.875 6.2832 1.7321

An additional operator is %% which computes the modular quotient; that is, x %% y is
the remainder when x is divided by y.

Cmd> vector(19.3 %% 5,-19.3 %% 5)
(1) 4.3 0.7

MacAnova operators have specific levels of precedence determining, in part, the order
in which operations are carried out when there are several operators in an expression.
The higher the precedence, the earlier the operation is performed. Addition and
subtraction have lower precedence than multiplication, division, and modular
division, which in turn have lower precedence than raising to a power. This means,
for example, that 3 + 4 * 5 - 6 is interpreted as 3 + (4*5) - 6 rather than as
(3+4) * (5-6) or ((3 + 4) * 5) - 6, and 17 - 3^-2*4 is interpreted as 17 -
(3^(-2))*4.

Arithmetic operators can be used with LOGICAL data as well, with True and False
interpreted as 1 and 0, respectively. The result is always REAL. Thus F*T is 0 and 3+T is
4.

As in ordinary algebra, you can use parentheses to specify the order in which operations
should be performed:

Cmd> vector((1+2)*3, 1+2*3)
(1) 9 7

Cmd> vector(2^3*2, 2^(3*2))
(1) 16 64

Cmd> vector((3 + 4)*sqrt(2), 3 + 4*sqrt(2))
(1) 9.8995 8.6569

If both sides of an operator have the same size and shape, the operation is applied to
each element. For example:

Cmd> vector(1,3,-2)^vector(1,2,3)#same as vector(1^1,3^2,(-2)^3)
(1) 1 9 -8

If one side of an operator is a scalar (single number) it is combined with all the
elements of the other side. For example:

Cmd> vector(1,3,5)/2 # same as vector(1/2,3/2,5/2)
(1) 0.5 1.5 2.5

Thus MacAnova can be used as a powerful interactive calculator. See Sec. 2.10.2 for
more details.

2.8.4 Comparison operators and logical operators You can compare REAL, LOGICAL and
CHARACTER data using the comparison operators == (equals), != (not equals), < (less
than), > (greater than), <= (less than or equal to), and >= (greater than or equal to). On
the Macintosh, you can use ≤, ≥, and ≠ in place of <=, >=, and !=. LOGICAL values T and
F are treated as 1 and 0, respectively. The result of a comparison is a LOGICAL value.

2-7

MacAnova Version 4.07

Cmd> vector(2 == 1, 3 != 3, 2 >= 5, 3 < 1, 2 == 2, 3 != 2)
(1) F F F F T T

Cmd> vector(T == T, F < T, F != F)
(1) T T F

Cmd> vector("A" < "B", "Ab" <= "Ac", "Bb" > "ab")
(1) T T F

The third element in the last example ("Bb" > "ab" which evaluates to False)
illustrates that comparison of CHARACTER data uses the ASCII collating sequence, with
all upper case letters coming before (“less than”) lower case letters. See Sec. 2.12.3 for
details.

You can combine or change LOGICAL values using the logical operators && (logical
and) , || (logical or), and ! (logical not).

Cmd> vector(T || T, T || F, F || T, F || F, 3 < 5 && 5 < 10)
(1) T T T F T

Cmd> vector(!T, !F, !(3 < 2))
(1) F T T

Both operands of && and || are always evaluated, even when it may not be necessary to
do so. For example, in log10(5) < 1 || sqrt(5) > 2, both log10(x) and
sqrt(x) are computed even though the value of the expression (True) can be
determined once log10(5) has been computed. Pre-defined macros alltrue and
anytrue, both of which accept any number of LOGICAL scalar arguments, provide the
same results as && and || except that no more arguments are evaluated than is
necessary.

Cmd> anytrue(log10(5) < 1 || sqrt(5) > 2) # sqrt(5) not computed
(1) T

Cmd> alltrue(log10(5) > 1 , sqrt(5) > 2) # sqrt(5) not computed
(1) F

Comparison and logical operators work with vectors similarly to arithmetic operators.

Cmd> 7 <= vector(4, 5, 6, 7, 8, 9)# compare 7 with several numbers
(1) F F F T T T

Cmd> vector(T, F, F) || vector(F, F, T)
(1) T F T

2.8.5 Bit-wise operations on integers Any integer can be represented in the binary
system with binary “digits” or “bits” either 0 or 1. For instance, 37 = 1×25 + 0×24 + 0×23

+ 1×22 + 0×21 + 1×20 has binary representation 100101b. MacAnova has four operations
and a function that work with the representation of integers between 0 and 2147483647
= 232–1, considered as sets of 32 bits.

 Bit Operation Meaning
a %| b Bitwise Or (OR)
a %^ b Bitwise Exclusive Or (XOR)
a %& b Bitwise And (AND)
%!a Bitwise Complement (COMPL)

2-8

MacAnova Version 4.07

For %&, a bit of the result is 1 if and only if the corresponding bits in the operands are
both 1.

Cmd> 25 %& 19 # 11001b AND 10011b
(1) 17 10001b

For %|, a bit of the result is 1 if and only if at least 1 of the corresponding bits in the
operands is 1.

Cmd> 25 %| 19 # 11001b OR 10011b
(1) 27 11011b

For %^, a bit of the result is 1 if and only if exactly 1 of the corresponding bits in the
operands are 1, that is, if the corresponding bits differ.

Cmd> 25 %^ 19 # 11001b XOR 10011b
(1) 10 01010b

Operator %! operates on the immediately following variable considered as a collection
of 32 bits, changing 1’s to 0’s and 0’s to 1’s.

Cmd> print(nsig:10, %!25) #COMPL(0000000000000000000000000011001b)
NUMBER:
(1) 4294967270 11111111111111111111111111100110b

Cmd> print(nsig:10, %! 0) #COMPL(0000000000000000000000000000000b)
NUMBER:
(1) 4294967295 11111111111111111111111111111111b

See Sec. 11.2.5 for a table summarizing these operators. See Sec. 7.4 for the use of
keyword nsig.

If an operand is LOGICAL, it is treated as having value 0 (False) or 1 (True). The result is
always REAL, and if any operand is MISSING, so is the result.

nbits(x) computes the number of bits in each element of REAL variable x. The result
is MISSING for any element of x that is not an integer between 0 and 4294967295 or is
MISSING.

Cmd> nbits(vector(0,25,27)) # all values appropriate integers
(1) 0 3 4

Cmd> nbits(vector(4294967270,4294967295,?)) # 1 MISSING value
WARNING: missing values in argument(s) to nbits()
(1) 29 32 MISSING

Cmd> nbits(vector(1/3,-1,5000000000)) # all improper values
WARNING: nbits of illegal value set to MISSING
(1) MISSING MISSING MISSING

2-9

MacAnova Version 4.07

2.8.6 Mathematical functions and transformations MacAnova provides the following
mathematical functions or transformations.

Function Computes what Function Computes what

abs() Absolute value acos() Arc cosine

sqrt() Square root asin() Arc sine

log() Natural (base e) logarithm atan()† Arc tangent

log10() Common (base 10) logarithm cosh() Hyperbolic cosine

exp() Exponential e x sinh() Hyperbolic sine

round()† Round to nearest integer tanh() Hyperbolic tangent

floor() Round down to next integer acosh() Inverse hyperbolic cosine

ceiling() Round up to next integer asinh() Inverse hyperbolic sine

hypot()‡

 x2 + y2 atanh() Inverse hyperbolic tangent

cos() Cosine lgamma() Natural log of gamma function

sin() Sine rational() Rational function§

tan() Tangent

† allows two argument ‡ requires two arguments § two or three arguments

Cmd> abs(3-5)+log10(10)+sqrt(25) # 2+1+5
(1) 8

Cmd> vector(round(-3.2), floor(-3.2), ceiling(-3.2))
(1) -3 -4 -3

See Sec. 2.10.1 for what happens when the argument to one of these functions is not a
scalar.

Transformations atan() and round() both accept two arguments. atan(x,y),
computes the angle θ such that tan(θ) = x/ y while choosing the quadrant so

that x = rsin(θ) , y = rcos(θ) , where r = x2 + y2 . round(x,n) rounds x to n decimal
places, where n in an integer, either positive or negative.

hypot(x,y) is mathematically equivalent to sqrt(x^2 + y^2) but gives answers for a
wider range of arguments. sqrt(x^2 + y^2) fails but hypot(x,y) may not when x^2
+ y^2 is (i) too big to be represented in the computer or (ii) evaluates to 0 because it is
smaller than the smallest non-zero value representable in the computer.

Cmd> DEGPERRAD*vector(atan(1,sqrt(3)),atan(-1,-sqrt(3)))#degrees
(1) 30 -150

Cmd> vector(round(PI,2), round(10000*PI,-2))
(1) 3.14 31400

Cmd> x <- y <- 1e154; vector(hypot(x,y),sqrt(x^2+y^2))
WARNING: result of arithmetic too large, set to MISSING;operation is +
WARNING: missing values in argument(s) to sqrt()
(1) 1.4142e+154 MISSING Should be sqrt(2)*1e154

2-10

MacAnova Version 4.07

Cmd> x <- y <- 1e-165; vector(hypot(x,y),sqrt(x^2+y^2))
(1) 1.4142e-165 0 Should be sqrt(2)*1e-165

Function rational() is another special case. It computes a rational function of the

form

r(x ; a,b) ≡

a0 + a1x +…+ am −1x
m −1

b0 + b1x +…+ bn −1xn −1 for specified constant coefficients {ak} and {bk}.

Rational functions often appear in formulas used to approximate mathematical
functions. When a and b are REAL vectors of lengths m and n respectively, and x is a
REAL scalar, then rational(x,a,b) computes r(x;a,b), where a0 = a[1], a1 = a[2],
..., am-1 = a[m] and b0 = b[1], b1 = b[2], ..., bn-1 = b[n].

rational(x,a) is equivalent to rational(x,a,1) and evaluates the polynomial

 a0 + a1x +…+ am −1x
m −1 . rational(x,,b) is equivalent to rational(x,1,b) and

evaluates the recprocal polynomial

1

b0 + b1x +…+ bn− 1x
n− 1 .

Here is a relatively simple example of the use of rational() to compute an
approximate standard normal quantile zp that satisfies P(Z ≥ zp) = p , where Z is
normal with mean 0 and standard deviation 1. For 0 < p ≤ 0.5, zp can be

approximated with a maximum error of 0.00279 by

t −

2.30753 + .27061t

1 + .99229t + .04481t2 , where

 t = −2log p (Hastings 1955, Abramowitz and Stegun 1964, eq. 26.6.22).

Cmd> a <- vector(2.30753, .27061); b <- vector(1,.99229, .04481)

Cmd> tt <- sqrt(-2*log(.05));tt - rational(tt,a,b) # upper 5%
(1) 1.6445 Actual value is 1.6449

Cmd> tt <- sqrt(-2*log(.01));tt - rational(tt,a,b) # upper 1%
(1) 2.3277 Actual value is 2.3263

An important use of rational() is in writing macros (see Sec. 9.3) that compute
mathematical functions that are not directly available in MacAnova but which can be
approximated using rational functions. See for example, macros i0 and i1 in file
MacAnova.mac distributed with MacAnova. These compute modified Bessel functions
of the first kind.

All the listed functions except rational() also accept CHARACTER variables as
arguments. This is best illustrated by example.

Cmd> log(vector("height","weight"))
(1) "log(height)"
(2) "log(weight)"

Cmd> atan("height","distance")
(1) "atan(height,distance)"

Cmd> round("score",2) # or round("score","2")
(1) "round(score,2)"

There is an exception. When an element of a CHARACTER argument is "" or starts with
“@”, “[”, “(”, “{”, “<”, “/” or “\” it is not transformed; for atan(), the corresponding

2-11

MacAnova Version 4.07

argument of the second argument is ignored.

This feature is useful in creating labels for transformed variables. See Sec. 8.3.2.

You can use boxcox(x, p) where x is REAL vector or matrix with positive elements and
p is a REAL scalar, to compute the Box-Cox power transformation of x. Under the Box-
Cox transformation with power p of the data set x1, x2, ..., xn, xi is transformed to

(xi
p − 1)

p(xi)
(p− 1)/ n

j = 1

n

∏
 when p ≠ 0 and to

(xi)

1/n

j= 1

n

∏ log(xi) when p = 0.

boxcox operates separately on each column of x when it is a matrix. Computing a
power transformation using boxcox is sometimes preferred to x^p because the values
for different values of p are comparable, and because boxcox(x,0) is proportional to
log(x). See Sec. 10.7 for an example of the use of boxcox.

2.8.7 Assignment of values to variables To create variables you must assign values to
them using the assignment operator, the left pointing arrow <- (the symbols “less
than” and “hyphen”). The value on its right side is assigned to the variable on its left
side:

Cmd> x <- 6; x # Assign 6 to variable x and display the value
(1) 6

makes x a REAL scalar whose value 6. Any subsequent use of x will have the same effect
as using the number 6; for example x+2 is 8.

You can assign CHARACTER and LOGICAL data in the same way:

Cmd> department <- "Applied Statistics"; true <- T

A sequence of the form LeftSide <- RightSide is an assignment expression.
Besides making the assignment, an assignment expression itself has a value equal to
the value of the assigned variable. This lets you save intermediate values on the fly:

Cmd> y <- (x <- 6) + 8; u <- w <- x + 10; vector(x,y,u,w)
(1) 6 14 16 16

The value of an expression or command that is not an assignment expression is
normally printed. This is probably the most common way to get output from
computations.

Cmd> 3*5
(1) 15

If an assignment is made nothing is printed.

Cmd> x <- 3*5 # no output because assignment

Cmd> x
(1) 15

The first statement does not print anything but the second does.

An exception is made in the case of an “invisible” variable whose name starts with _ or
@_. You can use such a variable in an expression or assign it to another variable, but if

2-12

MacAnova Version 4.07

you just type the name, nothing is printed.

Cmd> _pi <- PI; twopi <- 2*_pi

Cmd> _pi # nothing printed because "invisible"

Cmd> twopi # not "invisible"
(1) 6.2832

Warning A frequent mistake made by those familiar with programming languages
such as Basic, Fortran or C is to use “=” instead of “<-” for assignment. In MacAnova, a
= 3 is actually interpreted as a == 3 and has value True or False depending on the
value of a.

2.8.8 Arithmetic assignment operators Sometimes you just want to modify a variable by
adding a constant or another variable or multiplying by a constant or another variable.
For instance, if you are doing something repetitively and want to keep count of how
many times it’s done, you might use count <- count + 1 every time you do it,
initializing count by count <- 0 before you start.

A short cut method for doing this is to use the arithmetic assignment operator <-+ :
count <-+ 1. In general, a <-+ b is equivalent to a <- a + b.

The other arithmetic assignment operators are <--, <-*, <-/, <- ,̂ <-**, and <-%%.
Each combines the expression on the right hand side with the left hand side and then
modifies the left hand side. Thus, for example, x <-/ n is equivalent to x <- x/n.
Both <-+ and <-- must be followed by at least one space.

Cmd> a <- 17; b <- 5; c <- 3

Cmd> a <-/ 2; b <-+ 1; c <-^ 2; vector(a,b,c) # 17/2, b+1, c^2
(1) 8.5 6 9

2.8.9 print(), write(), list(), listbrief() and delete() You can print one or more variables
using command print().

Cmd> x <- 1/6; y <- 1/14; print(x,y,x+y,"Hello")
x:
(1) 0.16667
y:
(1) 0.071429
NUMBER:
(1) 0.2381
STRING:
(1) "Hello"

As you can see, each argument printed is preceded by a name. In the case of unnamed
items such as quoted strings or the results of an expressions like x+y, print() uses
descriptive names such as STRING, NUMBER, VECTOR, or MATRIX.

The parenthesized numbers to the left of the output will be explained below (2.8.13).

The case of a single CHARACTER argument is special. No name is printed and the
enclosing quotes are omitted.

Cmd> print("This string is the only argument to print")
This string is the only argument to print

2-13

MacAnova Version 4.07

write() works just like print() except more significant digits are printed for REAL
variables.

Cmd> write(x,y) # default is 9 significant digits
x:
(1) 0.166666667
y:
(1) 0.0714285714

It’s easy to forget the names of variables you create or even which ones you have
created. Typing listbrief() prints an alphabetized list of all currently defined
variables, excluding temporary and invisible variables and typing list() does the
same, including each variable’s type and dimensions.

If you want information only about some of the variables, use the variables as
arguments to list(). For example, list(x,y,z) gives information about only
variables x, y and z.

If you are not sure of the exact name of a variable, use a single CHARACTER string that
contains one or more “wild card” symbols “*” and “?”. A “?” will match any single
character in a name, regardless of what it is, so list("a??") will list all variables
whose names start with “a” and are exactly three letters long. A “*” will match any 0
or more consecutive characters in a name, so list("ab*") lists all variables whose
name starts with “ab”, list("*yz") lists all variables whose name ends with “yz”, and
list("*w*?") lists all variables whose name contains “w” and has at least one
character after “w”.

Cmd> x <- 5; y <- 6; z <- vector("A","B")

Cmd> list(x,y,z) # full information
x REAL 1
y REAL 1
z CHAR 2

Cmd> listbrief(x, y, yy) # NOTE: yy has not been previously defined
WARNING: yy is not defined
x y

Cmd> listbrief("y*") # list all variables whose names start with 'y'
y yhat

Cmd> listbrief("*x") # list all variables whose names end with 'x'
boxcox resvsindex x

Cmd> listbrief("????plot")#list all 8 letters names ending with plot
fcolplot frowplot vboxplot 3 pre-defined macros

If you want information only about some types of variables, use any or all of the
keyword phrases real:T, logic:T, char:T, factor:T, struct:T or graph:T as
arguments to listbrief() or list(). Alternatively, list(all:T,macros:F), for
example, gives information about all variables except macros.

Cmd> listbrief(real:T)
DEGPERRAD E x z
DELTAT PI y

2-14

MacAnova Version 4.07

If you want a list consisting only of variables with specific sizes, you can use one or
more of the keyword phrases ncols:nc, nrows:nr, and ndims:nd, where nc, nr and
nd are positive integers. You can use them together and with char:T, real:T, or
logic:T to be even more specific. For instance,

Cmd> list(nrows:2,char:T) # all CHARACTER variables with 2 rows
z CHAR 2

list() and listbrief() normally do not list “invisible” variables (see Sec. 2.4, 2.8.7).
You can force them to be listed with keyword phrase invisible:T, which also enables
listing of temporary variables (names starting with “@”).

Cmd> az <- 5; _z <- 10 # _z is "invisible"

Cmd> @z <- 5; listbrief("*z") # only az and z are listed
az z

Cmd> @z<-5; listbrief("*z",invisible:T)
@z _z az z

When used as an argument to list() and listbrief(), keyword phrase keep:T
allows you to save the names of the variables found. Nothing is printed, but both
functions return a CHARACTER scalar or vector (see Sec. 2.8.10) whose elements are the
names of the variables that would otherwise be listed.

Cmd> zvars <- listbrief("*z",keep:T) # or list ("*z",keep:T)

Cmd> zvars
(1) "az"
(2) "z"

You use delete() to remove one or more variables. Thus

Cmd> delete(E, PI)

will remove the pre-defined variables E and PI from computer memory. The variable
or variables deleted can be REAL, CHARACTER or LOGICAL, or a more complex type like
structure (Sec. 2.8.16).

Occasionally you may want to delete whole classes of variables. You can delete all
CHARACTER variables by delete(char:T). Other keywords you can use instead of char
are real, char, logical, structure, null, macro, graph and all. delete(all:T,
real:F,macro:F) deletes everything except REAL variables and macros.

See Sec. 9.3.6 for a special use of delete() in a macro.

2.8.10 Vectors – vector(), enter and enterchars Vectors are 1 dimensional collections of
REAL, LOGICAL, or CHARACTER values. The most common way to create a vector is to
use function vector(). A synonym is cat() (short for concatenate). The expression
vector(1,2,3,5.5), for example, has a value which is a REAL vector of length 4 with
elements 1, 2, 3, and 5.5; z <- vector(1,7,4,9,6) makes z a REAL vector of length 5
with elements 1, 7, 4, 9, and 6; and then z2 <- vector(z,-z) creates a REAL vector of
length 10 containing a copy of z followed by the negatives of the elements in z.

If any argument to vector() is a matrix or array (Sec. 2.8.13, 2.8.15), its elements are

2-15

MacAnova Version 4.07

“unravelled” into a vector, the first subscript changing fastest. Thus vector(x) may be
used to turn a matrix or array x into a vector.

Cmd> print(a,vector(a)) # a is 2 by 5; vector(a) is a 10-vector
a:
(1,1) 1 3 5 7 9
(2,1) 2 4 6 8 10
VECTOR: vector(a)
(1) 1 2 3 4 5
(6) 6 7 8 9 10

Similarly, if an argument to vector() is a structure (see Sec. 2.8.16), all of whose
components are the same type, all the components are unravelled and concatenated.

You can use keyword labels to add labels to each element.

Cmd> data <- vector(146,140,152,112,\
labels:vector("Tom","Dick","Harry","Elizabeth")); data

 Tom Dick Harry Elizabeth
 146 140 152 112

See Sec. 8.4.1 for more details on labels. See Sec. 8.9 for information on using keyword
notes to attach descriptive notes to a vector.

The name vector() was introduced with version 4.00. Earlier versions used cat()
instead of vector().

You can determine the number of elements in a vector using length() or nrows().

Cmd> z <- vector(1,7,4,9,6); length(z)
(1) 5

Cmd> nrows(z)
(1) 5

Predefined macros enter and enterchars are convenient alternatives to vector() for
creating short REAL or CHARACTER vectors, respectively. enter is used the same way as
vector() except that the commas between values are optional.

Cmd> enter(1 7 4 -1 6)
(1) 1 7 4 -1 6

Macro enterchars is useful for creating short CHARACTER vectors when each element
consists of a single “word”, with no embedded spaces, commas, parentheses or brackets.
No separating commas are needed and the “words” must not be in quotes. In fact, if
they are, the quotation marks will be taken to be part of the word.

Cmd> labels <- enterchars(gender height weight "strength"); labels
(1) "gender"
(2) "height"
(3) "weight"
(4) "\"strength\"" Note the "escaped" quotes

2.8.11 Using subscripts with vectors You can select or extract the elements of a vector
using subscripts enclosed in square brackets [...]. There are three types of subscripts.

(i) A positive subscript is single positive integer or a vector of positive integers.

2-16

MacAnova Version 4.07

Thus, if z is vector(1,7,4,9,6), z[4] is the fourth element of z and has the value 9,
and z[vector(1,1,2,2,4,5,3)] is the same as vector(1,1,7,7,9,6,4). It is an
error for any element of the subscript vector to be larger than the length of the vector
being subscripted (you can’t extract something that isn’t there!).

(ii) A logical subscript is LOGICAL vector of the same length as the vector being
subscripted. The value is a vector consisting of the elements in the source vector
corresponding to all the True elements in the LOGICAL vector. For z given above,
z > 4 is a logical vector equivalent to vector(F,T,F,T,T) and therefore z[z>4] is
the vector consisting of the elements of z with values greater than 4, that is
vector(7,9,6). If no elements are selected (all elements of the subscript vector are
False), the result is NULL.

(iii) A negative subscript is a vector containing only negative integers with no
duplicates. In this case, a negative integer -5, say, specifies that element 5 of the source
vector is not to be selected. Thus z[vector(-1,-5)] (or z[-vector(1,5)]) is the
vector vector(7,4,9), that is vector z excluding elements 1 and 5. If no elements
are selected (for example, z[-run(5)]), the result is NULL.

Note: You cannot mix positive and negative values in a subscript vector. Thus
z[vector(1,-2)] is illegal.

An empty subscript selects the entire vector, that is z[] is equivalent to z.

A NULL subscript selects nothing; the result is NULL.

You can also change an element or elements of a vector by assigning to a subscript.
Thus you can change element 4 of z to 11 by z[4] <- 11, or change elements 1 and 3
of z to 17 and 19 by z[vector(1,3)] <- vector(17,19). To change all the elements
except the first to 13, use z[-1] <- 13. If the subscript is NULL or selects no elements,
then the right hand side must be a scalar (single number) or NULL and the variable is
not changed.

Let’s repeat these examples and see what the MacAnova output looks like.

Cmd> z <- vector(1,7,4,9,6); z
(1) 1 7 4 9 6

Cmd> z[] # Note empty set of subscripts
(1) 1 7 4 9 6

Cmd> vector(z,-z)#Note second line of output starts with subscript 6
(1) 1 7 4 9 6
(6) -1 -7 -4 -9 -6

Cmd> z[4]
(1) 9

Cmd> z[vector(1,1,2,2,4,5,3)] # positive subscripts can be repeated
(1) 1 1 7 7 9
(6) 6 4

Cmd> z > 4
(1) F T F T T

Cmd> z[z > 4] # use of logical subscript
(1) 7 9 6

2-17

MacAnova Version 4.07

Cmd> z[vector(-1,-5)]# negative subscripts
(1) 7 4 9

Cmd> a <- z[NULL] ; list(a) # NULL subscript returns NULL
a NULL

Cmd> z[4] <- 11 ; z # change element 4 of z
(1) 1 7 4 11 6

Cmd> z[vector(1,3)] <- vector(17,19); z # change elements 1 and 3
(1) 17 7 19 11 6

Cmd> z[-1] <- 13; z # change all except z[1] to 13
(1) 17 13 13 13 13

Cmd> z[10] # error, 10 is too big
ERROR: subscript out of range near z[10]

Cmd> z[vector(-1,-2,-1)] # error
ERROR: duplicate negative subscripts near z[vector(-1,-2,-1)]

Cmd> nullvar <- z[vector(F,F,F,F,F)]; list(nullvar) # none selected
nullvar NULL

Cmd> nullvar <- z[-run(5)]; list(nullvar) # none selected
nullvar NULL

Cmd> nullvar <- z[z > 20] <- 20; z # no change is made
(1) 17 13 13 13 13

Cmd> list(nullvar) # result of z[z > 20] <- 20 is NULL
nullvar NULL

Cmd> z[z > 20] <- run(2) # right hand side is not scalar or NULL
ERROR: wrong number of replacement items near z[z > 20] <- run(2)

The number in parentheses on the left directly under the Cmd> prompt is the subscript
or index of the first element printed in that row.

On a standard size window, REAL data are normally printed five values per row and
LOGICAL data are printed nine values per row, although this can be changed by
command setoptions() (see Sec. 7.1) or by changing the size of the output window in
a windowed version (Macintosh, Windows or Motif).

2.8.12 rep() and run() Two useful vectors are a vector consisting of several repetitions of
a single value (for example vector(3,3,3,3,3)) and a vector that consists of the
integers 1, 2, ..., n, where n is a positive integer (for example vector(1,2,3,4)). Such
vectors can be created using functions rep() and run().

Cmd> rep(3,5) # 5 copies of 3
(1) 3 3 3 3 3

Cmd> run(4) # numbers 1 through 4
(1) 1 2 3 4

More generally, run() can have two arguments as in run(start,end)), or three
arguments as in run(start,end,d).

2-18

MacAnova Version 4.07

The three argument form run(start,end,d) computes vector(start,start+d,
start+2*d,...). When end ≥ start, d must be positive and the last element com-
puted is the largest value of the form start+k*d that does not exceed end. When end <
start, d must be negative and the last element computed is the smallest value of the
form start+k*d that is not less than end. If (end - start)/d is an integer, that is, d
exactly divides end–start, it is guaranteed that the last element of run(start,end,d)
will be end.

The two argument form run(start,end) assumes a step of 1 (when start ≤ end) or -1
(when start > end).

Cmd> run(3,5)
(1) 3 4 5

Cmd> run(3,4.6,.5) # can replace 4.6 by any x, 4.5 <= x < 5
(1) 3 3.5 4 4.5

Cmd> run(1,-1/3,-1/3)
(1) 1 0.66667 0.33333 0 -0.33333

See Sec. 2.14 for a more complicated way to use rep().

2.8.13 Matrices and matrix() A matrix is a two dimensional array of data elements. In
MacAnova, a matrix can be REAL, LOGICAL, or CHARACTER, although the last is rare.
You can create a matrix directly from data using function matrix(). Its usage is
matrix(data,n), where data is a vector of elements to go into the matrix and n is the
number of rows in the matrix. Obviously n must exactly divide the number of
elements in data. The matrix created is built up, column by column, from the
elements of data .

Cmd> x <- matrix(run(6),3); x # 3 divides 6 = length(run(6))
(1,1) 1 4
(2,1) 2 5
(3,1) 3 6

Cmd> matrix(run(7),3) # 3 does not divide 7 = length(run(7))
ERROR: number of rows must divide length of data

Cmd> list(x) # x has 3 rows and 2 columns
x REAL 3 2

Matrices are printed row by row with (usually) up to five numbers printed per line.
The numbers in parentheses at the beginning of each output line give the matrix
subscripts of the first element of the line. Thus the first element in the row starting
(2,1) is x2,1.

Two useful functions are nrows() and ncols() which compute the number of rows
and columns of the arguments, respectively. length() computes the total number of
elements in a matrix, that is the product of the dimensions.

Cmd> vector(nrows(x),ncols(x),length(x)) # x as above
(1) 3 2 6

You can use keyword labels to add row and column labels.

2-19

MacAnova Version 4.07

Cmd> data <- matrix(vector(17,19,23, 146,112,140),3,\
labels:structure(vector("Tom","Betty","Dick"),\
vector("Age","Weight"))); data

 Age Weight
Tom 17 146
Betty 19 112
Dick 23 140

See Sec. 2.8.16 for information on structure() and Sec. 8.4.1 for more details on labels.
See Sec. 8.9 for information on using keyword notes to attach descriptive notes to a
matrix.

2.8.14 Using subscripts with matrices To access elements of a matrix you must specify
two subscripts, separated by a comma, identifying both the rows and columns to be
selected. For example, x[3,1] is the element in row 3 of column 1 of x, more
mathematically notated x3,1, and x[run(2),2] is the 2 by 1 matrix consisting of rows 1
and 2 of column 2 of x. You can use positive subscripts, logical subscripts, and negative
subscripts just as with vectors (see Sec. 2.8.11)

An empty subscript selects all rows or columns. For example, x[3,] selects row 3 of x
(row 3 and all columns) as a 1 by 2 matrix and x[,] selects all rows and columns, that
is, the entire matrix.

If any subscript is NULL or selects no elements (all False or a complete set of negative
subscripts), the result is NULL.

Elements extracted from matrices are still matrices, that is, are of dimension two. If you
want, you can turn the result into an ordinary vector (variable with one dimension) by
function vector(). For example, vector(x[3,]) is a vector of length 2. However, for
most purposes, there is no need to convert. Generally, a matrix with a single column,
that is a column vector, can be used as argument to a function which expects an
ordinary vector. Conversely, a plain vector of length n is equivalent for most purposes
to a n by 1 matrix. However, a row vector, that is a matrix with a single row, is not
considered equivalent to a vector.

You can change elements of a matrix by assigning to subscripts. Examples: x[,1] <-
vector(7,8,9) replaces column 1 of x; x[3,] <- 7 sets all elements of row 3 to 7.

Cmd> x[3,1] # Note the two subscripts (1,1) at the left
(1,1) 3

Cmd> x[,2] # Select column 2 of x, getting a column vector
(1,1) 4
(2,1) 5
(3,1) 6

Cmd> x[run(2),2] # Select rows 1 and 2 and column 2 of x
(1,1) 4
(2,1) 5

Cmd> x[-run(2),] # Note 2 subscripts in output for this row vector
(1,1) 3 6 Row 3 of x

Cmd> vector(x[-run(2),])# Note this ordinary vector has 1 subscript
(1) 3 6 Row 3 of x as a vector

2-20

MacAnova Version 4.07

Notice the difference in the subscripting above when vector() is used.

Cmd> x[,1] <- -vector(7,8,9); x # change column 1 of x
(1,1) -7 4
(2,1) -8 5
(3,1) -9 6

If any subscript is NULL or selects no elements (all False or a complete set of negative
subscripts), the variable being assigned must be a scalar or NULL and the value of the
assignment is NULL.

Cmd> nullvar <- x[-run(3),] <- 6 ; x # no change, NULL result
(1,1) 1 4
(2,1) 2 5
(3,1) 3 6

Cmd> list(nullvar)
nullvar NULL

Cmd> x[,run(2) < 0] <- run(2)# non-scalar assigned, nothing selected
ERROR: wrong number of replacement items near
x[,run(2) < 0] <- run(2)

2.8.15 Arrays – array() An array is a set of elements arranged in a multidimensional
form. Vectors and matrices are arrays with 1 and 2 dimensions, respectively. You create
an array using function array(data,n1, n2,...) where data is a REAL, LOGICAL, or
CHARACTER vector of values, and n1, n2, ... are positive integers whose product equals
the number of elements in data. This creates an array with dimensions n1, n2, ...
with the elements of data entered into the array with the first subscript varying fastest.
You can also group the dimensions into a vector as in array(data,
vector(n1,n2,...)). If data has length m*n, array(data,m,n) is equivalent to
matrix(data,m) (Sec. 2.8.13).

You can subscript arrays just like matrices, except that you must provide a subscript,
possibly empty, for each dimension, not just two. If there are k dimensions, the
subscripts must have k – 1 commas. If any subscript is LOGICAL and is all False or is a
negative subscript and omits all elements, the result is NULL.

The first argument to array() can itself be a matrix or array. In that case, its elements
are “unravelled” with the first subscript changing fastest, the second next fastest, and so
on. That is array(data,n1,n2,...) is equivalent to array(vector(data),
n1,n2,...).

Cmd> a <- array(run(8),vector(2,2,2)); a # create a 2 by 2 by 2
array
(1,1,1) 1 5
(1,2,1) 3 7
(2,1,1) 2 6
(2,2,1) 4 8

Note there there are now three subscripts labelling each line. These identify the first
element in the line. All the elements in a row have the same first two subscripts with
the third changing. For example, the third row consists of a[2,1,1] and a[2,1,2]
(mathematical notation a211 and a212). Study this example carefully to understand the

2-21

MacAnova Version 4.07

order in which elements are entered into an array and the order in which they are
printed. In building the array, the first subscript changes fastest, the second is second
fastest, and so on, while in printing the last subscript changes fastest, the next to last is
second fastest, and so on.

It is not necessarily an error to use too many subscripts. Any trailing extra empty
subscripts are ignored (Example: when a is a matrix, a[1,2,,,] is equivalent to
a[1,2]). In addition, extra subscripts with value 1 are allowed, although the
dimension of the result will be affected. Thus if a is a 2 by 3 matrix, a[2,,1] is a 1 by 3
by 1 array whose elements correspond to row 2 of a, and a[2,,vector(1,1)] is a 1 by 3
by 2 array containing two copies of row 2 of a.

Cmd> matrix(run(6),3)[3,,,] # extra 2 empty subscripts are ignored
(1,1) 3 6

Cmd> matrix(run(6),3)[3,,1,] # extra subscript 1 and empty subscript
(1,1,1) 3 3 dimensional array
(1,2,1) 6

Cmd> matrix(run(6),3)[3,,,1]
(1,1,1,1) 3 4 dimensional array
(1,2,1,1) 6

This example also illustrates that subscripts may be used directly with the value of
functions that computes a vector, matrix or array.

As with vectors and matrices, you can modify arrays by assigning to subscripted
elements. See Sec. 2.8.11, 2.8.14 for details. Here is an example using array a created
above:

Cmd> a[1,,1] <- 10; a # change a[1,1,1] and a[1,2,1] to 10
(1,1,1) 10 5
(1,2,1) 10 7
(2,1,1) 2 6
(2,2,1) 4 8

Cmd> a[1,-run(2),1] <- 12; a # no change made
(1,1,1) 10 5
(1,2,1) 10 7
(2,1,1) 2 6
(2,2,1) 4 8

You can use keyword labels to add labels to each coordinate of an array. See Sec. 2.8.13
for an example with a matrix (two dimensional array) and Sec. 8.4.1 for details on labels.
See Sec. 8.9 for information on using keyword notes to attach descriptive notes to an
array.

If x is an array, length(x) computes the number of elements in x, that is the product
of the dimensions.

Function dim() returns the list of dimensions of a vector, matrix, or array as a vector.

Function ndims() returns the number of dimensions of a vector, matrix, or array.

Cmd> length(a)
(1) 8

2-22

MacAnova Version 4.07

Cmd> print(dim(run(5)),dim(matrix(run(10),2)),\
dim(array(run(24),vector(2,3,4))))
NUMBER:
(1) 5 Vector of length 5
VECTOR:
(1) 2 5 2 by 5 matrix
VECTOR:
(1) 2 3 4 2 by 3 by 4 array

Cmd> vector(ndims(run(5)),ndims(matrix(run(10),2)),\
ndims(array(run(24),vector(2,3,4))))
(1) 1 2 3

2.8.16 Structures – structure() Variables may also be structures, labelled STRUC in
output from list(). A structure consists of one or more named components, each of
which may be of any type – REAL, CHARACTER, LOGICAL, GRAPH, NULL or even a
structure, and of any shape – vector, scalar, matrix, or array. Typically the components
are related in some way. One example is the output of function describe() (see Sec.
2.12.1), a structure with 8 components, n, min, q1 (lower quartile), median, q3 (upper
quartile), max, mean, and var, all referring to the same data.

Structures are useful with “ragged” data sets, which cannot be neatly put into rows and
columns form. For instance if you have 10 measurements made on Saturday, 5 made
on Sunday, and 15 made on Monday, you can create a structure with three components,
each of which is a vector, but of differing lengths. Here is what it might look like.

Cmd> temperatures
component: Saturday
(1) 65 71 75 86 91
(6) 93 89 78 69 59
component: Sunday
(1) 61 73 85 83 81
component: Monday
 (1) 51 65 71 78 83
 (6) 84 85 84 81 75
(11) 69 64 59 49

Structures are also useful when you want to keep your data in some self-describing
form. A data set, let's call it trees, could be stored as a structure with three
components called info, varnames, and data. The info component would be a
CHARACTER variable giving a description of the data and its source; the data component
would be a REAL matrix containing the actual data, one row per tree; and the names
component would contain the names of the variables recorded for each tree (columns
in the data component matrix).

2-23

MacAnova Version 4.07

Cmd> trees
component: info
(1) "Made up data on 6 trees"
component: varnames
(1) "Species"
(2) "DBH"
component: data
(1,1) 1 5.6
(2,1) 1 4.5
(3,1) 1 8.9
(4,1) 2 7.3
(5,1) 2 9.9
(6,1) 2 11.3

See Sec. 8.9 for another method of having self-describing data.

You can extract a component of a structure by name using the dollar sign $ or by
number , using square brackets ([...]) in the manner of subscripts.

Cmd> temperatures$Sunday # or temperatures[2]
(1) 61 73 85 83 81

Cmd> trees[3][run(2),] # or trees$data[run(2),]
(1,1) 1 5.6
(2,1) 1 4.5

In this example, temperatures$Sunday refers to the named component Sunday of
structure temperatures, and trees[3] refers to the third component (data) of
trees, from which, using subscripts, we extract the first 2 rows.

You can extract several components using positive, logical or negative subscript
vectors.

Cmd> trees[run(2)] # or trees[-3], extract first two components
component: info
(1) "Made up data on 6 trees"
component: varnames
(1) "Species"
(2) "DBH"

Just as when used with vectors, matrices or arrays, if the subscript selects no
components (is NULL or all False or a complete set of negative subscripts), the result is
NULL.

Cmd> nullvar <- trees[-run(3)]; list(nullvar) #or trees[rep(F,3)]
a NULL

As mentioned in Sec. 2.8.10, when a structure is an argument to vector() all the
elements of all the components are combined into a single vector.

Cmd> vector(temperatures)
 (1) 65 71 75 86 91
 (6) 93 89 78 69 59
(11) 61 73 85 83 81
(16) 51 65 71 78 83
(21) 84 85 84 81 75
(26) 69 64 59 49

2-24

MacAnova Version 4.07

Several MacAnova functions, including describe(), split(), coefs(), secoefs(),
tabs(), and regpred() compute structures as their values. Functions structure(),
strconcat(), changestr() and split() allow you to create or modify structures
directly. For example, the two structures above were created by

Cmd> temperatures <- structure(Saturday:vector(65,71,75,86,91,93,\
89,78,69,59),Sunday:vector(61,73,85,83,81),\
Monday:vector(51,65,71,78,83,84,85,84,81,75,69,64,59,49))

Cmd> trees <- structure(info:"Made up data on 6 trees",\
 varnames:vector("Species","DBH"),\
 data:matrix(vector(1,1,1,2,2,2,5.6,4.5,8.9,7.3,9.9,11.3),6))

See Sec. 9.1 – 9.1.3 for more information about structures.

2.8.17 Matrix subscripts Sometimes using ordinary subscripts to extract several elements
from a matrix or array is difficult and takes lots of steps. You may be able to use a single
“subscript” which is itself a matrix. This is best explained starting with an example.
Suppose you wish to select elements a[1,1,1], a[2,2,2] of 3-dimensional array a

(Sec. 2.8.15). Then, if i is the 2 by 3 matrix

1 1 1

2 2 2


 


  , a[i] extracts exactly these

elements as a vector of length 2 = nrows(i). Each row of i must consist of a complete
set of positive integer subscripts specifying an element of a, and one element is
extracted for each row of i. More generally, when a is a k -dimensional array and i is
a m by k matrix with each row a set of legal subscripts for a, then a[i] is the
following vector of length m :

vector(a[i[1,1],i[1,2],...,i[1,k]],a[i[2,1],i[2,2],...,i[2,k]],
...,a[i[m,1],i[m,2],...,i[m,k]]).

Cmd> a <- matrix(vector(11,21,31,12,22,32,13,23,33,14,24,34),3);a
(1,1) 11 12 13 14
(2,1) 21 22 23 24
(3,1) 31 32 33 34

Cmd> i <- matrix(vector(1,2,3, 1,2,3),3);i
(1,1) 1 1
(2,1) 2 2
(3,1) 3 3

Cmd> a[i] # same as diag(a); see Sec. 2.10.6
(1) 11 22 33

Cmd> i <- matrix(vector(1,2,3, 4,3,2),3); i
(1,1) 1 4
(2,1) 2 3
(3,1) 3 2

Cmd> a[i] # anti-diagonal elements of a
(1) 14 23 32

Cmd> vector(a[1,4],a[2,3],a[3,2]) # same thing
(1) 14 23 32

2-25

MacAnova Version 4.07

2.9 Getting help – help() and usage() Extensive online help is provided through
commands help() and usage(). The former provides extensive (some have said too
extensive) help with all aspects of MacAnova while the latter usually provides a one or
two line outline of usage. Simply typing help() gets you brief summary of how to get
more help.

Cmd> help()
Type 'help(foo)' for help on topic foo
Type 'usage(foo)' for very brief information on topic foo
Type 'help("*")' for a list of all topics
Type 'help(key:"?")' for a list of keys to topics
Type 'help(help)' for more information about help().
Type 'help(usage)' for more information about usage().
Some general topics are
 arithmetic glm macanova number
 assignment graphs macros options
 clipboard graph_files macro_files quitting
 comments graph_keys macro_syntax structures
 complex graph_ticks matrices subscripts
 customize keywords memory syntax
 data_files labels models time_series
 design launching notes variables
 files logic NULL vectors

On versions using windows (Macintosh, Windows or Motif), selecting Help from the
 or Help menu is equivalent to typing help().

usage(topic) gives a very abbreviated summary of how to use a function such as
anova(), while help(topic) gives complete help.

Cmd> usage(makecols)
makecols(x,var1,var2, ...), where x is a REAL matrix, var1, var2, ...
 unquoted variable names
makecols(x,vector("var1","var2", ...))

Cmd> help(makecols)
makecols(x,name1,...,namek), where x is a REAL matrix and name1, ...,
namek are unquoted names, creates new REAL vectors name1, name2,
... from the columns of x. Thus makecols is a sort of inverse to
hconcat().

makecols(x,vector("name1","name2",...,"namek")) is an alternative

***** Interrupt ***** Interrupt key hit to stop output

To get information on several topics, include them all in the argument list as in
usage(anova,coefs) or help(regress,resid).

You must quote names of the special syntax words for, while, break, breakall, if,
else, and elseif (help("while","for") (see Sec. 9.2). Similarly, you must quote
any topic name longer than 12 characters (help("transformations")).

One defect of help() in windowed versions (Macintosh, Windows, Motif) is that when
help for a topic is long, all of it is printed at once so that you have to scroll back to see
the start. If you include keyword phrase scrollback:T as an argument to help() the

2-26

MacAnova Version 4.07

scrolling back is done automatically. See also Sec. 8.1.3 for information on option
scrollback which enables such scrolling back for any command producing long
output.

On the Macintosh, when a function or topic name has been selected in the command
window by double clicking on it, Help from the File menu or H will obtain help on
that topic.

2.9.1 Using the help() wild card characters – “*” and “?” When you can’t remember the
full name of a command but know or are able to guess part of it, you can use a pattern
in the form of a quoted string containing one or more of the “wild card” characters “*”
and “?”. All topics whose names are matched by the pattern are listed. A “*” matches
any set of 0 or more consecutive letters and a “?” matches any single letter. For
example, help("res*") lists all topic names beginning with res, help("*line*")
lists all topic names containing line, and help("*i*e*t") lists all topic names
containing i and e, in that order, and ending with t (assignment and lineplot, for
example). help("*pl?t") lists all topic names whose last 4 characters or p, l, any
character, and t respectively (plot, lineplot and split, for example).

Cmd> help("res*") # find all topics starting with "res"
resid restore resvsindex resvsrankits resvsyhat
For help on topic foo, enter help(foo) or help("foo")

Cmd> help("*plot*") # find all topics containing "plot"
boxplot colplot fchplot flineplot frowplot plot showplot
chplot fboxplot fcolplot fplot lineplot rowplot vboxplot
For help on topic foo, enter help(foo) or help("foo")

Cmd> help("*pl?t") # like *plot but also lists split
boxplot fboxplot flineplot lineplot showplot
chplot fchplot fplot plot split
colplot fcolplot frowplot rowplot vboxplot
For help on topic foo, enter help(foo) or help("foo")

Cmd> help("c*o*e")
console convolve customize

Cmd> help("???????????") # all topics with 11 letter names
adddatapath arginfo_fun dos_windows graph_ticks time_series
appendnotes attachnotes graph_files macro_files
For help on topic foo, enter help(foo) or help("foo")

If only one topic matches the pattern, the full help is listed.

help("*") produces a list of all the more than 300 help topics. These include all
commands and functions, and many more general topics.

2.9.2 Using help() index keys If you haven’t a clue as to topics you might be interested
in, you can get lists of topics associated with any one of up to 32 index “keys”. To get a
list of topics associated with a key, say Regression, type help(key:"regression").
help(key:"reg") would do just as well since you need only use as many letters as are
necessary to identify the full key, and upper and lower case letters are considered the
same. To get a list of all the index keys, type help(key:"?").

2-27

MacAnova Version 4.07

Cmd> help(key:"regression") # or help(key:"reg")
The following help topics concern Regression
coefs glmfit poisson regpred resvsindex screen
design glmpred power2 regress resvsrankits secoefs
glm logistic probit regs resvsyhat wtregress
glm_keys models regcoefs resid robust yhat
For help on topic foo, enter help(foo) or help("foo")

Cmd> help(key:"?") # get list of all keys
Type 'help(key:"heading")', where heading is in following list:
ANOVA General Plotting
Categorical Data Input Probabilities
CHARACTER Variables LOGICAL Variables Random Numbers
Combining Variables NULL Variables Regression
Comparisons Macros Residuals
Complex Arithmetic Matrix Algebra Structures
Confidence Intervals Missing Values Syntax
Control Multivariate Analysis Time Series
Descriptive Statistics Operations Transformations
Files Ordering Variables
GLM Output

The help information is normally read from a file, MacAnova.hlp, although you can
read from a alternative file using keyword file (see Sec. 8.6).

2.9.3 Getting help on macros – macrousage() You can use help() and usage() to get
information on all the standard pre-defined macros such as boxcox and colplot.
Other macros, possibly ones you have written yourself (see Sec. 9.3) or ones you have
read from a file (Sec. 7.5) will usually not have help information. However, a
thoughtful programmer will always include one or more comment lines (lines that
start with "#") in a macro that describe how it is used. If mymacro is the name of a
macro, macrousage(mymacro) will print all such lines, if any. You can include several
macros in the argument list.

Cmd> macrousage(boxcox,readcols)
boxcox:
 # usage: boxcox(x,power), x a vector or matrix, power a scalar
readcols:
 # readcols(filename,name1,...,namek [,echo:T or F]), only filename

quoted

 An alternative usage is, for example, macrousage(vector("boxcox",
"readcols")).

2.10 Operations with vectors, matrices, arrays and structures You can use all the
arithmetic and logical operations with arbitrarily shaped variables, and indeed, with
structures, subject to certain limitations. In addition, MacAnova implements many
standard matrix operations.

2.10.1 Transformations If the argument to any of the one argument mathematical
functions listed in Sec. 2.8.6 or the first argument to round(x,p) or rational(x,a,
b) is a vector, matrix, or array the result is a variable of the same size and shape, with

2-28

MacAnova Version 4.07

the function applied to each element of the argument.

Cmd> sqrt(vector(2,4,7))
(1) 1.4142 2 2.6458

Cmd> log10(matrix(run(6),2))
(1,1) 0 0.47712 0.69897
(2,1) 0.30103 0.60206 0.77815

If the argument is a structure with REAL components, the result is also a structure with
the same pattern of components.

Cmd> sqrt(temperatures)
component: Saturday
(1) 8.0623 8.4261 8.6603 9.2736 9.5394
(6) 9.6437 9.434 8.8318 8.3066 7.6811
component: Sunday
(1) 7.8102 8.544 9.2195 9.1104 9
component: Monday
 (1) 7.1414 8.0623 8.4261 8.8318 9.1104
 (6) 9.1652 9.2195 9.1652 9 8.6603
(11) 8.3066 8 7.6811 7

For the two argument functions, atan(x,y) and hypot(x,y), x and y must be the
same size and shape except one may have extra dimensions with length 1. If x and y
are structures, their matching components must be the same size and shape except for
extra dimensions of length 1.

2.10.2 Arithmetic with vectors, matrices and arrays Vectors, matrices, and arrays can be
used in arithmetic expressions, just like individual numbers. Generally, the sizes and
shapes of the variables on each side of an operator must match but there are some
important exceptions.

Two REAL or LOGICAL variables x and y may be used in an expression x op y, where
op is one of +, -, *, /, ^ , or %%, as long as one of the following conditions is true:

(i) Both x and y have exactly the same dimensions. Each element of the result is
computed by combining the corresponding elements of x and y using op.

(ii) One of x or y is a scalar, that is, has length 1. The scalar is combined with each
element of the other argument.

(iii) One of x or y is a m by n matrix and the other is a vector of length m or a m
by 1 matrix, that is a column vector of length m . The vector is combined with each
co lumn of the matrix resulting in new matrix of the same shape.

(iv) One of x or y is a m by n matrix and the other is a 1 by n matrix, that is, a row
vector of length n . The row vector is combined with each row of the matrix
resulting in new matrix of the same shape.

(v) One of x or y is a vector or column vector of length m and the other is a row
vector of length n . Each element of the column vector is combined with each
element of the row vector to form a m by n matrix.

As usual, if an operand is LOGICAL, True is interpreted as 1 and False as 0.

2-29

MacAnova Version 4.07

Rule (i) with operators + and – represents the usual mathematical definition of matrix
addition and subtraction; rule (ii) with operator * represents scalar multiplication.
Except for these cases the operations are not completely standard mathematical matrix
operations but are still extremely useful. Note that * represents elementwise
multiplication (sometimes called the Hadamard product in case (i)), not matrix
multiplication (see Sec. 2.10.4).

Rules (i) – (v) also apply to comparison operators ==, !=, <, >, <=, and >=, logical
operators || and &&, and bitwise operators %&, %| and %^ (Sec. 2.8.4 and 2.8.5).

Cmd> x <- matrix(run(6),3); x
(1,1) 1 4
(2,1) 2 5
(3,1) 3 6

Cmd> x*5 # Rule (ii), op = '+' ; 5*x would yield the same
(1,1) 5 20 matrix multiplied by scalar
(2,1) 10 25
(3,1) 15 30

Cmd> 2^x # Rule (ii), op = '^'
(1,1) 2 16
(2,1) 4 32
(3,1) 8 64

Cmd> x + vector(6,5,4,3,2,1) #length of vector ≠ number of rows of x
ERROR: dimension mismatch for + near
x + vector(6,5,4,3,2,1) #length of vector ≠ number of rows of x
Cmd> vector(x) + vector(1,1,2,2,3,3)# Rule (i), op = '+'
(1) 2 3 5 6 8
(6) 9

Cmd> x <= 4 # Rule (ii), op = '<=' (Sec. 2.8.4)
(1,1) T T
(2,1) T F
(3,1) T F

Cmd> x + vector(1,3,5) # Rule (iii), op = '+'
(1,1) 2 5
(2,1) 5 8
(3,1) 8 11

Cmd> x == matrix(vector(2,4),1)#Rule (iv), op = '==' (Sec. 2.8.4)
(1,1) F T
(2,1) T F
(3,1) F F

Cmd> run(3) %& vector(1, 2)'#Rule (v), op = '%&' (Sec. 2.8.5)
(1,1) 1 0
(2,1) 0 2
(3,1) 1 2

2.10.3 Matrix transposition If x is an m by n matrix with elements x[i,j], x'
computes the transpose of x, that is the matrix y with elements y[i,j] = x[j,i].

2-30

MacAnova Version 4.07

Cmd> print(x, transposex:x')
x:
(1,1) 1 4
(2,1) 2 5
(3,1) 3 6
transposex:
(1,1) 1 2 3
(2,1) 4 5 6

When x is a vector of length m , say run(m), then x' is a 1 by m matrix, a row vector.
If x is a row vector of length m , that is a 1 by m matrix, then x' is a m by 1 matrix, a
column vector. Thus run(5)'' is a 5 by 1 matrix.

If x is an array, x' is an array with the same number of dimensions obtained by
reversing the order of the dimensions.

For compatibility with earlier versions of MacAnova, t(x) can be used instead of x' to
compute a transpose.

2.10.4 Matrix multiplication If x and y are REAL matrices with dimensions that
conform to each other, that is ncols(x) = nrows(y), then you can compute their
matrix product by x %*% y. It is an error if either x or y contain any MISSING values.

There are two other matrix multiplication operators – %c% and %C%. x %c% y is
equivalent to x' %*% y and x %C% y is equivalent to x %*% y'. For %c%, nrows(x) =
nrows(y) is required and for %C%, ncols(x) = ncols(y) is required.

Cmd> y <- matrix(vector(1,3,2,4),2);x <- matrix(vector(4,1,2,3),2)

Cmd> print(x,y)
x:
(1,1) 4 2
(2,1) 1 3
y:
(1,1) 1 2
(2,1) 3 4

Cmd> print(x %*% y, x %c% y, x %C% y) # all three products
MATRIX:
(1,1) 10 16
(2,1) 10 14
MATRIX:
(1,1) 7 12
(2,1) 11 16
MATRIX:
(1,1) 8 20
(2,1) 7 15

Cmd> matrix(run(4),2) %*% rep(10,5)
ERROR: Dimension mismatch: 2 by 2 %*% 5 by 1 near
matrix(run(4),2) %*% rep(10,5)

2-31

MacAnova Version 4.07

2.10.5 Matrix inversion and linear equation solving If A is a square matrix and B is
the same size and satisfies A B = I, where I is the identity matrix (1’s down the
diagonal and 0’s elsewhere), then B is the inverse of A and is usually notated A -1.
You can compute A -1 by ainv <- solve(a). If the inverse does not exist (A is
singular or non-invertible), an error message is printed.

Cmd> a <- matrix(run(4),2); ainv <- solve(a)

Cmd> print(a, ainv)
a:
(1,1) 1 3
(2,1) 2 4
ainv:
(1,1) -2 1.5
(2,1) 1 -0.5

Cmd> a %*% ainv # should be the identity matrix
(1,1) 1 0
(2,1) 0 1

Cmd> solve(matrix(vector(1,2, 2,4),2))
ERROR: argument to solve() is singular

Cmd> solve(matrix(vector(27.7,7.4,2.6,23.5,23.8,23.4),3))#3 by 2 arg
ERROR: argument to solve() not square matrix

Because computer arithmetic is not always exact, it is not guaranteed that solve() will
actually detect that a matrix is singular.

If a is an invertible n by n matrix, and b is a n by k matrix, a %\% b computes the
solution x to the set of linear equations summarized by a %*% x = b. That is, a %*%
(a %\% b) should be the same as b except for rounding error. This is mathematically,
but not computationally equivalent to solve(a) %*% b. The expression a %\% b
might be interpreted as “dividing” b by a on the left.

Cmd> b <- matrix(vector(5,-7,1, 2),2); b
(1,1) 5 1
(2,1) -7 2

Cmd> x <- a %\% b

Cmd> print(x, aTimesx:a %*% x)
x:
(1,1) -20.5 1
(2,1) 8.5 0
aTimesx: a %*% x = b
(1,1) 5 1
(2,1) -7 2

solve(a,b) does exactly the same computation as a %\% b.

Cmd> solve(a, b)
(1,1) -20.5 1
(2,1) 8.5 0

Similarly, if a is an invertible n by n matrix, and c is a k by n matrix, c %/% a
computes the solution x to the set of linear equations summarized by x %*% a = b.

2-32

MacAnova Version 4.07

That is, (c %/% a) %*% a should be the same as c except for rounding error. c %/% a
is mathematically but not computationally equivalent to c %*% solve(a). The
expression c %/% a might be interpreted as “dividing” c by a on the right.

Cmd> c <- vector(1, 1)'; x <- c %/% a

Cmd> print(x, xTimesa:x %*% a)
x:
(1,1) -1 1 Solution to x %*% a = c
xTimesa:
(1,1) 1 1 x %*% a is indeed c

rsolve(a,c) does exactly the same computation as c %/% a.

Cmd> rsolve(a,c)
(1,1) -1 1

2.10.6 Other matrix functions – det(), trace(), hconcat(), vconcat(), diag(), dmat(),
nrows(), ncols(), select(), reverse() You can use det() and trace() to compute the
determinant and trace (sum of diagonal elements) of a square matrix.

Cmd> b <- matrix(vector(2891,1851,1302,2139),2); b
(1,1) 2891 1302
(2,1) 1851 2139

Cmd> det(b) # b[1,1]*b[2,2] - b[1,2]*b[2,1]
(1) 3.7738e+06

Cmd> det(b,mantexp:T) # base 10 mantissa and exponent form
(1) 3.7738 6 Vector of length 2

Cmd> trace(b) # b[1,1] + b[2,2]
(1) 5030

Especially in multivariate analysis you may want to combine two or more matrices into
a larger matrix. You can do this in MacAnova using functions hconcat() (horizontal
concatenation) and vconcat() (vertical concatenation).

Cmd> a1<-matrix(run(6),3);a2<-vector(1,0,-1);a3<-matrix(rep(1,6),3)

Cmd> print(a1,a2,a3)
a1:
(1,1) 1 4
(2,1) 2 5
(3,1) 3 6
a2:
(1) 1 0 -1
a3:
(1,1) 1 1
(2,1) 1 1
(3,1) 1 1

Cmd> hconcat(a1,a2,a3)
(1,1) 1 4 1 1 1
(2,1) 2 5 0 1 1
(3,1) 3 6 -1 1 1

2-33

MacAnova Version 4.07

Cmd> vconcat(a1,a3)
(1,1) 1 4
(2,1) 2 5
(3,1) 3 6
(4,1) 1 1
(5,1) 1 1
(6,1) 1 1

You can extract the diagonal elements of a matrix using function diag(). When a is a
matrix, diag(a) returns a vector containing the diagonal elements of a, that is
vector(a[1,1], a[2,2], …). Argument a can be a REAL, LOGICAL or CHARACTER
matrix and need not be square. If a is not square, the length of diag(a) is
min(nrows(a),ncols(a)).

Cmd> diag(a1) # same as vector(a1[1,1],a1[2,2])
(1) 1 5

If you want just one element from each row of a matrix, you can use select(). When
x is a matrix with m rows and n columns, and k is a vector with m of positive
integers ≤ n , then select(k,x) returns vector(x[1,k[1]], x[2,k[2]],...,
x[m,k[m]]). When m 1 = nrows(k) < m , only elements from the first m 1 of x are
selected.

Cmd> select(vector(1,3),a1') # or vector(a1'[vector(1,3),])
(1) 1 6

When x is a square matrix, select(run(nrows(x),x) selects the diagonal elements
and is equivalent to diag(x). select(run(nrows(x),1),x) selects the cross diagonal
vector(x[1,n],x[2,n-1], ..., x[n,1]).

Argument k can also be a LOGICAL vector, with True and False interpreted as 2 and 1,
respectively. If x has two columns, select() can be used to select column 1 or column
2 of x depending on whether k[i] is False or True.

Cmd> select(vector(T,F,F),a1) # same as select(vector(2,1,1),a1)
(1) 4 2 3.

You can create a diagonal matrix, that is with all off-diagonal elements 0, using
function dmat(). This has two usages, dmat(vec) where vec is a vector, and
dmat(n,val) where n is a positive integer and val is a scalar (single data element).
Arguments vec or val can be REAL, LOGICAL or CHARACTER. Both usages return a
square matrix of the same type as vec or val, all of whose off diagonal elements are 0 ,
False or "" depending on whether vec or val is REAL, LOGICAL or CHARACTER.
dmat(vec) is n by n where n = length(vec), and has diagonal elements taken from
vec. dmat(n,val) is equivalent to dmat(rep(val,n)), that is, the result is n by n,
with the diagonal consisting of n copies of val. In particular, dmat(n,1) computes the
n by n identity matrix.

Cmd> b <- matrix(run(9)^2,3); b
(1,1) 1 16 49
(2,1) 4 25 64
(3,1) 9 36 81

2-34

MacAnova Version 4.07

Cmd> diag(b)
(1) 1 25 81

Cmd> dmat(diag(b))
(1,1) 1 0 0
(2,1) 0 25 0
(3,1) 0 0 81

Cmd> dmat(2,7)
(1,1) 7 0
(2,1) 0 7

You can reverse the order of the rows of a matrix or vector using reverse().

Cmd> reverse(matrix(run(12),3)) # reverses order of rows
(1,1) 3 6 9 12
(2,1) 2 5 8 11
(3,1) 1 4 7 10

2.11 Reading data from a file Although you can type small data sets directly into
MacAnova using vector() (Sec. 2.8.10) and matrix() (Sec. 2.8.13), it is often more
convenient to read data from a file on your hard or floppy disk. The file might have
been created in a word processor such as Microsoft Word, a text editor such as Edit in
DOS, or by a spread sheet or data base program.

MacAnova can read data only from plain text files (type TEXT on the Macintosh). A
plain text file (sometimes called an ASCII file) is one with no additional information
such as font or point size. Hence, if you use a word processor to create or edit data files
to be read by MacAnova, it is essential that they be saved as Text or ASCII files. In
some programs such as Microsoft Word, you may have to click on a File Format
button to display choices; in others the options may be displayed in the dialog box
brought up by Save or Save As…. If you do not choose a Text format, MacAnova will
probably not be able to read a file created in a word processor.

The MacAnova functions for reading data from a plain text file are vecread() and
matread(). In addition there are two pre-defined macros, readcols and getdata.

Commands which read a file must have the file name as their first argument. This
must be a quoted string or CHARACTER variable giving the name of the data file. In the
windowed versions (Macintosh, Windows and Motif), when the file name is "", that is,
it consists of two adjacent quotation marks, you are presented with a dialog box with a
scrolling list of files from which you can select the file.

All the commands which read from a text file, including vecread(), matread() and
macroread() can also “read” from MacAnova CHARACTER variables using keyword
phrase string:CharVar as first argument instead of the file name. See Sec. 8.3.2 for
details.

2-35

	2.1 Getting Started
	2.2 Quitting
	2.3 Functions and macros
	2.4 Variables
	2.5 Data types
	2.6 Shapes of variables
	2.7 Missing values
	2.8 Introduction to syntax
	2.8.1 Spaces and comments
	2.8.2 Keywords
	2.8.3 Arithmetic expressions
	2.8.4 Comparison and logical operators
	2.8.5 Bit-wise operations
	2.8.6 Mathematical functions
	2.8.7 Assignment of values
	2.8.8 Arithmetic assignment
	2.8.9 print(), write(), list(), listbrief() and delete()
	2.8.10 Vectors and vector()
	2.8.11 Subscripting vectors
	2.8.12 rep() and run()
	2.8.13 Matrices and matrix()
	2.8.14 Subscripting matrices
	2.8.15 Arrays – array()
	2.8.16 Structures – structure()
	2.8.17 Matrix subscripts

	2.9 Getting help – help()
	2.9.1 help() wild card characters
	2.9.2 help() index keys
	2.9.3 Getting help on macros

	2.10 Operations with vectors, matrices, arrays and structures
	2.10.1 Transformations
	2.10.2 Arithmetic with vectors, matrices and arrays
	2.10.3 Matrix transposition
	2.10.4 Matrix multiplication
	2.10.5 Matrix inversion
	2.10.6 Other matrix functions
	2.11 Reading data from a file

