
This file consists of Chapter 3 of MacAnova User’s Guide by Gary W. Oehlert and
Christopher Bingham, issued as Technical Report Number 617, School of Statistics,
University of Minnesota, revised August 1998, describing Version 4.07 of MacAnova.

This manual is Copyright © 1998 Gary W. Oehlert and Christopher Bingham, all rights
reserved.

Fonts used in this manual are Palatino, Courier, and Symbol.

For information concerning MacAnova, write University of Minnesota, Department of
Applied Statistics, 352 Classroom Office Building, 1994 Buford Avenue, St. Paul, MN
55108-6042.

3-0

kb
This is Chapter 3 of the MacAnova Users' Guide for MacAnova version 4.06 or later. The complete Users' Guide is available at
 http://www.stat.umn.edu/~gary/macanova/documentationug.html

Please notify the authors (kb@stat.umn.edu or gary@stat.umn.edu) of any inaccuracies or typographical errors. What may appear as bold face Greek symbols should be italic.

List of PDF files making up manual
 PDF File PDF File
Contents mancntnt.pdf Chapter 8 manchp08.pdf
Preface manprfac.pdf Chapter 9 manchp09.pdf
Chapter 1 manchp01.pdf Chapter 10 manchp10.pdf
Chapter 2 (a) manchp2a.pdf Chapter 11 manchp11.pdf
Chapter 2 (b) manchp2b.pdf Appendix A manapdxa.pdf
Chapter 3 manchp03.pdf Appendix B manapdxb.pdf
Chapter 4 manchp04.pdf Appendix C manapdxc.pdf
Chapter 5 manchp05.pdf Appendix D manapdxd.pdf
Chapter 6 manchp06.pdf Appendix E manapdxe.pdf
Chapter 7 manchp07.pdf Appendix F manapdxf.pdf

MacAnova Version 4.07

3. Linear Models

3.1 Introduction to GLM commands One of MacAnova’s greatest strengths is the
variety of commands that perform linear model related computations. Some of the
more important are the following:

GLM Command Analysis performed

anova() Unweighted and weighted analysis of variance

manova() Unweighted and weighted multivariate analysis of variance

regress() Unweighted and weighted simple linear and multiple regression

screen() Multiple regression model selection

robust() Robust regression and ANOVA

logistic() Logistic regression

probit() Probit regression

poisson() Poisson regression and log linear model fitting

glmfit() Generalized linear model fitting with a variety of distributions
and “links”

In addition to these, fastanova() and ipf() are alternatives to anova() and
poisson(), respectively, that may be faster in some circumstances.

Some of these commands, such as regress(), anova() and manova(), estimate or fit
linear models ; others such as poisson() and logistic() fit generalized linear
models (GLM’s). For convenience, we refer to all these commands as GLM
commands , even those that fit truly linear models.

Chapter 10 is almost entirely devoted to examples of the use of GLM commands. Hence
there are relatively few examples in this chapter.

All GLM commands have certain features in common. Chief among these is the
specification of a linear model by a quoted string or CHARACTER variable such as
"yield=block+variety+tillage+variety.tillage" or "y=x1+x2+x3+x4". See
Sec. 3. 4.

Another commonality is that all GLM commands create certain variables as side-
effects (Sec. 3.6). One of the more important of these is the CHARACTER variable
STRMODEL whose value is the model specification used in the most recent GLM
command. When you don’t specify a model, GLM commands use the model specified
by STRMODEL if it exists.

Other side effect variables created by most GLM commands are SS (sums of squares or
deviances for each term), DF (degrees of freedom), RESIDUALS (response – fitted values)
and HII (leverages).

Before a GLM command starts its computations, any side effect variables left over from
previous linear model commands are deleted. If youwant to retain them, assign them

3-1

MacAnova Version 4.07

to new variables (residuals1 <- RESIDUALS) before running another GLM com-
mand.

In addition, there are several keyword phrases some or all the GLM commands have in
common. See Sec. 3.7 for a complete list. Two particularly useful keyword phrases are
print:F and silent:T.

When you use keyword phrase print:F as an argument to any GLM command except
screen(), most of the usual output is suppressed. When you use silent:T, all
output except error messages is suppressed. However, in both cases the side effect
variables such as RESIDUALS are computed. These keyword phrases can be useful when
you want to run a GLM command just to compute the side effect variables, and don’t
want to see the usual output, perhaps because you have seen it before.

The MacAnova interface all these procedures have in common reflects an underlying
similarity among GLM models. We begin with a discussion of regression and ANOVA,
the two most important methodologies; the other GLM models are postponed to the
end of this section.

3.2 Response and independent variables in linear models A linear model, including
regression and ANOVA, always has a response variable (also called a dependent
variable or target variable). We refer to the response variable symbolically as Y. Y is
assumed to be the sum of a predictable part and an unpredictable part or random
error. The essence of a linear model is that the predictable part is a linear combination
of one or more other variables (sometimes called the independent variables, predictor
variables or carrier variables) which we refer to here collectively as X-variables.

The random error is always assumed to have zero mean and, in the most common
case, to have constant variance. This implies that the predictable part is the expectation
E[Y]. For the usual regression and ANOVA hypothesis tests and confidence
procedures to be exact, normal errors are required.

By a linear combination of X-variables X1 ,X2 ,..., Xk , we mean that the predictable part
of Y (expectation of Y) has the form

E[Y] = β0 + β1X1 +β 2X2 +... +βkXk or E[Y] = β1X1 +β 2X2 +... +βkXk

The first form can be included in the second, if we define X1 to be the variable with 1 as
its value for every case. The β’s are referred to as linear model coefficients.
Coefficient β0 is the constant term which is often called theintercept and sometimes
the other βj’s are called slopes. The random error is simply

e = Y – (β0 + β1X1 +β 2X2 +... +βkXk)

Data consist of n cases, with values for Y and the X-variables for each case.
regress() and anova() fit a linear model to data using the least squares criterion.
This amounts to finding values for the coefficients βj of the X-variables so that

Yi − β0 − β1Xi1 − β2Xi 2 −... −βkXik()
i

∑ 2
,

the sum of squared differences between the observed Y values and the estimated
predictable part, is as small as possible. For weighted analyses, with weights {W i},

3-2

MacAnova Version 4.07

W i Yi − β0 − β1Xi1 − β2Xi 2 −... −βkXik()

i
∑ 2

is minimized. This is appropriate when the variance of the random error for case i is
of the form σ2/W i, that is the weights are inversely proportional to the error
variances.

Generalized linear models such as logistic or Poisson regression also involve a fit based
on a linear combination of X-variables, but the expectation of the dependent variable is
a (usually) non-linear function of the linear combination. See Chapter 4.

3.3 Variates and factors – factor() and makefactor Although both regression and
ANOVA are based on linear models, they differ in the type of X-variables used. In
regression, the X-variables are usually directly measured or observed numerical
variables such as temperature, income or age. In MacAnova, such variables are called
variates. In ANOVA, on the other hand, the X-variables code for the levels of
categories, for example, treatment groups or the blocks in a designed experiment. They
may also code the combined levels of two or more categories. In MacAnova, this
distinction is reflected in the fact that for regress(), we specify the actual X-variables
to be used, while in anova(), we specify variables containing the category levels as
positive integers and leave it to MacAnova to figure out how to code the levels in one
or more X-variables. Typically to code k levels of a category, MacAnova uses k
internally generated X-variables. We call variables that specify category levels factors
to distinguish them from variates.

Since factors and variates are both REAL vectors, function factor() is used to mark a
vector so that most GLM commands will consider it to be a factor. That is, a REAL
vector is a variate unless it is specifically declared to be a factor by factor() (or by
macro makefactor; see below). For example, suppose in a medical experiment
involving 7 patients with 4 treatments, A, B, C, D and E, the treatments were assigned
as follows:

Patient 1 2 3 4 5 6 7

Treatment A D D C C D B

We create a factor treatment encoding this information by

Cmd> levels <- vector(1,4,4,3,3,4,2) #1=A,2=B,3=C,4=D

Cmd> treatment <- factor(levels)

Cmd> list(levels,treatment) # only treatment is a factor
levels REAL 7
treatment REAL 7 FACTOR with 4 levels

In most subsequent use of treatment in a GLM model such as "sleep=treatment", it
will be recognized as specifying levels of a factor. However, regress(), screen() and
anova() when it immediately follows regress() treat all model variables, including
factors, as variates.

A subscripted factor remains a factor with the same number of factor levels, even if the
no elements are equal to the original number of categories.

3-3

MacAnova Version 4.07

Cmd> treatment1 <- treatment[treatment!=4]; list(treatment1)
treatment1 REAL 4 FACTOR with 4 levels

Another way to create a factor is makefactor(values). This transforms the REAL or
CHARACTER vector values to a factor with integer levels 1, 2, ... m , where m is the
number of unique elements in values. The levels assigned by makefactor preserve
the order of the elements of values. makefactor(values,F) does the same except
that levels are assigned in the order unique elements appear in values. Here are some
examples.

Cmd> groups <- vector("A","D","D","C","C","D","B")# CHARACTER values

Cmd> a <- makefactor(groups);a # turn groups into a factor
(1) 1 4 4 3 3
(6) 4 2

Cmd> b <- makefactor(groups,F) # don't preserve order
(1) 1 2 2 3 3
(6) 2 4

Cmd> c <- makefactor(vector(1.3, 2.4, 2.4, 2.1, 2.1, 2.4, 1.6));c
(1) 1 4 4 3 3
(6) 4 2

Cmd> list(groups,a,b,c) # groups, levels are not factors
a REAL 7 FACTOR with 4 levels
b REAL 7 FACTOR with 4 levels
c REAL 7 FACTOR with 4 levels
groups CHAR 7 Not a factor

Interest in ANOVA usually focuses on the mean response in each group or
combination of groups – the expected yield for each variety of corn or the expected
change in blood pressure for each type of medication.

In regression, the X-variables usually represent numerical quantities so that a change
from 3 to 4.5 means the same magnitude change as a change from 11 to 12.5. Often the
focus is on on how much the mean response will change for a given change in one of
the X-variables. The coefficient or slope βi associated with Xi can be interpreted as
indicating how much the mean response would change if Xi were increased by 1
without changing other X-variables.

Function anova() (but not regress()) can analyze linear models that include both
variates and factors, sometimes called Analysis of Covariance (ANACOVA) models. In
these models, the predictable part of the response is determined not only by the levels
of one or more categories, but also by the values of one or more numerical variables.

3.4 Specifying a model The first argument (usually the only argument) to regress()
and anova() is a quoted string or scalar CHARACTER variable which specifies the model
to be used in the regression or ANOVA. A model is specified in a way similar to that
used in the Generalized Linear Model Analysis program GLIM (Aitken et al. 1986).

You specify a regression model for use in regress() by a quoted string similar to "y =
x1 + x2 + x3".

3-4

MacAnova Version 4.07

To the left of “=” is the name (y) of an existing REAL vector containing the values of the
response or dependent variable. To the right of “=” are the names of existing REAL
vectors, here x1, x2, and x3, each containing the values of one of the X-variables.
Using more mathematical notation, letting Y be the response variable and X1, X2
and X3 three X-variables, "y = x1 + x2 + x3" specifies the linear model

 Y = β0 + β1X1 + β2 X2 +β 3X3 + e ,

or, more completely,

 Yi = β0 + β1Xi1 + β2Xi 2 + β3Xi 3 + e i , i = 1,...,n

where Yi and Xij , j = 1, 2, 3 are the data for the ith case. The predictable part of Yi is

 β0 + β1Xi 1 + β2Xi 2 + β3Xi 3 and e i is the unpredictable random error. A regression model
can have 1 to 95 variables on the right hand side. They must all be REAL vectors of the
same length n as the response variable.

For example, suppose that we want to fit a linear model relating the strength of wood
dowels to their diameter and density and that the data are in MacAnova variables
strength, diameter, and density. We would specify the regression model as
"strength = diameter + density", where diameter and density are both
variates. The corresponding linear model is

 Yi = β0 + β1Xi1 + β2Xi 2 + ei ,

where Yi is the value of strength and X1i and X2i represent the values of diameter
and density for the ith case. A more complete model string would be "strength = 1
+ diameter + density", where a constant term is explicitly symbolized by “1 + ”.
This is not necessary, however, since MacAnova automatically includes an intercept or
constant β0 unless instructed otherwise. If you want to fit the model

 Yi = β1Xi1 + β2Xi 2 + ei ,

without an intercept, you would use the model "strength = diameter + density
- 1" which excludes an intercept from the model.

In a model for regress(), when any X-variable is actually a factor (created by
factor()), it is treated as a variate, with the factor levels taken to represent numerical
values. Since this is usually a mistake, a warning message is printed.

A model for anova() has the same basic form but the terms to the right of “=” are
factors or combinations of factors (see below for the use of models with variates).
Suppose that y is the response variable and a is a factor created by factor() that has
the same length as y. Then the ANOVA model "y = a" (or "y = 1 + a") specifies a
one-way classification or one-way ANOVA model for the grouping determined by a.
The mathematical representation of this linear model is

 Yij = µ + α i + eij ,

where µ is the grand mean, αi is the effect of level i of factor a and j indexes the
replication number.

If b is another factor of the same length, the string "y = a + b" specifies a two-way

3-5

MacAnova Version 4.07

ANOVA without interaction. The corresponding mathematical model is

 Yij = µ + α i + β j + eij

where βj is the effect of level j of of factor b.

The dot product a.b of two factors a and b in a model represents the interaction of
the factors. Thus a two-way factorial model with interaction would be specified by "y
= a + b + a.b" with corresponding linear model

 Yij = µ + α i + β j + (αβ)ij + eij

You can use parentheses to group terms into submodels, and the dot may be used to
combine submodels as well as factors. For example, (a+b).c is equivalent to a.c +
b.c, (a+b).(c+d) is equivalent to (a+b).c + (a+b).d = a.c + b.c + a.d + b.d,
and so on. Note the specific order of terms in the expanded model.

The dot product of a factor with itself, say a.a, “collapses” to a, as is a.a.a, a.a.a.a,
Also a.b is equivalent to b.a. If there are duplicate terms in an expanded model, only
the first is kept. Thus (a+b).(a+d) + b.d = (a+b).a + (a+b).d + b.d = a.a +
b.a + a.d + b.d + b.d which is equivalent to a + a.b + a.d + b.d.

Note: Although a dot product term such as a.b, does not always represent an
interaction term, we will use “interaction” as a generic name for such a term.

You can also include variates (non-factor vectors) in an ANOVA model. A variate can
interact with (be dotted with) any of the factors or interactions of factors, but cannot
interact with another variate. You can include a product of variates by computing it
“on the fly”; see Sec. 3.4.1. In an ANOVA model, a variate is usually referred to as a
covariate, and the computations for a variate amount to computing the regression
coefficient for the covariate.

When a covariate is dotted with a factor, a separate regression coefficient for the
covariate is computed for each level of the factor. For example, suppose group is a
factor and x is a variate. Then "y = x" is a simple regression model, "y = group" is
a one-way classification model, "y = x + group" is a model with common slope but
separate intercepts for each group (the standard ANACOVA model), "y = group.x" is
a model with a common intercept and separate slopes for each group, and any of
"y=group+group.x", "y=group+x+group.x" or "y=group+group.x-1" represent a
model with separate unrelated lines for each group using somewhat different
parametrizations.

You can specify up to 95 distinct factors and variates in an ANOVA model, no more
than 31 of which can be factors. This means that in principle you can specify a model
with over 4× 1011 different terms. Probably even the biggest super computer would
balk at that.

3.4.1 Transforming model variables “on-the-fly” MacAnova has a special notation that
allows you to use an expression in a model any place a variable name is permissible.
It’s probably most easily explained by examples:

"{log10(y)} = {log10(x)}" Regression of log10(y) on log10(x)

3-6

MacAnova Version 4.07

"y={factor(vector(1,1,1,2,2)}" Single factor ANOVA with 2 groups
"{y[a!=3]}={a[a!=3]}" ANOVA on subset of factor levels
"y=x+{x^2}+{x^3}" Degree 3 polynomial regression of y on x
"{y[,-1]}={factor(y[,1])}" MANOVA on factor defined by column 1 of y

The expression must be enclosed in {...} and must evaluate to a REAL vector or factor;
on the left side of “=” it can evaluate to a REAL matrix. The expression can be arbitrarily
complicated and can even consist of several commands separated by semicolons, in
which case the value of {...} is the value of the last expression. It is an error for a
{...} expression to run a GLM command such as regress() or anova().

3.4.2 Model shortcuts: *, ^, /, – and –* There are a number of “shortcuts” or
abbreviations that ease the specification of complicated models.

A star product is a shortcut often used in multi-factor models. If A and B are
submodels, then A*B is a shorthand expression for A + B + A.B. Thus, a*b*c is
equivalent to (a + b + a.b)*c which is in turn equivalent to a + b + a.b + c +
a.c + b.c + a.b.c, the complete three way factorial model with two- and three-way
interaction. Note the order in which the terms are expanded.

The pseudo-power is another shortcut used in multi-factor models. If A is a submodel,
then A^2 is equivalent to A.(1 + A), A^3 is equivalent to A.(1 + A).(1 + A), and so
on. Thus, for example, (a + b + c)^2 expands to (a + b + c).(1 + a + b + c)
which expands to

(a + b + c).1 + (a + b + c).a + (a + b + c).b + (a + b + c).c

which expands after eliminating duplicate terms to

a + b + c + a.b + a.c + b.c

Similarly, (a + b + c)^3 expands to

a + b + c + a.b + a.c + b.c + a.b.c

Because a.a is equivalent to a, (a + b + c)^4 and all higher powers expand to the
same model as does (a + b + c)^3. Note that the terms in (a + b + c)^3 are the
same as those in a*b*c but in a different order.

The slash notation is a convenient shortcut for specifying nested models: A term
such as term a/b is equivalent to a+a.b (b is nested within a) and a/b/c is equivalent
to (a + a.b)/c or a + a.b + a.b.c (c is nested within b which is nested within a).
More generally, if A and B are compound terms, A/B is equivalent to A + A’.B, where
A’ is the dot product of all the factors appearing in A. Thus (a+b)/c is equivalent to a
+ b + (a.b).c = a + b + a.b.c (a and b are crossed with no interaction and c is
nested within each combination of a level of a and a level of b), and so on.

You can exclude terms from a model by subtraction. The model a*b*c - a.b.c is
equivalent to a + b + a.b + c + a.c + b.c, that is to model a*b*c without the
term a.b.c. The earlier example "strength = diameter + density - 1"
illustrated exclusion of the constant term from a model. Note that the terms in a*b*c
- a.b.c are the same as the terms in (a + b + c)^2 in a different order.

3-7

MacAnova Version 4.07

Minus star subtraction allows a more extensive form of term exclusion. A -* B
where A and B are terms or compound terms, excludes from A not only the all terms
in B, but any terms including any term in B. Thus, a*b*c -* a.c is equivalent to a +
b + a.b + c + b.c, that is the terms in a*b*c without a.c and a.b.c, those terms
in a*b*c that contain a.c. Similarly (a + b + c)^3 -* (b + c) is equivalent
simply to a, the only term in (a + b + c)^3 that does not include either a or b.

3.4.3 Shortcuts for polynomial and periodic regressions There are additional shortcuts
for polynomial and periodic regression. Again these are best illustrated by example. In
the following table, each model in the left column is a shortcut for the model in the
right columns.

Shortcut Model Equivalent Model

"y=P4(u)" "y={u}+{(u)^2}+{(u)^3}+{(u)^4}"

"y=P3(sqrt(x))" "y={sqrt(x)}+{(sqrt(x))^2}+{(sqrt(x))^3}"

"y=C2(2*PI*hour/24)" "y={cos(2*PI*hour/24)}+{sin(2*PI*hour/24)}+
{cos(2*(2*PI*hour/24))}+{sin(2*(2*PI*hour/24))}

Pn(expr) expands to a sum of n {...} terms (see Sec. 3.4.1) each of which evaluates
to a power of expr. Its primary purpose is to make polynomial regression easier. See
Sec. 10.6 for an example of the use of Pn(expr).

Cn(expr) expands to a sum of n pairs of {...} terms of the form {cos(j*(expr))}
+ {sin(j*(expr))}, j = 1,...,n . Typically, as in the example above, expr is a linear
function of a variable containing time determinations. In that case, "y=Cn (expr)" is a
model specifying a periodic regression. Specifically, if tt is a REAL vector of times, y is a
REAL vector of responses with y[i] determined at time tt[i] and Per a positive REAL
scalar, then "y=Cn(2*PI*tt/Per)" is an periodic regression model with period Per
containing cosine and sine terms with periods Per, Per/2, ..., Per/n . When the value
of option angles is "degrees", use "y=Cn(360*tt/Per)"; when option angles is
"cycles", use "y=Cn(tt/Per)". See Sec. 8.1.3 for information about option angles.

3.5 Error terms All sums of squares and degrees of freedom that are not contained in
any model term are combined into a term usually named ERROR1. Since some
ANOVA models, such as split plot models, have more than one error term, it is a
convenience to be able to specify other terms as error terms.

Any simple term (a factor or variate or a single dot product of factors or variates) may
be relabeled as an error term by enclosing it in E(). This will affect only the labelling of
the term in the output, and the numbering of other error terms. Sums of squares are
computed as usual. For example, anova("y = a + b + a.b") and anova("y = a +
b + E(a.b)") specify identical computations, but the term that was labelled a.b in the
first is labelled ERROR1 in the second and the final line is labelled ERROR2 instead of
ERROR1. Following a linear model command, certain commands such as contrast()
(see Sec. 3.16) and secoefs() (see Sec. 3.13) allow you to specify which error term is to
be used in computing standard errors. In addition, if you use either fstats:T or
pvalues:T on anova(), the denominator of the F-test for each term is taken from the
next following error term.

3-8

MacAnova Version 4.07

3.6 Side effect variables Both regress() and anova() set several side-effect variables.
Here is a summarizing table.

Name Type Contents

STRMODEL CHARACTER scalar The model used

DEPVNAME CHARACTER scalar The name of the response variable

TERMNAMES CHARACTER vector The names of the terms in the model

SS REAL vector Sums of squares for each term in the model

DF REAL vector Degrees of freedom for each term in the model

RESIDUALS REAL vector Residuals from the model fit

HII REAL vector The leverages – the diagonal elements of the
“hat matrix” H = X(′ X X)−1 ′ X ; for weighted
analysis, H = X(′ X WX)−1 ′ X W , where W is
diagonal matrix of weights.

Side effect variables set by regress() but not by anova()

COEF REAL vector The regression coefficients

XTXINV REAL matrix (′ X X)−1, where X is the matrix whose columns
are the independent variables, including a
constant column if there is an intercept, or

 (′ X WX)−1 , for weighted analyses.

Side effect variable set by regress() or anova() when weights are specified

WTDRESIDUALS REAL vector
 W i × residuals from the model fit

All side-effect variables except STRMODEL are deleted at the start of each use of
regress(), anova() or any GLM command. If you want to save a side effect variable,
you should assign it to a variable with a different name (for example, residuals <-
RESIDUALS) before running another GLM command.

The elements of HII are useful, among other reasons, because V[ri] = (1 - h ii)σ2, where

ri is the ith regression or ANOVA residual (V[W i ri] = (1 - h ii)σ2 for weighted
analysis).

3.7 GLM keywords Another area of commonality among the various GLM commands
is the use of keywords. Here is a summary of the keyword phrases shared by more than
one GLM command.

 Keyword Phrase Limitations and brief description
print:F All GLM commands. Directs that most of the output to the

screen is suppressed, although side effect variables are created.

silent:T All GLM commands but screen(). Directs that all output
except error messages is suppressed; only side effect variables
are computed.

3-9

MacAnova Version 4.07

coefs:F All GLM commands but screen(), regress(), fastanova(),
ipf(), robust(). Directs that no computation of coefficients or
a generalized inverse to ′ X X is done. Except in the case of
balanced ANOVA, coefs() and secoefs() cannot be used to
retrieve coefficients later. coefs:F can’t be used with
marginal:T.

fstats:T regress(), anova(), manova(), robust(). Directs that F-
statistics and P values are computed and printed. The
denominator is the mean square for the next following term
whose name is of the form ERROR1, ERROR2, For manova(),
ANOVA tables with F-statistics are given separately for each
variable and printing of the SS/SP matrices is suppressed.
fstats:F suppresses F-statistics when they might otherwise be
printed.

pvals:T All GLM commands except screen(). Directs that F or χ2 P
values are computed and printed for F-statistics, t-statistics, and
deviances. pvals:F suppresses P values when they might
otherwise be printed.

wts:vec anova(), manova(), regress(). Specifies a REAL vector to be
weights:vec used as weights. Keywords wts and weights are synonyms.

marginal:T anova(), manova(), robust(). Specifies that SS (or SS/SP
matrices) are computed marginally. When there are no empty
cells, and sometimes when there are, the computed SS or SS/SP
are usually equivalent to SAS Type III quantities. marginal:T is
not legal with coefs:F. See Sec. 3.11 for details.

increment:T poisson(), ipf(), logistic(), probit(), glmfit().
Specifies that an incremental analysis of deviance table with an
entry for each term is to be computed and printed. See Sec. 4.2.3.

offsets:vec poisson(), ipf(), logistic(), probit(), glmfit(),
robust(). Specifies a REAL vector to be used as offset vector.
See Sec. 4.2.3.

maxit:n fastanova(), poisson(), ipf(), logistic(), probit(),
glmfit(), robust(). Specifies the maximum number of
iterations allowed in fitting. See Sec. 4.2.

eps:smallVal fastanova(), poisson(), ipf(), logistic(), probit(),
glmfit(), robust(). Specifies the a threshold in relative
change of objective function for determining when convergence
has been reached. See Sec. 4.2.

problimit:small logistic(), probit(), glmfit() with dist:"binomial".
Fitted probabilities

ˆ p are restricted to min(ˆ p ,1 − ˆ p) > small. See
Sec. 4.2.4.

3-10

MacAnova Version 4.07

You can change the default value behavior of most GLM commands to have fstats:T
and/or pvals:T by setoptions(pvals:T,fstat:T). See Sec. 8.1.3.

3.8 anova() and regress() output Functions regress() and anova() return only a
NULL value. Instead, they create or update “side-effect” variables and, when neither
print:F or silent:T is used, print out standard summaries of their computations.

The standard output produced by regress() includes the regression coefficients, their
standard errors and t-statistics, the coefficient of determination R2, the overall
regression F-statistic (excluding the constant term), the mean square error, the error
degrees of freedom and the Durbin-Watson statistic. Typing anova() (with no model)
immediately after regress(Model) prints an ANOVA table for the regression without
recomputing anything. When a regression X-variable is a factor, it is still treated as a
variate by an immediately following anova(). Since this is likely to be a mistake, a
warning message is printed.

Cmd> y <- vector(21.7,23.7,22.2,28.5,22.6,25.9,28.7,27.7,27.2,27.8)

Cmd> x1 <- run(10); x2 <- vector(run(3),run(3),run(4))

Cmd> regress("y=x1+x2")
Model used is y=x1+x2
 Coef StdErr t
CONSTANT 23.526 1.3755 17.103
x1 0.91683 0.21766 4.2122
x2 -1.3492 0.63808 -2.1145

N: 10, MSE: 2.7982, DF: 7, R^2: 0.71736
Regression F(2,7): 8.8831, Durbin-Watson: 3.0707
To see the ANOVA table type 'anova()'

The Durbin-Watson statistic is

(ri + 1 − ri)
2

i = 1

m −1

∑
ri

2

i =1

m

∑
, where ri is the ith residual

ri = Yi − ˆ β 0 − ˆ β 1X i1 − ˆ β 2X i2 − ... − ˆ β k Xik among the m cases with no MISSING data and non-
zero case weights, if any. In the case of a weighted regression ri is the ith weighted

residual ri = Wi (Yi − ˆ β 0 − ˆ β 1Xi1 − ˆ β 2 Xi2 − ... − ˆ β kX ik) . The Durbin-Watson statistic may be
used to test for independence of normal residuals against a first order autoregressive
model.

Cmd> # anova() immediately after regress() pertains to regression

Cmd> anova()
Model used is y=x1+x2
WARNING: summaries are sequential
 DF SS MS
CONSTANT 1 6553.6 6553.6
x1 1 37.202 37.202
x2 1 12.511 12.511
ERROR1 7 19.587 2.7982

The line labelled CONSTANT is associated with the intercept β0 and the line labelled

3-11

MacAnova Version 4.07

ERROR1 is used to estimate the error variance. Note that the MS value in the ERROR1
line is the MSE value in the regress() output. Whether or not there is an intercept in
the model, the regression F-statistic in he regress() output (8.8831 in the example)
tests the hypothesis H0:β1=β2=...=βk = 0, that is the hypothesis that the variates are
unrelated to the response.

The anova() warning “summaries are sequential” reminds you that the
successive SS values in the lines for x1 and x2 are computed sequentially and depend
on the order in which the variates are included in the model. In this case 37.202 is the
sum of squares associated with fitting X1 after fitting the constant term and 12.511 is
the sum of squares associated with fitting X2 after fitting the constant term and X1.
This last is sometimes described as the sum of squares for X2 after fitting X1.

Often when doing a regression analysis, you also want to see P values and F-statistics.
Keyword phrase pval:T on regress(), gives you the P values for each t-statistic and
fstats:T on anova() gives you F-statistics and P values.

Cmd> regress(,pvals:T)
Model used is y=x1+x2
 Coef StdErr t P-Value
CONSTANT 23.526 1.3755 17.103 5.7322e-07
x1 0.91683 0.21766 4.2122 0.0039751
x2 -1.3492 0.63808 -2.1145 0.072308

N: 10, MSE: 2.7982, DF: 7, R^2: 0.71736
Regression F(2,7): 8.8831, P-value: 0.012004, Durbin-Watson: 3.0707
To see the ANOVA table type 'anova()'

Cmd> anova(,fstats:T)
Model used is y=x1+x2
WARNING: summaries are sequential
 DF SS MS F P-value
CONSTANT 1 6553.6 6553.6 2342.09641 4.2085e-10
x1 1 37.202 37.202 13.29506 0.0082188
x2 1 12.511 12.511 4.47106 0.072308
ERROR1 7 19.587 2.7982

The P values are computed under the usual assumption of independent normal errors
with constant variance.

It is instructive to see how to compute P values for each coefficient from the side effect
variables SS, DF, COEF, and XTXINV without using the printed output.

Cmd> print(SS,DF,COEF,XTXINV)
SS: As in ANOVA table
(1) 6553.6 37.202 12.511 19.587
DF: As in ANOVA table
(1) 1 1 1 7
COEF: As in ANOVA table
 CONSTANT x1 x2
 23.526 0.91683 -1.3492
XTXINV: Inverse of X'X matrix
 CONSTANT x1 x2
CONSTANT 0.67619 -0.034921 -0.1746
x1 -0.034921 0.016931 -0.026455
x2 -0.1746 -0.026455 0.1455

3-12

MacAnova Version 4.07

Cmd> mse <- SS[4]/DF[4]

Cmd> se <- sqrt(mse*diag(XTXINV)) #See Sec 2.10.6 for diag()

Cmd> tstats <- COEF/se # t-statistics

Cmd> pvalues <- 2*(1-cumstu(abs(tstats),DF[4])) # see Sec. 2.12.6

Cmd> # make table of coefficients, standard errors, t, P values

Cmd> hconcat(COEF,se,tstats,pvalues) #See Sec 2.10.6 for hconcat()
(1,1) 23.526 1.3755 17.103 5.7322e-07
(2,1) 0.91683 0.21766 4.2122 0.0039751
(3,1) -1.3492 0.63808 -2.1145 0.072308

The standard errors can also be computed by secoefs(); see Sec. 3.13 below.

The default output produced by anova(Model) is an ANOVA table, without F-
statistics or P values.

Cmd> a <- factor(vector(1,1,1,1,2,2,2,2,2))# factor a has 2 levels

Cmd> b <- factor(vector(1,2,3,4,1,2,3,4,4))# factor b has 4 levels

Cmd> z <- vector(2.1,3.3,4.7,3.0,5.9,6.3,4.4,3.8,4.2)# response var.

Cmd> anova("z=a+b") # two-way ANOVA with no interaction
Model used is z=a+b
WARNING: summaries are sequential
 DF SS MS
CONSTANT 1 157.92 157.92
a 1 6.0134 6.0134
b 3 2.964 0.98799
ERROR1 4 5.4315 1.3579

The line labelled CONSTANT is now associated with the grand mean µ . See Sec. 3.9 for
comments on how the ordering of terms in the model affects the ANOVA table when
the data are not balanced as is the case here.

The sums of squares are computed sequentially. That is, the SS in the CONSTANT line
measures the importance of µ in the model yij = µ + e ij as compared to the model yij
= e ij , with 0 mean and no factor effects; the SS for a measures the importance of {αi}
in the model yij = µ + αi+ e ij (with no effects of factor b) as compared with the model
yij = µ + e ij with a non-zero mean but no effects of either factor; and the SS for b
measures the importance of {βj} in the model yij = µ + αi+ βj + e ij as compared with
the model yij = µ + αi+ e ij . with a grand mean and effects of factor a. This last is what
would be used in the numerator of an F-statistic to test the significance of the effects
{βi} of factor b, but the SS for a cannot be used to test the significance of {αi}, since it
does not allow for possible effect of b.

By including fstats:T as an argument to anova(), you also get F-statistics and P
values.

3-13

MacAnova Version 4.07

Cmd> anova("z=a+b",fstat:T)
Model used is z=a+b
WARNING: summaries are sequential
 DF SS MS F P-value
CONSTANT 1 157.92 157.92 116.29936 0.00041928
a 1 6.0134 6.0134 4.42850 0.10314
b 3 2.964 0.98799 0.72759 0.58667
ERROR1 4 5.4315 1.3579

Because of the sequential nature of the analysis, only the F-statistic for b is meaningful.
It can also be computed directly from the side effect variables SS and DF.

Cmd> print(DF, SS)
DF:
(1) 1 1 3 4
SS:
(1) 157.92 6.0134 2.964 5.4315

Cmd> f <- (SS[3]/DF[3])/(SS[4]/DF[4]) # F-statistic

Cmd> pvalue <- 1 - cumF(f,DF[3],DF[4]); print(f, pvalue)
f:
(1) 0.72759
pvalue:
(1) 0.58667

To test the significance of a using sequential sums of squares you need to redo the
ANOVA with the model "y=b+a", that is with a after b.

Cmd> anova("z=b+a")
Model used is z=b+a
WARNING: summaries are sequential
 DF SS MS
CONSTANT 1 157.92 157.92
b 3 1.8972 0.63241
a 1 7.0801 7.0801
ERROR1 4 5.4315 1.3579

The CONSTANT and the ERROR1 line are the same, but the SS for a and b have changed.
The correct F-statistic for testing the significance of factor a would be 7.0801/1.3579 =
5.214. We could compute this from SS and DF the same way as before or use fstats:T
on anova().

The message “WARNING: summaries are sequential” reminds us that MacAnova is
successively adding each term to the model in the order specified, computing the
residual sum of squares with the terms included so far, and computing each ANOVA
sum of squares as the reduction in the residual sum of squares produced by including
the term.

MacAnova also has the ability to compute “marginal” sums of squares. These are the
sums of squares measuring the importance of each term as compared with a model
with all the other terms except the one being tested, not just compared to a model
containing preceding terms. Thus the marginal SS for CONSTANT is the SS for fitting µ
after fitting {αi} and {βj}, the marginal SS for a is the SS for fitting {αi} after fitting µ
and {βj}, and the marginal SS for b is the SS for fitting {βj} after fitting µ and {αi}. In

3-14

MacAnova Version 4.07

most cases where there are no missing cells and in many other cases, these correspond
to what are called Type III sums of squares in SAS™. See Sec. 3.11 for more details.

Cmd> anova("z=a+b",marginal:T,fstats:T)
Model used is z=a+b
WARNING: SS are Type III sums of squares
 DF SS MS F P-value
CONSTANT 1 151.34 151.34 111.45562 0.00045541
a 1 7.0801 7.0801 5.21409 0.084466
b 3 2.964 0.98799 0.72759 0.58667
ERROR1 4 5.4315 1.3579

Now the F-statistics for both a and b are appropriate for testing the effects in the
context of an additive model and the F-statistic for CONSTANT can be used to test H0: µ
= 0 in the model yij = µ + αi+ βj + e ij , under the usual restrictions that

αi = β j = 0∑∑ .

The underlying fitting of the GLM is done sequentially regardless of the presence of
marginal:T. Hence when there are empty cells, the sums of squares from an analysis
with marginal:T may depend on the ordering of the terms in the model.

3.9 Balanced and unbalanced data A data set is balanced for a given model if (a) the
model contains only factors, and (b) for each pair of simple terms in the model (after
expanding “*”, “/”, “/*” and “^”), all combinations of levels of factors that appear in
one term with levels of factors that appear in the other term occur equally often in the
data set. In particular, when a design is a main effect design, that is one with no
interactions, all levels of each combination of two factors occurs equally often. A data
set is completely balanced for a model when all combinations of levels of factors
in the model occur equally often. This implies the the data set is balanced for any
model involving only these factors, with or without interactions.

The ANOVA data in the example in the Sec. 3.8 is not balanced for the model "y = a +
b" since there is only 1 observation when both factors a and b are at level 2, while there
are 2 observations at all other combinations of the factors.

Balance is important because, when it is present, the order of terms in a model
specification has much less effect on the values of the computed sums of squares. For
example, if every combination of factors a and b appears equally often in a data set so
that it is balanced for any model involving only a and b, then anova("y=a+b") and
anova("y=b+a") produce the identical sums of squares for both a and b, although in a
different order. Even for balanced data, some results may depend on the order or terms
because of the sequential nature of the basic computations. For instance,
anova("y=a.b+a") produces different sums of squares from anova("y=a+a.b").
However, as long as no term follows a term in which it is “included”, the order of
terms will not affect the sums of squares when the data are balanced for the design.

When MacAnova recognizes balance of a data set for a model, anova() computes the
sums of squares analogously to the usual hand method taught in many text books. For
large data sets this can be much faster than the method used for data sets that are not
balanced.

MacAnova recognizes balance only in a few situations. First, MacAnova never

3-15

MacAnova Version 4.07

recognizes balance when there are any MISSING values or when any weights are
provided (see Sec. 3.23), even when the data would be balanced after deleting the cases
with MISSING data. Beyond this limitation, MacAnova recognizes only balanced main
effect designs such as Latin squares, and completely balanced designs. You can always
tell whether Macanova recognized balance: If the message WARNING: summaries are
sequential is printed, MacAnova did not consider the data to be balanced. Even in
this case, if the data are actually balanced, the values of the sums of squares do not
depend on the order of terms.

Note that if any variate (as opposed to a factor) is in the model, the data are not
balanced. In a weighted ANOVA (Sec. 3.23) or non-least squares analysis (Chapter 4),
the data are never considered to be balanced.

Any data set which is not balanced for a model is unbalanced. When this is the case,
the sum of squares for any term in the model may be different for different orderings of
the terms in the model. This was the case with unbalanced ANOVA example in Sec.
3.8

As described in Sec. 3.8, when a data set is not balanced for a model, MacAnova
normally computes sequential sums of squares, where each successive SS represents
the improvement in model fit (as measured by reduction in the residual sum of
squares) obtained by adding the term to the model containing only the preceding terms.
In terms familiar to SAS users, MacAnova computes Type I sums of squares.

As also mentioned in Sec. 3.8, using marginal:T forces the computation of marginal
sums of squares for which the SS for each term is intended to measure the contribution
to the fit of that term when added to all the other terms. When there are no empty
cells, and sometimes when there are, these are SAS Type III sums of squares. There is
some controversy as to when these SS are appropriate in models with interactions.

When there are missing cells, the marginal SS may not be identical to Type III sums of
squares as computed by SAS. In technical terms, each marginal SS is a quadratic form
in all the estimated coefficients associated with a term as they were estimated
sequentially by Gram-Schmidt orthogonalization of the X-variables in the order of
terms given in the model. When the expectations of these estimated coefficients are 0,
then each SS is distributed as σ2χ2, assuming normality of errors and constant
variance σ2 . Since the coefficients computed by coefs() (see Sec. 3.13) are linear
combinations of these estimates, the SS can be used in an F test to test the null
hypothesis that their expectations are all 0. See Section 3.11 for more details on how the
marginal SS are computed.

3.10 Parametrization and degrees of freedom In its computations MacAnova uses a
variant of the classical (Scheffé) parametrization of factor effects. Consider a two factor
model with factors B and C which have b and c levels, respectively.

The grand mean or intercept is associated with an X-variable consisting of all 1’s.

There are b X-variables that code for B – the constant variable containing all 1’s and,
for i = 1,...,b–1, variables with 1’s for the cases (rows) in group i, –1’s for the cases in
group b, and 0’s for other groups. Note that the first of these is the same as the X-
variable coding the constant term.

3-16

MacAnova Version 4.07

Similarly, there are c X-variables that code for C – a vector of all 1’s and c–1 vectors of
1’s, –1’s and 0’s.

The X-variables coding for B.C interaction are the bc pairwise products of the X-
variables coding for B and C. Because the set of B and C X-variables include the
constant vector, the set of products includes copies of the constant vector and of all the
B and C X-variables.

In a model with 3 or more factors, the X-variables coding for three-way interactions are
three-way products and so on.

Any variate X enters directly as an X-variable, and an interaction such as B.C.X is
coded by the product of X and the bc X-variables coding for B.C.

Note that when there are factors in the model some X-variables are redundant and the
full set is not of “full rank.” For example, in the X-variables associated with the model
"y=b+c", the constant X-variable not only codes for the CONSTANT term, but is also
present among the X-variables that code for levels of b and those that code for levels of
c. However, when an X-variable generated from a factor is obviously a duplicate of
one encountered earlier MacAnova recognizes its redundant status, and henceforth
ignores it.

An important property of this parametrization is that the models fit by MacAnova are
intrinsically hierarchical. Using the GLM commands, is impossible to fit the
(b–1)(c–1) dimensional B.C interaction without fitting the main effects of both B and C,
either explicitly with B and C terms or implicitly through the parametrization used.
This is because all the X-variables for B and C are among those for B.C. If B and/or C is
in the model, by the time B.C is fit, the B and/or C X-variables included among the B.C
X-variables have already been fit and and are hence ignored. On the other hand, if
neither B or C is in the model, their X-variables will still be fit because they are
included among the X-variables encoding B.C. Further, if you attempt to put B and/or
C in the model after B.C, its sums of squares will be zero because its X-variables are
among the B.C X-variables. Here we continue with the ANOVA example in Sec. 3.8:

Cmd> anova("z=a.b+a+b")
Model used is z=a.b+a+b
WARNING: summaries are sequential
 DF SS MS
CONSTANT 1 157.92 157.92
a.b 7 14.329 2.047
a 0 0 undefined
b 0 0 undefined
ERROR1 1 0.08 0.08

The sum of squares for a.b is the total of the sums of squares for a, b and a.b when the
data is analyzed by anova("y=a+b+a.b").

One consequence of the sequential fitting is that the degrees of freedom for product
terms depend on which terms precede them in the model. This also applies to main
effects if you consider the constant term as having been previously fit. The following
table illustrates the degrees of freedom for various terms and models (assuming
complete data):

3-17

MacAnova Version 4.07

Degrees of freedom

Model Constant B C B.C

B + C + B.C 1 b–1 c–1 (b–1)(c–1)

B + B.C + C 1 b–1 0 b(c–1)

B.C + B + C 1 0 0 bc – 1

B.C 1 0 0 bc – 1

B.C – 1 0 0 0 bc

B 1 b–1 0 0

B – 1 0 b 0 0

B + B.C – 1 0 b 0 b(c–1)

For unbalanced data, the ANOVA is calculated by explicitly setting up a matrix of X-
variables as discussed above and doing a least squares regression using modified Gram-
Schmidt orthogonalization, automatically allowing for the fact that there may be
redundant X-variables. For data that is recognized to be balanced, the ANOVA is
calculated directly from cell and marginal means similar to the usual “hand” ANOVA
calculations. Functions coefs(), secoefs() (Sec. 3.13), and predtable() (Sec. 3.18)
can be used to recover the regression coefficients, estimated cell means, and treatment
effects.

Another consequence of sequential fitting is that “marginal” sums of squares may
depend on the order of terms in the model. See Sec. 3.11

3.11 Marginal (Type III) sums of squares As mentioned above, there is an alternative to
computing sequential sums of square in linear models. When you use keyword phrase
marginal:T on regress(), anova() or manova(), the basic computational method
remains the same but the side effect variable SS (and the printed SS or SS/SP for
anova() and manova()) is computed differently. The coefficients of the X-variables as
described in Sec. 3.10 are computed sequentially in the order of terms in the model.
The SS for each term is then computed as follows.

Let
ˆ θ j be the vector of estimated coefficients associated with term j and let Cj be the

matrix consisting of the rows and columns of (X’X)-1 corresponding to term j. Then

the marginal sum of squares for term j is SSj = ˆ θ j
′C−1 ˆ θ j . If Cj is singular because of

aliasing, the generalized inverse of Cj, obtained by setting aliased rows and columns to
0 and inverting the remaining rows and columns, is used instead of Cj

-1. Assuming

independent normal errors and constant variance σ2, when E[
ˆ θ j] = 0, SSj is distributed

as σ2χf
2 where f is the degrees of freedom in the term. When there is aliasing such as

may occur when there are empty cells,
ˆ θ j may depend on the order of terms and hence

SSj will, too. When there is no aliasing and the terms are entered in an order such that
no term comes later than another term that “contains” it (for examples, a.b.c contains
a, b, c, a.b, a.c and b.c), the marginal sums of squares are the same as SAS Type III
sums of squares.

3-18

MacAnova Version 4.07

See Sec. 3.8 for an example of the computation of marginal sums of squares.

3.12 Cell by cell statistics using tabs() and cellstats() When a, b, and c are factors (or just
REAL vectors with positive integer values) and all the same length as REAL vector y,
tabs(y,a,b,c) computes cell-by-cell means, variances, and counts for for each cell of
the three-dimensional table defined by the levels of a, b and c, without assuming any
particular model. Similarly, tabs(y,a) and tabs(y,a,b) compute statistics for the
tables defined by just a and just a and b, which are one- and two-dimensional marginal
tables of the 3-way table. You can include up to 31 factors in the argument list as long as
they all have have the same length. If there are any MISSING values in a cell defined by
the factors, they are not included in the count.

The output of tabs() is a structure with components mean, var, and count. When
there are k integer vectors a, b, ... defining the marginals, each component is a k -
dimensional array (vector or matrix when k is 1 or 2). Often a, b, ... are factors created
by factor() that are used in an ANOVA model, but that need not be the case. When
you don’t want all three components you can specify exactly the ones you want using
keyword phrases mean:T, var:T, or count:T. For example, tabs(y,a,b,count:T)
gives only the number of non-MISSING elements in each cell defined by the levels of a
and b. Keyword phrase n:T can be used instead of count:T, although the
corresponding component in the result will still be named count.

The following is based on the example ANOVA model given in Sec. 3.8. The first
example gives statistics for the 4 cells described by the b term, while the second gives
just the means for the 8 = 2*4 cells in the a.b term.

Cmd> tabs(z,b) # cells defined by levels of b only
component: mean Cell mean
(1) 4 4.8 4.55 3.6667
component: var Cell variance
(1) 7.22 4.5 0.045 0.37333
component: count Number of cases in cell
(1) 2 2 2 3

Cmd> tabs(z,a,b,means:T) # just two-way marginal means
(1,1) 2.1 3.3 4.7 3
(2,1) 5.9 6.3 4.4 4

If y is a matrix, each component of the output has an extra dimension corresponding to
the columns of y. Thus tabs(y,a) returns a matrix of means, with each column
containing the cell means for the data in the corresponding column of y.

A handy special usage for tabs() is with a NULL or missing first argument. In this case,
only cell counts are computed as a vector, matrix or array. You can include counts:T
or n:T as an argument, but not mean:T or var:T.

Cmd> tabs(NULL,a,b) # or tabs(,a,b) or tabs(,a,b,count:T)
(1,1) 1 1 1 1
(2,1) 1 1 1 2

cellstats(term) is an alternative way to compute cell statistics after anova() or
manova(). term must be a CHARACTER scalar or quoted string whose value is the name

3-19

MacAnova Version 4.07

of a factor in the preceding anova() or manova() model or a dot product of such
names. Thus, after anova("z=a+b") or anova("z=a+b+a.b"), cellstats("a.b")
gives the same result as tabs(y,a,b). The result differs from that of tabs() only
when there are any MISSING values in the data. cellstats(), in conformance with
what GLM commands does, deletes entirely any cases for which there is any MISSING
data before computing statistics. tabs() gives statistics for all the cases in a cell for
which none of the arguments to tabs() is MISSING. This may include cases for which
factors or variates in the model which are not arguments to tabs() are MISSING.
Also, you cannot use keywords mean, var, or count with cellstats().

3.13 Estimated ANOVA effects and their standard errors – coefs() and secoefs() When
you have computed an ANOVA table, you have usually just begun the statistical
analysis of the data; at the very least, you usually also want to see the estimated effects
for the various terms. MacAnova command secoefs() computes the effects together
with their standard errors and coefs() computes just the effects. These commands
work only when there is an active GLM model, that is, after you have entered a
successful anova(), regress() or another GLM command. They may not work
properly after a fastanova() command and never work after a screen() command.
Moreover, they are disabled by keyword phrase coefs:F on a GLM command (Sec. 3.7).

In the simplest usage, with no arguments, coefs() and secoefs() each return a
structure with one component for each term. For coefs(), each component is a REAL
vector, array, or matrix containing the estimated coefficients for that term; for
secoefs() each component is itself a structure with components coefs and se
containing the estimated coefficients and their standard errors. If there are no degrees
of freedom for error because of insufficient replication, all elements of se are MISSING.

The effects (coefficients) for any factor are computed from the regression coefficients of
the X-variables in the complete model model by transforming them to the Scheffé
parametrization described in Sec. 3.10. For a main effect term, effects are printed for
each level of the factor. For a product term, effects are printed for each combination of
factors in the term.

Cmd> anova("z=a*b") # or anova("z=a+b+a.b"), with interaction
Model used is z=a*b
WARNING: summaries are sequential
 DF SS MS
CONSTANT 1 157.92 157.92
a 1 6.0134 6.0134
b 3 2.964 0.98799
a.b 3 5.3515 1.7838
ERROR1 1 0.08 0.08

Cmd> coefs() # get coefficients (effects) for every term
component: CONSTANT
(1) 4.2125
component: a Estimates for alpha's add to 0
(1) -0.9375 0.9375
component: b Estimates for beta's add to 0
(1) -0.2125 0.5875 0.3375 -0.7125

3-20

MacAnova Version 4.07

component: a.b Estimates for (alpha beta)'s
(1,1) -0.9625 -0.5625 1.0875 0.4375
(2,1) 0.9625 0.5625 -1.0875 -0.4375

Cmd> secoefs()[vector(2,3)]# effects and standard errors for a and b
component: a
 component: coefs
(1) -0.9375 0.9375
 component: se
(1) 0.096825 0.096825
component: b
 component: coefs
(1) -0.2125 0.5875 0.3375 -0.7125
 component: se
(1) 0.17139 0.17139 0.17139 0.15612

Note that the main effect coefficients sum to zero, and that the matrix of interaction
effects sums to zero both across rows (constant level of a) and down columns (constant
level of b) as pure interaction effects should in the Scheffé parametrization.

Both coefs() and secoefs() recognize keywords coefs and se with logical values.
For example, secoefs(se:F) suppresses standard errors and is thus equivalent to
coefs(), and coefs(se:T) is equivalent to secoefs(). To compute just standard
errors you can use secoefs(coefs:F) or even coefs(se:T,coefs:F).

An alternate secoefs() usage is secoefs(byterm:F). This computes the same
results but in a structure with two components, coefs and se, with each component
itself a structure with one component per term.

Cmd> secoefs(byterm:F) # the same as before, arranged differently
component: coefs
 component: CONSTANT
(1) 4.2125
 component: a
(1) -0.9375 0.9375
 component: b
(1) -0.2125 0.5875 0.3375 -0.7125
 component: a.b
(1,1) -0.9625 -0.5625 1.0875 0.4375
(2,1) 0.9625 0.5625 -1.0875 -0.4375
component: se
 component: CONSTANT
(1) 0.096825
 component: a
(1) 0.096825 0.096825
 component: b
(1) 0.17139 0.17139 0.17139 0.15612
 component: a.b
(1,1) 0.17139 0.17139 0.17139 0.15612
(2,1) 0.17139 0.17139 0.17139 0.15612

You can use coefs(termName) or secoefs(termName) to see the results just for a
single term, where termName is a quoted string or CHARACTER scalar such as "a.b". For
coefs(), the result is a REAL vector, matrix or array. For secoefs() the result is a
two-component structure with components coefs and se.

3-21

MacAnova Version 4.07

Cmd> secoefs("b") # or secoefs(3) since 3rd term is b
component: coefs
(1) -0.2125 0.5875 0.3375 -0.7125
component: se
(1) 0.17139 0.17139 0.17139 0.15612

Cmd> secoefs("b",coefs:F) #standard errors only
(1) 0.17139 0.17139 0.17139 0.15612

 If the term is not a dot product, you don’t have to quote the name. Alternatively you
can use coefs(termNumber) or secoefs(termNumber), where termNumber is the
number of the term in the ANOVA table (CONSTANT is usually term 1). Here there are
four meaningful terms, CONSTANT, a, b and a.b.

Cmd> coefs(b) # or coefs("b") or coefs(3)
(1) -0.2125 0.5875 0.3375 -0.7125

Cmd> coefs(4) # or coefs("a.b") but not coefs(a.b)
(1,1) -0.9625 -0.5625 1.0875 0.4375
(2,1) 0.9625 0.5625 -1.0875 -0.4375

After, say, result <- coefs(), you have to use the subscript notation (result[i]) to
extract a component corresponding to a dot product term. This is because a.b is not a
legal MacAnova name (See Sec. 2.4) and so result$a.b is illegal.

Cmd> result <- secoefs() # save the results

Cmd> result$a.b$se #wrong way to extract info on interactions
ERROR: do not use . in variable names near result$a.

Cmd> result[4]$se # (or result[4][2]);right way, since a.b is term 4
(1,1) 0.17139 0.17139 0.17139 0.15612
(2,1) 0.17139 0.17139 0.17139 0.15612

Functions coefs() and secoefs() can also be used with regression models or models
with factors and covariates. The values computed for variates are simply the regression
coefficients and their standard errors. For terms in which a variate is “dotted” with one
or more factors, the coefficients are computed from the regression coefficients for each
cell defined by factor combinations.

3.13.1 Estimated regression coefficients and their standard errors – regcoefs You can also
use coefs() and secoefs() to retrieve coefficients and their standard errors after
regress() or any GLM command when the model has no factors. Here is a use of
secoefs() with the same regression model as in Sec. 3.8.

Cmd> regress("y=x1+x2", silent:T) # suppress output with silent:T

Cmd> secoefs()
component: CONSTANT
 component: coefs
(1) 23.526
 component: se
(1) 1.3755
component: x1
 component: coefs
(1) 0.91683

3-22

MacAnova Version 4.07

 component: se
(1) 0.21766
component: x2
 component: coefs
(1) -1.3492
 component: se
(1) 0.63808

Because this is somewhat hard to read, there is a special pre-defined macro regcoefs
that arranges the coefficients and standard errors, together with t-statistics in a matrix
with row and column labels (see Sec. 8.4). If you include pvals:T as an argument, you
also get P values associated with the t-statistics.

Cmd> table <- regcoefs(pvals:T); print(table)
table:
 Coef StdErr t P-Value
CONSTANT 23.526 1.3755 17.103 5.7322e-07
x1 0.91683 0.21766 4.2122 0.0039751
x2 -1.3492 0.63808 -2.1145 0.072308

The row and column labels are part of the result returned by regcoefs() (see Sec. 8.4).

You can also specify a model as an argument to regcoefs:

Cmd> regcoefs("y=x2") # regression just on x2
 Coef StdErr t
CONSTANT 25.417 2.2866 11.115
x2 0.083333 0.94946 0.087769

When the response is multivariate (See. Sec. 3.22), regcoefs returns a structure with
each component having this form for one of the variables.

3.14 Leaving out lower order terms So far, the CONSTANT term associated with the
grand mean has always been in the model as the lowest order term. One consequence
has been that all effects sum to zero and that main effects for a factor measure the
departure from the grand mean attributable to that factor. Let's see what happens if we
leave out the grand mean by appending “-1” to the model.

Cmd> anova("z=a*b-1") # -1 removes constant term from model
Model used is z=a*b-1
WARNING: summaries are sequential
 DF SS MS
a 2 163.93 81.967
b 3 2.964 0.98799
a.b 3 5.3515 1.7838
ERROR1 1 0.08 0.08

Cmd> coefs(a) # coefficients no longer add to 0
(1) 3.275 5.15

Cmd> sum(coefs(a))/2 # the average is former CONSTANT coef
(1) 4.2125 CONSTANT coefficient with model "z=a*b"

The term for a now has a full 2 degrees of freedom, and this is reflected in the fact that
the a effects do not sum to zero. These coefficients are measures of the average
response at each level of a, not the difference of the average response from a grand

3-23

MacAnova Version 4.07

mean. The F-statistic associated with a, if it were used for anything, would test the null
hypothesis that the row means for each level of a, averaged across all levels of b, were
all zero , not that they were all the same . It is instructive to compare these with the
coefficients for a computed before when a constant term was in the model. The
previous coefficients can be recovered from these by subtracting the average:

Cmd> coefs("a") - sum(coefs("a"))/max(a)
(1) -0.9375 0.9375

Consider now the case where one or more low order factorial terms are not included in
the model. Now some of the marginal sums of the interaction effects will not be zero.
Here is an example analyzing the same data as if it were derived from a design having b
“nested” within a rather than crossed. The ANOVA table has no pure b term.

Cmd> anova("z=a+a.b") # (or "z=a/b"); b nested in a
Model used is z=a+a.b
WARNING: summaries are sequential
 DF SS MS
CONSTANT 1 157.92 157.92
a 1 6.0134 6.0134
a.b 6 8.3155 1.3859
ERROR1 1 0.08 0.08

Cmd> coefs("a.b") # "interaction" effects
(1,1) -1.175 0.025 1.425 -0.275
(2,1) 0.75 1.15 -0.75 -1.15

Cmd> sum(coefs("a.b")') # sum across b is 0
(1,1) 0 0

Cmd> sum(coefs("a.b"))/max(a) # average across a = (prev b effects)
(1,1) -0.2125 0.5875 0.3375 -0.7125

Since row effects (factor a) were already in the model before the product term was
entered, the rows of the effects matrix for the product term sum to zero. But, since
column effects were not explicitly in the model, they are included in the a.b term, so
that the columns of this effects matrix do not sum to zero but average to the a effects
computed for the non-nested analysis.

3.15 Empty cells When some rows, columns, or cells in a table are completely empty,
perhaps because of MISSING values, the computation and interpretation of coefficients
can be tricky, to say the least. What you get depends on the ordering of the factor levels,
and the coefficients may not be what you might expect. The fundamental reason for
this is that, when there are empty cells, estimates of effects may not be unique, even
when you impose the Scheffé restrictions. Generally, but not necessarily, there is no
problem as long as there are no empty cells in any marginal table associated with any
term. Thus fitting a model with no interaction normally will not be compromised by
empty cells unless there are no observations at some level of one of the factors.
However, certain patterns of empty cells can cause non-uniqueness.

When there is any MISSING data, MacAnova first finds the actual highest level of each
factor for cases with no MISSING values. This is the number of levels that will be
assumed, even if it is less than the “official” number of levels for that factor.
Sometimes this is sufficient to eliminate all empty cells, as in the following simple
example.

3-24

MacAnova Version 4.07

Cmd> w <- vector(1,2,4,?); c <- factor(1,2,3,4) # w[4] is MISSING

Cmd> anova("w=c",silent:T) # suppress the output

Cmd> coefs()
component: CONSTANT
(1) 2.3333
component: c
(1) -1.3333 -0.33333 1.6667

These coefficients are exactly what would have been obtained with w <-
vector(1,2,4) and c <- factor(run(3)).

When MacAnova can’t make this simple adjustment, coefs() and secoefs() warn
you about the situation with the message

WARNING: Missing df(s) in term XXX
Missing effects set to zero

First, suppose that CONSTANT is in the model. When a missing cell is not the “last” cell
of a factor MacAnova sets the corresponding missing coefficients to zero. Here is a
simple example. Since there is no replication, a one factor model will fit the response
exactly.

Cmd> w <- vector(1,2,?,3); c <- factor(1,2,3,4)

Cmd> anova("w=c",silent:T) # suppress the output

Cmd> DF # degrees of freedom for CONSTANT, c, and ERROR1
(1) 1 2 0

Cmd> results <- coefs(); results
WARNING: Missing df(s) in term c
Missing effects set to zero
component: CONSTANT
(1) 2
component: c
(1) -1 3.3438e-19 0 1

The 3rd coefficient for c has been set to 0.

The computed c effects do satisfy sum(coefs(c)) = 0, and the combination,
results$CONSTANT, of the CONSTANT and the c effects fits the non-MISSING values
exactly, but computes a value of 2 for the MISSING case:

Cmd> hconcat(results$CONSTANT + results$c,w)
(1,1) 1 1
(2,1) 2 2
(3,1) 2 MISSING
(4,1) 3 3

If CONSTANT is not in the model, the coefficients are the same, except the coefficients of
the first term are increased by the value the CONSTANT coefficient would have had.

Cmd> anova("w=c-1",silent:T);DF
(1) 3 0 D.F for CONSTANT & c

3-25

MacAnova Version 4.07

Cmd> coefs()
WARNING: Missing df(s) in term
Missing effects set to zero
(1) 1 2 2 3

The a coefficients for model "w=c-1" are the same as for the model "w=c" increased by
2, the value of the CONSTANT coefficient for the model "w=c", and they fit the non-
MISSING responses exactly.

When an empty cell is the last cell in a margin that must add to zero, the effect for that
cell is computed so as to make the margin add to zero. When last cells are missing,
coefficients are often radically different from what you might expect due to the fact that
the parametrization used depends rather strongly on last cells.

Note about “last cells”: The last cell in a factor with b levels is cell b, the last cell in a b
by c product term is the cell corresponding to the combination of levels b and c, and
so on.

Empty last cells in a single factor analysis are never a problem because they are ignored.
Here is a more complex example based on the two way example above. We set the
values last cell (row 3 and column 2) to MISSING.

Cmd> z[a==2 && b==4] <- ? #set cell with a=2 and b = 4 to MISSING

Cmd> tabs(z,a,b,count:T) # cell counts; last cell is empty
(1,1) 1 1 1 1
(2,1) 1 1 1 0

Cmd> anova("z=a*b",silent:T); print(DF) # or anova("z=a+b+a.b")
DF: DF for CONSTANT, a, b, a.b, ERROR1
(1) 1 1 3 2 0

Cmd> coefs("a.b")
WARNING: Missing df(s) in term a.b
Missing effects set to zero
(1,1) -2.05 -1.65 0 3.7
(2,1) 2.05 1.65 0 -3.7

The value -3.7 in the empty cell (lower right hand corner) was selected so as to make
the values in row 2 and column 4 add to 0. If the constant term were not in the model
("resp = rows*cols - 1") the coefficients would be the same, since rows.cols
would be not the first term.

Here is an example where there are no empty margins, but still there are missing
degrees of freedom.

Cmd> w <- vector(56,50,22,41,62,74,63,13,39,58)

Cmd> c <- factor(1,1,2,2,3,3,2,2,3,3)

Cmd> d <- factor(1,1,2,2,2,2,3,3,3,3)

Cmd> tabs(NULL,c) # no empty c marginal cells
(1) 2 4 4

Cmd> tabs(NULL,d) # no empty d marginal cells, either
(1) 2 4 4

3-26

MacAnova Version 4.07

Cmd> tabs(NULL,c,d) # but none the less empty cells
(1,1) 2 0 0
(2,1) 0 2 2
(3,1) 0 2 2

Cmd> anova("w=c+d",silent:T) # c before d

Cmd> coefs() # one set of coefficients
WARNING: Missing df(s) in term d
Missing effects set to zero
component: CONSTANT
(1) 48.667
component: c
(1) -2.1667 -10.667 12.833
component: d
(1) 6.5 0 -6.5

Cmd> anova("w=d+c",silent:T) # c after d

Cmd> coefs() # another set of coefficients
WARNING: Missing df(s) in term c
Missing effects set to zero
component: CONSTANT
(1) 48.667
component: d
(1) 27.833 -10.667 -17.167
component: c
(1) -23.5 0 23.5

3.16 Estimating contrasts – contrast() A contrast in a factor term is a linear combination
of the factor effects associated with that term where the coefficients in the linear
combination sum to zero. For example, a contrast C(τ) in effects τ = (τ1,τ2,...,τk)
with coefficients ci is defined by

C(τ) = c iτ i
i =1

k

∑ , with ci = 0
i =1

k

∑ .

The ci’s are contrast coefficients and the τi’s are factor or interaction effects. Examples
of contrasts would be α1 – α2 (c1 = 1, c2 = –1, cj = 0, j > 2) and α1 – (α2 + α3)/2
(c1 = 1, c2 = c3 = –1/2, cj = 0, j > 3).

If the term is an effect with b levels, then k = b. If it is a product term of factors with
b and c levels, then k = bc, and so on. In a given data set, a contrast in a factor is
estimated as the same linear combination of the estimated factor effects. That is, the
estimated contrast is

C(τ) = c iτ i
i =1

k

∑ .

A sum of squares suitable for testing the null hypothesis H0: C(τ) = 0 may also be

computed as MSE×t2, where t =
C(ˆ τ)

SE[C(ˆ τ)]
, where SE[C(ˆ τ)] is the estimated standard

error of C(ˆ τ) computed with error mean square MSE.

You can compute an estimated contrast value, its standard error, and the associated
sum of squares by contrast(termName,conCoefs), where termName is a quoted

3-27

MacAnova Version 4.07

string or CHARACTER scalar giving the name of a term made of factors in the current
ANOVA model, and conCoefs is a REAL vector, matrix, or array containing the
contrast coefficients. An example might be contrast("b",vector(1,-.5,-.5,0)).

The dimensions of conCoefs must match those of the target term except for possible
trailing dimensions of length 1. That is, if the term is a single factor, the contrast
coefficients must be a vector with length equal to the number of categories for that
factor. If the term is a two-way product term, the coefficients must constitute a matrix
with dimensions equal to the numbers of levels for the two factors used.

A important type of contrast for higher order terms is a product of one dimensional
contrasts. If the coefficients of contrasts in factors a, b and c are in MacAnova vectors
cona, conb, and conc, say, you can compute the product contrast based on cona and
conb as outer(cona,conb), and the product contrast of all three as outer(cona,
conb,conc) or outer(cona,outer(conb,conc)).

Contrast coefficients must sum to zero and at least one coefficient must be non-zero.
However, no attempt is made to check whether any other appropriate marginal sums
are zero. Thus no error is reported if contrast coefficients for an interaction term do not
have zero marginal sums, as long as the sum of all the coefficients is 0.

When the data are unbalanced for the model (see Sec. 3.9), the estimated contrast value
and the associated sum of squares depend on the model specified. There are two
distinct situations.

(i) The selected contrast term is in the ANOVA model, for example, contrast("a",
cona) after anova("y=a+b").

The estimated value is the specified linear combination of the estimated model
coefficients, and the sum of squares is that for deleting the contrast degree of
freedom from the model when all other model degrees of freedom are present.

(ii) The selected term is not present in the model, for example, contrast("a.b",
conab) after anova("y=a+b").

The sum of squares is the reduction in error sum of squares that would be
achieved by adding to the model the degree of freedom associated with the
contrast. The estimated value is the regression coefficient for the added degree of
freedom. In this case, any factors in the term must be in the model.

In both cases, the standard error is computed using the error mean square for the
current model , even for case (ii) where you might prefer an error mean square for the
enlarged model. When there are zero degrees of freedom in the error term, the values
for standard errors are MISSING.

The following example illustrates some of these points.

Cmd> x <- vector(4.9,7.3,5.6,5.2,7.7)

Cmd> a <- factor(1,1,1,2,2); b <- factor(1,2,3,1,2)

3-28

MacAnova Version 4.07

Cmd> anova("x=a+b") # unbalanced because not equal cell sizes
Model used is x=a+b
WARNING: summaries are sequential
 DF SS MS
CONSTANT 1 188.5 188.5
a 1 0.32033 0.32033
b 2 6.1692 3.0846
ERROR1 1 0.0025 0.0025

Cmd> contrast("a",vector(-1,1)) # compare the two levels of factor a
component: estimate
(1) 0.35
component: ss
(1) 0.1225
component: se
(1) 0.05

Since a has a single degree of freedom, we can confirm this result by re-running the
ANOVA with a as the last term; the contrast SS should be the same as the SS for a
computed after b enters the model.

Cmd> anova("x=b+a") # same model in a different order
Model used is x=b+a
WARNING: summaries are sequential
 DF SS MS
CONSTANT 1 188.5 188.5
b 2 6.367 3.1835
a 1 0.1225 0.1225
ERROR1 1 0.0025 0.0025

Now look at two interaction contrasts in this main effect model.

Cmd> c1 <- outer(vector(1,-1),vector(1,-1,0)); c1
(1,1) 1 -1 0
(2,1) -1 1 0

Cmd> contrast("a.b",c1)
component: estimate
(1) 0.1
component: ss
(1) 0.0025
component: se
(1) 0.1

Cmd> c2 <- outer(vector(1,-1),vector(1,0,-1)); c2
(1,1) 1 0 -1
(2,1) -1 0 1

Cmd> contrast("a.b",c2)
component: estimate
(1) MISSING
component: ss
(1) MISSING
component: se
(1) MISSING

The SS for the first a.b contrast is the same as the single degree of freedom for error in
the main effects model. The second a.b contrast is MISSING, because it has a non-zero

3-29

MacAnova Version 4.07

coefficient for an empty cell, that is the cell for level 2 of a and level 3 of b.

Now we fit a model with interaction a.b.

Cmd> anova("x=a+b+a.b")
Model used is x=a+b+a.b
WARNING: summaries are sequential
 DF SS MS
CONSTANT 1 188.5 188.5
a 1 0.32033 0.32033
b 2 6.1692 3.0846
a.b 1 0.0025 0.0025
ERROR1 0 0 undefined

Cmd> contrast("a.b",c1)
WARNING: no degrees of freedom for error; standard errors set to
MISSING
component: estimate
(1) 0.1
component: ss
(1) 0.0025
component: se
(1) MISSING

Cmd> contrast("a.b",c2)
WARNING: no degrees of freedom for error; standard errors set to
MISSING
component: estimate
(1) 0.2
component: ss
(1) 0.0025
component: se
(1) MISSING

Cmd> contrast("a",vector(1,-1))
WARNING: no degrees of freedom for error; standard errors set to
MISSING
component: estimate
(1) -0.4
component: ss
(1) 0.08
component: se
(1) MISSING

Note that this last is the sum of squares for taking factor a out while factor b and the
a.b interaction are remain in. It is not the same as factor a after factor b, or factor a
last one in, since the X-variables for a.b include those for a.

Now we verify that the contrasts are actually the required linear combinations.

Cmd> sum(vector(c1*coefs("a.b")))
WARNING: Missing df(s) in term a.b
Missing effects set to zero
(1) 0.1

3-30

MacAnova Version 4.07

Cmd> sum(vector(c2*coefs("a.b")))
WARNING: Missing df(s) in term a.b
Missing effects set to zero
(1) 0.2

Cmd> sum(vector(1,-1)*coefs("a"))
(1) -0.4

Cmd> anova("x=b+a.b") # a nested in b
Model used is x=b+a.b
WARNING: summaries are sequential
 DF SS MS
CONSTANT 1 188.5 188.5
b 2 6.367 3.1835
b.a 2 0.125 0.0625
ERROR1 0 0 undefined

Cmd> contrast("a",vector(-1,1))
WARNING: no degrees of freedom for error; standard errors set to
MISSING
WARNING: zero df for contrast
component: estimate
(1) MISSING
component: ss
(1) MISSING
component: se
(1) MISSING

Here, the model does not contain a term named a. Hence the contrast in factor a is
treated as a reduction in error sum of squares when the additional degree of freedom is
added to the model. However, since the X-variables associated with factor a are
included among the b.a X-variables, there are no degrees of freedom for any contrast
in factor a.

3.16.1 Contrasts for each level of a factor When there is interaction between two factors,
say a and b, you should usually make an attempt to understand it. One approach is to
compute a contrast in one factor separately for each level of the other factor. The
pattern of variation among these can provide insight in the nature of the interaction.
You can compute such contrasts by providing a quoted or unquoted factor name as a
third argument to contrast(). The factor must be in the current model and is called a
by-variable. When a by-variable is specified, a contrast value, standard error and sum
of squares are computed separately for each of its levels. The value, standard error,
and sum of squares are computed from the cell means ignoring other variables in the
model (except that the estimate of variance is computed from the error mean square for
the model fitted).

Cmd> anova("x=a+b",silent:T) # suppress output

Cmd> contrast("a",vector(-1,1),"b") # b is the by-variable
component: estimate
(1) 0.3 0.4 MISSING
component: ss
(1) 0.045 0.08 MISSING
component: se
(1) 0.070711 0.070711 MISSING

3-31

MacAnova Version 4.07

Cmd> contrast("b",vector(1,5,-6),"a") # a is the by-variable
component: estimate
(1) 7.8 MISSING
component: ss
(1) 0.98129 MISSING
component: se
(1) 0.3937 MISSING

The last contrast is MISSING in each case because it involves a cell which is completely
empty (no non-MISSING data). We confirm the values of the contrasts and sums of
squares.

Cmd> tmp <- tabs(x,a,b,mean:T); tmp # compute cell means, 0 from empty
cell
(1,1) 4.9 7.3 5.6
(2,1) 5.2 7.7 0

Cmd> tmp[2,-3] - tmp[1,-3] # contrast among rows, omitting col 3
(1,1) 0.3 0.4 Contrast values

Cmd> (tmp[2,-3] - tmp[1,-3])^2/sum(vector(-1,1)^2) # sums of squares
(1,1) 0.045 0.08 SS

Cmd> tmp[-2,1]+5*tmp[-2,2]-6*tmp[-2,3]#contrast among cols w/o row 2
(1,1) 7.8 Contrast value

Cmd> (tmp[-2,1]+5*tmp[-2,2]-6*tmp[-2,3])^2/sum(vector(1,5,-6)^2)
(1,1) 0.98129 SS

If the non-empty cells had cell sizes greater than 1, the denominators in these
computations would have to be modified.

3.17 Residuals – resid, resvsyhat, resvsrankits, resvsindex There are several side effect
variables computed by GLM commands that are useful in diagnosing problems with
the assumed model. Chief among these are the REAL vector HII of leverages and the
REAL vector or matrix RESIDUALS of residuals from the fit. After weighted analyses
(Sec. 3.23) and non-linear GLM commands (Sec. 4.2.4, 4.2.5, 4.2.6, 4.3), RESIDUALS is still
computed, but its role in diagnostic procedures is taken by WTDRESIDUALS.

RESIDUALS contains the residuals Yi − ˆ Y i where
ˆ Y i is the estimated predictable part of

the response variable for case i. RESIDUALS is usually a vector but may be a matrix
after manova(). After a weighted regression, ANOVA or MANOVA, row i of

WTDRESIDUALS is Wi (Yi − ˆ Y i) where W i is the weight for case i..

HII is a vector containing the diagonal elements of X(′ X X)−1 ′ X , the so called hat
matrix, where X is the matrix of all the non-redundant X-variables. You can
compute the standard errors of fitted values by sqrt(HII*mse), the standard errors of
prediction by sqrt((1 + HII)*mse), and the estimated standard deviations of
estimated residuals by sqrt((1 - HII)*mse). Here mse is the mean square error
computed as the error sum of square divided by the error degrees of freedom. After a
weighted analysis, HII consists of the diagonal elements of X(′ X WX)−1 ′ X W , where W is
the diagonal matrix of weights.

There are several predefined macros to help examine residuals. When Model is a

3-32

MacAnova Version 4.07

CHARACTER variable specifying a linear model, resid(Model) computes a n by 5
labelled matrix (see Sec. 8.4) whose columns are as follows:

Col. 1 Depvar = Y = observed responses
Col. 2 StdResids = Standardized residuals = residuals/SE[residuals]
Col. 3 HII = leverages
Col. 4 Cook's D = Cook’s distance
Col. 5 t-stats = t-statistics = externally studentized residuals

For the data and model used in the regression analysis in Sec. 3.8, the following output
is obtained.

Cmd> resid("y=x1+x2") # produces matrix with row and column labels
 Depvar StdResids HII Cook's D t-stats
(1) 21.7 -1.0466 0.36667 0.21141 -1.0551
(2) 23.7 0.73011 0.27619 0.067801 0.70325
(3) 22.2 -0.022139 0.40476 0.00011109 -0.020497
(4) 28.5 1.8365 0.25238 0.37951 2.3619
(5) 22.6 -1.7763 0.10476 0.12308 -2.219
(6) 25.9 0.60658 0.17619 0.026231 0.57695
(7) 28.7 0.084667 0.44286 0.0018993 0.078426
(8) 27.7 -0.31635 0.2381 0.010425 -0.295
(9) 27.2 -0.36611 0.25238 0.015082 -0.34224
(10) 27.8 0.41918 0.48571 0.055318 0.39305

With no arguments (simply resid()), the side effect variables from the most recent
linear model are used in the computations. When the response y has q > 1 columns,
that is, when model fit is multivariate, there are q versions of columns 1, 2, 4, and 5,
4q+1 columns in all.

Graphs of residuals are widely used to aid in diagnosing problems. There are three pre-
defined macros that make plots of standardized residuals (column 2 of the output of
resid) automatically.

Macro X-axis Y-Axis

resvsindex Case number Standardized residuals

resvsrankits Normal scores or rankits Standardized residuals

resvsyhat Predicted values Standardized residuals

In each case, what is plotted on the vertical axis are residuals divided by their estimated
standard errors as sqrt(mse/(1 - HII)), where mse is the error mean square. You
use all three the same way.

resvsrankits() or resvsrankits(1), for example, is sufficient to produce a plot of
the first (or only) column of the residuals with default axis labels and plotting symbol
“*”. For multivariate data, resvsrankits(k) makes a plot of the residuals associated
with column k of the response.

resvsrankits(k,"#"), for example, uses “#” as the plotting character and
resvsrankits(k,0) labels each point with its row number.

In addition, these macros all recognize the usual graphics keyword such as ylab and
title (see Sec. 8.5.1).

3-33

MacAnova Version 4.07

Cmd> resvsrankits(title:"Residuals vs rankits for example")

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Residuals vs rankits for example

Rankits

S
t
u
d
e
n
t
i
z
e
d

R
e
s
i
d
s

*

*

*

*

*

*

*

**

*

Cmd> resvsyhat(1,"R",title:"Residuals from y=x1+x2 vs predicted")

-1.5

-1

-0.5

0

0.5

1

1.5

23 24 25 26 27 28

Residuals from y=x1+x2 vs predicted

Yhat

S
t
u
d
e
n
t
i
z
e
d

R
e
s
i
d
s

R

R

R

R

R

R

R

RR

R

These residual plots and the output from resid() are correct after weighted least
squares fits (Sec. 3.23) and may be useful after non-linear GLM commands (Sec. 4.2, 4.3).

3-34

MacAnova Version 4.07

3.18 Predicted values – regpred(), yhat, predtable(), glmpred() and glmtable()
MacAnova has several functions and macros for computing predicted values and
related quantities.

After regress() has estimated a linear regression with k independent variables,
when x is a REAL vector of length k , regpred(x) computes the predicted Y value
given the values in x, its standard error, and the standard error of prediction. The result
is a structure with three components, estimate, SEest, and SEpred. When there is no

weighting and x is the k -vector of predictors, SEest = MSE × ′ x (′ X X)−1 x and SEpred

= MSE × (1+ ′ x (′ X X)−1 x) , where MSE is the residual mean square error and X is the

matrix of X-variables. After weighted analyses, (′ X X)− 1 is replaced by (′ X WX)− 1 , where
W is the diagonal matrix of the weights and it is implicitly assumed that the weight
associated with x is 1.

You can compute predicted values for several choices of the independent variable at
once by letting x be a m by k matrix, each row of which contains values for the k X-
variables. In this case, each of the components of the result will be a vector of length
m corresponding the the predictions using each row of x. After a weighted analysis,
the assumed weights for each row of x are 1. If some or all of these rows correspond to
cases in the data being analyzed, the standard errors computed might be different from
those that might be computed using the weights associated with those cases.

You can suppress computing either or both of the standard error types by keyword
phrases seest:F and/or sepred:F.

You may use regpred() after anova() and manova(), and indeed after other GLM
commands only when there are no factors in the model.

We return to the regression model analyzed on Sec. 3.8. The “fitted” or predicted
values can easily be obtained directly from the side effect variables after a linear model.

Cmd> y - RESIDUALS # fitted value
 (1) 23.093 22.661 22.229 25.844 25.411
 (6) 24.979 28.594 28.162 27.73 27.297

Cmd> regpred(vector(x1[4],x2[4])) # data for case 4
component: estimate
(1) 25.844 4th value in preceding output
component: SEest
(1) 0.84036
component: SEpred
(1) 1.872

Cmd> regpred(hconcat(x1,x2));# hconcat(x1,x2) is 10 by 2
component: estimate same as y - RESIDUALS
 (1) 23.093 22.661 22.229 25.844 25.411
 (6) 24.979 28.594 28.162 27.73 27.297
component: SEest
 (1) 1.0129 0.87911 1.0642 0.84036 0.54143
 (6) 0.70215 1.1132 0.81623 0.84036 1.1658
component: SEpred
 (1) 1.9555 1.8897 1.9826 1.872 1.7582
 (6) 1.8142 2.0093 1.8613 1.872 2.0389

3-35

MacAnova Version 4.07

This last computes predicted values and their standard errors at each of the 10 data
points.

Cmd> regpred(hconcat(x1,x2),seest:F,sepred:F) # estimate only
(1) 23.093 22.661 22.229 25.844 25.411
(6) 24.979 28.594 28.162 27.73 27.297

yhat is a predefined macro that, after any least squares fit (regress(), anova() and
manova()), does computations similar to those of regpred(). When Model is a
CHARACTER variable specifying a linear model, yhat(Model) computes a n by 5 matrix,
where n is the number of cases, whose columns are as follows:

Col. 1 Depvar = Y = observed response

Col. 2 Pred = ̂ Y = predicted or fitted value computed using all data

Col. 3 Pred Resid = Predictive residuals = Y – (̂ Y computed excluding the case)

Col. 4 Estimated standard error of ̂ Y as estimate of E[Y|x]

Col. 5 Estimated standard error of prediction error Y – ̂ Y .

Columns 2, 4, and 5 correspond to components estimate, SEest, and SEpred of the
output of regpred(). If no Model is specified, the computation will use the side effect
variables from the most recent linear model. The matrix returned has row and column
labels (see Sec. 8.4) to make it easier to understand.

Cmd> yhat("y=x1+x2")
 Depvar Pred Pred Resid SE Est SE Pred
(1) 21.7 23.093 -2.2 1.0129 1.9555
(2) 23.7 22.661 1.4355 0.87911 1.8897
(3) 22.2 22.229 -0.048 1.0642 1.9826
(4) 28.5 25.844 3.5529 0.84036 1.872
(5) 22.6 25.411 -3.1404 0.54143 1.7582
(6) 25.9 24.979 1.1179 0.70215 1.8142
(7) 28.7 28.594 0.18974 1.1132 2.0093
(8) 27.7 28.162 -0.60625 0.81623 1.8613
(9) 27.2 27.73 -0.70828 0.84036 1.872
(10) 27.8 27.297 0.97778 1.1658 2.0389

When the model fit is multivariate (response y has q > 1 columns), there are q
versions of every column, 5q columns in all.

The row labels remain with any rows that are extracted.

Cmd> yhat("y=x1+x2")[run(8,10),]
 Depvar Pred Pred Resid SE Est SE Pred
(8) 27.7 28.162 -0.60625 0.81623 1.8613
(9) 27.2 27.73 -0.70828 0.84036 1.872
(10) 27.8 27.297 0.97778 1.1658 2.0389

When there is at least one factor in the model, you cannot use yhat. Instead, except
after regress(), you can use predtable() to compute a table of the fitted (predicted)
values based on the current model. The table is an array with dimension equal to the
number of factors in the model and has a cell for each combination of the levels of
these factors. The dimensions of the table correspond to factors in the order in which
they first appear in the model. If there are variates (non-factors) in the model, the fitted

3-36

MacAnova Version 4.07

values are calculated with the variates set to their overall mean values, not their mean
values for the cell. In this case the values are sometime called the covariate adjusted
cell means .

For the ANOVA model "z=a+b" shown in Sec. 3.8,

Cmd> predtable() # a has 2 levels, b has 4
(1,1) 3.0962 3.8962 3.6462 2.4615
(2,1) 4.9038 5.7038 5.4538 4.2692

Cmd> # the same table computed directly from coefficients

Cmd> tmp <- coefs()

Cmd> tmp$CONSTANT + tmp$a + tmp$b' # note the transpose
(1,1) 3.0962 3.8962 3.6462 2.4615
(2,1) 4.9038 5.7038 5.4538 4.2692

To get standard errors too, you can use either or both the keyword phrases seest:T and
sepred:T. The result is a structure with components estimate and one or both of
SEest and SEpred.

Cmd> predtable(seest:T,sepred:T)
component: estimate
(1,1) 3.0962 3.8962 3.6462 2.4615
(2,1) 4.9038 5.7038 5.4538 4.2692
component: SEest
(1,1) 0.91412 0.91412 0.91412 0.85508
(2,1) 0.91412 0.91412 0.91412 0.72268
component: SEpred
(1,1) 1.481 1.481 1.481 1.4454
(2,1) 1.481 1.481 1.481 1.3712

Commands glmpred() and glmtable() generalize regpred() and predtable(),
respectively. They can be used after any GLM command.

Suppose the most recent GLM command used a model with k variates and l factors,
and variates and factors are REAL matrices with the same number of rows, where
variates has k columns and factors has l columns each consisting of possible
factor levels. Then predtable(variates,factors) returns a structure with
components estimate and SEest. When there are no factors, factors can be omitted,
and glmpred(variates) is the same as regpred(variates,sepred:F); when there
are no variates, you should use NULL in place of variates. You can suppress SEest by
keyword phrase seest:F or also compute prediction standard errors by sepred:T.

Cmd> regress("y=x1+x2",silent:T);glmpred(hconcat(x1,x2))
component: estimate
 (1) 23.093 22.661 22.229 25.844 25.411
 (6) 24.979 28.594 28.162 27.73 27.297
component: SEest
 (1) 1.0129 0.87911 1.0642 0.84036 0.54143
 (6) 0.70215 1.1132 0.81623 0.84036 1.1658

Cmd> anova("z=a+b",silent:T); glmpred(NULL,hconcat(a,b))
component: estimate
(1) 3.0962 3.8962 3.6462 2.4615 4.9038
(6) 5.7038 5.4538 4.2692 4.2692

3-37

MacAnova Version 4.07

component: SEest
(1) 0.91412 0.91412 0.91412 0.85508 0.91412
(6) 0.91412 0.91412 0.72268 0.72268

When there are factors in the most recent model, you can use glmtable() instead of
predtable(). By default glmtable() computes both estimated means and their
standard errors. If you also want prediction standard errors, you can use keyword
phrase sepred:T. You can suppress component SEest by seest:F. In fact,
predtable() is completely equivalent to glmtable(seest:F).

When there are variates in the model, glmtable() also lets you specify the levels that
will be used instead of the default grand means. For example, if there are k variates
and x0 is a vector of length k , glmtable(x:x0), uses the elements of x0 instead of the
means of the variates. After a weighted analysis, glmtable(wtdmean:T) uses the
weighted means of the variates instead of the unweighted means. This might be
appropriate in a situation where weights are proportional to sample sizes.

3.19 Faster ANOVA calculation – fastanova() Some unbalanced models are so large
that calculations using anova() take a prohibitively long time or require an excessive
amount of computer memory. Function fastanova() is designed for faster fitting of
unbalanced ANOVA models which have only factors and no variates. The time
required is roughly proportional to the number of data points times the number of
terms in the model (the number of terms, not the total model degrees of freedom).
Thus, fastanova() is most effective for models with relatively few terms, each with
relatively many degrees of freedom. For models with many terms, each with few
degrees of freedom, fastanova() may actually be slower than anova(). fastanova()
uses an iterative computational algorithm very different from the way anova() works.

There is, unfortunately, a price to pay. After using fastanova() there are several
limitations as to what you can do: (a) side effect variable HII is not computed; (b) you
cannot use function contrast(); (c) if there are any empty cells, function coefs()
may give incorrect answers (a warning is printed) and secoefs() cannot be used
without se:F to suppress standard errors (see Sec. 3.13); and (d) function predtable()
may give nonsensical results for missing cells. In addition, when there are certain
patterns of empty cells, the degrees of freedom in the ANOVA table may be incorrect. If
you use fastanova() when there are empty cells, you should always attempt to verify
the correctness of the degrees of freedom. The example at the end of Sec. 3.15 has such a
pattern.

Cmd> anova("w = c + d") # correct computation
Model used is w = c + d
WARNING: summaries are sequential
 DF SS MS
CONSTANT 1 22848 22848
c 2 1172.1 586.05
d 1 84.5 84.5
ERROR1 6 2039 339.83

3-38

MacAnova Version 4.07

Cmd> fastanova("w=c+d") # SS are correct but DF and MS are wrong
Model used is w=c+d
WARNING: There are 4 empty cells; coefs() may give wrong answers
 and the degrees of freedom may be in error
WARNING: summaries are sequential
 DF SS MS
CONSTANT 1 22848 22848
c 2 1172.1 586.05
d 2 84.5 42.25
ERROR1 5 2039 407.8

3.20 Selection of a subset of X-variables – screen() It is a common situation to have
many X-variables, some or all of which you would consider using to predict a response
variable Y. You might be tempted to just fit a model including all the variables. It is
well known, whoever, that, if some of the variables are not necessary, you can lose
substantial precision in predictions made from the fitted model. This means you may
want to select from the full set of X-variables a necessary subset to include in the
regression model. Alternatively and equivalently, you will want to determine a subset
of variables that can be excluded from the model without meaningful loss of predictive
power. Function screen() is designed to help you select the set to keep. It is a very
fast way of examining all possible subsets of the X-variables to identify the “best”
subsets.

Of course, what variables are selected should and do depend on what we mean by
“best”. Function screen() uses three different criteria: Mallows’ Cp (the default),
adjusted R2, and ordinary unadjusted R2 (coefficient of determination). screen()
has one required argument and several optional keyword arguments. The required
argument is the usual CHARACTER variable specifying the “full” regression model, that
is, including all of the X-variables that are to be screened. If it includes any factors, they
will be treated as variates just like regress() does (Sec. 3.4). The model must include
an intercept.

Suppose there are p coefficients in the submodel, including an intercept, and the

sample size is n. Then Cp =
RSSp

s2 + 2 p − n , where RSSp is the residual sum of squares

from the submodel, s2 is the estimate of σ2 from the full model, R2 = 1−
RSSp

(yi − y)2∑
and Radj

2 = 1− (n − 1)R2/(n − p) . The term 2p in Cp can be thought of as a “penalty” for
including possibly unneeded coefficients. Keyword penalty (see below) allows you to
replace the multiplier 2 by another value.

3-39

MacAnova Version 4.07

The keyword arguments are as follows:

Keyword Type of value Default Meaning

mbest Positive integer REAL 5 Number of subsets to be found

forced REAL vector of positive integers
or CHARACTER vector of
independent variable names

none List of independent variables to
be forced into all subsets

method One of "cp", "r2", or "adjr2" "cp" Criterion for subset selection

s2 Positive REAL scalar MSE Replacement for full model
MSE = s2 in computing Cp

penalty Positive REAL scalar 2 Multiplier of p in computing
Cp

keep CHARACTER vector with elements
one or more of "model", "p",
"cp", "rsq", "adjrsq" or "all"

none Types of information to return
as value

By way of example, we apply screen to some data from Hald (1960) that have been
repeatedly analyzed over the years. They are in file MacAnova.dat distributed with
MacAnova.

Cmd> makecols(matread("macanova.dat","halddata"),x1,x2,x3,x4,y)
halddata 13 5 format
) Data from A. Hald, Statistical Theory with Engineering Applications
) Wiley, New York, 1960, p. 647
) Col. 1: X1 = percent tricalcium aluminate
) Col. 2: X2 = percent tricalcium silicate
) Col. 3: X3 = percent tetracalcium alumino ferrite
) Col. 4: X4 = percent dicalcium silicate
) Col. 5: Y = cumulative heat of hardening after 180 days. (cal/gm)

Cmd> regress("y=x1+x2+x3+x4",pvals:T) # full model regression
Model used is y=x1+x2+x3+x4
 Coef StdErr t P-Value
CONSTANT 62.405 70.071 0.8906 0.39913
x1 1.5511 0.74477 2.0827 0.070822
x2 0.51017 0.72379 0.70486 0.5009
x3 0.10191 0.75471 0.13503 0.89592
x4 -0.14406 0.70905 -0.20317 0.84407

N: 13, MSE: 5.983, DF: 8, R^2: 0.98238
Regression F(4,8): 111.48, P-value: 4.7562e-07, Durbin-Watson: 2.0526
To see the ANOVA table type 'anova()'

Cmd> # No variable is individually significant at the 5% level

3-40

MacAnova Version 4.07

Cmd> screen("y=x1+x2+x3+x4") # screen with default options
Model used is y=x1+x2+x3+x4
Error variance set to full model mse, penalty factor is 2
 p C(p) Adj R^2 R^2 Model
 3 2.678 0.9744 0.9787 x1 x2 Model with lowest Cp
 4 3.018 0.9764 0.9823 x1 x2 x4
 4 3.041 0.9764 0.9823 x1 x2 x3
 4 3.497 0.9750 0.9813 x1 x3 x4
 5 5.000 0.9736 0.9824 x1 x2 x3 x4

Cmd> regress("y=x1+x2",pvals:T) # both x1 and x2 are highly signif.
Model used is y=x1+x2
 Coef StdErr t P-Value
CONSTANT 52.577 2.2862 22.998 5.4566e-10
x1 1.4683 0.1213 12.105 2.6922e-07
x2 0.66225 0.045855 14.442 5.029e-08

N: 13, MSE: 5.7904, DF: 10, R^2: 0.97868
Regression F(2,10): 229.5, P-value: 4.4066e-09, Durbin-Watson: 1.9216
To see the ANOVA table type 'anova()'

Cmd> screen("y=x1+x2+x3+x4",mbest:3,forced:"x3",method:"adjr2")
Model used is y=x1+x2+x3+x4
1 variables were forced: x3
 p C(p) Adj R^2 R^2 Model
 4 3.041 0.9764 0.9823 x1 x2 x3 The 3 models containing
 4 3.497 0.9750 0.9813 x1 x3 x4 x3 with largest
 5 5.000 0.9736 0.9824 x1 x2 x3 x4 adjusted R^2

Cmd> screen(,forced:"x3",penalty:3) # modified Cp with penalty = 3
Model used is y=x1+x2+x3+x4
1 variables were forced: x3
Error variance set to full model mse, penalty factor is 3
 p C(p) Adj R^2 R^2 Model
 4 7.041 0.9764 0.9823 x1 x2 x3
 4 7.497 0.9750 0.9813 x1 x3 x4
 5 10.000 0.9736 0.9824 x1 x2 x3 x4
 4 11.337 0.9638 0.9728 x2 x3 x4
 3 25.373 0.9223 0.9353 x3 x4

In this output, p is the number of parameters fit, including the intercept, if any, Model
is a list of the independent variables in each model, and C(p), Adj R^2 and R^2 are the
values of Cp , adjusted R2 and R2, respectively.

The first example screened using the defaults. It produced 5 models (out of 16 possible
models with an intercept) because mbest has default 5. The second example asked for
the three regressions (out of 8) containing x3 that have the smallest value of adjusted
R2. The third example again forced in x3 but changed the criterion so that additional
variables carry a higher penalty. As is usual with the other GLM commands, if you
omit Model, screen() uses the most recent Model. If you use keywords, you do need
to precede them with a comma.

Using keyword keep, you can also save the results of screen() so that you can do
further work with them. The value for keep should either be a CHARACTER vector
containing one or more of "p", "cp", "rsq", "adjrsq" or "model", or, if you want

3-41

MacAnova Version 4.07

everything, "all". The result is a structure with one or more of the vector
components p, cp, adjrsq, rsq and model. Component model is a CHARACTER vector
each of whose components is the model in the usual MacAnova form. If only one type
of result is requested (keep:"cp", for example), the result is a vector.

Cmd> results <- screen("y=x1+x2+x3+x4",keep:"all");results
component: p
(1) 3 4 4 4 5
component: cp
(1) 2.6782 3.0182 3.0413 3.4968 5
component: adjrsq
(1) 0.97441 0.97645 0.97638 0.97504 0.97356
component: rsq
(1) 0.97868 0.98234 0.98228 0.98128 0.98238
component: model
(1) "y=x1+x2"
(2) "y=x1+x2+x4"
(3) "y=x1+x2+x3"
(4) "y=x1+x3+x4"
(5) "y=x1+x2+x3+x4"

Cmd> models <- screen(,keep:"model");models# just keep models
(1) "y=x1+x2"
(2) "y=x1+x2+x4"
(3) "y=x1+x2+x3"
(4) "y=x1+x3+x4"
(5) "y=x1+x2+x3+x4"

Cmd> regress(models[1]) # regression on "best" model
Model used is y=x1+x2
 Coef StdErr t
CONSTANT 52.577 2.2862 22.998
x1 1.4683 0.1213 12.105
x2 0.66225 0.045855 14.442

N: 13, MSE: 5.7904, DF: 10, R^2: 0.97868
Regression F(2,10): 229.5, Durbin-Watson: 1.9216
To see the ANOVA table type 'anova()'

3.21 Power and sample size – power(), power2() and samplesize() A scientist designing
an experiment to test a null hypothesis H0 often wants to know the power = 1 – β
against a specified alternative to H0, where β is the probability of a type II error (not
reject H0 when H0 is false) when the alternative is true. Such a scientist may also want
to determine the minimum sample size required so that the test will have power at
least 1 – β, where β is given.

In almost every case, the power of a test depends on (i) the size of the experiment as
measured by the number of replicates, (ii) the variance σ2 of an individual observation
and (iii) the extent of departure from H0 of the alternative. The last two interact in
their effect since the determining quantity is usually the departure from the null
hypothesis relative to the size of σ.

MacAnova provides three functions to make power and sample size computations for
linear models. power() and samplesize() are adapted to the analysis of variance of

3-42

MacAnova Version 4.07

data from a completely randomized design (one-way ANOVA) or from a randomized
block design (two-way ANOVA). power2() is applicable to more general designs. They
all assume independent normal errors with constant σ2.

The default usage of power() is power(noncen,ngrp,alpha,nrep), where all
arguments are REAL. Argument noncen is a “noncentrality” type parameter that
specifies the departure from the null hypothesis relative to σ2. Specifically

noncen =

τ i
2

i= 1

k

∑ / σ2 ,

where k = ngrp, the number of treatments or groups; argument alpha is the size
(significance or α level) of the test to be used; and argument nrep is the number of
replicates, that is, the number of units receiving each treatment. The returned value is
the power of the usual F-test for this experimental design, as computed from the non-
central F-distribution.

Suppose we have 4 treatment groups, and are planning to use an F-test with
significance level α = 0.01, and we believe the noncentrality parameter is about 5. We
compute the power for the cases when we use 5 experimental units for treatments and
when we use 4.

Cmd> vector(power(5,4,.01,5), power(5,4,.01,4))
(1) 0.8555 0.66879

We see that if we used 5 experimental units per groups the power would be .856, while
4 per group would yield power of only .679. Actually the arguments to power() can be
vectors, as long as all non-scalar arguments have the same length. Thus we can
compute power for several sample sizes with a single command:

Cmd> power(5,4,.01,run(4,9)) # power for sample sizes 4 through 9
(1) 0.66879 0.8555 0.94585 0.98197 0.99454
(6) 0.99847

Function samplesize() is a sort of inverse to power(). It has the same first three
arguments, noncen, ngrp, and alpha, but its fourth argument is pwr, the required
power = 1 – β. It returns the smallest group size giving power at least pwr. Unlike
power(), samplesize() does not accept vector arguments. Let’s find the minimum
number of replicates required for power ≥ .80 (β ≤ .20) and power ≥ .95 (β ≤ .05) for the
5 group example.

Cmd> vector(samplesize(5,4,.01,.80),samplesize(5,4,.01,.95))
(1) 5 7 Sample sizes for power .80 & .95

These figures are confirmed by the previous power() output where we saw the actual
powers for 5 and 7 replicates would be .856 > .80 and .982 > .95, whereas for sample sizes
4 and 6, the powers would be .679 < .80 and .946 < .95, the latter just falling short of the
desired .95.

When ngrp is 1, power() and samplesize() do their computations for the case of a 1
sample two-tail t test with sample size nrep and noncen = (µ/σ)2.

Cmd> power(1.2^2,1,.05,run(6,10))
(1) 0.65504 0.75364 0.82792 0.882 0.92033

3-43

MacAnova Version 4.07

Cmd> samplesize(1.2^2,1,.05,.90)#least sample size to get power .9
(1) 10

Thus, if |µ/σ| = 1.2, the probability of getting a t-statistic that is significant at the 5%
point ranges from .65504 to .92033 for sample sizes from 6 to 10 and 10 is the smallest
sample that achieves power > .90.

To compute power and sample size for randomized block designs, include the keyword
phrase design:"rbd" as an additional argument. The noncentrality parameter has the
same meaning as before and nrep is the number of blocks. When ngrp is 2, the
calculations are for a paired t test with noncen = (µd/σ)2

Cmd> power(5,4,.01,run(4,9),design:"rbd") # power for 4 to 9 blocks
(1) 0.57227 0.79369 0.91608 0.97012 0.99044
(6) 0.9972

Cmd> samplesize(5,4,.01,.95,design:"rbd")
(1) 7 number of blocks to achieve power .95

Function power2() is more general than power() and enables you to make power
computations for designs other than completely randomized and randomized blocks. It
requires four REAL arguments, noncen2, numDF, alpha and denomDF. Argument alpha
is the same as for power(), but all the other arguments are different.

Argument noncen2 is a noncentrality parameter, but is different from noncen in
power(). It is the ratio of a weighted sum of the squared treatment effects to the error
variance σ2, specifically

noncen2 =

ni(τ i − τ)2

i= 1

k

∑ /σ 2 , where

τ =
niτi

i = 1

k

∑
ni

i =1

k

∑
.

When the sample sizes are all equal to n, noncen2 = n*noncen.. Arguments numDF
and denomDF are the numerator and denominator degrees of freedom in the F-test.
An alternative definition of noncen2 is

noncen2 = numDF*(E[Numerator MS]/E[Denominator MS] – 1)

Any power that can be computed via the function power() can also be computed using
power2(). power2() is particularly useful for computing power for interaction or
related effects where degrees of freedom are not simply sample sizes minus 1. Since the
numerator and denominator degrees of freedom in a randomized block design are
ngrp-1 and (ngrp-1)*(nrep-1), respectively, we can reproduce the power
computations for the randomized block design given above by

Cmd> ngrp <- 4;nrep <- run(4,9)

Cmd> power2(nrep*5,ngrp-1,.01,(ngrp-1)*(nrep-1))
(1) 0.57227 0.79369 0.91608 0.97012 0.99044
(6) 0.9972

3-44

MacAnova Version 4.07

3.22 Multivariate linear models – manova() In the real world, experiments and
surveys are generally expensive, and researchers want to learn as much as possible
from their investment. For these reasons many experiments or surveys involve
collecting data for several response variables. While analyzing each response variable
separately may be informative, you can often learn more by analyzing the responses
simultaneously. This is the goal of multivariate analysis.

One of the most important multivariate statistical methods is multivariate analysis of
variance, MANOVA for short. This is based on an extension to a vector response the
linear models of the sort described in Sec. 3.2. Specifically, when there are q responses
the multivariate linear model has the form Y = β0 + β1X1 + β2 X2 +... +βkXk + e , except that
now Y is a q-dimension vector, as is each coefficient βj and the error e . The X-
variables are similar to those in a univariate linear model – they may code for levels of
a factor or interactions, or represent variates. Another way of describing this
multivariate linear model is as q univariate linear models, one for each coordinate
of Y, with the coefficients for coordinate j the jth elements of the coefficient vectors
β0, β1, ..., βk. Note that every univariate model is assumed to have the same X-
variables. This is a frequently overlooked limitation on MANOVA.

Multivariate linear models which generalize ANOVA models have a similar additive
form. For example, the model underlying a one-way MANOVA with g groups is

 Yij = µ + α j + eij ,i = 1,...,nj , j = 1,..., g , where Yij , αj and e j are all q-dimensional

You can analyze such models as well as models with variates with function manova().

The eigenvalue-based tests discussed below assume that the errors e are multivariate
normal with mean 0 and constant variance-covariance matrix Σ.

The quantities computed by manova() are analogous to the sums of squares computed
by anova(), except that instead each sum of squares, manova() computes a q by q
SSCP (Sums of Squares and Cross Products) matrix. There is one SSCP matrix for each
term in the model. The q elements on the diagonal of each such matrix are the
ANOVA sums of squares for each of the q variables. Off the diagonal are sums of cross
products of different variables.

The algebraic form of the SSCP matrix for a term is very similar to the corresponding
ANOVA sum of squares, except that any term of the form y2 is replaced by a term of
the form yy’. For example the SSCP matrix for groups in a one-way MANOVA has the

form

n j Y .j − Y ..()
j =1

g

∑ Y . j −Y ..()′ instead of nj (Y . j − Y ..)
2

j =1

g

∑ and the error SSCP has the form

Y ij − Y . j() Yij − Y . j()′

i =1

n j

∑
j =1

g

∑ instead of (Yij − Y . j)
2

i =1

n j

∑
j =1

g

∑ .

As for the other GLM commands, the standard usage is manova(Model) where Model
is CHARACTER variable specifying the model. Now, however, the Y-variable is a matrix
with q columns each containing the values for one of the response variables. Each
row contains the q responses for a case. When the Y-variable is a vector, manova() is
equivalent to anova().

3-45

MacAnova Version 4.07

When each row of a SSCP matrix would take more than one line on the screen, usually
when q > 5, only the degrees of freedom are printed and the SSCP matrices are
suppressed. manova(Model,sscp:F) suppresses the SSCP matrices for any q.
manova(Model,sscp:T) forces printing of the SSCP matrices, even for a large q.

manova(Model,byvar:T) prints separate ANOVA tables for each variable separately,
but no SSCP matrices. manova(Model,byvar:T,fstats:T) adds F-statistics and P
values.

manova(Model,fstats:T) gives the same information as manova(Model,byvar:T,
fstats:T) except that q sets of univariate results for each term in Model are grouped
together instead of printing a complete ANOVA table for each variable.

See Sec. 10.16 for examples of these options.

Regardless of the printed output, manova() computes the same side effect variables as
anova() – REAL variables DF, SS, HII and RESIDUALS and CHARACTER variables
STRMODEL, DEPVNAME, TERMNAMES – except that SS is a 3-dimensional array, with
SS[i,,] containing the SSCP matrix for the ith term, and RESIDUALS has q columns,
each containing the residuals for the corresponding column of Y.

manova(Model,weights:T) or manova(Model,wts:T) carries out a weighted
MANOVA and computes the additional side effect variable WTDRESIDUALS, the same
size and shape as RESIDUALS.

See Sec. 10.16 and 10.17 for examples of the use of manova().

Many tests of common null hypotheses can be computed from the so called relative
eigenvalues of a hypotheses SSCP matrix H relative to an error SSCP matrix E.
Functions releigenvals(h,e) computes the relative eigenvalues in decreasing order
and releigen(h,e) computes both the relative eigenvalues and relative eigenvectors.
Here h and e are square matrices of the same size with e positive definite.

In brief, the relative eigenvalues are the ordinary eigenvalues of the nonsymmetric
matrix E-1H. They cannot be computed using functions eigen() or eigenvals()
(see Sec. 6.2) because E-1H is not symmetric. Functions trace() and det() can be
used to compute some test statistics that can be expressed as the trace (sum of diagonal
elements) of E-1H or as a determinant such as det(I + E-1H). It is beyond the scope
of this manual to summarize the tests but see Sec. 10.16 for an example where the
Wilks, Hotelling and Pillai statistics are computer. See Sec. 6.2.3 for details on
releigen().

After you have run manova(), you can examine the model further using the same
functions and macros used after anova(). To extract model coefficients and/or their
standard errors for all terms or a specified term, you can use coefs(), coefs(term),
secoefs() or secoefs(term) (see Sec. 3.13, 3.13.1). The coefficients and standard
errors have an extra dimension of length q as compared to their univariate
counterparts. For example, coefs("CONSTANT") returns a 1 by q vector. You can
include an additional positive integer argument in these functions (for example,
secoefs("a.b",2)) to specify which response variable to compute coefficients for.

When there are no factors in the model, you can also use macro regcoefs (Sec. 3.13.1)

3-46

MacAnova Version 4.07

to obtain coefficients and their standard errors. By default, regcoefs() returns a
structure, each component of which is a matrix containing coefficients, their standard
errors and t-statistics for one column of the response. regcoefs(pvals:T) adds a
column of P values to each component. regcoefs(byvar:T) returns a matrix with q
columns of coefficients, q columns of standard errors, and so on.

After manova(), contrast() (see Sec. 3.16) computes a q by q SSCP matrix with 1
degree of freedom instead of a SS, plus q-dimensional vectors of contrast estimates and
their standard errors, one for each response variable. The rules for subtractive versus
additive sums of squares are exactly as for univariate ANOVA, substituting SSCP for
SS. You can use predtable() or glmtable() (Sec. 3.18) to get a table of predicted
values. Cell by cell statistics can also be computed using tabs() or cellstats().
Alternatively, you can use regpred() or glmpred() to compute estimated means and
their standard errors for specified values of the variates and or factors.

Macros resid (Sec. 3.17) and yhat (Sec. 3.18) work after manova(), except that there are
q columns each of standardized residuals, Cook's distances, predicted values, and their
standard errors. Macros resvsrankits, resvsindex, and resvsyhat also work. For
example, simply resvsrankits() or resvsrankits(1) makes a rankit plot of
residuals from the first column of Y, while resvsrankits(3) makes such a plot for
column 3.

Let B = β1 β2 β3 … βk[]′
, be the k by q matrix of linear model coefficients,

including the constant term, if any. Each row βi’ of B consists of q coefficients for a
single X-variable in the model, one coefficient for each response variable. The
contrasts computed by contrast() are ultimately of the form c B, where c is a 1 by k
row vector that specifies a linear combination of the rows of B. Alternatively, they
can be considered as q univariate contrasts, one for each column of Y, all computed
using the same coefficients c.

In a repeated measures analysis, you may be interested in hypotheses concerning
contrasts among the columns of B, that is, among coefficients associated with
different response variables. Such hypotheses can be tested using matrices obtained by
pre- and post-multiplying the hypothesis and error SSCP matrices by matrices whose
columns consist of vectors of contrast coefficients. For example, in single-sample

profile analysis with model yj = µ + e j, j = 1, . . ., n , where µ =

µ1 µ2 µ 3 … µ q[] ’,

one hypothesis of interest is H0: µ1 = µ2 = . . . = µq. This can be expressed as C µ = 0,

where C is the q-1 by q matrix

1 −1 0 … 0

1 0 −1 … 0

… … … … …
1 0 0 … −1



















. If H and E are the SSCP

matrices associated with the CONSTANT and ERROR1 terms, obtained by
manova("y=1"),then CHC’ and CEC’ are appropriate hypothesis and error matrices
for testing H0: C µ = 0.

3-47

MacAnova Version 4.07

3.23 Weighted analyses – keyword weights and side effect variable WTDRESIDUALS
Weighted regression analysis, weighted ANOVA or weighted MANOVA may be
appropriate when some observations have greater intrinsic variability than others.
This is the situation, for example, when you all you have are averages of original data,
plus knowledge of the sample sizes, that is, the number of original data values that
were included in each average. Here you would want to weight each case (average)
proportional to its original sample size. In other situations, you may have estimates of
the variances for each case. In that case you would want to weight inversely
proportional to the variances, that is, use the reciprocals of the variances as weights. In
addition, there are a number of estimation problems that can be solved by iterated
weighted analysis, where the results from each analysis are used to compute new
weights for a new analysis, the process continuing until estimates do not change
meaningfully.

You can carry out weighted analyses with weights w, where w is a non-negative REAL
vector, by including weights:w or wts:w as an argument after Model in regress(),
anova(), or manova(). Typical usage for a regression, weighting by the reciprocal of
the variance for each case might be regress("y=x1+x2",weights:1/sd^2), where sd
is a vector of estimated standard deviations for each case.

Analyses are performed assuming that each case has variance inversely proportional to
its weight; that is, the variance of case i is σ2/w i. All sums of squares (and cross
products in the case of manova()) are given on the σ2 scale, that is, after multiplying

the data by wi . In fact, the computations are entirely equivalent to those done by an
unweighted analysis without a constant term, when the data for the ith case, including

Yi and all Xij’s, including the constant, are multiplied by wi .

Two sets of residuals are computed and saved as side-effects for a weighted analysis.
The first, RESIDUALS, is simply the vector or matrix of responses Yi minus their values
as predicted from the model fit. The second, WTDRESIDUALS, is sqrt(w)* RESIDUALS.
If the weighting has been appropriate, its elements should have approximately constant
variance σ2. You should use WTDRESIDUALS rather than RESIDUALS in any outlier
and influence diagnostic procedures. Macros resid, yhat, resvsindex,
resvsrankits, and resvsyhat all use WTDRESIDUALS after a weighted analysis.

The REAL vector HII of leverages is also computed and is what would be obtained by an

unweighted analysis based on X-variables and responses multiplied wi .

Any cases with zero case weight are completely removed from the regression. In
particular this means that zero case weight observations are not counted in degrees of
freedom. Any MISSING weight is treated as if it were 0.

The functions coefs() (Sec. 3.13), predtable() (Sec. 3.18), and contrast() (Sec. 3.16)
are available after weighted least squares operations.

Historical note: Commands wtanova(), wtmanova() and wtregress() were formerly
used for weighted analyses. They are still available but their use is deprecated.

3-48

MacAnova Version 4.07

3.24 Retrieving information about a GLM analysis Although the most important
results of regression, ANOVA and other GLM analyses are either printed or saved as
side effect variables, other results of the computation are available only by calling
certain functions. In addition to coefs(), secoefs() (see Sec. 3.13), predtable() and
regpred() (Sec. 3.18), you can use functions modelvars(), varnames(),
xvariables(), xrows() and modelinfo() to retrieve various quantities that were
computed but neither printed nor saved in variables. For example, if your model
includes factors, you can obtain the actual X-variables used to code the factor levels (see
Sec. 3.10). After non-regression GLM commands such as anova(), when XTXINV is not
created as a side effect variable, you can retrieve (′ X X)−1. And, even if the previous
GLM command specified dependent or independent variables that were temporary
variables and hence no longer available, modelvars() can retrieve them. In addition,
modelinfo() can be used to test for the existence of an active GLM model.

3.24.1 modelvars() and varnames() You use modelvars() to retrieve the variables
appearing in the preceding model. It works even when the original variables have
been deleted. You control what you get by specifying keyword phrases or variable
numbers. modelvars(x:T) and modelvars(y:T) retrieve the variables to the right
and left of “=” in the current model specification, respectively.
modelvars(factors:T) and modelvars(variates:T) retrieve the factors and
variates, respectively, on the right hand side of the model. modelvars(all:T)
returns a matrix whose columns are all the variables, in the model, starting with the
dependent variable (variable on left side of the model). Finally,
modelvars(vector(i1,i2,...)), where i1, i2, ... are non-negative integers,
retrieves variables by number, where 0 specifies the dependent variable (variable to left
of “=”).

For example, after regress("yield=x1+x2+x3+x4+x5"), both modelvars(y:T) and
modelvars(0) return the response variable yield, both modelvars(x:T) and
modelvars(variates:T) return hconcat(x1,x2,x3,x4,x5), and
modelvars(vector(2,4,5,0)) returns hconcat(x2,x4,x5,y).

After anova("y=x+a+b+a.b+c"), where x is a variate and a, b and c are factors,
modelvars(vector(1,4)) returns hconcat(x,c), modelvars(x:T) returns
hconcat(x,a,b,c), modelvars(variates:T) returns x, and
modelvars(factors:T) returns hconcat(a,b,c).

You can also use modelvars() to extract the variables from a model specified by a
quoted string or CHARACTER scalar as second argument. Thus, for example,
modelvars(factors:T,"y=x+a+b+c+a.b") returns hconcat(a,b).

modelvars() can also be used to determine whether a model has a constant term and
the number of factors or variates in a model by using hasconst:T, nfactors:T or
nvariates:T as first argument. You use nx:T to determine the total number of
variables on the right hand side of the model. For example, when a and b are factors
and x is a variate, modelvars(hasconst:T,"y=x+a+b+a.x") returns True,
modelvars(nfactors:T,"y=x+a+b+a.x") returns 2, modelvars(nvariates:T,
"y=x+a+b+a.x") returns 1 and modelvars(nx:T,"y=x+a+b+a.x") returns 3.

varnames() with with no argument returns as a CHARACTER vector the names of the

3-49

MacAnova Version 4.07

all the variables in the active GLM model, starting with the reponse variable. If there is
no active model, the names of the variables in STRMODEL, if it exists, are returned. The
model should not contain any variables computed “on the fly” (Sec. 3.4.1) or any
polynomial or periodic regression shortcuts (Sec. 3.4.3).

varnames(Model), where Model is a CHARACTER scalar or quoted string, returns the
names of the variables in Model. No checking is done to confirm that the model is of
the correct form except for checking that no names have length greater than 12
characters.

Cmd> regress("yield=x1+x2+x3+x4+x5", silent:T)

Cmd> varnames()
(1) "yield"
(2) "x1"
(3) "x2"
(4) "x3"
(5) "x4"
(6) "x5"

Cmd> varnames("y=a+b")
(1) "y"
(2) "a"
(3) "b"

3.24.2 xvariables() You use xvariables() to compute the X-variables (see Sec. 3.2 and
3.10) used by MacAnova. These do not include any redundant X-variables that are
always ignored by the GLM commands (see Sec. 3.10) although it will include any X-
variables that happen to be aliased with earlier X-variables. After any GLM command,
xvariables(), with no argument, returns the X-variables for the current GLM model
as a matrix with one column for each X-variable. If the model has a constant term
(intercept), one of the columns, usually the first, will be all 1’s. If Model is a quoted
string or CHARACTER scalar representing a model, xvariables(Model) computes the
X-variables associated with Model.

By default, if there are any MISSING values in dependent variable or any of the variates
or factors (or weights, after a weighted analysis), the corresponding row of the X-
variable matrix is set to 0. If you include missing:? as an extra argument, such rows
will be set to MISSING.

It is important to recognize the difference between modelvars() and xvariables(). If
a model contains factors, modelvars() returns the actual factors in the model, while
the latter returns the variables encoding the factors.

Cmd> y <- vector(70.9,78.2,74.8,63.3,68.4,74.2,54.6); x <- run(7)

Cmd> a <- factor(vector(1,2,3,1,2,3,3))

Cmd> b <- factor(vector(1,1,1,2,2,2,2))

3-50

MacAnova Version 4.07

Cmd> anova("y=x+a+b")
Model used is y=x+a+b
WARNING: summaries are sequential
 DF SS MS
CONSTANT 1 33520 33520
x 1 143.1 143.1
a 2 109.58 54.789
b 1 113.1 113.1
ERROR1 2 23.08 11.54

Cmd> modelvars(x:T) # retrieves hconcat(x,a,b)
(1,1) 1 1 1
(2,1) 2 2 1
(3,1) 3 3 1
(4,1) 4 1 2
(5,1) 5 2 2
(6,1) 6 3 2
(7,1) 7 3 2

Cmd> xvariables()
(1,1) 1 1 1 0 1
(2,1) 1 2 0 1 1
(3,1) 1 3 -1 -1 1
(4,1) 1 4 1 0 -1
(5,1) 1 5 0 1 -1
(6,1) 1 6 -1 -1 -1
(7,1) 1 7 -1 -1 -1

Column 1 of the xvariables() output encodes the constant term, column 2 is the
same as x, columns 3 and 4 encode factor a and column 5 encodes factor b.

3.24.3 xrows() xrows(Variates,Factors) computes rows of a matrix of X-variables
corresponding to variate values in Variates and factor levels in Factors, using the
information saved by the preceding GLM command.

Let nvar be the number of variates in the model in the model and nfac be the number
of factors.

Variates should either be a REAL vector with length(Variates) = nvar , or a REAL
matrix with ncols(Variates) = nvar . When there are no variates in the model, use
xrows(NULL,Factors).

Factors should either be a REAL vector with length(Factors) = nfac, or a REAL
matrix with ncols(Factors) = nfac. All the elements of Factors should be positive
integers not exceeding the maximum level for each factor. When there are no factors
in the model, use xrows(Variates,NULL) or simply xrows(Variates).

Let N v be 1 when Variates is a vector and nrows(Variates) otherwise. Similarly,
let N f be 1 when Factors is a vector and nrows(Factors) otherwise. Then if N v ≠
N f, you must have either N v = 1 or N f = 1 and the value of Variates or Factors is
used for every row of the output.

The result is a REAL matrix with max(N v, N f) rows. Each row consists of the values of
the X-variables (design matrix) corresponding to that row of Variates and Factors.

3-51

MacAnova Version 4.07

Cmd> xrows(6,vector(2,2)) # same model as above
(1,1) 1 6 0 1 -1

After anova("y=x1+x2+a*b"), xrows(hconcat(x1,x2),hconcat(a,b)) is
equivalent to xvariables().

After regress("y=x1+x2"), xrows(hconcat(x1,x2)) %*% COEF is equivalent to
regpred(x0,seest:F,sepred:F).

3.24.4 modelinfo() Function modelinfo() can return a wide variety of information
about the most recent GLM model. You specify what it should return by keyword
phrases of the form what:T, where what is one of all, aliased, bitmodel, coefs,
colcounts, distrib, link, parameters, scale, sigmahat, strmodel, termnames,
weights, xtxinv, xvars or y.

modelinfo(all:T) returns everything. To suppress specific items with all:T, use, for
example, modelinfo(all:T,y:F,xvars:F).

When more than one item is requested, modelinfo() returns a structure with
components matching these keywords. Any component that is not available (for
example, sigmahat after any GLM command except robust()) is set to NULL.

You cannot use modelinfo() after fastanova(), ipf() or screen().

Normally, using modelinfo() is an error when there was no preceding GLM
command. However, if nomodelok:T is an argument, when there is no active model
modelinfo() returns NULL without printing an error message. Thus you can test for
the existence of an active model by

Cmd> if(isnull(modelinfo(strmodel:T,nomodelok:T))){
..do something..} # see Sec. 9.4.2 for isnull()

Here is a description of what each option returns. The preceding GLM command is
anova("y=x+a+b") analyzing the data in Sec. 3.24.2.

xvars:T
The matrix of X-variables associated with the active model, that is, the same as the
output of xvariables() (Sec. 3.24.2). As with xvariables(), you can use keyword
phrase missing:? to force values for cases with any MISSING data or weights to be
MISSING. The default value is 0.

y:T
The dependent variable in the model (variable to the left of “=”). modelinfo(y:T) is
thus equivalent to modelvars(0) and modelvars(y:T) (Sec. 3.24.1).

weights:T
A REAL vector containing the weights associated with each case. When no weights
were specified, either explicitly or implicitly, this is a vector of 1's. Otherwise it is
either the vector wts from regress(Model,weights:wts), anova(Model,
weights:wts), or manova(Model,weights:wts) (Sec. 3.23), or the implicit weights
from the final iteration of the iterative GLM commands such as poisson(),
logistic(), or robust() (Sec. 4.2, 4.3). The value for any case with MISSING data or
weight is always zero.

3-52

MacAnova Version 4.07

Cmd> modelinfo(weights:T)
(1) 1 1 1 1 1
(6) 1 1

parameters:T
The REAL vector containing parameters for the response variable for each case. It’s
value is different from NULL only after logistic(), probit() (Sec. 4.2.4) or
glmfit(model,distrib:"binomial",...) (Sec. 4.2.6) when its value is the vector
or sample sizes for each case.

coefs:T
The vector of coefficients of the X-variables in the model fitted (Sec. 3.2, 3.10).
Coefficients corresponding to aliased X-variables (those that are linearly dependent
on previous X-variables) are set to zero. After manova() the result is a matrix with
the same number of columns as the dependent variable. When there are factors in
the model, the coefficients will differ from the factor effects computed by coefs() and
secoefs(). You can compute the fitted values of the response by
modelinfo(xvars:T) %*% modelinfo(coefs:T).

Cmd> modelinfo(coefs:T)
(1) 130.78 -16.9 -21.433 1.6667 -22.35

Cmd> coefs() # variate coefficients and factor effects
component: CONSTANT
(1) 130.78
component: x
(1) -16.9
component: a
(1) -21.433 1.6667 19.767
component: b
(1) -22.35 22.35

scale:T
A REAL factor or factors by which the square roots of the diagonals of (′ X X)−1 or

 (′ X WX)−1 may be multiplied so as to obtain estimated standard errors for the
estimated coefficients returned by modelinfo(coefs:T). After iterative GLM
commands such as logistic() or poisson(), the scale value will be the default
value (usually 1), unless it was changed by keyword scale on the GLM command.

After other GLM commands, including robust(), the value will be SSError /dfError ,
where dferror and SSerror come from the final line of the ANOVA table. After

manova(), the value will be the vector diag[SSCPError]/dfError .

Cmd> @s <- modelinfo(scale:T);vector(@s,@s^2) #compare with ANOVA
(1) 3.3971 11.54

sigmahat:T
The robust estimate of σ printed after an approximate ANOVA table computed by
robust(). After any other GLM command modelinfo(sigmahat:T) returns NULL.
Note that this value should not be used in computing standard errors; use
modelinfo(scale:T) instead. See above.

xtxinv:T
The matrix (′ X X)−1 computed from the non-aliased X-variables. The row and

3-53

MacAnova Version 4.07

column corresponding to any aliased X-variable is set to zero. If the previous GLM
command specified weights either explicitly (weights:wts on anova(), regress(),
or manova()) or implicitly (iterative GLM commands such as poisson() or
logistic()) the matrix computed is (′ X WX)−1 , where W is the diagonal matrix of
the weights. After robust(), the matrix computed is (′ X X)−1, ignoring the implicit
weights. You can obtain the weights by modelinfo(weights:T) (see above).

Cmd> modelinfo(xtxinv:T)
(1,1) 21.75 -6 -6.5833 -0.58333 -9.5833
(2,1) -6 1.6667 1.8333 0.16667 2.6667
(3,1) -6.5833 1.8333 2.3333 -1.6274e-16 2.9167
(4,1) -0.58333 0.16667 -1.6274e-16 0.33333 0.25
(5,1) -9.5833 2.6667 2.9167 0.25 4.4167

colcount:T
A vector of integers containing the numbers of X-variables as returned by
xvariables() or modelinfo(xvar:T) associated with each term in the active
model, including any aliased X-variables. You can compute the indices of first X-
variable associated with each term by autoreg(1,modelinfo(colcount:T)) which
calculates cumulative sums. When no X-variables are aliased with earlier X-
variables, the value of modelinfo(colcount:T) should be the same as side effect
variables DF excluding the error degrees of freedom.

Cmd> modelinfo(colcount:T) # since no aliasing, same as DF[-5]
(1) 1 1 2 1

aliased:T
A LOGICAL vector whose length is the number of X-variables in the model
(ncols(xvariables()). The ith element is True if and only if the ith X-variable is
aliased with (linearly depending on) previous X-variables. When there is no aliasing
every element should be False.

Cmd> modelinfo(aliased:T) # no aliasing in current model
(1) F F F F F

distrib:T
A CHARACTER scalar containing the name of the assumed distribution of the
dependent variable. It has value "normal" after anova(), regress() and manova(),
value "poisson" after poisson(), value "binomial" after logistic() and
probit(), value "unknown" after robust() and the value of keyword distrib after
glmfit().

Cmd> modelinfo(distrib:T)
(1) "normal"

link:T
A CHARACTER scalar containing the name of the transformation assumed to be
required for the dependent variable to depend linearly on the X-variables. It has
value "identity" after anova(), regress(), manova() and robust(), value
"logit" after logistic(), value "log" after poisson(), value "probit" after
probit(), and the value of keyword link after glmfit().

3-54

MacAnova Version 4.07

Cmd> modelinfo(link:T)
(1) "identity"

strmodel:T
A CHARACTER scalar containing the current model. This will normally be the same as
side effect variable STRMODEL.

Cmd> modelinfo(strmodel:T)
(1) "y=1+x+a+b"

bitmodel:T
A REAL vector or matrix with as many rows as there are terms in the model,
including the CONSTANT term, if any, but excluding the final error term. This encodes
the model in a special form. See Sec. 3.24.5 below for details.

termnames:T
A CHARACTER vector that is normally identical to side effect variable TERMNAMES. This
includes the name of the final error term (usually "ERROR1") and hence
length(modelinfo(termnames:T))-1 is the number of terms in the model,
excluding the error term.

Cmd> modelinfo(termnames:T)
(1) "CONSTANT"
(2) "x"
(3) "a"
(4) "b"
(5) "ERROR1"

all:T

Cmd> result <- modelinfo(all:T); ncomps(result) # 15 components
(1) 15

Cmd> compnames(result)[run(3)] # names of 1st 3 components
(1) "xvars"
(2) "y"
(3) "parameters"

3.24.5 Decoding modelinfo(bitmodel:T) The output from modelinfo(bitmodel:T) is
a vector or matrix with one row for each term in the model. Every element is an
integer between 0 and 4294967295 = 232 – 1. The bits of the binary representation of the
number in each row encode the variates and/or factors appearing in the corresponding
term.

Let k be the number of variates and factors in the model. When 1 ≤ k ≤ 32, the result
has one column, that is, it is a vector; when 33 ≤ k ≤ 64, the result is a matrix with 2
columns; and when 65 ≤ k ≤ 95, the result has 3 columns. Thus each row is long
enough to hold k “bits” to code for the presence or absence of each model variable in
the corresponding term .

The bits of each row should be considered to be numbered from 1 to k . Bit 1 is the least
significant and bit 32 is the most significant bit of the first element (column 1); bit 33 is
the least significant and bit 64 is the most significant bit of the second element (column
2), if any, and so on. Bit i of row j of the result is 1 if and only if the ith variable or

3-55

MacAnova Version 4.07

factor is in the jth term of the model, following the order in which variables and factors
first appear in the model. All the elements in a row corresponding to the CONSTANT
term (usually row 1) are zero.

You can use bit operator %& to test for the presence of each variable in a term, and
function nbits() (Sec. 2.8.5) to determine the number of variables in a term.

Cmd> bitmodel <- modelinfo(bitmodel:T); bitmodel #CONSTANT, x, a, b
(1) 0 1 2 4

Cmd> vars <- run(3);(bitmodel %& 2^(vars-1)') != 0
(1,1) F F F Term 1 is CONSTANT, no variables
(2,1) T F F Term 2 contains x
(3,1) F T F Term 3 contains a
(4,1) F F T Term 4 contains b

Cmd> nbits(bitmodel) # number of variables in each term
(1) 0 1 1 1

Function nbits() counts the number of non-zero bits in integers between 0 and
4294967295 = 232 –1.

3-56

	3.1 Introduction to GLM commands
	3.2 Response and independent variables
	3.3 Variates and factors
	3.4 Specifying a model
	3.4.1 Transforming “on-the-fly”
	3.4.2 Model shortcuts
	3.4.3 Polynomial and periodic regressions

	3.5 Error terms
	3.6 Side effect variables
	3.7 GLM keywords
	3.8 anova() and regress() output
	3.9 Balanced and unbalanced data
	3.10 Parametrization and d.f.
	3.11 Marginal (Type III) sums of squares
	3.12 Cell by cell statistics
	3.13 Estimated ANOVA effects & SEs
	3.13.1 Estimated regression coefs & SEs

	3.14 Leaving out lower order terms
	3.15 Empty cells
	3.16 Estimating contrasts
	3.16.1 Contrasts for each factor level

	3.17 Residuals
	3.18 Predicted values
	3.19 Faster ANOVA calculation
	3.20 Selection of a subset of X-variables
	3.21 Power and sample size
	3.22 Multivariate linear models
	3.23 Weighted analyses
	3.24 Retrieving GLM information
	3.24.1 modelvars() and varnames()
	3.24.2 xvariables()
	3.24.3 xrows()
	3.24.4 modelinfo()
	3.24.5 Decoding modelinfo(bitmodel:T)

