This file consists of Chapter 8 of MacAnova User’s Guide by Gary W. Oehlert and
Christopher Bingham, issued as Technical Report Number 617, School of Statistics,
University of Minnesota, revised August 1998, describing Version 4.07 of MacAnova.

This manual is Copyright © 1998 Gary W. Oehlert and Christopher Bingham, all rights
reserved.

Fonts used in this manual are Palatino, Courier, and Symbol.

For information concerning MacAnova, write University of Minnesota, Department of
Applied Statistics, 352 Classroom Office Building, 1994 Buford Avenue, St. Paul, MN
55108-6042.

B

kb
This is Chapter 8 of the MacAnova Users' Guide for MacAnova version 4.07. The complete Users' Guide is available at
 http://www.stat.umn.edu/~gary/macanova/documentationug.html

Please notify the authors (kb@stat.umn.edu or gary@stat.umn.edu) of any inaccuracies or typographical errors. What may appear as bold face Greek symbols should be italic.

List of PDF files making up manual
 PDF File PDF File
Contents mancntnt.pdf Chapter 8 manchp08.pdf
Preface manprfac.pdf Chapter 9 manchp09.pdf
Chapter 1 manchp01.pdf Chapter 10 manchp10.pdf
Chapter 2 (a) manchp2a.pdf Chapter 11 manchp11.pdf
Chapter 2 (b) manchp2b.pdf Appendix A manapdxa.pdf
Chapter 3 manchp03.pdf Appendix B manapdxb.pdf
Chapter 4 manchp04.pdf Appendix C manapdxc.pdf
Chapter 5 manchp05.pdf Appendix D manapdxd.pdf
Chapter 6 manchp06.pdf Appendix E manapdxe.pdf
Chapter 7 manchp07.pdf Appendix F manapdxf.pdf

MacAnova Version 4.07

8 Advanced Features

8.1 MacAnova options MacAnova’s behavior is in part controlled by the value of
certain “options.” Things affected include the default format for output (Sec. 7.4.1 and
7.4.2), the prompt that is used, seeds used by r nor (), runi () and r poi () (Sec. 2.13.1),
and whether or not F-statistics will be computed and printed in an Analysis of
variance (Sec. 3.7, 3.8).

8.1.1 getoptions() The current values of all options can be retrieved by str <-
get opti ons() which saves them in a structure whose components have the same
names as the options.

Cmd> setoptions(default:T) # see Sec. 8.1.3

Crd> str <- getoptions(); print(str) # Macintosh defaults
conponent: seeds

(1) 0 0 Val ues at start up
conponent: nsig

(1) 5

conponent : for mat

(1) "12.5g"

conponent : w or mat

(1) "16.990"

conponent: angl es
(1) "radians"
conponent : hei ght

(1) 25
conponent: w dth

(1) 80
conponent: errors
(1) 0
conponent: pronpt

(1) "Cmd> "
conponent : bat checho
(1) T

conponent : rest or edel
(1) T

conponent : dunbpl ot
(1) F

conponent: scrol | back
(1) F

conponent: m ssing
(1) "M SSING'
conponent: war ni ngs
(1) T

conponent: fstats
(1) F

conponent: pvals

(1) F

conponent: fontsize
(1) 9

conponent: font
(1) "M AOVMonaco"

8-1

MacAnova Version 4.07

conponent: maxwhi |l e

(1) 1000
conponent : | abel above
(1) F

conponent: | abel style
(H "¢
conponent: inline

(1) T

conponent: savehistry
(1) T

conponent: history
(1) 100

See Sec. 8.1.3 for explanations of these options.
You can retrieve the values of specific options by, for example,

Cmd> getoptions(format:T,wFormat:T)
conponent : format

(1) "12.5g"
conponent : wf or mat
(1) "16.9g"

If you name more than one option as was done here, get opti ons() returns a structure
with appropriately named components. Otherwise it returns a scalar or vector.

Ond> str <- getoptions(all:T,format:F,wformat:F)
returns the values of all options except f or mat and wf or mat .

8.1.2 setoptions() You change options using command set opti ons(). Here is a typical
usage:

Crd> setoptions(nsig:7, missing:"NA™)

This sets the default number of significant digits that are printed to 5 and specifies that
a M SSI NGvalue will be printed as “NA” instead of “M SSI NG’ .

Each option is set with a keyword phrase of the form opt i onNane: val ue, where
opt i onNane is the name of the option to be set to val ue which may be REAL, LOd CAL,
or CHARACTER depending on the option. See Sec. 8.1.3 for a list of all options.

If Opt i ons is a structure with component names matching any or all of the legal option
names, set opti ons(Opti ons) sets the options from the component values. Thus

Crd> setoptions(structure(nsig:7, missing:"NA™))

does the same as the previous example. This usage also allows you to save all options,
change one or more and then restore the original values.

Cmd> getoptions(angles:T)
(1) "radi ans”

Crd> str <- getoptions() # save all option values
Crd> setoptions(angles:'degrees'™)

MacAnova Version 4.07

Crd> getoptions(angles:T)
(1) "degrees” Option angl es has changed

Crd> setoptions(str) # restore all option values

Crd> getoptions(angles:T)
(1) "radians" Option angles is as originally

You can reset all options to their default values by set opti ons(defaul t: T).

8.1.3 List of available options Not all of the following are meaningful in all MacAnova
versions. They are listed in alphabetical order.

angles, value is CHARACTERSscalar "r adi ans", " degr ees" or "cycl es”
set opti ons(angl es: uni t s) specifies the angular units assumed for si n(),
cos(),tan(),asin(),acos(),and atan() (Sec. 2.8.6), as well as cpol ar (),
hpol ar (),crect (), hrect(),and unw nd() (Sec. 5.2.4). The legal values for
uni t s are the strings " r adi ans" (the default), " degr ees"” (360° equivalent to 2p
radians), and "cycl es" (1 cycle equivalent to 2p radians).

Cmd> setoptions(angles:*degrees™);vector(acos(.5),cos(150))
(1) 60 -0. 86603

batchecho, value is Tor F
set opti ons(bat checho: F) suppresses the normal echoing of the commands

read from a batch files (see Sec. 7.6). set opti ons(bat checho: T) enables such

echoing. The value of option bat checho is ignored when keyword echo is used
on bat ch().

dumbplot, value is Tor F
set opti ons(dunbpl ot: T) makes all graphs “dumb’ printer plots unless you use
keyword phrase dunb: F on a plotting commands. See Sec. 8.5.2. The value of
option dunbpl ot is ignored when keyword dunb is used on a plotting command.

errors, value is non-negative integer
setoptions(errors: n) sets the maximum number of errors tolerated ton. n=0

means errors will not be counted. See Sec. 8.2 for information on how this option
affects how MacAnova handles errors.

format and wformat, values are CHARACTER scalars
setopti ons(format: Format), sets the default format for printing to the value of
For mat , a quoted string or CHARACTER scalar. For example, after
setoptions(format:"9.4g") orsetoptions(format:"g9.4"), most numbers
will be printed in floating point form with 4 significant digits and a width of at
least 9 characters. For mat must have one of the forms "w.dg" or "w.df " (or
"gw.d" or"fw.d"), where wand d are integers. For both, w is the width, that
is, the minimum number of character positions normally used. If wis omitted, as
in".8g" or"g.8"),itiscomputedasw = d+7.

The specified width is actually only a minimum. If more space is required to
provide d significant digits or decimals, numbers printed will be wider than w.

If the format is "w.dg" or "gw.d" , output will be in floating point form with d

8-3

MacAnova Version 4.07

significant digits.

Crd> setoptions(format:"'14.7g9"); vector(1e4*Pl,-1e-7*PIl)
(1) 31415.93 -3.141593e-07

If Format is"w.df " or "fw.d", output will be in fixed point form with d digits
after the decimal point; if d is zero, no decimal point will be printed.

Crd> setoptions(format:"14.7F"); vector(1e4*Pl,-1e-7*PIl)
(1) 31415.9265359 - 0. 0000003

The printing of numbers by print () (Sec.7.4.1) and mat pri nt () (Sec.7.4.2) as
well as many other commands such as anova(),regress(),and cl uster(),is
controlled by this format.

Setting this option also sets option nsi g to d.

Cnd> setoptions(format:"5.3f"); getoptions(nsig:T)
(1) 3.000 Wdth 5 with 3 digits after deci mal

set opti ons(w or mat : For mat) sets the default format just for commands
wite() and mtwite(). It has no effect on option nsi g.

Cnd> setoptions(wformat:*".199") ;write(vector(le4,-1e-7)*Pl)
VECTOR:
(1) 31415. 9265358979319 - 3. 141592653589793221e- 07

The value options f or mat and wf or mat are ignored when keywords f or mat or nsi g
are used on output commands (Sec. 7.4.1, 7.4.2).

font and fontsize, values are CHARACTER scalar and positive integer, respectively
setoptions(font:"Courier"), say, changes the font used in the current
command window to Courier. In place of " Couri er" you can use the name of
any available font. Although no check is made, you should always use a non-
proportional font (all characters have the same width).

setoptions(font:"Courier 10"), say, changes the font and the font size.
setoptions(fontsize: 12), say, changes the font size to 12.
At present, these options are available only in the Macintosh version.

fstats and pvals, values are T or F
set opti ons(pval s: T) changes the default behavior of many GLM commands to
compute and print the P-values of various F, c2 and Student’s t test statistics
under standard assumptions.

setoptions(fstats: T) changes the default behavior of GLM commands
producing analysis of variance tables to compute and print the values of F-
statistics. Unless suppressed by pval s: F on the GLM command, P-values will
also be printed by default.

height and width, values are positive integers
set opt i ons(hei ght: n) sets the assumed number of lines on the screen to be n.
n =0 means no limit. In non-windowed versions of MacAnova, if n > 0, when
output from a command fills up the screen, MacAnova will pause and print

8-4

MacAnova Version 4.07

Ht RETURN to continue or q RETURN to go to next command |i ne:
or
Press 'q'" to quit, '"j' or 'n'" to see next line, any other key to continue

to keep output from scrolling off the screen. In all versions, option hei ght also
affects the default maximum number of stems in a stem and leaf display (Sec.
2.12.2) and the size of a “dumb” plot (see Sec. 8.5.2). For compatibility with earlier
versions, | i nes is recognized as a synonym for hei ght .

set opt i ons(w dt h: n) sets the assumed number of characters on a line to be n.
The value of n must be at least 30. This number, together with the current
formatting option, determines how many items are printed per line and the width
of “dumb” plots.

On windowed versions, hei ght and wi dt h may be changed when you resize the
command window.

The value of options hei ght and/or wi dt h are ignored if keywords hei ght
and/or wi dt h are used on plotting or printing commands.

history, value is non-negative integer
setoptions(history: 75) specifies that the number of previous commands that
will be saved for recall and possible editing is 75. This is operative on windowed
versions (Macintosh, Windows, Motif) versions, the extended memory version
for DOS, and most non-windowed Unix versions. See Sec. 8.8.2, 8.8.3.

inline, valueis Tor F
setoptions(inline:F) sets the default expansion mode for macros to be out-of-
line rather than in-line. setoptions(inline: T) restores the usual default.
When defining a macro using macr o() , keyword i nl i ne takes precedence over
this option. See Sec. 9.3.5.

labelabove, value is Tor F
set opti ons(| abel above: F) specifies that, when non-labeled variables are
printed, the labels for the last coordinate (the only coordinate for vectors) are
printed across the top, rather than on the left side. It has no effect on the printing
of CHARACTER variables or of variables with labels (See. Sec. 8.4).

Cmd> array(run(16),2,2,4) # default labeling
1

(1,1, 1) 5 9 T
(1,2, 1) 3 7 11 'y
(2,11 2 6 10 T
(2,2.1) 4 8 12 16
Ord> setoptions(labelabove:T)
Omd> array(run(16),2,2,4)

(1) (2) (3) (4)
(1,1) 1 5 9 T
(1,2) 3 7 T 15
(2. 1) 2 6 10 1
(2.2) 4 8 12 16

MacAnova Version 4.07

labelstyle, value is CHARACTER scalar, one of " (", "[","{","<","/" or "\\"
setoptions(l abel style:"["), for example, specifies that, when non-labeled
variables are printed, coordinate indices are of the form [3], or [3, 4] . This
operates independently of option | abel above.

Crd> setoptions(labelstyle:""{"", labelabove:T)
Crd> array(run(16),2,2,4)
{1}

{2} {3} {4}
{1, 1} 5 9 13
{1, 2} 3 7 11 15
{2, 1} 2 6 10 14
{2, 2} 4 8 12 16

This option also affects the way a label of the formrep(" @, n) is expanded when
itis printed. See Sec. 8.4.1.

maxwhile, value is integer 3 10
set opti ons(maxwhi | e: 2000) specifies that that the maximum allowed
repetitions of a whi | e loop is 2000 instead of the default 1000. See Sec. 9.2.3.

missing, value is CHARACTER scalar with no more than 20 characters
setopti ons(m ssi ng: "NA"), for example, changes the representation of
M SSI NGvalues (See Sec. 2.7) in output to NA instead of the default M SSI NG You
can use any CHARACTER scalar instead of " NA".

nsig, value is positive integer
set opt i ons(nsi g: d) specifies that all output except that produced by wri t e()
and matwrite() (see Sec. 7.4.1, 7.4.2), should be in floating point format with d
significant digits and is equivalent to set opti ons(format: w.dg), wherew=
d+7. Changing option nsi g has no effect on option wf or nat .

Omd> setoptions(nsig:6); print(Pl)
Pl :
(1) 3.14159

Crd> getoptions(*'format'™)
conponent: fornat
(1) "13.6g"

Option nsi g is ignored when formatting information is supplied on pri nt () and
matprint().

prompt, value is CHARACTER scalar
set opt i ons(pr onpt : newPr onpt) changes the prompt from " Cnd> " to
newPr onpt , where newPr onpt is a quoted string or CHARACTER scalar no more
than 20 characters long.

Crd> setoptions(prompt:Next? ')
Next ?

When set opti ons(pronpt: Pronpt) is executed in a batch file (see Sec. 7.6), the
new prompt remains in effect only until the commands in the file are finished.
Since a start up file (Sec. 7.8.1) is executed as a batch file, this option cannot be
usefully set in a start up file since the prompt is forgotten when the batch file is

8-6

MacAnova Version 4.07

completed.

scrollback, value is T or F
set options(scrol | back: T) changes the default behavior so that when the
output generated by a command is so long that its beginning scrolls out of sight,
the output window is automatically scrolled back to show the previous prompt
after the next prompt is printed. This is available only on windowed versions
(Macintosh, Windows, Motif). set opti ons(scrol | back: F), suppresses such
automatic scrolling back. After such a scrolling back, typing anything scrolls the
new prompt into view. The value of option scr ol | back is ignored on hel p()
when keyword scr ol | back is used.

savehistry, value is Tor F
set opti ons(savehi stry: F) changes the default behavior of save() and
asci i save() so that the history of recent command lines will be not be saved.
set opti ons(savehi stry: T) restores the normal behavior so that such a history
is automatically saved and will be automatically restored by r est or e() ; when the
value is False, the history is not saved. Option savehi stry is ignored when
keyword hi st ory is used on save() and asci i save(). The default value of
savehi stry is True except in non-interactive mode.

seeds, value is a vector of two positive integers
setopti ons(seeds: vector(mn)) isequivalent to set seeds(m n), except that
set opti ons(seeds: vector (0, 0)) doesn’t initialize the seeds based on the date
and time. See Sec. 2.13.1.

warnings, value is Tor F
set opt i ons(war ni ngs: F) suppresses the printing of any lines starting
“WARNI NG ” and set opt i ons(war ni ngs: T) enables the printing of such lines.
This can be useful, for example, if you are doing a lot of arithmetic with variables
containing M SSI NGvalues which normally generates warning messages.
However, set opti ons(war ni ngs: F) can be quite dangerous in that many
important messages take the form of warnings.

8.2 Treatment of errors MacAnova attempts to keep track of the number of errors that
occur. What it actually counts is the number of printed messages starting with

“ERROR: . If the count reaches a certain threshold, execution is terminated. In
interactive mode, the default limit is infinite, so that errors in typing commands
should never cause MacAnova to shut down. The default limit is 1 while commands
in a batch file are being executed, so that just one error will terminate reading the batch
file and return to the prompt level.

You can change the limit for batch files by option error s on the set opti ons()
command (Sec. 8.1). setoptions(errors:0) orsetoptions(errors: 1) specifies the
default behavior, while set opti ons(errors: n) where nis an integer 3 2 raises the
limit. When set options(errors:n) isexecuted in a batch file, the new value is
forgotten when MacAnova returns to the prompt level, but is inherited by any nested
bat ch() commands.

MacAnova Version 4.07

Here is a brief example. Suppose file, mybat ch. t xt looks like the following with a
missing “) ”on the first line:

delete(indvar # this is an error: mssing ')’
indvar <- run(10) # we've gotten past the error
depvar <- rnorn(10)

regress("depvar=i ndvar",silent:T)

Here is an example of what happens when option err or s has value 0 and a larger
number.

Crd> setoptions(errors:0) # or setoptions(errors:1)
Crd> batch(*'mybatch.txt'™)

nybat ch. t xt> delete(indvar # this is an error: mssing ')’
ERROR missing ')' near del ete(indvar
WARNI NG too many errors on batch file nybatch.txt

Cmd> # back at the i1nput prompt because of error iIn batch file
Cmd> setoptions(errors:10) # now allow up to 10 errors
Crd> batch(*'mybatch.txt'™)

nybatch.txt> delete(indvar # this is an error: mssing ')’
ERROR missing ')' near del ete(indvar

nybat ch. t xt> indvar <- run(10) # we've gotten past the error
nybat ch. t xt > depvar <- rnorn{10)

nmybat ch. t xt > regress("depvar =i ndvar",silent:T)

nybatch. txt> (end of file on nybatch.txt)

Crd> # back at the input prompt because batch file finished

8.3 Creating CHARACTER variables The simplest way to create a CHARACTER variable is
to enter it directly using double quotes.

Crd> labels <- vector('height","weight™,"age')

When all the elements being entered are single words, with no embedded spaces or
commas, you can use pre-defined macro ent er char s whose arguments should not be
guoted and need not be separated by commas. If you do use quotes, they will be treated
as part of the word. Successive commas or a trailing comma result in entering null
strings (" ").

Crd> enterchars(height weight, ,"age™,)

(1) "height”

(2) "weight”

(3) "" Because of ,,

(4) "\"age\"" Not e quotes are part of val ue
(5 " Because of trailing ,

You can also combine CHARACTER REAL, and LOJd CAL data into a CHARACTER scalar or
vector using past e() (Sec. 8.3.1, 8.3.2, 8.3.3), create CHARACTER variables consisting of
arbitrary characters using put asci i () (Sec. 8.3.4), and read CHARACTER data from a file
using vecr ead() and matread() (Sec. 7.2).

8-8

MacAnova Version 4.07

8.3.1 Building custom CHARACTER variables — paste() past e() allows you to
construct complex CHARACTER variables “to order.” You can use it to combine quoted
strings or CHARACTER variables and the values of REAL and LOGd CAL variables into a
single CHARACTER variable. The resulting variable can then be printed, perhaps as an
error message or as part of a customized table of statistical results, or used to label a
graph (Sec. 8.5.1) or the coordinates of a variable (Sec. 8.4).

The basic usage of past e() is
Crd> result <- paste(vl,v2,...) # or print(paste(vi,v2,...))

Here v1,v2, ... may be REAL or LOG@ CAL variables or expressions, quoted strings or
CHARACTER variables, or macros. Numerical values are translated to strings of
characters such as " 3. 14159", logical values are translated to " T" or " F", and
CHARACTER variables and macros are left as is. All the items in the argument list are
“pasted” together to make a single CHARACTER variable. The structure of matrices and
arrays is ignored, that is, past e(x) and past e(vect or (x)) produce the same string.

Crd> paste('The value of PI is"™,Pl)
(1) "The value of PI is 3.1416"

Omd> x <- matrix(run(6),2); paste(''x is",X)
(1) "xis12345¢6" Matri x structure is ignored

By default, the arguments are separated by a single space in the output. You can specify
a different separator or even several separators or no separator using keyword sep.

Omd> paste(sep:"*",run(7),sep:"=",prod(run(7))) # use 2 separators
(1) "1*2*3*4*5*6*7=5040"
Cmd> paste('M™,™a","c","A",""n","0","v"","a"" ,sep:""") # no separator
(1) "MacAnova"
The last of these shows that sep: "" indicates no separation, and also that a sep
keyword phrase that is the last argument is treated as if it were before the first
argument.

The default format used for numbers is the same as for pri nt () (see Sec. 7.4.1), except
that integers are always formatted as integers and leading and trailing blanks are
squeezed out. Missing values are printed as “M SSI NG’ (or the current value of option
m ssi ng, if different; see Sec. 8.1.3). You can override this default using keyword
phrase m ssi ng: " ?", say, to print missing values as “?”.

Crd> x <- vector(1,3,5,7,11);paste(x,missing:"?"")
(1) "1 35 ? 11"

8.3.2 Formatting paste() output You can customize the format using keywords f or mat ,
i ntwi dt h, charwi dthand justify (but notnsi g).

Keyword phrase i nt wi dt h: w, where wis a positive integer, specifies that all integer
REAL values will be printed using at least wcharacters, with leading spaces inserted if
necessary. Similarly, charw dt h: wspecifies that all CHARACTER values will be padded
on the right with enough spaces to make their width at least w, but will not trim them if
they are longer than w.

8-9

MacAnova Version 4.07

When you specify a width for CHARACTER values that is wider than a CHARACTER
argument requires, the argument is normally padded with blanks on the right — that is,
it is left justified. You can modify this behavior by using j ustify:"right" or
justify:"center"” asanargument (justify:"r" or justify:"c" arealso
recognized). You can restore the default using j ustify: "l eft" (orjustify:"I").

Crd> print(paste(sep:"","|",charwidth:12,"Source",sep:"|",\
justify:"r","DF", justify:"'c","SS","""))

| Sour ce | DF| SS |
Keyword f or mat isused asonprint() (Sec.7.4.1, 8.1.3), except that when the format is
of the form " . df " or". dg" where d is an integer (for example, ". 5g" or ". 4f "), any
leading blanks are trimmed away. If the format is of the form "w. df " or "w. dg"
(for example, "12. 59" or " 7. 4f "), where w and d are integers, leading blanks are
kept. Moreover, if i nt Wi dt h has not been specified, all integers will be padded with
blanks on the left to bring the width to w.

Crd> paste(format:*".10f", "PI =", PI,\
"sqgrt(PIl) =", format:".5F", sqrt(Pl))# 2 formats used
(1) "PI = 3.1415926536 sqrt(Pl) = 1.77245"

Crd> paste('sqgrt(Pl) =", sqrt(Pl), format:"10.5F")
(1) "sgrt(Pl) = 1.77245" Nunber width is 10 characters

Omd> dfb <- 5; dfe <- 13; ssb <- 33.245; sse <- 25.039

Crd> print(paste(charwidth:8,format:""13.6g9", intwidth:2,\
"Blocks" ,dfb,ssb,ssb/dfb, format:"7.3f", (ssb/dfb)/(sse/dfe)))
Bl ocks 5 33. 245 6.649 3.452

Lines similar to the last example might be used to compute and print a customized
ANOVA table for a randomized block design.

An important use of past e() isin creating titles and axis labels for plots (see Sec. 8.5.1).
Here is a simple example (see Sec. 9.2.3 for information on theuse of for(...){...}).

Cm> powers <- run(-.5,1.5,.5)

Cnd> for(@p,powers){
plot(X:x, NewY:boxcox(y,@p),\
title:paste("'Plot of boxcox(y,",@p,') vs X',sep:'"""))

This plots five graphs with titles “Pl ot of boxcox(y,-0.5) vs x”, “Pl ot of
boxcox(y,0) vs x”, .., “Plot of boxcox(y,1.5) vs x”.

The uses of past e() are limited only by your ingenuity. For example, suppose you
have 3 variables, y1,y2 and y3, and you want to compute regressions of each on
independent variables x1, x2, x3 and x4.

Crd> for(i,run(3)){regress(paste('y",1,"=x1+x2+x3+x4" ,sep:'""))}

This produces regression output for the regression models " y1=x1+x2+x3+x4",
"y2=x1+x2+x3+x4" and "y3=x1+x2+x3+x4" (Sec. 3.4, 3.8).

Suppose you want to split apart structure t enper at ur es in Sec. 2.8.16, with each
component going into a separate variable day_1,day 2 and day_3..

8-10

MacAnova Version 4.07

Cmd> for (@i, run(ncomps(temperatures))){

<<paste(‘'day",@i,sep:"_")>> <- temperatures[@i];;:}
Crd> list('day_*"") # See Sec. 2.9.1
day 1 REAL 10
day 2 REAL 5
day_3 REAL 14

See Sec. 9.5 on indirect specification of variables by <<. . . >>.

8.3.3 Creating CHARACTER vectors using paste() You can also use past e() to create a
CHARACTERvector instead of a scalar. If var is a REAL, LOd CAL or CHARACTER variable,
paste(var, mul tiline:T) returns a CHARACTER vector with of length nrows(var),
with each element a character representation of a row of var. There can be only one
non-keyword argument when you use mul ti | i ne: T. Keyword f or mat is recognized,
but the width of the format is ignored (f or mat : " 12. 5f " is equivalent to
format:".5f"). Keywords charw dt h and i nt wi dt h are ignored except for printing
an advisory message.

Omd> x <- matrix(2*run(8),2); paste(X,multiline:T,format:".1f")
(1) "2.0 6.0 10.0 14.0"
(2) "4.0 8.0 12.0 16.0"

You can use keyword sep with mul ti | i ne: T, but its value must be single character.
In particular, its value cannot be the null string " ".

Cnd> paste(X,multiline:T,format:".1f",sep:",")
(1) "2.0,6.0,10.0,14.0"
(2) "4.0,8.0,12.0,16.0"

Finally, keyword | i nesep allows you to combine the lines in a single CHARACTER
scalar, with each line separated by a character you specify. This is best illustrated by
examples.

Crd> paste(X,multiline:T,format:"_.1Ff",sep:",", linesep:"'/")
(1) "2.0,6.0,10.0,14.0/4.0,8.0,12.0, 16. 0"

Crd> paste(X,multiline:T,format:".1F",linesep:"\ n"")
(1) "2.0 6.0 10.0 14.0
4.0 8.0 12.0 16.0"

In the second example "\ n" indicates the normal end-of-line character, and each line of
x becomes a separate line of the result. The line-separating character is not appended to
the last line.

8.3.4 Creating a CHARACTER variable using putascii() Normally put ascii () just
outputs characters to the screen or terminal (Sec. 7.4.3). When keyword phrase keep: T
is an additional argument, put asci i () returns a CHARACTER scalar containing the
characters specified by the codes instead of printing them.

Crd> alphabet <- putascii(run(65,90),run(97,122) ,keep:T)

Crd> alphabet
(1) " ABCDEFGH JKLMNOPQRSTUWKYZabcdef ghi j kl mopgr st uvwyz"

8-11

MacAnova Version 4.07

Cnd> asciicodes <- rep('',127)
Cmd> for(@i,run(l127)){asciicodes[@1] <- putascii(@i,keep:T);;}

Cnd> paste(asciicodes|[vector(77,97,99,65,110,111,118,97)],sep:""")
(1) "MacAnova"

See Sec. 9.2.3 for use of f or and Sec. 8.3.2 for past e() .

8.4 Coordinate labels When vectors, matrices and other variables are printed, each row
normally starts with a numerical label in parentheses, say (2, 6), indicating all the
subscripts for the first element in the row. You can use setoptions(l abel above: T) to
change the behavior so that the labels for the last coordinate go across the screen, above
the data, and setoptions(l abel styl e: "["), say, to use produce default labeling like

[2, 6] instead of (2, 6) ; see Sec. 8.1.3.

If you wish, you may replace these default labels entirely with more informative ones.
Specifically, you can add arbitrary labels for the coordinates (rows, columns, ...) of
vectors, matrices and arrays, and for the components of structures. A label is a
CHARACTER vector of the appropriate length — the dimension of the coordinate or the
number of components. If a matrix or array x has any labels it must have labels for all
dimensions, although a label can be of the formrep("", n). However, a labelled
structure can have unlabeled components without labels and an unlabeled structure
can have components with labels.

The primary function of coordinate and component labels is to make printed output
more informative.

In many cases, when x has labels, they are propagated to new variables computed from
x in the many situations. See Sec. 8.4.3 for details.

8.4.1 Adding labels to a variable - setlabels() You attach labels to an existing variable
using set | abel s() or create a variable with labels using vect or (), matri x(),
array(),structure(),strconcat (), matread() and read().

The general usage for set | abel s() is

set | abel s(var, | abs)
where var is an existing variable and | abs is a CHARACTER scalar or vector or, when
ndi ms(var) > 1, a structure whose components are CHARACTER scalars or vectors
specifying the labels for the different coordinates.

Omd> x <- matrix(hconcat(run(3,5),run(3,5)"2))
Cnd> x # x has no labels as yet
9

(1,1) 3
(2,1) 4 16
(3,1) 5 25

Crd> setlabels(x, structure(vector('Case 1","Case 2", "Case 3'),\
vector("'X", "X squared'™))) # Add 3 row labels, 2 column labels

8-12

MacAnova Version 4.07

Cnd> x

X X squar ed
Case 1 3 9
Case 2 4 16
Case 3 5 25

Normally, as in this example, the value for | abel s is a structure with as many
components as the variable being labeled has dimensions. When there is only one
dimension, the value of | abel s can be a vector instead of a structure. Except for
CHARACTER variables, labels for the last dimension always go across the top, regardless
of the value of option | abel above (Sec. 8.1.3).

If x already has labels, they are replaced by set | abel s() .

It is not an error if the number of label vectors or scalars supplied does not match the
number of dimensions although a warning message is printed. Extra labels are ignored
and missing ones are assumed to be "@" (see below) and will print as coordinate
numbers.

Crd> setlabels(x, vector(*'Case 1","Case 2'", '"Case 3'))
WARNI NG too few vectors of |abels supplied to setlabels(); mssing
assunmed " @

Crd> x # the implied "'@" labels label columns with numbers

(1) (2)
Case 1 3 9
Case 2 4 16
Case 3 5 25

Crd> setlabels(x, structure(vector(''Case 1","Case 2", "Case 3'"),\
vector('X", "X squared'™),"extra’™)) # 3 components iIn structure
WARNI NG extra vectors of |abels supplied to setlabels() are ignored

The warning message can be suppressed by si | ent : T:

COrd> setlabels(x, structure(vector('Case 1","Case 2", "Case 3'),\
vector (X", "X squared'),"extra™),silent:T) # no warning msg

It is an error if the length of a vector of labels supplied for a dimension is more than 1
but does not match that dimension:

Crd> setlabels(x, labels:structure(vector(*'Case 1", Case 2'),\
vector("'x1",""x2'"))) # only 2 labels for dimension 1
ERROR sizes of |abels do not match di nensions on setl abel s()

In this case, the labels for x are not changed.

set | abel s(var, NULL) removes any labels from var. Itis notan error if var has no
labels.

You can use a single quoted string or CHARACTER scalar to generate an entire vector of
labels for a coordinate as follows. Assume the labels are for coordinate i of variable x.

8-13

MacAnova Version 4.07

CHARACTER scalar Expansion
rep("",dinm(x)[i])
"@nyt hi ng" rep("@nything",dimx)[i])
"H#" vector("1","2",...)
" vector("[1]","[2]",...)
(" vector("(1)","(2)",...)
"{" vector("{1}","{2}",...)
"<t vector ("<1>","<2>",...)
" vector("/1/","[2/",...)
"\ vector ("\\VIV\ ", "\ 20\ ")
Anything else, say "base" | vector("basel", "base2",...)

In the table, " @nyt hi ng" stands for any CHARACTER scalar starting with “@, including
n @ .
Crd> setlabels(x,structure("'#","[')); X
[2]

[1]
3
2 4 16
3 5 25
Cnd> setlabels(x, structure((","Column ')); x
Colum 1 Col um 2
(1) 3 9
(2) 4 16
(3) 5 25

Crd> y <- array(run(16),2,2,4) # See Sec. 2.8.15
Cmd> setlabels(y, structure(A","B","C™)); vy
Cl a3

2 4

Al Bl 1 5 9 13
B2 3 7 11 15

A2 Bl 2 6 10 14
B2 4 8 12 16

A label vector of the formrep(" @, n) or rep(" @nyt hi ng", n) as would be expanded
from " @ or " @nyt hi ng" (see table) is treated specially at the time it is used to label
output. At that time it is further expanded similarly to the way scalar labels that do not
start with “@ are expanded when they are created.

rep("@", n) printsasi,2,...

rep("@", n) printsas[1],[2],..,andrep("@", n) printsas(1),(2),...,and
similarly with"@"," @&","@",and"@\". rep("@, n) alsoprintsas(1),(2),....

rep(" @nyt hi ngel se", n) prints as anyt hi ngel sel, anyt hi ngel se2,

Moreover, if successive coordinates have the same type of “bracket” label starting with
“@ created by, say, | abel s: structure("@","[@,"["), the printed labels are

8-14

MacAnova Version 4.07

combined to form a multi-index label such as, say, [1, 2] .
Crd> setlabels(x,structure("'@(",""Column ")); X

Colum 1 Col um 2
(1) 3 9
(2) 4 16
(3) 5 25
Cnd> setlabels(y,structure('oC',"eC","@(C'")); vy # or ('@","@","@")
(1) (2) (3) (4)
(1,1 1 5 13
(1,2 3 7 11 15
(2,1) 2 6 10 14
(2,2) 4 8 12 16

A label vector of the form rep(" ", n) to which the scalar " " expands effectively deletes
any labelling of that coordinate.

Cnd> setlabels(x, structure('[","")); x# no column labels
[1] 3 9

[2] 4 16

[3] 5 25
Although they sometimes appear the same, there is a difference between the labels
generated from, say, " (" or "[" and those generated from" @" or" @". In the first
place, adjacent labels generated from " (" or "[" do not combine. Compare the
following with the example above where labels were specified by

structure("@","@","@") .

Crd> setlabels(y,structure(C'[","['","['));:; VY
[1] [2] [3] [4]
[1] [1] 1 5 9 13
[2] 3 7 11 15
[2] [1] 2 6 10 14
[2] 4 8 12 16

In addition, although labels “propagate” properly when using subscripts (see Sec. 8.4.4),
a vector of the formrep("@",n) orrep("@", n) remains a vector of the same form,
except possibly with a different length. When printed, this always produces labels
“()","(2)",..or"[1]","[2]", ...with no gaps. However, although a vector of labels
generated from " (" or " [" starts out this way, elements may be skipped when
subscripts are used, resulting in gaps in the numerical sequence. Compare the
following two examples.

Crd> setlabels(y,structure("Ai'é]"@[","@[")); y[.,2,vector(1,4)]

[1]

Al [1] 3 15

A2 [1] 4 16

Crd> setlabels(y,structure(C""'A","['","[')); YvL[.2,vector(1,4)]
1 4

Al [2] []3 [1]5

A2 [2] 4 16

You can attach labels to a variable when it is created by including keyword phrase
| abel s: | abs as an extra argument to one of the functions vector (), matri x(),

8-15

MacAnova Version 4.07

array(),structure(),strconcat (), matread() andread(). | abs isa CHARACTER
scalar or vector or a structure whose components are CHARACTER scalars or vectors
exactly as for set | abel s(). Here is an alternative way to do the first set | abel s()
example above:

Crd> x <- matrix(hconcat(run(3,5),run(3,5)"2),\
labels:structure(vector(*"Case 1',"Case 2', "Case 3"),\
vector('X", "X squared'™)))

Cd> X

X X squar ed
Case 1 3 9
Case 2 4 16
Case 3 5 25

Here we attach column labels, but no case labels, to data read from a file:

Crd> iris <- matread("'MacAnova.dat”,"irisdata"”,\
labels:structure(’',\
vector(*'Variety',""Sep_len","Sep_wid","Pet_len","Pet_wid™)),\
quiet:T)

Cnd> iris[run(3),] # no row labels

Variety Sep_len Sep_wd Pet |en Pet wd
1 5.1 3.5 1.4 0.2
1 4.9 3 1.4 0.2
1 4.7 3.2 1.3 0.2

As with set | abel s() itis notan error to provide too many or too few sets of labels.
Unlike set | abel s(), itis not an error to supply a label vector of the the wrong length.
If you do, a warning message is printed, but the operation is carried out ignoring the
labels.

Ord> x <- matrix(Xx, labels:structure(vector('Case 1","Case 2'),\
vector("'x1",""x2"))); x# only 2 labels for dimension 1
WARNI NG si zes of |abels do not match dinensions on matrix(); ignored

(1,1) 3 9
(2, 1) 4 16
(3,1) 5 25

As with set | abel s(), you can suppress warning warning messages by si l ent: T.
You can remove labels from a variable by setting them to NULL.
Omd> x1 <- array(X,labels:NULL) #works for vector, matrix or array X
Ord> strl <- strconcat(str,labels:NULL) # works for structure str
For a structure, this does not remove labels from any component with labels.
See Sec. 2.8.10, 2.8.13, and 2.11.3 for other examples of the use of keyword | abel s.
8.4.2 Retrieving labels from a variable — getlabels() and haslabels Function

get | abel s() allows you to access the labels, if any, of a variable, and pre-defined
macro hasl abel s lets you test whether a variable has labels.

get | abel s(x) retrieves the labels, if any, associated with all coordinates of variable x.
When x is a vector or structure, the result is a CHARACTER scalar or a CHARACTER vector

8-16

MacAnova Version 4.07

of length nconmps(x) or | engt h(x). Otherwise the result is a structure with
CHARACTER components named di ni, di n2, Each component is either a scalar or a
vector of length di n{x) [i]. A scalar consisting of the first label for a coordinate is
returned only when all the labels for that coordinate are identical and either are "" or
start with "@". Effectively, non-essential elements are trimmed from a vector of labels.
When x has no labels, get| abel s(x) returns NULL and prints a warning message.

When Xx is a vector or structure, the result is a CHARACTER vector. Otherwise the result
is a structure with CHARACTER vector components named di ni, di n2,

get | abel s(x, tri mF) does the same, except non-essential elements are not trimmed
from a vector of labels that are all " " or all the same and starting with " @ .

Crd> temp <- getlabels(iris); list(temp)
2

tenp STRUC

Crd> conpnanes(tenp)

(1) "dint"

(2) "dink"

Crd> temp

conponent : di nl

(1) " Only 1 | abel because all |abels are ™"
conponent : di n2

(1) "Variety"

(2) "Sep_len"

(3) "Sep_wid"

(4) "Pet_len"

(5) "Pet_wid"

Crd> temp <- getlabels(iris,trim:F); length(temp$diml)
(1) 150 Al'l 150 copies of "" returned with trimF

getl abel s(x,2 [,trimF]), for example, retrieves the labels associated with
dimension 2 of x. The second argument must be a positive integer or vector of positive
integers.

Ond> paste(getlabels(iris,2)) # use paste to pack them in 1 line
(1) "Variety Sep len Sep wid Pet |en Pet_w d"

hasl abel s(x) is True if and only if x has labels.

Omd> vector(haslabels(iris),haslabels(matrix(iris, labels:NULL)))
(L) T F

On get | abel s() or any command adding labels using keyword | abel s, you can
suppress warning messages by keyword phrase si |l ent: T.

Ord> setlabels(y, NULL) # remove labels from y

Crd> ylabs <- getlabels(y); list(ylabs)
WARNI NG argunent to getlabel s() has no | abels From get | abel s()
yl abs NULL From list()

Crd> getlabels(y,silent:T) # no warning message printed.

8-17

MacAnova Version 4.07

8.4.3 Transforming labels Because many of the mathematical functions such as | og()
and cos() accept CHARACTER arguments, you can sometimes use them to generate
appropriate labels for transformed variables. In the following exampleiri s is the
matrix of iris data used in Sec. 8.4.1 and 8.4.2.

Cnmd> irislabs <- getlabels(iris)

Crd> logiris <- matrix(loglo(iris[,-1]),\
labels:structure(irislabs[1],log(irislabs[2][-1])))

omd> logiris[run(3),]

| og(Sep_l en) log(Sep_w d) |og(Pet_Ien) |og(Pet_w d)
0. 70757 0. 54407 0. 14613 - 0. 69897

0. 6902 0.47712 0. 14613 - 0. 69897
0.6721 0. 50515 0.11394 - 0. 69897

Elements of a
The use of subscripts to extract the components of i ri sl abs is explained in Sec. 2.8.16.

8.4.4 Propagation of labels MacAnova tries appropriately to label output or side effect
variables created from labelled input variables.

The labels of a portion of a variable selected using subscripts are the appropriate
portions of the original labels.

Crd> setlabels(x, structure(Case " ,vector('X", "X squared™))); X
X X squar ed
3 9

Case 1
Case 2 4 16
Case 3 5 25
Crd> x[1,-1]

X squar ed
Case 1 9

The result of cos(x), sqgrt (x), and other transformations of x listed in Sec. 2.8.6 have
the same labels as x.

Crd> sqrt(x)
X X squared
Case 1 1.7321 3
Case 2 2 4
Case 3 2.2361 5
x' has the same label vectors as x but in reverse order

Omd> x*

Case 1 Case 2 Case 3
X 3 4 5
X squar ed 9 16 25

sum(x), m n(x), and other transformation that operate along the first dimension of x
have labels for the last ndi ns(x) - 1 dimensions matching those of x. The first
dimension is given " @ as a label so that it is printedas " (1) ".

8-18

MacAnova Version 4.07

Crd> sum(x)
X X squar ed
(1) 12 50

+x, - x and ! x all have the same labels as x.

Suppose OPis a binary operator such as +, -, *, ==, ..., (Sec. 2.8.3 and 2.8.4), but not a
matrix operator such as % % % % %% % %and % %(Sec. 2.10.4 and 2.10.5) and x and y
are variables with compatible dimensions. Then if x has labels, x OPy often has the
labels of the left hand operand x. When x does not have labels, x OPy may have the
labels of y. The exceptions have to do with operations combining variables with
different sizes (see Sec. 2.10.2). Combination with a scalar preserves labels.

Cmd> 3*x
X X squar ed

Case 1 9 27
Case 2 12 48
Case 3 15 75

This can lead to unexpected results. For instance, after regress("y = x1+x2"), side
effect variable COEF (See Sec. 3.6) is labelled:

Omd> COEF # elements are labeled with term names
CONSTANT x1 X2
1.3 -5.1 4.1

If you use COEF to compute a predicted value, the result will be labelled but the label
depends on the order of the terms, since when both operands are labelled, the label of
the left operand is used.

Omd> COEF[1] + COEF[2]*7 + COEF[3]*4
CONSTANT
-18

Cnmd> COEF[3]*4 + COEF[2]*7 + COEF[1]
X2
-18
In both cases, the label is the label associated with the left most term.

If matrices x and y both have labels then x %% y,x %%y, and x %% y have labels
taken from the row and or column labels of x and y in the obvious way.

Omd> x* %*% X
X X squar ed

X 50 216
X squar ed 216 962
Cd> x %*% x*-

Case 1 Case 2 Case 3
Case 1 90 156 240
Case 2 156 272 420
Case 3 240 420 650

When one operand has no labels, the corresponding labels of the product are all " @,
yielding numerical labels when printed.

8-19

MacAnova Version 4.07

Crd> rep(1,nrows(xX))" %*% x # numerical row labels

X squar ed
(1) 12 50
Crd> x %*% rep(l,ncols(x)) # numerical column labels
1
Case 1 12
Case 2 20
Case 3 30

When a is a square matrix with labels, the row and column labels sol ve(a) are the
column and row labels of a, respectively.

When b is a compatible matrix with labels, the row and column labels of sol ve(a, b)
(a % % b) are the column labels of a and b, respectively, and the row and column
labels of r sol ve(a, b) (b % % a) are the row labels of b and a, respectively. If b has no
labels, labels of the form r ep(" @ ,m) are assumed. See 2.10.5

When x is a matrix with labels, ei gen(x) $vect ors and r el ei gen(x, y) $vectors
(Sec. 6.2.1 and 6.2.3) have the same row labels as x. Similarly the row labels of the
matrices of left and right singular vectors computed by svd() (Sec. 6.3) are the row and
column labels of x, respectively. For all three functions, the column labels of matrices
of eigenvectors and singular vectors are of the form vector ("(1)","(2)",...),
where the parentheses or brackets actually used are determined by option | abel styl e
(Sec. 8.1.3).

When x is a matrix with labels, cor (x) (Sec. 2.12.5) has row and column labels
matching the column labels of x. cor (X, y,...) hasno labels.

When x is a matrix with labels, rft (x) and hft (x) (Sec. 5.10) have the same column
labels as x with row labels of the formrep(" @, m . The same is true for cft (x) when
ncol s(x) iseven.

When x is a response variable in a GLM command such as r egress() or poi sson(),
its labels are propagated to side effect variables RESI DUALS, WIDRESI DUALS, and HI |
(Sec. 3.6).

After regress(), COEF and XTXI NV are labelled with the names of the variables
(including "CONSTANT" when appropriate) (Sec. 3.6).

After manova() (Sec. 3.22) with a response matrix with labels, SSis labeled with
TERMNAMES and two copies of the column labels of the response. Also, the column
labels of the response are attached to the last dimension of each vector, matrix, or array
returned by coef s() and secoef s() (Sec. 3.13).

When any term names are longer than 12 characters (the maximum size for a structure
component name), the components of coef s() and secoef s() are labelled with the
full term names.

8.5 More on plotting A brief introduction to making graphs was given in Sec. 2.15 -

2.15.6. This section gives details on keyword use, modifying and replotting graphs, and
saving graphical information on files.

8-20

MacAnova Version 4.07

8.5.1 Keywords affecting appearance and bounds All the plotting commands recognize
but do not require several keyword phrases. Here is a list of keywords affecting graph
appearance and bounds, together with brief descriptions. “X-axis” and “Y-axis” refer to
the horizontal and vertical axes of a graph.

Key words affecting appearance and bounds

Keyword Phrase

Explanation

title:"Your title"

Title above graph, up to 75 characters

x| ab: " X-axi s | abel

X-axis label, up to 50 characters

yl ab: "Y-axi s | abel

Y-axis label, up to 20 characters

xm n: xM nVal

Minimum value for X-axis

xmax: xMaxVal

Maximum value for X-axis

ym n: yM nVal Minimum value for Y-axis
ymax: yMaxVal Maximum value for Y-axis
xaxi s: F Do not draw X-axis (line y = 0)
yaxi s: F Do not draw Y-axis (line x = 0)

xti cks: xTi ckPosi ti ons

REAL vector of positions of X-axis tick marks. NULL means
no tick marks or labels; ? means default positions.

yti cks: yTi ckPosi tions

REAL vector of positions of Y-axis tick marks or labels.
NULL means no tick marks; ? means default positions.

xti ckl en: xTi ckLengt h

Length 3 -1 of X-axis tick marks; val ue <0 gives ticks
outside frame; 0 gives tick labels but no ticks; value > 2
gives full grid lines across plot; 1 gives the default length.

ytickl en: yTi ckLength

Length 3 -1 of Y-axis tick marks; val ue < 0 gives ticks
outside frame; 0 gives tick labels but no ticks; value > 2
gives full grid lines across plot; 1 gives the default length.

i mpul se: T Draw vertical lines from pointstoy =0 line
lines: T Connect points with straight lines
| i netype: n On commands that draw lines, sets the line type to n,

default is 1 (solid); n must be integer 1 £ n < 100.

t hi ckness: w

On commands that draw lines, sets the line thickness to w
times normal thickness, default is 1. wmust be between .1
and 10; has no effect when when dunb: T or where
otherwise not feasible; not implemented in all versions.

If the values for xm nand xmax and/or ym n and ynmax are the same (for example,
xm n: 0, xmax: 0), bounds for the X and/or Y axis are computed from all the data in the

plot.

8-21

MacAnova Version 4.07

8.5.2 Other graphics keywords These keywords allow saving graphs in files, directing
them to specific windows, and adding information to previously created plots. Here is
a list of the remaining graphics keywords.

Other Graphics Keywords

Keyword Phrase

Explanation

dunb: T

Use printable characters only to produce a low
resolution plot suitable for typewriter-like printing

hei ght : nl i nes

Number of lines in a “dumb” plot

wi dt h: nchars

Width of a “dumb” plot in character positions.

keep: F Do not save plot as LASTPLOT (see Sec. 8.5.3)

show. F Do not display plot, only save it as LASTPLOT (see Sec.
8.5.3)

add: T Add information to most recent plot

file:fil eNane Write Postscript to file f i | eName (see Sec. 8.5.4)

new. T Overwrite fi | eName (see Sec. 8.5.4)

ps: F Suppresses PostScript when writing a plot to a file (see
Sec. 8.5.4). On Unix this results in the Tektronix
plotting commands being written to the file; on a
Macintosh, a PICT file is written; on other computers, a
“dumb’ plot is written.

epsf: T Encapsulated PostScript file will be written instead of

PostScript (Macintosh only).

| andscape: T

PostScript plot will be rotated so as to fill 8.5" by 11"
page.

wi ndow. n

Draw plot in window n (L £ n £ 8). Ifn is 0, use the
window most recently used; only on windowed
versions (Macintosh, Windows or Motif).

pause: T (Mac,Window,
Motif)
pause: F (DOS,Unix)

Forces (T) or suppresses (F) a pause after the graph is
drawn. pause: T is when plotting many graphs in a
loop with wi ndow: 0.

screendunp: Fi | eNane

Save a copy of graph being plotted in file FileName (see
Sec. 8.5.4). In the Macintosh version a PICT file is
written; in the extended memory DOS version, a bit
map PCX file is written. Not legal in other versions.

not es: Not es

Attach CHARACTER vector or scalar Not es to LASTPLOT
(see Sec. 8.5, 8.9).

Most are self explanatory; keep and showare explained in Sec. 8.5.3,fi | e and neware
explained in Sec. 8.5.4 and not es is explained in Sec. 8.9.

Here are some examples of the use of tick mark related keywords.

8-22

MacAnova Version 4.07

Crd> plot(x,y,xticks:vector(1,2,4),yticks:NULL,xticklen:1.5)

gives X-axis ticks 1.5 times normal at x = 1, 2 and 4 and suppresses all y-axis ticks and
their labels.

Crd> plot(x,y,xticklen:3,yticklen:-_.5)

draws full grid lines (value for xt i ckl en > 2) perpendicular to the x-axis and half
length ticks along the outside of left edge of the frame.

Here is an example of a plot produced using dunb: T.
Crd> @x<-run(-2.5,2.5,.1); lineplot(@x,\
Normal :exp(-@x"2/2)/sqrt(2*P1),\
dumb:T,title:"Plot of normal curve using

\ "dumb:T\ """ ,width:72,height:28)
Pl ot of normal curve using "dunb: T"

0. 25+

0. 2+

—v3y-oz

0. 15+

0. 1+

0. 05+

When xti ckl enor yti ckl enis used in making a “dumb” plot, the only values that
have an effect are 0 (tick marks but not labels are suppressed) and > 2 (grid lines are
drawn). For all other values the tick marks are as just illustrated.

8.5.3 Replotting graphs and GRAPH variables As a side effect, all plotting commands
create a variable with name LASTPLOT of special type GRAPH. LASTPLOT encapsulates all
the information used to create the plot. This information includes axis labels and title,
minima, maxima, and indeed everything set by keywords affecting appearance and
bounds when the plot was created (Sec. 8.5.1). LASTPLOT can be assigned to another
variable (for example, graphl <- LASTPLOT) or redisplayed, possibly with changed

8-23

MacAnova Version 4.07

limits or labelling information, using showpl ot (). You can add information to it
using addpoi nt s(), addl i nes(), addchar s(), and addstri ngs() or keyword phrase
add: T on a regular plotting command. You can print LASTPLOT (as a “dumb” plot)
using print() orwite(). Infact, just typing the name of a GRAPH variable causes a
“dumb” rendition to be printed.

Command showpl ot () recognizes all the keywords in Sec. 8.5.1 and 8.5.2 except

i mpul se, lines,linetype,thickness and add, and updates LASTPLOT accordingly
(unless keep: F is an argument), thus allowing labelling information and plotting
limits to be changed.

Here are descriptions of the commands that may be used to add information to a plot in
LASTPLOT or another GRAPHvariable. If the GRAPH variable does not exist it is an error.

addpoi nt s(x, y) is the same as pl ot (x, y, add: T) . It redraws the graph in LASTPLOT
while adding new points to it.

addchar s(x, y, ¢) isthe same as chpl ot (X, y, ¢, add: T). It redraws the graph in
LASTPLOT while adding character labelled points to it.

addl i nes(x,y) isthesameas|inepl ot (x,y, add: T). It redraws the graph in
LASTPLOT while adding line plots to it. addl i nes(x, y, | i nes: F) is the same as
addpoi nts(x,y).

addstri ngs(x,y, charVec) draws char Vec[i] at position (x[i],y[i]) inthe graph
in LASTPLOT. char Vec must be a CHARACTER vector of the same lengthas x and y. In
contrast with other plotting commands, both x and y must be vectors of the same
length. By default, each string is written centered at (x[i],y[i1]). However, if
justify:"left" orjustify:"right" isan argument following char Vec, each string
will be positioned with its left or right or rightend at (x[1],y[i]).

On windowed versions of MacAnova (Macintosh, Windows, Motif), these commands
automatically redraw the most recently drawn window, unless keyword wi ndowis used
to specify another window (Sec. 8.5.2).

On any of these, to force the minimum or maximum on an axis to be recomputed, use,
say,xm n: ?, ym n: ?. This computation takes into account the minimum and
maximum of all previous data as well any new data being added.

All four commands recognize a GRAPH variable as argument preceding any others, for
example, addpoi nt s(graph, x, y). The new information or labels will be added to the
plot encapsulated in gr aph instead of LASTPLOT. In addition, pl ot (gr aph, x,y),

chpl ot (graph, x,y, c),and | i nepl ot (graph, x, y) act identically to

addpoi nt s(graph, x, y), addchar s(graph, x,y, ¢), and addl i nes(graph, x,y),
respectively. You don’t need keyword phrase add: T.

As with pl ot (), chplot() and | i nepl ot (), you can replace arguments x and y by a
structure whose first two components are interpreted as x and y.

The following assumes that LASTPLOT was created by the dunb: T example above. Note
the use of keywords to change the axis labels and titles.

8-24

MacAnova Version 4.07

Crd> normal <- LASTPLOT # save a copy of the GRAPH variable

Crd> addstrings(normal, .45, .37,"N(0,1) density curve™,\
Justify:“"left”,ymin:0,xlab:"z-score",ylab:""Normal density",\
title:""'Standard plot of normal curve'™)

Standard pl ot of normal curve
0. 4F I I I —

N(O, 1) density curve
0. 35 -

0.3 =

—»3-oz

0. 25 =

0.2 =

.15 —

<L+~ 0w 0OQ
o

0. 05 =

0 f i
-2 -1 0 1 2
Z-SCcore

GRAPH variable nor mal has not been changed, but LASTPLOT now encapsulates all the
components of this graph.

All plotting commands, including showpl ot (), addpoi nt s(), addl i nes(),
addchar s(),addstrings() and boxpl ot (), recognize keyword phrases keep: F and
show: F. keep: F specifies that LASTPLOT is not to be created or updated and show. F
directs that the graph is not displayed. The latter is useful when you are building a
graph in several steps and don’t want to see anything until the final product. For
example, the preceding plot could be created by

Crd> @x<-run(-2.5,2.5,.1);lineplot(@x,\
exp(-@x"2/2)/sqrt(2*P1) ,show:F)

Crd> addstrings(.45,.37,"N(0,1) density curve™,\
Justify:"left"”,show:F)

Cmd> showplot(ymin:0,xlab:""z-score",ylab:""Normal density",\
title:"Standard plot of normal curve'™)

Using both keep: F and show. F doesn’t make sense and is an error.

8.5.4 Writing graphs to a file All plotting commands recognize keyword phrase
file:fileName, wherefil eNane is aquoted string or CHARACTER variable. This
suppresses the display of the graph. Instead, plotting information is written as
PostScript commands to the file specified by f i | eNane. (PostScript is a page description

8-25

MacAnova Version 4.07

language that is recognized by many printers, include Apple LaserWriters.) It may be
possible to the print the PostScript commands later on a LaserWriter or incorporate
them in a document. You may write several graphs to the same file. You should use
new. T when saving the first one. Without new: T, if the file already exists, Postscript
commands are added at its end. On windowed versions (Macintosh, Windows, Motif)
you can use "" as file name, specifying the file in a dialog box. File name CONSOLE is
not treated specially by the plotting commands.

Note: If you add PostScript to a file that was written in a previous MacAnova run,
some programs designed to read the PostScript may be unable to read the new plots. In
particular this is true of Unix program ghost vi ew.

Actually, you can suppress the writing of Postscript by keyword phrase ps: F. What is
written in this case depends on the MacAnova version. On Unix, high resolution
graphs are available only if you are using a Tektronix 4014 emulator (the xt erm
interface under X-windows is one such) and MacAnova emits special Tektronix 4014
character sequences. ps: F causes the Tektronix 4014 codes to be written to the file
instead of Postscript. When ps: Fis used on a Macintosh a so called PI CT file is written
that can be read by many graphics programs. On other systems, when ps: Fis present,
just a “dumb” plot is written to the file.

In versions where it is implemented (Macintosh and protected mode DOS), keyword
phrase scr eendunp: fi | eNane provides an alternative way to save a graph. A file is
written to the file in a binary format specific to the type of computer. On a Macintosh a
PICT file is written; in the protected mode DOS version a bit map PCX file is written.
Such files can be imported into certain word processors and graphics editing programs.

8.6 More on help() and usage() hel p() and usage() have additional features not
mentioned in Sec. 2.9. You can switch between two different help files and find out
what’s new in the version of MacAnova you are using.

8.6.1 Using more than one help file hel p() and usage() read information in a special
format from a text (ASCII) file. On non-Unix systems this file is MacAnova. hl p and is
normally in the same directory or folder where MacAnova itself is located . On Unix, it
will be in an installation-dependent location and may have an alternative name. The
format is described near the start of MacAnova. hl p.

It is possible to create additional files in the same format, perhaps providing help on a
library of macros (see Sec. 7.5), or specific help on one or more statistical methods. For
example, files desi gn. mac and t ser . nac, which are distributed with MacAnova,
contain macros useful in experimental design and time series, respectively. Help files
desi gn. hl pand t ser. hl p, also distributed with MacAnova, provide help for these
macros.

You can use keywords fil e,ori gand al t on hel p() to switch between help files.
This is probably best illustrated by example.

8-26

MacAnova Version 4.07

Crd> help(file:"design.hlp™) # start using design.hlp as help file

Crd> help(confound3) # help on topic will be read from design.hlp
conf ound3(basi s) confounds a three series factorial into bl ocks based
on the generators given in the matrix basis. Results are returned in
a structure with conponent nanes 'blockl', 'block2', etc. Each
conponent has a CHARACTER vector of factor/|evel conbinations for

t hat bl ock.

The p x k matrix basis contains the generators for the confounding,
*k*x% |Interrupt ***** | nterrupted to stop output

Cmd> usage(randt) # usage iInformation from design.hlp
randt (dvec, m|[,trials:n]), REAL vector dvec, positive integer n

Crd> help("*'") # all topics on design.hlp
Help is available on the follow ng topics:

al i ases2 al |l aliases2 confound3 m xed r andt

al i ases3 boxcoxvec desi gn_i ndex pairedconp rscanon
al | 3anova choosegen2 ens quadmax typelllss
al | 4anova conf ound2 ffdesi gn2 randsi gn var conp

For help on topic foo, enter hel p(foo) or hel p("foo")

Crd> help(key:"?"") # iIndex keys for design.hlp

Type ' hel p(key: "heading")', where heading is in followng list:

Ali asi ng ANOVA Desi gn Permut ati on test
Anal ysi s Conf oundi ng Factori al Random ef fect s

desi gn. hl p will remain the source for hel p() and usage() until you change it.

hel p(ori g: T) switches you back to the standard help file; hel p(alt: T) returns you
the most recent alternative help file.

Omd> usage(orig:T) # or help(orig:T)

Cnd> usage(boxcox) # usage info now from macanova.hlp
boxcox(x, power), x a REAL vector or matrix, power a REAL scal ar

Crd> help(alt:T) # switch back to most recent alternate help fTile

Crd> usage(boxcoxvec) # usage info again from design.hlp
boxcoxvec(rhs_nodel ,y, powers: pow), CHARACTER scal ar rhs_nodel, REAL
vectors y and pow.

You can combine other possible arguments with these keywords. For example,
hel p(alt: T, key: "factorial") both switches to the alternate file and lists the topics
associated with index key f act ori al in that file.

8.6.2 Finding what’s new MacAnova is an evolving system and is not likely to remain
unchanged for long. Changes may be bug fixes, the addition of new functions or
macros, or the enhancement of existing ones. Whenever a substantive change is made,
including important bug fixes, a record is made in the help file under the general topic
news, along with the date the change was made. Especially when you start using a new
version, you will probably want a quick synopsis as to what has changed.

hel p(news) lists in reverse chronological order items about MacAnova development
starting with the most recent entry back for three months from the most recent date.

8-27

MacAnova Version 4.07

hel p(news: 971001) gives you information about changes since October 1, 1997.

hel p(news: vect or (970101, 970630)) lists in reverse chronological order items
dated between January 1 and June 30, 1997.

Crd> help(hews:vector(980725,980731)) # between July 25 and 31, 1998
980731 keyval ue() argument specifying the keyword name can contain
the "wild card" character '*' so that, for exanple, keywords 'pow ,
"power', and 'powers' wll all match "pow".

980727 New functions setlabel s(), attachnotes() and appendnotes()
all ow attaching | abels and notes to existing variables. New pre-
defined nmacro hasnotes tests whether a variable has notes.

From time to time, older news items are moved from the standard help file to file
macanova. nws which is distributed with MacAnova. This is in the form of an
alternate help file. hel p(fil e: "macanova. nws", news) will list the most recently
added items to this file. You can again specify dates to select ranges of items.

hel p(updat e) prints a summary of most changes between the various versions of
MacAnova, in reverse chronological order, going back to Version 2.0.

8.7 Running other programs from within MacAnova In the windowed versions of
MacAnova (Macintosh, Windows and Motif) you can switch to a non-MacAnova
window and start up one or more programs running in parallel with MacAnova. If
such a program is a word processor or editor you can transfer text and graphical output
to the program by using Copy and Paste on the Edit menu.

When running a non-windowed version in a windowed environment (for example, a
DOS version in a Windows 95 DOS window), you can start up parallel programs in the
other windows and may be able cut and paste from or to another program’s window.

In addition to this capability, in some versions you can run other programs directly
from MacAnova. The most versatile method uses command shel | (). Somewhat
simpler to use but less versatile is a “shell escape”, a command line whose first
character is “.”

Neither shel | () nor shell escapes are available on the Macintosh.

8.7.1 shell() In its simplest form, shel | (cnd), runs the system (Unix, DOS/Windows,
VMS) command or program in cnd, a quoted string or CHARACTER variable. Here is a
simple Unix or Unix Motif example:

Crd> shell(lIs userfun™) # list directory userfun
Userfun. h

dynl oad. h

foo.c

f ooeval . c

f oosynh. c

goo. c

If the operating system allows it, cnd can contain more than one command to be run.
Here is a Unix example:

8-28

MacAnova Version 4.07

Crd> shell('echo line 1;echo line 2") # or use "\n" instead of ";*
line 1
[ine 2

You cannot execute multiple commands in this way on DOS or Windows.

At present (August 1998), shel | () does not work predictably in the Windows version.

8.7.2 shell() keyword phrases interact:T and keep:T The simplest usage doesn’t work
right if the user needs to interact with the program being run as would be necessary
with an editor. Keyword phrase i nt eract: T enables such interaction. For example,
on Unix,

Crd> shell(*'vi mymacro.mac', interact:T)

would allow you to edit file mymacr o. mac using program vi . Withouti nteract: T,
what you want to edit may not be displayed. In Motif, interaction normally takes place
in the window from which you launched MacAnova, not the MacAnova window
itself.

Depending on the system, with a non-interactive command you may get output
formatted slightly differently with i nt er act : T than without it. Compare the
following with the example in Sec. 8.7.1:

Crd> shell(*'Is userfun™,interact:T)
Userfun.h dynload.h foo.c fooeval .c foosynmh.c goo.c

Sometimes you would like to be able to save the output of a system command or
program in a MacAnova variables. This is possible using keyword phrase keep: Tas a
second argument to shel | (). It this usage, no output is printed, but what would have
been printed is returned as a CHARACTER vector, with each line of output, including
blank lines, in an element of the vector.

Crd> shell('Is userfun',keep:T)

(1) "Userfun.h"

2) "dynl oad. h"

(3) "foo.c"

(4) "fooeval.c"

(5) "foosynmh.c"

(6) "goo.c"
No interaction with the command or program being run is possible when you use
keep: T.

Use of keep: T in the limited memory DOS version of MacAnova is an error.
8.7.3 Lines starting with “!” An alternative way to execute a system command or

program interactively is with the shell “escape” character “!”” in the first character
position after the prompt.

Crd> !ls userfun
Userfun.h dynload.h foo.c fooeval .c foosynmh.c goo.c

This is exactly equivalent to shel | ("l s userfun”, interact:T).

8-29

MacAnova Version 4.07

Because of this feature, if you want to start a MacAnova command with “! ””, you must
precede it with a space. This is true in all versions, not just those with an operative
shel | () command.

8.8 Recalling previous commands All versions of MacAnova save the most recent
command line as a macro named LASTLI NE. In addition, most versions (the limited
memory DOS version is one exception) maintain a “history,” an internal list of the
most recent command lines. If N is the value of option hi st ory (see Sec. 8.1.3), up to
N commands are remembered. They can be retrieved using function get hi story(),
by pressing certain key combinations, or, in windowed versions (Macintosh, Windows,
Motif) by selecting a menu item. You can replace the internal list using set hi story().
In addition, by default, save() saves the current history and r est or e() replaces it.

8.8.1 LASTLINE and macros redo and REDO Just before executing a command line,
MacAnova creates a macro LASTLI NE whose text is the command line.

Crd> Pl*run(4) # some command
(1) 3.1416 6. 2832 9. 4248 12. 566

Ond> LASTLINE
(1) "Pl*run(4) # sone conmand"

Crd> LASTLINE # now has a new value
(1) "LASTLI NE"

Crd> run(3d)

(1) 1 2 3
Crd> LASTLINE(Q) # previous line reexecuted
(1) 1 2 3

As this last command shows, this allows you to re-run the previous command line
without re-typing it. You can do so only once, since, for example, after the last
command, the value of LASTLI NEis " LASTLI NE()". If you try to run this, LASTLI NE
recursively tries to execute itself, leading to the following error message:

ERROR Parser stack overflow, probably too deep macro recursion

Pre-defined macro r edo takes advantage of this feature to make it easier to repeat the
previous command. All r edo does is to create macro REDOby REDO <- LASTLI NE and
then to execute REDQ You can now use REDOone or more times to execute it yet again.

Crd> sqrte(2)+PI
(1) 4. 5558

Crd> redo()
(1) 4. 5558

Crd> REDO() # redoes the same thing
(1) 4. 5558

Using r edo (but not REDO on two command lines in a row is an error, since it then
tries to run itself.

8-30

MacAnova Version 4.07

8.8.2 Keyboard and menu recall In addition to LASTLI NE, most MacAnova versions
maintain a “history,” an internal list of recent command lines that can be recalled to
the current command line using certain key combinations or menu items. Here is a
table of the permissible key combinations on the various versions.

Version Up History Keys Down History Keys
Macintosh Option+- or F7 Option+ or F8
Windows Ctrl+- or F7 Ctrl+ or F8
DOS extended memory - or Ctrl+P ~ or Ctrl+N
DOS limited memory Not available Not available
Motif Ctrl +Keypad - or F7 | Ctrl +Keypad or F8
Unix (most versions) - or Ctrl+P ~ or Ctrl+N

You move backward through the list using the Up History Keys and forward using the
Down History Keys. In all the windowed versions you can also select items Up
History and Down History on the Edit menu instead of using key combinations. As

you successively move back, previous commands appear after the prompt. These can
be executed “as is” or edited in place and then executed.

The number of lines you can go back is controlled by the value of option hi st ory with
default value 100. See Sec. 8.1.3.

8.8.3 gethistory() and sethistory() On versions that maintain a history of recent
commands, get hi st ory(n) returns the n most recent commands and get hi st ory()
returns all available commands. Here is output obtained just after launching Mac-
Anova, so there is no history available.

Crd> gethistory() # first command after launching

(1) " Returns "" when there is no history avail able
Crd> 1+1 # a command

(1) 2

Cnd> 1+2 # another command

(1) 3

Crd> gethistory()

(1) "gethistory() # first command after |aunchi ng"
(2) "1+41 # a comand”

(3) "1+42 # anot her command"

Crd> gethistory(2) # get 2 most recent commands
(1) "1+2 # anot her comrand"
(2) "gethistory()"

One use is as a “scripting” device to create a macro from several previously typed
commands. Suppose we want to compute a simple macro that will compute the
regression coefficients and residual sum of squares from a cubic polynomial regression
of y on x.

Cmd> x <- run(7);y <- vector(-0.23,-2.20,-0.37,-1.41,0.49,0.42,0.28)

8-31

MacAnova Version 4.07

Od> x2 <- X*X; X3 <- xX*x2

Crd> regress('y=x+x2+x3",silent:T);vector(COEF,SS[4])
(1) 2. 2386 -3. 6367 1. 0558 -0. 0825 1.4701

Omd> doit <- macro(paste(gethistory(2),multiline:T,linesep:"\n'"))
Crd> doit # here’s the macro that was created

(1) "x2 <- x*x; x3 <- x*x2
regress(\"y=x+x2+x3\",silent: T); vector(CCEF, SS[4])"

Crd> # type 1In new data
Crd> x <- vector(l1, 3, 4, 7, 8); y <- vector(3.2,4.1,7.6,1.5,2.0)

Crd> doit() # do the regression with the new data
(1) -0. 75573 4.5773 -0. 94795 0. 051388 0. 79738

See Sec. 8.3.3 for the use of past e() and Sec. 9.3.1 for the use of macr o() .

If commands is a CHARACTER vector with elements that are or could be MacAnova
command lines, then set hi st or y(conmands) replaces the history list with the
elements of conmands.

Crd> commands <- vector("'z <- 3+4","print(X[run(5)])","\ "Hello\ ")
Crd> sethistory(commands)

Crd> gethistory() # this retrieves the history just set

(1) "z <- 3+4"

(2) "print(x[run(5)])"

(3) "\"Hello\""
A complete save() normally saves the current command history, and rest or e()
restores it. See Sec. 7.7 for information on save() and rest ore() keyword hi story
and option savehi st ry which can modify this default behavior. Because the
command history is saved, if you type get hi st ory() immediately after restoring a
complete workspace, you can see a record of just what you were doing before the
workspace was saved. And you can use the arrow keys to re-execute these commands,
possibly after editing.

8.9 “Notes” attached to variables You can attach CHARACTER vectors as descriptive
“notes” to almost any variable, including GRAPH variables and macros. Such notes
might describe the origin of the variable or graph or give information on macro usage.

You attach notes to a variable using function at t achnot es() or by including

not es: Char Vec as an argument tovector (), matri x(),array(),structure() or
any of the plotting commands (Sec. 8.5.2). You can add additional notes to a variable
using appendnot es(). You can retrieve notes from a variable using get not es() and
can test whether a variables has descriptive notes using pre-defined macro hasnot es.

Since all operations and functions except for a get not es(), mat pri nt (), matwrite(),
macrowite(),save() and asci i save() completely ignore notes, having notes
attached to to a variable has no effect on any operations involving it.

matprint(),mtwite() and macrowite() automatically write any attached notes

8-32

MacAnova Version 4.07

in a form that is readable by r ead() , mat r ead() and rmacr or ead() . See Sec. 7.1, 7.4.1,
75.1,7.5.2.

8.9.1 attachnotes(), appendnotes(), getnotes() and hasnotes When x is an existing
variable of any type except NULL, and Not es is a CHARACTER vector,

att achnot es(x, Not es) *“attaches” Not es to x. Normally Not es will document what
x is. If x is a GRAPH variable (Sec. 8.5.3), Not es might describe the variables plotted, or
give information as to how they were computed. When x is a macro, Not es might be
information on its usage. If x has been read from a file by read(), mat r ead() or

macr or ead(), a possible source for Not es might be the comment information
retrieved by i nf oread() (Sec.2.11.5). attachnot es(x, NULL) removes any notes
attached to x.

appendnot es(x, Not es) appends additional notes to a variable x. If x has no attached
notes, appendnot es(x, Not es) is the same as att achnot es(x, Not es) .
appendnot es(x, NULL) does nothing.

If x has attached notes, get not es(x) retrieves them as a CHARACTER scalar or vector. If
x has no such notes, get not es(x) returns NULL and gives a warning message.

get not es(x, sil ent: T) does the same except that the warning message is suppressed
when x has not notes.

Crd> iris <- matread('macanova.dat"”,irisdata’”,quiet:T)
Crd> # attach comment lines from data set in file as notes
Crd> attachnotes(y, inforead(‘'macanova.dat™,”irisdata",quiet:T))

Omd> getnotes(y) # let"s see them
(1) " Data fromR A Fisher, The use of nultiple nmeasurenents in
t axonom ¢ probl ens, Annal s of Eugenics 7 (1936) 376-386

Col. 1: Variety nunber (1 =1. Setosa, 2 = 1. Versicolor,
3 = 1.Virginica)

Col. 2: X1 = Sepal length

Col. 3: X2 = Sepal width

Col. 4. X3 = Petal length

Col. 5: X4 = Petal width

Rows 1-50: Goup 1 Is Setosa

I'r
Rows 51-100: G oup 2 Iris Versicol or
Rows 101-150: G oup 3 Iris Virginica"

Crd> varieties <- factor(iris[,1])
Crd> irisdepv <- matrix(iris[,-1],notes:getnotes(y))

Crd> appendnotes(irisdepv,\
"Variety number has been removed; Col. 1 is now Sepal Length™)

Crd> getnotes(irisdepv)[2] # element 2 of notes
(1) "Variety nunber has been renoved; Col. 1 is now Sepal Length"

Another way to attach notes is by including keyword phrase not es: Not es as an
argument tovector (), matri x(),array(),structure(), macro() or any of the
plotting commands, where Not es is a CHARACTER scalar or vector. Here are a couple of
examples.

8-33

MacAnova Version 4.07

Crd> rainfall <- vector(21.5,21.1,19.9,19.7,18.4,16.1,\
26.6,16.8,14.2,23.3, notes:"1937 - 1946 Rainfall")

Cmd> plot(year:1937, rainfall, show:F,\
notes:""Plot of rainfall vs year') # don"t display

Crd> getnotes(rainfall)
(1) "1937 - 1946 Rainfall"

Crd> getnotes(LASTPLOT)
(1) "Plot of rainfall vs year"

The notes in pl ot () are attached to GRAPH variable LASTPLOT.
Pre-defined macro hasnot es allows you to test whether a variables has notes attached.

Crd> vector(hasnotes(iris),hasnotes(Pl),hasnotes(LASTPLOT))
(L) T F T

8-34

	8.1 MacAnova options
	8.1.1 getoptions()
	8.1.2 setoptions()
	8.1.3 List of available options

	8.2 Treatment of errors
	8.3 Creating CHARACTER variables
	8.3.1 Building custom CHARACTER variables
	8.3.2 Formatting paste() output
	8.3.3 Using paste() to create CHARACTER vectors
	8.3.4 Using putascii() to create a CHARACTER variable

	8.4 Coordinate labels
	8.4.1 Adding labels to a variable
	8.4.2 Retrieving labels from a variable
	8.4.3 Transforming labels
	8.4.4 Propagation of labels

	8.5 More on plotting
	8.5.1 Keywords affecting appearance
	8.5.2 Other graphics keywords
	8.5.3 Replotting graphs
	8.5.4 Writing graphs to a file

	8.6 More on help() and usage()
	8.6.1 Using another help file
	8.6.2 Finding what’s new

	8.7 Running other programs
	8.7.1 shell()
	8.7.2 shell() keywords
	8.7.3 Lines starting with “!”

	8.8 Recalling previous commands
	8.8.1 LASTLINE, redo and REDO
	8.8.2 Keyboard and menu recall
	8.8.3 gethistory() and sethistory()

	8.9 “Notes” attached to variables
	8.9.1 Working with notes

