
MacAnova Version 4.07

This file consists of Chapter 9 of MacAnova User’s Guide by Gary W. Oehlert and
Christopher Bingham, issued as Technical Report Number 617, School of Statistics,
University of Minnesota, revised August 1998, describing Version 4.07 of MacAnova.

This manual is Copyright © 1998 Gary W. Oehlert and Christopher Bingham, all rights
reserved.

Fonts used in this manual are Palatino, Courier, and Symbol.

For information concerning MacAnova, write University of Minnesota, Department of
Applied Statistics, 352 Classroom Office Building, 1994 Buford Avenue, St. Paul, MN
55108-6042.

kb
This is Chapter 9 of the MacAnova Users' Guide for MacAnova version 4.07. The complete Users' Guide is available at http://www.stat.umn.edu/~gary/macanova/documentationug.htmlPlease notify the authors (kb@stat.umn.edu or gary@stat.umn.edu) of any inaccuracies or typographical errors. What may appear as bold face Greek symbols should be italic.List of PDF files making up manual PDF File PDF FileContents mancntnt.pdf Chapter 8 manchp08.pdfPreface manprfac.pdf Chapter 9 manchp09.pdfChapter 1 manchp01.pdf Chapter 10 manchp10.pdfChapter 2 (a) manchp2a.pdf Chapter 11 manchp11.pdfChapter 2 (b) manchp2b.pdf Appendix A manapdxa.pdfChapter 3 manchp03.pdf Appendix B manapdxb.pdfChapter 4 manchp04.pdf Appendix C manapdxc.pdfChapter 5 manchp05.pdf Appendix D manapdxd.pdfChapter 6 manchp06.pdf Appendix E manapdxe.pdfChapter 7 manchp07.pdf Appendix F manapdxf.pdf

MacAnova Version 4.07

9. Programming MacAnova

9.1 Working with structures There are several functions useful for working with
structures. We illustrate some of them with the structure trees displayed in Sec.
2.8.16.

9.1.1 Creating structures – structure(), strconcat() and split() The basic command for
creating a structure is structure(). Its general usage is structure(c1,c2,...). The
arguments, c1, c2, ..., are variables of any type, including GRAPH or other structures.
The structure trees used in Sec. 2.8.16 was created by

Cmd> trees <- structure(info:"Made up data on 6 trees",\
 varnames:vector("Species","DBH"),\
 data:matrix(vector(1,1,1,2,2,2, 5.6,4.5,8.9,7.3,9.9,11.3),6))

Cmd> trees
component: info
(1) "Made up data on 6 trees"
component: varnames
(1) "Species"
(2) "DBH"
component: data
(1,1) 1 5.6
(2,1) 1 4.5
(3,1) 1 8.9
(4,1) 2 7.3
(5,1) 2 9.9
(6,1) 2 11.3

When, as here, an argument to structure() is a keyword phrase where the keyword
is not compnames, labels or warning, the keyword specifies the name of a component.
The name of a component that is not specified by a keyword phrase is the same as the
name of the variable, with a starting “@” removed if it is a temporary variable (Sec. 2.4).
When such an argument doesn’t have a name because it is a computed quantity such as
sqrt(x), the component is given a descriptive name like VECTOR or STRING.

Cmd> @x <- 3;structure(run(5),sqrt_pi:sqrt(PI), @x)
component: VECTOR Name given to run(5)
(1) 1 2 3 4 5
component: sqrt_pi From keyword
(1) 1.7725
component: x “@” stripped off @x
(1) 3

You can also name the components using a final argument compnames:Names, where
Names is a CHARACTER vector or scalar. This is the only way to name a component
labels or compnames with any name longer than 10 characters. When Names is a
quoted string or CHARACTER scalar (single name), the component names all start with
the name with “1”, “2”, ... appended; otherwise, length(Names) must match the
number of components.

Cmd> hills <- structure(vector(2,3),vector(7,4),compnames:"hill")

9-1

MacAnova Version 4.07

Cmd> hills
component: hill1
(1) 2 3
component: hill2
(1) 7 4

In this example hill was used as a “root” from which hill1 and hill2 were
constructed.

No element of Names may contain the character $.

In addition, you can label the components, possibly using longer names, using
keyword labels.

Cmd> hills2 <- structure(vector(2,3),vector(7,4),\
compnames:"hill",labels:"Minnesota Hill "); hills2

Minnesota Hill 1
(1) 2 3
Minnesota Hill 2
(1) 7 4

Cmd> getlabels(hills2)
(1) "Minnesota Hill 1"
(2) "Minnesota Hill 2"

Cmd> compnames(hills2) # component names as before (see Sec. 9.1.2)
(1) "hill1"
(2) "hill2"

See Sec. 8.4.1 for details on labels.

strconcat() provides another way to create a structure. It is used the same way as
structure(). When none of its arguments is a structure, strconcat() behaves
identically to structure(). However, when any argument is itself a structure, each of
its top level components becomes a component of the result rather the argument being
one component. Thus strconcat() allows you to combine two or more structures
into one, without increasing the “depth.”

Cmd> hills <- strconcat(hills,hill3:vector(9,5,11),hill3:12)

Cmd> hills
component: hill1
(1) 2 3
component: hill2
(1) 7 4
component: hill3
(1) 9 5 11
component: hill3
(1) 12

Note that, although it may be confusing, it is not illegal for component names to be
duplicated (both components 3 and 4 have name hill3). However, hills$hill3
would extract only component 3, the first component with name hill3. The only way
to extract the second with name hill3 (component 4) is to use a subscript:

Cmd> hills[4] # component 4, second hill3
(1) 12

9-2

MacAnova Version 4.07

If any arguments to structure() or strconcat() are functions (say cos), undefined
variables, or simply missing, a warning message is printed and the value of the
corresponding component of the output is NULL. You can suppress any warning
message by including silent:T as an argument.

Cmd> structure(sin,cos)
WARNING: function name used as argument to structure()
component: sin
(NULL)
component: cos
(NULL)

Cmd> structure(sin,cos,silent:T)
component: sin
(NULL)
component: cos
(NULL)

Any of the keywords compnames, labels or warnings must follow all arguments that
make up the components of the output.

split() is another tool for creating structures. Suppose x is a REAL or LOGICAL vector
and the “splitting variable” a is a vector with the same length as x, with all the a[i]
positive integers. Then str <- split(x,a) creates a structure with max(a)
components, comp1, comp2, ..., with component j consisting of all x[i] for which a[i]
has value j. In particular, if the splitting variable is a factor (see Sec. 3.3), component j
of str consists of all x[i] at level j of that factor. If there are no values in a equal to j,
component j is NULL.

Cmd> treatment <- factor(vector(1,1,1,2,2,2,2,3,3))

Cmd> z <- vector(7.7,10.7,10.2, 11.5,6.6,10.9,8.7, 8.7,9.2)

Cmd> split(z,treatment)
component: treatment1
(1) 7.7 10.7 10.2
component: treatment2
(1) 11.5 6.6 10.9 8.7
component: treatment3
(1) 8.7 9.2

It is also acceptable for the splitting argument to be a LOGICAL vector, in which case
False and True correspond to factor levels 1 and 2, respectively.

Cmd> split(run(10),vector(F,T,T,F,F,T,T,T,F,T))
component: comp1 Corresponding to F
(1) 1 4 5 9
component: comp2 Corresponding to T
(1) 2 3 6 7 8
(6) 10

Any element of x corresponding to a MISSING value of the splitting variable is omitted
from the results. It is an error for all the elements of the splitting variable to be
MISSING.

9-3

MacAnova Version 4.07

If the splitting variable is not an expression but has a name, say groups or @groups, the
components will be named groups1, groups2, etc. Similarly if the splitting variable is
specified in a keyword phrase such as dose:rep(run(4),5), components will be
named dose1, dose2,

You can also use split() to split a matrix into its rows or columns, with each row or
column becoming a component of a structure. When x is a matrix both split(x) and
split(x,bycols:T) return a structure with one component for each co lumn of x;
split(x,byrows:T) returns a structure with one row vector component for each row
of x.

Cmd> split(matrix(run(6),3)) # or split(matrix(run(6),3),bycols:T)
component: col1
(1) 1 2 3
component: col2
(1) 4 5 6

Cmd> split(matrix(run(6),3),byrows:T)
component: row1
(1,1) 1 4
component: row2
(1,1) 2 5
component: row3
(1,1) 3 6

You can use keyword compnames to name the components created by split(), just as
with structure().

An important usage for split() is to create an argument to a function that expects or
accepts structures. Here we use describe() with an argument created by split() to
compute the mean and the variance of z for each level of a.

Cmd> describe(split(z,treatment,compnames:vector("K","P","N")),\
mean:T,var:T)

component: mean
 component: K
(1) 9.5333
 component: P
(1) 9.425
 component: N
(1) 8.95
component: var
 component: K
(1) 2.5833
 component: P
(1) 4.9958
 component: N
(1) 0.125

An particularly important use for split() is as an argument to boxplot() (see Sec.
2.12.2). boxplot(split(x,a)) produces parallel box plots of x split by the levels of a
and, when x is a matrix, boxplot(split(x)) produces parallel box plots of the data in
the columns of x. See Sec. 10.2 for an example of this usage.

9-4

MacAnova Version 4.07

9.1.2 Getting information about a structure – ncomps() and compnames() You may
sometimes forget how many components there are in a structure or forget their names.
When str is a structure, ncomps(str) returns the number of its components, and
function compnames(str) returns a CHARACTER vector containing the names of those
components. These functions are also very helpful in writing macros that manipulate
structures (see Sec. 9.3).

Cmd> ncomps(trees)
(1) 3

Cmd> compnames(trees)
(1) "info"
(2) "names"
(3) "data"

9.1.3 Changing a structure – changestr() You can use changestr() to replace a
component in a structure or add components to or delete components from a structure.
changestr() does not actually change a structure directly but returns the modified
structure as a value which can be assigned. Its usage is probably best illustrated by
examples.

Modify a named component:

Cmd> changestr(trees,info:"New value for component info")
component: info
(1) "New value for component info" Component replaced
component: varnames
(1) "Species"
(2) "DBH"
component: data
(1,1) 1 5.6
(2,1) 1 4.5
(3,1) 1 8.9
(4,1) 2 7.3
(5,1) 2 9.9
(6,1) 2 11.3

If the structure has no component matching the given name, a new component with
that name is added at the end of the structure.

Cmd> changestr(trees, date:"March 5, 1977")
component: info
(1) "Made up data on 6 trees"
component: varnames
(1) "Species"
(2) "DBH"
component: data
(1,1) 1 5.6
(2,1) 1 4.5
(3,1) 1 8.9
(4,1) 2 7.3
(5,1) 2 9.9
(6,1) 2 11.3
component: date
(1) "March 5, 1977"

9-5

MacAnova Version 4.07

The following do the same as these examples:

Cmd> changestr(trees,"info","New value for component info")

and

Cmd> changestr(trees,"date","March 5, 1977")

Modify a component referred to by number:

Cmd> changestr(trees,3,newdata:vector(7.1,5.1,3.7,2.8))
component: info
(1) "Made up data on 6 trees"
component: names
(1) "Species"
(2) "DBH"
component: newdata Component 3 replaced and renamed
(1) 7.1 5.1 3.7 2.8

If the component number specified had been 4 instead of 3, then a new component
would have been added.

Delete a component by specifying a negative number.

Cmd> changestr(trees,-3) # delete component 3
component: info
(1) "Made up data on 6 trees"
component: names
(1) "Species"
(2) "DBH"

Deleting a component is more easily done using a negative subscript, as in trees[-3].
It is illegal to delete the only component of a structure.

9.2 Compound commands, conditional commands, and looping commands You can
group together several individual commands so that, for certain purposes, they are
viewed as a single command known as a compound command . Syntax elements if,
else and elseif permit conditional execution of compound commands, depending
on the value of one or more LOGICAL variables or expressions. And syntax elements
while and for allow “looping”, that is, repetitive execution of compound commands.

9.2.1 Compound commands A compound command is a sequence of one or more
ordinary commands or expressions surrounded by braces, that is, preceded by “{” and
followed by “}”. The individual commands making it up may be on separate lines or
separated by semicolons. The value of a compound command is the value of the last
individual command or expression in the sequence. Here is a compound command
consisting of three individual parts.

Cmd> {@tmp <- 3*log(640320)/sqrt(163)
@tmp + 2
@tmp - PI}

(1) 0

Although the @tmp + 2 is not an assignment, its value is not printed because it is part

9-6

MacAnova Version 4.07

of a compound command. In fact, it is there only to illustrate this point. The reason
the value (0) of @tmp - PI is printed is because it is the last command before “}”
making its value the value of the entire compound command. This value is printed
because it is not assigned to a variable. In fact it would be printed even if the last
command had been an assignment, say diff <- @tmp - PI, because the value of an
assignment is the value assigned and this would become the value of the compound
command. The value is 0 because 3 × log(640320)/ 163 is exactly π within rounding
error.

Once you start a compound command by typing “{”, MacAnova will continue to accept
input until a closing “}” has been typed, even when the compound command extends
over several lines. Under windowed versions (Macintosh, Windows, Motif) no
prompt is given before lines other than the first.

Cmd> diff <- { # example on Windowed version
@tmp <- 3*log(640320)/sqrt(163)
@tmp; @tmp - PI
}; diff
(1) 0

The compound command is split among several lines and its value, namely the value
of @tmp - PI, is assigned to variable diff which is printed outside the compound
command.

In non-Windowed versions (Unix, DOS), the special prompt More> is printed to
remind you that more input is needed as in the following.

Cmd> diff <- { # example on non-Windowed version
More> @tmp <- 3*log(640320)/sqrt(163)
More> @tmp; @tmp - PI
More> }; diff
(1) 0

You can nest compound commands. That is, a compound command may itself be
made up of one or more compound commands, possibly together with non-compound
commands. Here is a trivial example.

Cmd> {{x <- 3+4; y <- 7};{x <- 3*x; x+y}}# contains 2 compnd cmds.
(1) 28

The value of the entire compound command is the value of the second compound
command, that, is the value of x+y.

You can force a compound command to have a NULL value by putting the explicitly
null statement “;;” at its end.

Cmd> {{x <- 3+4; y<-7};{x <- 3*x};;} # value is NULL

9.2.2 Conditional commands – if, elseif and else Syntax element if allows execution of
a compound command conditional on whether a LOGICAL variable or expression is
True. The simplest form of a conditional command is

if(Logical) CompoundCommand

where Logical is a LOGICAL scalar variable or expression and CompoundCommand is a

9-7

MacAnova Version 4.07

compound command starting with “{” and ending with “}”. The opening “{” must
be on the same line with if. MacAnova first evaluates Logical; if its value is True
then CompoundCommand is executed and the value of CompoundCommand becomes of the
value of the conditional command; otherwise CompoundCommand is skipped and the
conditional command has a NULL value.

Cmd> x <- 3; y <- 4

Cmd> if(x <= y){print("x <= y")}#Logical expression is True
x <= y

Cmd> if(x > y){print("x > y")}#Logical expression is False; no print

Cmd> b1 <- if(x < y){ #compound command on two lines
2*x + 10} # value assigned is non-NULL

Cmd> b2 <- if(x > y){2*x + 10} # value assigned is NULL

Cmd> print(b1, b2)
b1:
(1) 16
b2:
(NULL)

The enclosing braces are required even when the compound command consists of only
one command or expression. See below.

Use of syntax element else with if allows you to direct MacAnova to do one thing if
the LOGICAL expression is True and something else if it is False. The general usage is
the conditional command

if(Logical) CompoundCommand1 else CompoundCommand2

where both CompoundCommand1 and CompoundCommand2 start and end with “{” and
“}”. The opening “{” of CompoundCommand1 must be on the same line with if and
both the closing “}” of CompoundCommand1 and the opening “{” of CompoundCommand2
must be on the same line with else.

In an if … else … conditional command, MacAnova first evaluates Logical. If its
value is True then CompoundCommand1 is executed and CompoundCommand2 is skipped;
if its value is False than CompoundCommand1 is skipped and CompoundCommand2 is
executed. The value of an if … else … conditional command is the value of the
compound command actually executed. For example, the value of if(T){1}else{2}
is 1, while the value of if(F){1}else{2} is 2.

Cmd> x <- 3; y <- 4

Cmd> if (x < y){print("x < y")}else{print("x >= y")}
x < y Printed by 1st compound command

Cmd> signdiff <- if (x < y){-1}else{1};signdiff # assigned value
(1) -1

Cmd> x <- 4; y <- 4

Cmd> if (x < y){print("x < y")}else{print("x >= y")}
x >= y Printed by 2nd compound command

9-8

MacAnova Version 4.07

Cmd> signdiff <- if (x < y){-1}else{1};signdiff # assigned value
(1) 1

You can specify more than two choices using elseif.

 if(Logical1) CompoundCommand1 elseif(Logical2) CompoundCommand2\
else CompoundCommand3

Now CompoundCommand1 is executed if Logical1 is True, CompoundCommand2 is
executed when Logical1 is False and Logical2 is True, and CompoundCommand3 is
executed if both Logical1 and Logical2 are False. The value of an if … elseif …
else … conditional command is the value of the compound command actually
executed. For example, the value of if(T){1}elseif(T){2}else{3} is 1, the value
of if(F){1}elseif(T){2}else{3} is 2 and the value of
if(F){1}elseif(F){2}else{3} is 3. You can have additional elseif pieces in a
conditional command before the else piece, and the else piece can be omitted.

Cmd> x <- 1; y <- 7

Cmd> if(x < y){tmp <- y - x;;} else {tmp <- x - y;;}; tmp
(1) 6

Here the LOGICAL expression is True and the first compound command is executed.
The if ... else line is actually computing and printing the value of abs(x-y). In this
case, the value of the conditional command is the value of {tmp <- y - x;;} because
that is the compound command actually executed. Because of the extra “;;”, the value
is NULL and hence is not printed. Because a conditional command has a value, an
alternative line doing the same thing is as follows:

Cmd> tmp <- if(x < y){y-x}else{x-y} ; tmp # Assignment to tmp
(1) 6

Because the LOGICAL expression x < y is True, tmp is assigned the value, y - x, of the
first compound command; in the contrary case it would be assigned the value, x–y, of
the second compound expression.

Cmd> x <- 3; if(x > 0) {1} elseif (x < 0) {-1} else {0}
(1) 1

Cmd> x <- -3;if(x > 0) {1} elseif (x < 0) {-1} else {0}
(1) -1

Cmd> x <- 0; if(x > 0) {1} elseif (x < 0) {-1} else {0}
(1) 0

The conditional command is the same in all three lines, in each of which a different
compound command is executed.

9.2.3 Looping – for and while Sometimes you may need to repeat one or more
commands several times. You could just type them in again and again, but it is
sometimes easier to “program” a loop that keeps going back and executing the same
commands several times. In MacAnova there are two kinds of loops, while loops and
for loops.

9-9

MacAnova Version 4.07

A while loop has the form

while(Logical) CompoundCommand

where, as usual, CompoundCommand starts with “{” and ends with “}” and may extend
over several lines. The opening “{” must be on the same line with while. When
Logical, say n > 0, has value True, CompoundCommand is executed. Then Logical is
again evaluated and if it is still true CompoundCommand is again executed. This
continues as long as the value of Logical is True. If and when Logical is false,
CompoundCommand is skipped. It is essential that something happens in
CompoundCommand that eventually changes the value of Logical, say n <- n-1; if not,
the loop cannot terminate properly, that is, is an infinite loop. To be on the safe side,
MacAnova terminates while loops after 1000 repetitions, whether or not Logical has
become False.

Cmd> s <- 0; n <- 10; while(n > 0) { s <- s + n; n <- n-1;;}; s
(1) 55 Sum 10+9+8+7+6+5+4+3+2+1

Cmd> s <- 0; n <- 10; while(n > 0) {
s <-s + n;; # Note that n is not decremented

}
ERROR: more than 1000 repetitions of while loop

Nothing in the compound command in the second loop changes n so the loop would
go on forever if MacAnova did not lose patience. Note also the null command “;;”
before the closing “}” to prevent output on each trip through the loop.

The default maximum number of repetitions can be changed by option maxwhile to
any value 10 or above (see Sec 8.1.3).

Cmd> setoptions(maxwhile:50) # only 50 trips through loop allowed

Cmd> i <- 0; while(i >= 0){i <- i+1;;} # i incremented on every trip
ERROR: more than 50 repetitions of while loop

Cmd> i
(1) 50

A for loop has the general form

for(index, Range) CompoundCommand

where index is a legal variable name and Range is a REAL vector. First index is set to
Range[1] and CompoundCommand is executed; then index is set to Range[2] and
CompoundCommand is again executed; and so on for each element in Range. The most
common form for Range is probably run(n), where n is an integer.

Cmd> s <- 0; for(i,run(5)){s <- s + i;;}; s # s <- 1+2+3+4+5
(1) 15

Since length(run(5)) = 5, the compound command is executed 5 times and i
successively takes values 1, 2, 3, 4, and 5. This line is effectively equivalent to

s <- 0;s <- s+1;s <- s+2;s <- s+3;s <- s+4;s <- s+5; s

If Range is NULL, CompoundCommand is skipped entirely.

9-10

MacAnova Version 4.07

Another form for Range is probably best illustrated by examples:

Cmd> s <- 0; for(i,3,10){s <- s + i;;}; s #3+4+5+6+7+8+9+10
(1) 52

Cmd> s <- 0; for(i,1,3,1/3){s <- s + i;;};s #1+4/3+5/3+2+7/3+8/3+3
(1) 14

for(index,i1,i2) is equivalent to for(index,run(i1,i2)) and
for(index,i1,i2,inc) is equivalent to for(index,run(i1,i2,inc)) (see Sec. 2.14).

Unlike while loops, there is no fixed limit for the possible number of repetitions of a
for loop – it depends on the length of Range.

9.2.4 Escaping from loops – break and breakall In some circumstances you may want to
terminate a while loop before the logical variable becomes False or leave a for loop
before all the elements in the range vector have been used up. This is possible using
syntax element break. In the following we attempt to evaluate the geometric series 1 +
x + x2 + x3 + ... = 1/(1 – x) when |x| < 1, terminating the loop when there is no
point in computing further terms.

Cmd> x <- .57 # small enough to converge rapidly

Cmd> s <- 1; for(i,run(30)){
term <- x^i; s <- s + term
ratio <- abs(term/s)
if(ratio < .000001){break}

}

Cmd> vector(i, ratio, s, 1/(1-x)) #converged in 24 trips around loop
(1) 24 5.9493e-07 2.3256 2.3256

Cmd> x <- .8 # larger value of x; slower convergence

Cmd> s <- 1; for(i,run(30)){
term <- x^i; s <- s + term
ratio <- abs(term/s)
if(ratio < .000001){break}

}

Cmd> vector(i, ratio, s, 1/(1-x))
(1) 30 0.00024783 4.995 5

Because length(run(30)) = 30, the compound statements will be executed at most 30
times. When the ratio ratio of a term to the current sum s becomes small enough (<
.000001), break exits the loop, skipping over everything up to and including the closing
“}”. In the first case this happened when i was 24 and so the loop was executed only 24
times. In the second case, break was not executed and the loop ran the full 30 times;
because the convergence criterion was not satisfied, the sum 4.995 is about 0.1% below
the correct value 1/(1 – .8) = 5.

It is possible to have nested loops, that is have one loop inside another. You can exit
from several for or while loops at once by adding a literal integer after break. For
example, break 2 and break 3 exit from two and three looping levels, respectively,
while break 1 means the same thing as break. The following example illustrates the
use of nested for loops to determine if any elements of a matrix are 0.

9-11

MacAnova Version 4.07

Cmd> a <- matrix(vector(1,3,4,2,5,0,6,7),2); a # has 1 zero
(1,1) 1 4 5 6
(2,1) 3 2 0 7

Cmd> foundzero <- F

Cmd> for(i,run(nrows(a))){
for(j,run(ncols(a))){

if(a[i,j] == 0){foundzero <- T; break 2}
}

}

Cmd> if(foundzero){
print(paste("a[",i,",",j,"] == 0",sep:""))

} else {
print("No element of a is 0")

}
a[2,3] == 0 Output from first print()

Here we have a for loop over variable j nested within a for loop over i. When a zero
element of a is found, break 2 terminates both loops . If you replaced break 2 by
break or break 1, it would terminate the inner loop only. Even if n were a variable
with value 2, break n would not be legal. An alternative to the use of break 2, is
breakall which exits from all loops, but its use can lead to problems that are difficult
to diagnose. For the use of paste(), see Sec. 8.3.1.

9.2.5 Skipping to the end of a loop – next It’s sometimes helpful to be able to skip to the
end of a loop without terminating it. You can do this using syntax element next. This
has almost the same effect as using break except that after skipping the rest of the loop,
execution resumes just before the “}” that terminates the loop instead of after it. Here
is an example based on the first example in Sec. 9.2.5 in which the 100 terms of the
series are summed as well as the “tail” of the series after a convergence criterion is
satisfied.

Cmd> x <- .57; s1 <- 0; s <- 1; for(i,run(100)){
term <- x^i;
ratio <- abs(term/s)
s <-+ term
if(ratio >= .000001){next}
s1 <-+ term ;;# executed only when ratio < .000001;;

}

Cmd> vector(s, s1) # converged value and remainder
(1) 2.3256 3.2176e-06

Cmd> x <- .80; s1 <- 0; s <- 1; for(i,run(100)){
term <- x^i;
ratio <- abs(term/s)
s <-+ term
if(ratio >= .000001){next}
s1 <-+ term ;;# executed only when ratio < .000001;;

}

Cmd> vector(s, s1) # converged value and remainder
(1) 5 2.3383e-05

9-12

MacAnova Version 4.07

You can to skip to the end of loop from inside a loop that is nested within it by using a
literal integer after next. For example, next 1 means the same thing as next; next 2
leaves the current loop and skips to the end of the loop enclosing it; next 3 leaves the
current loop and the one enclosing it and skips to the end of the next higher level loop;
and so on. The integer must be a literal 1, 2, ... and not a variable with an integer value.
Thus n <- 2; next n is always illegal. Here is a simple example to count the
number of matrix rows which contain 0.

Cmd> a <- matrix(vector(1,3,4,2, 5,0,6,7, 9,10,0,8),3) #3 by 4

Cmd> rowswithzero <- 0 # initialize count

Cmd> for(i,run(nrows(a))){ # loop over rows
for(j,run(ncols(a))){ # loop over columns within row

if(a[i,j] == 0){rowswithzero <-+ 1; next 2}
}

} # next 2 skipped to just before this '}'

Cmd> rowswithzero # number of rows with zeros
(1) 2

9.3 Macros Although you use macros almost identically to functions and commands, a
macro is actually a special type of variable somewhat similar to a CHARACTER scalar. Its
value, the text of the macro, is made up of one or more MacAnova commands all
grouped together. When MacAnova encounters a macro name followed by a list of
arguments separated by commas enclosed in (...), it executes the commands making
up the macro one after another, possibly printing some results or returning a value,
just like a function.

It is actually is a bit more complicated than that. Before executing the commands, the
macro is expanded . First, at appropriate places, MacAnova inserts the macro’s
arguments in the text of the macro (Sec. 9.3.2). Then it scans the text for special symbols
starting or ending with “$” which get special treatment (Sec. 9.3.4). Finally it puts “{”
and “}” at the start and at the end, turning the sequence of commands into a
compound command. This compound command is then executed exactly as if you had
typed it. Macros may be expanded in-line (the default) or out-of-line. See Sec. 9.3.5.

The value of the executed macro is the value of the last command in it. This is the key
to understanding how a macro returns a value to be printed or assigned to a variable.
A macro that is not intended to return a value should return a NULL value. If the last
command does not itself return a NULL value as do the GLM commands and output
commands such as print(), it should be followed by “;;” (see Sec. 9.2.1) or simply the
constant NULL (see Sec.2.5).

It may sometimes be important to know that each instance of an in-line macro in a
command line is expanded only once, even if it is in a loop and is executed several
times. The second and any subsequent times it is executed, it has already been
expanded and is executed as is.

There are several pre-defined macros such as readcols and getdata that are described
elsewhere (Sec. 2.11.2 and 2.11.4). For most purposes you can use these just like
functions and even ignore the fact that they are macros. However, since having the

9-13

MacAnova Version 4.07

right macro can be a great labor saving device (you don’t need to type all the commands
in the macro separately, just the macro name and argument list), many users will at
some point want to write their own macros. Using macros you can almost indefinitely
extend the statistical or mathematical analyses MacAnova can do. This section
summarizes what you need to know to write macros.

9.3.1 Creating macros You use function macro() to create a macro. It has a single
quoted string or CHARACTER variable as its argument.

Cmd> mymac <- macro("$1 * $1 + $2") # create macro mymac

Cmd> list(mymac) # it’s a variable of type MACRO
mymac MACRO (in-line)

In many respects, a macro is like a CHARACTER variable. In particular, if you type its
name, the macro will be printed.

Cmd> mymac # print it
(1) "$1 * $1 + $2"

See Sec. 9.3.3 and Sec. 9.3.5 for using keyword phrases dollars:T and inline:F,
respectively, as additional arguments to macro(). See Sec. 9.3.5 for a discussion of the
difference between in-line and out-of-line macros.

Macros can also be read from external files by function macroread() (Sec. 7.5.1). Pre-
defined macro getmacros (Sec. 7.5.3) uses macroread() to read macros from the files
whose names are specified in CHARACTER vector MACROFILES.

Because macroread() can also read from the special CHARACTER variable CLIPBOARD
(Sec. 7.3), in versions with windows (Macintosh, Windows, Motif), you can edit a
macro in another program or even a MacAnova command/output window, and then
copy it to the clipboard, from which it is read by macroread().

See Sec. 8.8.3 for a way to create a macro from recently executed commands.

9.3.2 Argument substitution The most important special symbols starting with “$” are
the “place holders” $1, $2, $3, MacAnova literally replaces $1 by the characters
making up argument 1, replaces $2 by the characters making up argument 2, and so on.
This is the way MacAnova knows where the arguments are to be inserted. Macro
mymac in Sec. 9.3.1 is apparently intended to compute the product of the first argument
with itself and add the product to the second argument. Since $1 * $1 + $2 is the last
(and only) statement in the macro, the value of mymac is the value of $1 * $1 + $2
after substituting the arguments for $1 and $2.

Cmd> mymac(4,5) # expands as {4 * 4 + 5}
(1) 21 Value gets printed

Cmd> mymac(4,run(3)) # expands as {4 * 4 + run(3)}
(1) 17 18 19

This simple macro has been poorly written, however, and sometimes doesn’t work the
way intended.

Cmd> mymac(3+1,run(3)) # expands to {3+1 * 3+1 + run(3)}
(1) 8 9 10

9-14

MacAnova Version 4.07

This gives a different answer from mymac(4,run(3)). What went wrong? The
problem is that the arguments were substituted literally, to produce the expression
3+1 * 3+1 + run(3). But, because multiplication has a higher precedence than
addition (see Sec. 2.8.3), MacAnova interpreted this as 3+(1*3)+1+run(3), not as
(3+1)*(3+1) + run(3). Fortunately, you can easily correct this problem by
surrounding each argument place holder with parentheses as in this revised version of
mymac.

Cmd> mymac <- macro("($1) * ($1) + ($2)") # $1 & $2 in parentheses

Cmd> mymac(3+1,run(3)) # expands as {(3+1) * (3+1) + (run(3))}
(1) 17 18 19

Substitutions are made for $1, $2, ... even when they are enclosed in quotation marks.

Cmd> printmsgs <- macro("print(\"$1\")")

Cmd> printmsgs # Macro to print its argument as string
(1) "print(\"$1\")"

Cmd> printmsgs(MacAnova's great)
MacAnova's great

This works because printmsgs(MacAnova's great) expands to
{print("MacAnova's great")}.

There is one exception to the exact substitution of arguments. When (a) an argument
itself contains ‘"’ or ‘\’, and (b) it is to be substituted inside quotes ("...") in the macro
itself, then, ‘"’ and ‘\’ are replaced by ‘\"’ and ‘\\’, respectively, when the argument is
expanded.

Cmd> printmsgs("MacAnova's great")
"MacAnova's great"

The macro expanded to {print("\"MacAnova's great\"")}.

If you don’t supply enough arguments when using a macro, it may cause an error. If
the missing argument is inside a quoted string, it “expands” to nothing. Otherwise, if
the missing argument is ever referenced, an error message is printed.

Cmd> printarg1 <- macro("print(\"Argument 1 is '$1'\")")

Cmd> printarg1()
Argument 1 is ''

Cmd> print2 <- macro("print($1,$2)") # requires two arguments

Cmd> print2(PI) # one argument only
ERROR: Argument 2 to macro print2 missing

If you include a leading 0 in the place holder ($01, $02, ...), then a missing argument
outside of quotes is expanded to NULL.

Cmd> print2a <- macro("print($01,$02)") # expects two arguments

9-15

MacAnova Version 4.07

Cmd> print2a(PI) # one argument;expands to {print(PI,NULL)}
NUMBER:
(1) 3.1416
NULL: Argument 2 is taken to be NULL
(NULL)

9.3.3 The use of temporary variables and $$ Although it now works, our example
macro mymac still has a possible problem. Consider the following

Cmd> mymac(sum(log(run(2000)))/2000,exp(run(3)))
(1) 46.321 50.992 63.689

The answer is correct. However, the macro expands to the compound command

{(sum(log(run(2000)))/2000)*(sum(log(run(2000)))/2000)+(exp(run(3)))}

In the process of computing this, sum(log(run(2000)))/2000 is evaluated twice.
Although this is not a big deal, it results in loss of efficiency, which on a slow computer
would be noticable. Even on a very fast computer, similar inefficiencies can be
important. Here is one solution to the problem:

Cmd> mymac <- macro("@x <- $1
@x * @x + ($2)")

Cmd> mymac
(1) "@x <- $1

@x * @x + ($2)"

Cmd> mymac(sum(log(run(2000)))/2000,exp(run(3)))
(1) 46.321 50.992 63.689

First, note that mymac is now a two line macro, with the result being the value
computed on the last (second) line. Secondly, observe that mymac now sets a temporary
variable @x to the value of the first argument. Since this is the only place that $1 is
referenced directly, sum(log(run(2000)))/2000 is computed only once. Because its
name starts with “@”, @x is a temporary variable that is deleted no later than the next
prompt. As a general rule, it is usually a good idea to copy any argument referred to
more than once to a temporary variable. An exception might be when you know the
argument may be a very large matrix, in which case making a copy might use up too
much computer memory.

There is still at least one more possible problem in this macro. Consider the following
macro mymac2 which invokes mymac, switching the order of its arguments.

Cmd> mymac2 <- macro("@x <- $1; @y <- $2;mymac(@y, @x)")

Cmd> mymac2
(1) "@x <- $1; @y <- $2;mymac(@y, @x)"

Cmd> mymac(4,run(3))
(1) 17 18 19

Cmd> mymac2(run(3),4)
(1) 20

Since mymac2 simply invokes mymac with its arguments in reverse order, you would
expect mymac2(run(3),4) to be the same as mymac(4,run(3)), but it clearly is not.

9-16

MacAnova Version 4.07

What is going wrong? The problem is that both macros use the same temporary
variable @x. Here is what the full expansion of mymac2(run(3),4) looks like,
including the expansion of mymac.

{@x <- run(3);@y <- 4;{@x <- @y
@x * @x + (@x)}}

The italicized part is the expansion of mymac and the bold face variables are the
substitutions in mymac. It is not doing what we want because mymac is changing the
value of @x set by mymac2 before it gets around to using it. You might say that whoever
wrote mymac2 should have known better than to use a temporary name that is also
used in mymac. However, you shouldn’t have to know the inner details of a macro in
order to use it safely.

There is a way to avoid such a conflict of temporary names. Here are new versions of
mymac and mymac2. In them we use special names @x$$ and @y$$ instead of simply @x
and @y.

Cmd> mymac<-macro("@x$$ <- $1
@x$$ * @x$$ + ($2)") # note the trailing "$$"'s

Cmd> mymac2 <- macro("@x$$ <- $1; @y$$ <- $2
mymac(@y$$, @x$$)") # trailing "$$"'s used again

Cmd> mymac2(run(3),4) # now it's correct
(1) 17 18 19

To see what is happening, here is the complete expansion of the new version of
mymac2(run(3),4):

{@x50 <- run(3);@y50 <- 4
{@x51 <- @y50
@x51 * @x51 + (@x50)}}

where italics and boldface mean the same as before. The trailing “$$” has been
expanded as “50” in mymac2, but as “51” in mymac. Since @x50 and @x51 are different
names, there is no conflict. Generally a trailing “$$” is expanded to a unique number
between 50 and 99 in each in-line macro and between 00 and 49 in each out-of-line
macro.

You don’t explicitly have to add “$$” to temporary variable names if you use keyword
phrase dollars:T as an argument to macro() when creating a macro.

Cmd> mymac <- macro("@x <- $1
@x * @x + ($2)",dollars:T)

Cmd> mymac # "$$"'s were automatically added
(1) "@x$$ <- $1
@x$$ * @x$$ + ($2)"

In summary, there are two rules to observe in writing safe macros:

(a) Enclose $1, $2, ... in parentheses except in quoted strings

(b) Use names starting with “@” and ending with “$$” for temporary variables.

See Sec. 9.3.6 for a recommendations on deleting temporary variables in a macro.

9-17

MacAnova Version 4.07

9.3.4 Other expanding macro symbols The special macro symbol $0, $N, $V, $v, $K, $k,
$A, and $S all are replaced as part of macro expansion.

Macro symbol $0 is replaced by the entire argument list, including the commas that
separate the multiple arguments. This is particularly helpful for writing an “alias” for a
function, that is a macro which does the same thing as the function but has a different
name. For instance, a DOS user who is used to typing dir to get a list of files, might
wish command list() was named dir(). No sooner said than done:

Cmd> dir <- macro("list($0)") # create 'alias' for command list()

Cmd> dir(real:T) # this expands to {list(real:T)}
DELTAT REAL 1
PI REAL 1

Another use for this feature is illustrated by yet another version of macro mymac:

Cmd> mymac <- macro("@args$$ <- structure($0)
@args$$[1] * @args$$[1] + @args$$[2]")

Cmd> mymac(4,run(3))
(1) 17 18 19

The first line of this macro expands to @args50 <- structure(4,run(3)) which
creates a structure @args50 with two components which are referred to by number in
line 2 (see Sec. 2.8.16, 9.1.1).

Macro symbol $N is replaced by the number of arguments to the macro in the current
invocation.

Cmd> testN <- macro("paste(\"The number of arguments is\",$N)")

Cmd> testN()
(1) "The number of arguments is 0"

Cmd> testN(1,"a",T,last:4)
(1) "The number of arguments is 4"

(For the use of paste() see Sec. 8.3.1)

Macro element $V is similar to $0 except that it is replaced by a comma-separated list of
all arguments that are not keyword phrases. Macro element $v is replaced by the
number of such arguments.

Cmd> testV <- macro("print(Dollarv:$v,DollarV:structure($V))")

Cmd> testV(1,"a",tau:4,T) # 3 non-keyword arguments
Dollarv:
(1) 3 Number of non-keyword arguments
DollarV: Structure with all three arguments
component: NUMBER
(1) 1
component: STRING
(1) "a"
component: LOGICAL
(1) T

In parallel with $V and $v, macro elements $K is replaced by a comma-separated list of

9-18

MacAnova Version 4.07

the keyword arguments and $k by the number of such arguments.

Cmd> testK <- macro("print(Dollark:$k,DollarK:structure($K))")

Cmd> testK(1,"a",tau:4,T) # 1 keyword phrase argument
Dollark:
(1) 1 Number of keyword arguments
DollarK:
component: tau
(1) 4

Macro element $A is entirely equivalent to vector("$1","$2",...), which expands
to a CHARACTER vector containing the text of each argument in quotation marks. Any
cases of ‘"’ or ‘\’ in an argument are replaced by ‘\"’ and ‘\\’.

Cmd> testA <- macro("@A <- $A # character version of arguments
@args <- structure($0) # ordinary version of arguments
for(@i,run($N)){

print(paste(@A[@i],\"=\",@args[@i]))
}",dollars:T) # 5 line macro

Cmd> testA(3+4, PI, sqrt(20))
3+4 = 7
PI = 3.1416
sqrt(20) = 4.4721

Finally, macro element $S expands to the name of the macro.

Cmd> testS <- macro("print(\"This is macro $S\")")

Cmd> testS1 <- testS # copy testS to testS1

Cmd> testS()
This is macro testS

Cmd> testS1() # identical to testS except for its name
This is macro testS1

All these special “$” macro elements except $A are expanded whether or not they are
inside a quoted string in the macro. $A is expanded only when it is not in a quoted
string. Furthermore, none of $N, $V, $v, $K, $k, $A or $S is expanded when it
immediately follows a legal MacAnova name and thus could refer to a structure
component. For example, even in a macro, data$N is assumed to refer to a component
named N of a structure named data.

9.3.5 In-line and out-of-line macros There are two expansion modes for macros – in-
line and out-of-line. When a macro is expanded in-line, the macro “call” is actually
replaced by the expanded text of the macro. For example, if testS is the macro defined
in Sec. 9.3.4, the command line

print("Pre");testS();print("Post")

becomes

print("Pre");{print("This is macro testS")};print("Post")

once testS() is reached.

9-19

MacAnova Version 4.07

Because the original macro call is replaced, an in-line macro in a loop is expanded only
once, the first time through the loop. This means that even if the macro is redefined
during the loop, the change has no effect until the loop is ended. Consider the
following example in which macro printi is defined 3 times to be successively
"print(i:1)", "print(i:2)" and "print(i:3)". Because it is expanded only once,
only the first form is operative.

Cmd> for (i, run(3)){
printi <- macro(paste("print(i:",i,")",sep:""),inline:T)
printi()

}
i:
(1) 1
i:
(1) 1
i:
(1) 1

Here we have used keyword phrase inline:T to ensure expansion is in-line. This is
necessary only when option inline has value False (see Sec. 8.1.3). See Sec. 8.3.1 for
the use of paste().

When an out-of-line macro is expanded, the original command line is not changed.
Instead, the macro is expanded elsewhere, the expanded text is executed, and then
execution resumes immediately after the macro call. These means that an out-of-line
macro in a loop is expended every time through the loop. Here is the same example,
except that printi is created as an out-of-line macro using keyword phrase inline:F.

Cmd> for (i, run(3)){ # note the use of inline:F
printi <- macro(paste("print(i:",i,")",sep:""),inline:F)
printi()

}
i:
(1) 1
i:
(1) 2
i:
(1) 3

Now printi is expanded out-of-line each time through the loop so the updated
version is executed.

There is little reason to use out-of-line macros unless you want to do something like
this example does – change a macro every time through a loop.

9.3.6 Using delete(result,return:T) in a macro Although temporary variables created in a
macro are automatically deleted the next time the prompt is printed (Sec. 2.4), they
survive until then, occupying space in memory. For this reason, it is good practice to
“clean up” at the end of a macro, using delete() to remove temporary variables
created in the macro (see Sec. 2.8.9). Of course, if one of the temporary variables, say
@value, contains the result that the macro is returning, you won’t want to include it
with other variables as an argument to delete(). Instead, the last line of the macro
should be

9-20

MacAnova Version 4.07

delete(@value, return:T)

Variable @value will be deleted, but its value will be returned as the value of
delete(). Since this is the last expression in the macro, its value will be returned as
the value of the macro. Here is the text of a simple macro using this feature.

@a$$ <- $1; @b$$ <- $2
@x$$ <- invbeta(run(999)/1000,@a$$,@b$$)
delete(@a$$, @b$$) # clean up
delete(@x$$, return:T) # @x$$ is deleted, its value returned

You can also use this feature to put a temporary variable in the argument list of a
function while at the same time deleting it. Here is a variant on the previous macro.

@a$$ <- $1; @b$$ <- $2
@x$$ <- invbeta(run(999)/1000, delete(@a$$,return:T),\

delete(@b$$,return:T))
delete(@x$$, return:T)

No more than one variable can be deleted when return:T is used with delete().

9.4 Functions useful in macros Although the commands in this section are most likely
to be used in macros, they can be used at the prompt level, too. paste(), described in
Sec. 8.3.1, 8.3.2 and 8.3.3 is also very useful in macros.

9.4.1 Functions unique() and match() unique() extracts the unique elements of a
vector, that is every distinct element. When keyword phrase index:T is an argument,
index() returns a vector of integers such that v[unique(v,index:T)] is equivalent
to unique(v).

Cmd> v <- vector(3.1,2.5,2.5,4.3,3.7,6.8,6.8,3.1);unique(v)
(1) 3.1 2.5 4.3 3.7 6.8

Although 3.1 and 6.8 appear twice in v, they appear only once in unique(v).

Cmd> unique(v,index:T)
(1) 1 2 4 5 6

match() allows you to compare for equality each element of its first argument with
each element of a vector second argument. You can use it to test whether a REAL or
CHARACTER vector contains a specified value.

Suppose x is a scalar, v is a vector, and noMatch is a scalar and they all have the same
type, either REAL or CHARACTER. Then the value of match(x,v,noMatch) is noMatch
when no element of v is the same as x, and is otherwise k, where v[k] is the first
element in v that is the same as x.

Cmd> match(6.8,v,-1)
(1) 6 6th element of w is 6.8

Cmd> match(7.0,v,-1)
(1) -1 No element of w is 7.0

If x is a REAL or CHARACTER vector, matrix, or array, match(x,v,noMatch) returns a
vector of the same type, shape and size as x. The i, j, ... element of the result is

9-21

MacAnova Version 4.07

match(x[i,j,...],v,noMatch). If any element of x is MISSING, the corresponding
element of the result is also MISSING.

Cmd> match(vector(6.8,7.0),v,-1) # 6.8 matches, 7.0 does not
(1) 6 -1

Cmd> a <- factor(match(v,sort(unique(v))));a # create factor from v
(1) 2 1 1 4 3
(6) 5 5 2

Pre-defined macro makefactor (see Sec. 3.3) uses a command similar to this last
example.

match(x,v), omitting noMatch, does the same with a default value of noMatch =
length(v)+1, but prints a warning message if any element of x is not matched.

Cmd> match(vector(6.8,7.0),v)
WARNING: 1 values not matched coded as 9
(1) 6 9

When x and v are CHARACTER variables, and any of the elements of x contain the “wild
card” characters “*” or “?”, you can use match(x,v [,noMatch],exact:F) to
determine which, if any, elements of v match the “patterns” specified by x. A “*” in x
matches any sequence of 0 or more characters in an element of v and a “?” matches
any single character in an element of v.

Cmd> v1 <- vector("abc","ade","gfh")

Cmd> match(vector("*c","*d*","g*","g*h", "a*b*c"), v1, exact:F)
(1) 1 2 3 3 1

Cmd> v2 <- vector("aqbde","bb123", "allbdef")

Cmd> match(vector("a*b???","a*b??"),v2,exact:F)
(1) 3 1

One use of match() is in selecting rows and/or columns corresponding to specified
values of the coordinate labels of a labeled variable (see Sec. 8.4). Here is a short
example:

Cmd> y <- matrix(10*run(2)+run(3)',2,labels:structure("R","C"))

Cmd> y # note the row and column labels
 C1 C2 C3
R1 11 12 13
R2 21 22 23

Cmd> y[match("R2",getlabels(y,1)),\
match(vector("C1","C3"),getlabels(y,2))]

 C1 C3
R2 21 23

Cmd> # This is equivalent to y[2,vector(1,3)]

9.4.2 Checking the characteristics of variables – isxxxx() functions There are several
MacAnova functions whose primary use is in checking to see that arguments to a
macro are as expected. Functions isarray(), ischar(), isdefined(), isfactor(),
isgraph(), islogic(), ismacro(), ismatrix(), isreal(), isscalar(),

9-22

MacAnova Version 4.07

isstruc(), and isvector() all return a LOGICAL vector whose length is the number
of function arguments. The i-th element of the result is True if and only the the i-th
argument satisfies the condition specified by the function name. In the following,
UnDef is not the name of any existing variable or macro. Also note that “?” represents
a REAL MISSING value.

Cmd> isreal(3,"MacAnova",run(3),?,3 < 4,structure(1,2))
(1) T F T T F F

Cmd> islogic(3,"MacAnova",run(3),?,3 < 4,structure(1,2))
(1) F F F F T F

Cmd> ischar(3,"MacAnova",run(3),?,3 < 4,structure(1,2))
(1) F T F F F F

Cmd> isstruc(3,"MacAnova",run(3),?,3 < 4,structure(1,2))
(1) F F F F F T

Cmd> ismacro(PI,boxcox)
(1) F T

Cmd> a <- vector(1,1,2,2,3,3); b <- factor(a)

Cmd> isfactor(a,b)
(1) F T

Cmd> isdefined(PI,NULL,UnDef)
(1) T T F

Cmd> isscalar(UnDef,3,run(3),matrix(run(4),2),array(run(8),rep(2,3)))
(1) F T F F F

Cmd> isvector(UnDef,3,run(3),matrix(run(4),2),array(run(8),rep(2,3)))
(1) F T T F F

Cmd> ismatrix(UnDef,3,run(3),matrix(run(4),2),array(run(8),rep(2,3)))
(1) F T T T F

Cmd> isarray(UnDef,3,run(3),matrix(run(4),2),array(run(8),rep(2,3)),\
boxcox,structure(PI))

(1) F T T T T F F

Cmd> isnull(NULL,print("Value of print() is NULL"),1,T,?)
Value of print() is NULL
(1) T T F F F

isscalar(), isvector(), ismatrix() and isarray() allow simultaneous testing for
shape and type using keywords real, logic, and char. Here are examples with
isscalar().

Cmd> realscalar <- PI;logicscalar <- T; charscalar <- "A"

Cmd> isscalar(realscalar,logicscalar,charscalar,real:T)
(1) T F F

Cmd> isscalar(realscalar,logicscalar,charscalar,logic:T)
(1) F T F

Cmd> isscalar(realscalar,logicscalar,charscalar,character:T)
(1) F F T

9-23

MacAnova Version 4.07

These can be extremely helpful in thoroughly checking macro arguments for
appropriateness.

Function ismissing(), described in Sec. 2.7, does not fit this pattern. It has one
argument and ismissing(x) returns a LOGICAL value the same shape as x with True
in every position where an element of x is MISSING and False everywhere else.

Cmd> ismissing(matrix(vector(1,?, ?,4, 5,6),2))
(1,1) F T F
(2,1) T F F

When writing a macro, especially one that expects keyword phrases as arguments,
using these isxxxx functions to check arguments can be complicated. The more
specialized functions, keyvalue() and argvalue() may be easier to use. See Sec. 9.4.5
and 9.4.6.

9.4.3 Other miscellaneous functions – anymissing(), nameof(), error() and gettime()
When x is REAL or LOGICAL, anymissing(x) has value True if and only if at least one
element of x is MISSING. If x is CHARACTER, anymissing(x) has value True if and only
if at least one element of x is "". Unlike the other functions in this section,
anymissing() accepts only one argument. The argument can, however, be a structure
in which case anymissing() returns a structure with LOGICAL components.

Cmd> a <- matrix(vector(1,3,4,2,?,0,6,7),2) # note MISSING value

Cmd> anymissing(a)
(1) T

Cmd> anymissing(structure(a, b:structure(b1:"",b2:run(5))))
component: a
(1) T
component: b structure component of a structure
 component: b1
(1) T
 component: b2
(1) F

Function nameof() returns the names of its arguments as a CHARACTER vector.

Cmd> nameof(x,cos,boxcox,run(5),"hello",F)
(1) "x"
(2) "cos"
(3) "boxcox"
(4) "VECTOR"
(5) "STRING"
(6) "LOGICAL"

Command error() works almost identically to print() except that it signals to
MacAnova an error has occurred, terminating the macro. An example of its use is the
following fragment from a macro

@arg1$$ <- $1
if(!isreal(@arg1$$)){error("ERROR: argument 1 must be REAL")}

Since you use error() only to print error messages, when it prints a single CHARACTER
scalar or quoted string which doesn’t start with “ERROR: ”, it inserts “ERROR: ” before

9-24

MacAnova Version 4.07

the message.

Cmd> error("Test of error()") # message doesn't start with ERROR:
ERROR: Test of error() Printed message starts with ERROR:

Function gettime() allows you to time commands. It has several usages, controlled
by keywords interval, quiet, and keep. These are best illustrated by example.

Cmd> gettime() # prints time since start of run
Time since start is 377.65 seconds

Cmd> gettime(interval:T) # prints time since last use of gettime()
Elapsed time is 1.1 seconds

Cmd> gettime(quiet:T) #or gettime(interval:T,quiet:T)

Cmd> gettime(interval:T)
Elapsed time is 2.2 seconds

Cmd> time <- gettime(keep:T); time# return cumulative time as value
(1) 392.98

Cmd> d <- gettime(interval:T,keep:T,quiet:F)
Elapsed time is 2.67 seconds

Cmd> d
(1) 2.67

You can use gettime() to create a macro that will print the elapsed time of a
macanova command or sequence of commands:

Cmd> timeit <- macro("gettime(quiet:T);{$0};gettime(interval:T)")

Cmd> timeit(x <- rnorm(10000);stuff<-describe(x))
Elapsed time is 0.16667 seconds

Note the use of $0 to replicate the entire argument of timeit. See Sec. 9.3.4.

In timeit, after whatever is done by $0, gettime(interval:T) prints the elapsed
time since gettime(quiet:T) was executed before whatever is done by $0. This
should be close to the time it took to execute $0.

On most computers, gettime() returns the actual time elapsed as might be measured
with a stop watch. On a few computers, the time is the amount of central processor
time used. This will generally be less, often much less than the actual elapsed time.

9.4.4 Keywords in macros – using $K, $k Macro symbols $K and $k (Sec. 9.3.4) allow you
to isolate the keywords in a macro’s arguments. In many cases that is all that is needed,
since all keywords will be passed on to a single MacAnova function. This is the case
with pre-defined macro colplot whose text is similar to the following.

if($N < 1){error("$S expects at least 1 argument")}
chplot(1,$1,lines:T,$K,xlab:"Row Number")

Here $K is included in the argument list to chplot(). Following it is a default value
for keyword xlab which is operative only if the user of the macro does not supply
labels for the X-axis. If no keywords are supplied so that $K expands to nothing,
chplot() will have an “missing” argument. Since this is a common usage with

9-25

MacAnova Version 4.07

plotting commands, they do not consider this to be an error.

Most other commands do consider a missing argument to be an error. In such cases,
the macro should use different “calls” to the function depending on whether or not $k
is 0. We illustrate this by writing a simple macro to sort a matrix across each row. If
down:T is an argument, each row will be in descending order. If not, we want each row
to be in ascending order. Note the two uses of the transpose operator “'”, first to
change rows into columns that sort() can operate on, and then to change them back
to rows after the sort.

Cmd> sortrows <- macro("sort(($1)',$K)'") # 1st try

Cmd> data <- matrix(vector(28.4,21.6,23.1,22.1,\
18.0,20.4,24.5,24.8),2) # small 2 by 4 matrix

Cmd> data
(1,1) 28.4 23.1 18 24.5
(2,1) 21.6 22.1 20.4 24.8

Cmd> sortrows(data,down:T)# works as we hope
(1,1) 28.4 24.5 23.1 18
(2,1) 24.8 22.1 21.6 20.4

Cmd> sortrows(data) # no keywords; hope to sort rows "up"
ERROR: argument 2 to sort is missing

It didn’t work without the keyword. Here is an improved version.

Cmd> sortrows<-macro("if($k!=0){sort(($1)',$K)'}else{sort(($1)')'}")

Cmd> sortrows(data) # new version works without keyword
(1,1) 18 23.1 24.5 28.4
(2,1) 20.4 21.6 22.1 24.8

If sortrows is to be used a lot, we would want to add additional lines to check that the
arguments are appropriate (see Sec. 9.4.2, 9.4.5). Note that sortrows makes use of the
fact that the value of if(...){...}else{...} is the value of whichever compound
command is actually executed. See. Sec. 9.2.2.

In other situations, you may want to use keywords to control what happens in the
macro itself. One way to do this is to create a structure consisting of all the keyword
values and then use match() (Sec. 9.4.1) to check whether a keyword was used.
Suppose, for example, that a macro is supposed to recognize optional keywords left
and right with default LOGICAL values False. The following macro fragment indicates
how this might be done.

@left$$ <- @right$$ <- F
if ($k > 0){

@keys$$ <- structure($K)
@j$$ <- match("left",compnames(@keys$$),0)
if(@j$$>0){@left$$ <- @keys$$[@j$$]}
@j$$ <- match("right",compnames(@keys$$),0)
if(@j$$>0){@right$$ <- @keys$$[@j$$]}
... check that values are LOGICAL scalars using isscalar()...

}

Because argument 3 of match() is 0, match() returns 0 if it cannot match a "left" or

9-26

MacAnova Version 4.07

"right" among the component names of @keys$$. If a match is made, the value of
match() gives the component number so that the value can be extracted from
@keys$$.

9.4.5 Checking and evaluating keyword phrase arguments – keyvalue() When you
write a macro for use by others, it is essential that the macro check its arguments fairly
thoroughly, printing informative error messages when necessary. Although this can be
done using only functions like isvector() and isreal() described in Sec. 9.4.2,
together with clever use of match() as illustrated in Sec. 9.4.4, it is often easier to use
keyvalue() to evaluate and check keyword phrase arguments and argvalue() (see
Sec. 9.4.6) to evaluate and check ordinary arguments, respectively.

keyvalue() provides a direct way to “parse” keyword phrases, simultaneously
determining if a keyword has been used in the argument list, checking properties such
as type, shape and sign of its value, and, if there is no error, returning value of the
keyword. The general usage is

 value <- keyvalue(name1:value1,name2:value2, ...,KeyName,Properties)

KeyName is a quoted string or CHARACTER scalar which specifies the keyword looked for
and Properties is a CHARACTER scalar or vector which specifies properties that the
value of the keyword must have if it is present. A typical value for Properties is
vector("integer","vector","positive"), which you might use when checking a
keyword phrase whose value must be a vector of positive integers. You actually need
only the first three letters of each property (4 letters for "nonnegative" and
"nonmissing") so that vector("int","vec","pos") would mean the same thing.
See Sec. 9.4.7 for details on allowable properties and which properties may be used
together.

keyvalue() looks for KeyName among the keyword names name1, name2, When a
match is found and the corresponding keyword value has all the required properties,
the value is returned. When no match is found, keyvalue() returns NULL. When a
matching name is found, but the value does not have all the required properties, it is
an error which will terminate the macro in which keyvalue() is used.

Cmd> val <- keyvalue(a:10,b:20,"b","real");val# match w/correct type
(1) 20

Cmd> val <- keyvalue(a:10,b:20,"a","real");val# match w/correct type
(1) 10

Cmd> val <- keyvalue(a:10,b:20,"c","real");print(val)# no match
val:
(NULL)

Cmd> val <- keyvalue(a:10,b:20,"a","logic") # match with wrong type
ERROR: value of keyword 'a' is not LOGICAL

Cmd> val <- keyvalue(a:matrix(run(4),2),"a",vector("real","vector"))
ERROR: value of keyword 'a' is not a REAL vector

An alternate usage is

 value <- keyvalue(structure(name1:value1,...), KeyName, Properties)

9-27

MacAnova Version 4.07

for which the component names of the first argument are scanned for a match to
KeyName.

Cmd> val <- keyvalue(structure(a:10,b:20),"b","real"); val
(1) 20

There must be at least 1 argument before KeyName. If the first argument is empty (for
example keyvalue(,"a","real")), keyvalue() returns NULL.

You can use “wild card” characters “*” and “?” in KeyName to allow for some variation
in keyword spelling. In seeking a keyword name matching KeyName, “*” matches 0 or
more consecutive characters, without regard to what they are, and “?” matches any
single characters. Thus when KeyName is "pow*", it will match keywords power, pow
and powers among many possibilities. When KeyName is "m??imum", it would match
keywords minimum or maximum. Judicious use of these wild card characters allows for
more user friendly macros.

Here is how the macro fragment near the end of Sec. 9.4.4 might have been written
using keyvalue().

@left$$ <- keyvalue($K,"left",vector("logic","scalar"))
@right$$ <- keyvalue($K,"right",vector("logic","scalar"))
if (isnull(@left$$){@left$$ <- F}#set default
if (isnull(@right$$){@right$$ <- F}#set default

This automatically checks that the values of left and right, if present, are LOGICAL
and supplies default values False when they are not. This works even when there are
no keywords in the argument list, because in that case keyvalue($K,"left",
"logic") expands as keyvalue(,"left","logic") which has value NULL.

Yet another form for the fragment would be

@left$$ <- @right$$ <- NULL
if ($k > 0){

@keys$$ <- structure($K);
@left$$ <- keyvalue(@keys$$,"left",vector("logic","scalar"))
@right$$ <- keyvalue(@keys$$,"right",vector("logic","scalar"))

}
if (isnull(@left$$){@left$$ <- F}
if (isnull(@right$$){@right$$ <- F}

This has the advantage that the keyword phrases are evaluated only once when
executing structure(), while the previous fragment evaluated them both times
keyvalue() was executed.

9.4.6 Checking and evaluating non-keyword arguments – argvalue() You can use
argvalue() in a macro to evaluate a non-keyword phrase argument and at the same
time check that it has specified properties. The general usage is

value <- argvalue(arg, ArgName, Properties)

where arg is an arbitrary variable of expression, ArgName is a quoted string or
CHARACTER scalar, and Properties is a CHARACTER scalar or vector of the same sort
used in keyvalue() (See Sec. 9.4.5 and 9.4.7). Argument arg is checked to see if it has

9-28

MacAnova Version 4.07

all the properties specified by Properties. If it does, then the value of arg is assigned
to value. If it does not, argvalue() reports an error which terminates the macro and
prints an informative error message incorporating ArgName.

value <- argvalue(arg, ArgName) # no Properties

is equivalent to value <- arg except that ArgName is used in the error message when
the assignment cannot be carried out, as when arg is not defined.

As a typical example of how argvalue() might be used, here is the text of macro
gamma:

if ($v != 1 || $k > 0){error("usage is gamma(x)")}
@x$$ <- argvalue($1,"$1",vector("positive","array"))
exp(lgamma(@x$$))

This uses lgamma() to compute the gamma function of a REAL vector, matrix or array
of positive elements. The first line checks that there is exactly one non-keyword
argument and no keyword arguments (see Sec. 9.3.4) . The second line copies the single
argument, but will print an error message when it is not a REAL array all of whose
elements are positive (recall that scalars, vectors and matrices are all particular cases of
arrays). Here are examples of how you might use gamma:

Cmd> gamma(run(5))
(1) 1 1 2 6 24

Cmd> gamma(run(0,2)) # illegal argument
ERROR: run(0,2) is not an array of positive REALs

Cmd> gamma(vector(3.5,8,?,2))
ERROR: vector(3.5,8,?,2) has MISSING elements

The error message in the last example was printed because property "positive"
implies property "nonmissing". See Sec. 9.4.7.

9.4.7 Properties checked by keyvalue() and argvalue() Each permissible element of the
CHARACTER vector Properties used as an argument for keyvalue() and argvalue(),
may be classified as to whether it describes the type, shape , value or sign of a
variable. Here is a table of all legal properties classified as to what kind they are:

Kind of property Legal property names

Type "real", "logic", "character", "macro", "graph", "notnull"

Shape "scalar", "vector", "matrix", "array", "structure"

Value "integer", "nonmissing"

Sign "positive", "nonnegative"

There are some sensible restrictions on what properties can be used together:

• No more than one property of each kind can be specified.
• Properties "positive", "nonnegative" and "integer" imply properties "real",

and "nonmissing" and can’t be used with any Type property except "real".
• Property "nonmissing" is can’t be used with any Type property except "real" and
"logical".

9-29

MacAnova Version 4.07

• Property "structure" can’t be used with any Sign or Value property.
• Properties "macro", "graph" and "notnull" cannot be used with any other

property.

As mentioned previously, you can abbreviate any property to as few as its first three
letters (four for "nonmissing" and "nonnegative").

9.5 Indirect evaluation of commands MacAnova has two ways of indirectly evaluating
or executing MacAnova commandsbesides using a macro – function evaluate() and
the syntactical construct <<...>>.

9.5.1 evaluate() When Cmds is a quoted string or CHARACTER scalar containing one or
more MacAnova commands separated by semicolons, evaluate(Cmds) executes the
commands and returns as its value the value of the last command executed.

Cmd> evaluate("print(\"Hello!\");sqrt(2*PI)")
Hello!
(1) 2.5066

evaluate(Cmds) behaves very much as if Cmds were an out-of-line macro (Sec. 9.3.5)
and as such adds little additional functionality. evaluate() can be useful in a loop,
creating several variables with different names:

Cmd> x <- run(5)

Cmd> for(i,run(3)){evaluate(paste("x",i," <- x^",i,sep:""));;}

Cmd> hconcat(x1,x2,x3)
(1,1) 1 1 1
(2,1) 2 4 8
(3,1) 3 9 27
(4,1) 4 16 64
(5,1) 5 25 125

Each time through the loop, evaluate() assigns a value to a variable. For example,
when i = 2, the command executed by evaluate() is x2 <- x^2.

Evaluate can be used recursively.

Cmd> evaluate("evaluate(\"sqrt(2)\")/evaluate(\"sqrt(PI)\")")
(1) 0.79788

The combined depth of recursive uses of evaluate() and out-of-line macros cannot
exceed 50.

9.5.2 Indirect references using <<...>> An alternative to evaluate(Cmd) is <<Cmd>>,
where Cmd is again a CHARACTER scalar containing one or more MacAnova commands.
In most contexts this is entirely equivalent to evaluate(Cmd).

Cmd> <<"print(\"Hello!\");sqrt(2*PI)">>
Hello!
(1) 2.5066

Cmd> <<"3.14159">>^.5 # or <<"3.14159^.5">>
(1) 1.7725

9-30

MacAnova Version 4.07

Cmd> print(<<"T">>,<<"-123.45">>,<<"NULL">>,<<"\"MacAnova\"">>)
LOGICAL:
(1) T
NUMBER:
(1) -123.45
NULL:
(NULL)
STRING:
(1) "MacAnova"

You would get the identical output from print(T,-123.45,NULL,"MacAnova") or
print(evaluate("T"),evaluate("-123.45"),evaluate("NULL"),
evaluate("\"MacAnova\"")).

<<Cmd>> behaves slightly differently when Cmd is the name of a variable, a macro, a
function or a structure component. In that case it is interpreted as an indirect reference
to the object named. For example, <<"cos">>(PI/6) is entirely equivalent to
cos(PI/6) and <<"a">> + <<"b">> is equivalent to a + b.

Cmd> vector(<<"cos">>(PI/6), cos(<<"PI">>/6))
(1) 0.86603 0.86603

Cmd> x <- vector(9.53,5.59,9.27,7.19,10.98)

Cmd> <<"print">>(<<"boxcox">>(x,.5))#indirect refs to print & boxcox
VECTOR:
(1) 12.013 7.853 11.769 9.6783 13.317

Cmd> temperatures$<<"Sunday">> # same as temperatures$Sunday
(1) 61 73 85 83 81

(See Sec. 2.8.16 for the information about structure temperatures.)

On a Macintosh you can use the characters « and » (Option-\ and Option-|) in place of <<
and >>.

9.6 Analysis of macro regs We illustrate the use of <<...>> as well as other macro-
related features by examining in detail the pre-defined macro regs. If x is a matrix and
y is a vector or matrix with the same number of rows as x, regs(x,y) computes the
regression of y as response variable on the columns of x as independent variables.

Here is regs, with added line numbers for easier reference:
Cmd> print(paste(regs))

 1 #regs(x,y),matrix or vector y, matrix x
 2 @Xvars$$<-$1
 3 @Y<-$2
 4 if(!ismatrix(@Xvars$$)||!ismatrix(@Y)){
 5 error("usage: $S(x,y), matrix x, vector or matrix y")
 6 }
 7 @p$$<-length(@Xvars$$)/dim(@Xvars$$)[1]
 8 @X1<-@Xvars$$[,1]
 9 STRMODEL<-"@Y=@X1"
10 if(@p$$>1){
11 for(@i$$,run(2,@p$$)){
12 <<paste("@X",@i$$,sep:"")>><-@Xvars$$[,@i$$]
13 STRMODEL<-paste(STRMODEL,"+@X",@i$$,sep:"")

9-31

MacAnova Version 4.07

14 }
15 }
16 if(length(@Y)==dim(@Y)[1]){
17 regress()
18 }else{
19 manova()
20 print("NOTE: use secoefs() to get coefficients and standard
 errors.")
21 }

It is not necessary to include a comment summarizing a macro's usage, as is done in
line 1, but is a good idea. Since lines starting with “#” are recognized by macrousage()
the user has easy access to them. See Sec. 2.9.3. If you used $S instead of the macro
name (here #$S(x,y) . . .), macrousage() will substitute the macro name when
printing it.

Lines 2 and 3 copy x and y to temporary variables @Xvars$$ and @Y. Name @Xvars$$
will expand to something like $Xvars50. See Sec. 9.3.3.

Lines 4–6 check the arguments and terminate the macro with an informative message
if they are not both matrices. See Sec. 9.4.2. A more thorough check would use
ismatrix(@Xvars$$,real:T) and ismatrix(@Y,real:T), and check that nrows(x)
= nrows(y).

Lines 2 through 6 might be replaced by

@Xvars$$ <- argvalue($1,"$1",vector("real","matrix"))
@Y$$ <- argvalue($2,"$2",vector("real","matrix"))

although no message giving the correct usage would be printed. See Sec. 9.4.6.

Line 7 obtains the number of columns of x and should probably have been written
@p$$ <- ncols(@Xvars$$).

Line 8 creates variable @X1 from column 1 of x.

Lines 9 - 15 construct STRMODEL so as to have the form "@Y=@X1+@X2+@X3+...". In
addition, they create temporary variables @Y from y, and @X1, @X2, ... from the columns
of x.

If the test in line 10 indicates that x has more than one column, line 11 starts looping
over columns 2 through @p$$ of x. As @i$$ loops through 2, 3, ... ,
paste(\"@X\",@i$$,sep:\"\") (line 12) creates CHARACTER scalars with values
"@X2", "@X3", Thus, for example, when @i$$ is 2,

 <<paste("@X",@i$$,sep:"")>> <- @Xvars$$[,@i$$]

is equivalent to

 <<"@X2">> <- @Xvars$$[,2]

which in turn is equivalent to

 @X2 <- @Xvars$$[,2]

creating vector @X2. Similarly in line 12, the strings "+@X2", "+@X3", ... are appended to
STRMODEL one by one.

9-32

MacAnova Version 4.07

In lines 16 through 21 are the actual linear model computations . These use regress()
when y is a vector and manova() when y has more than 1 column. In the latter case,
the user is reminded that secoefs() must be used to see the coefficients and their
standard errors.

9.7 User functions A user function is a program or program fragment compiled
separately from MacAnova that is written in such a way that it can be executed from
within MacAnova using functions loadUser() and User(). User functions can “call
back” to MacAnova to execute MacAnova commands, and on most systems they can be
written in such a way as to have automatic checking of arguments. User functions may
be written in the C programming language and in some cases in Fortran.

Information on programming user functions and details on their use on different
computer systems are beyond the scope of this manual, but will be provided in a yet to
be completed separate document. Fairly complete information is currently available in
file Userfun.hlp distributed with MacAnova. Here we limit discussion to a description
of how loadUser() and User() are used. Briefly, loadUser() loads or “attaches” a
file containing the user function in such a way that User() can execute the user
function.

9.7.1 loadUser() In order to execute a user function, you must use loadUser() to
inform MacAnova where to find it.

loadUser(FileName) loads (“attaches”) file fileName and makes any user functions
in it available to MacAnova. FileName should be a quoted string or CHARACTER scalar.
Once the file is loaded, you execute user functions in it with User() (Sec. 9.7.2). As
usual, in windowed versions (Macintosh, Windows, Motif), FileName can be "". If the
file has been previously loaded, it is not reloaded, although it may be put at the start of
a search list for the next use of User().

loadUser(FileName,reload:T) does the same, except that the file will be reloaded if
it has been previously loaded into MacAnova.

loadUser(FileName,clear:T) does the same, except all previously loaded files will
be forgotten.

The user function file must be of a special type specific to the MacAnova version. See
topic loadUser() in file Userfun.hlp for information on file types (in MacAnova, type
help(file:"Userfun.hlp",loadUser)).

9.7.2 User() The actual execution of a user function is controlled by User().

User(FuncName,arg1,arg2, ...) executes a user function with name specified by
quoted string or CHARACTER scalar FuncName and user function arguments arg1, arg2,
... . Code for the user function must be in a file previously loaded by loadUser() (Sec.
9.7.1). You must have at least one user function argument and no more than 20 (13 in
the Macintosh PPC version). What you should use for FuncName depends on the
particular version of MacAnova. See topic User() in file Userfun.hlp for details. See
Sec. 9.7.3 for details about user function arguments and the value returned by User().

User(FuncName,quiet:T,arg1, ...) does the same except that any warning

9-33

MacAnova Version 4.07

messages are suppressed.

User(FuncName,callback:T,arg1, ...) specifies that the user function is known
to “call back” to MacAnova, that is, to execute functions internal to MacAnova. See
topic callback_fun in file Userfun.hlp.

User(FuncName,symbols:T,arg1, ...) specifies that all the arguments are to be
passed as “symbols”, an internal MacAnova data format which encapsulates the data,
type, and dimensions of a variable. This should be used only with a user function
specifically written to make use of MacAnova symbols.

User(FuncName,resource:ResName, arg1, ...) is needed on a Power Macintosh
when the name of the user function differs from the name of the resource containing
the function. ResName is a quoted string or CHARACTER scalar specifying the resource
name.

User(FuncName,pointers:T or F,arg1, ...) changes the default way arguments
are passed, either as “pointers” (pointers:T) or as “handles” (pointers:F). On all but
Macintosh computers, the default is pointers:T. You are unlikely ever to use
pointers since the default is usually appropriate.

You can use more than one of the preceding keywords phrases together as in
User("goo",resource:"foo",quiet:T,callback:T,x,result:0).

On most systems, a user function optionally may have an associated “arginfo” function
that MacAnova can call to obtain information about the user function. When an
arginfo function exists, user function arguments will be checked as to number and type
and you shouldn’t need to use keywords callback, symbols or pointers.

9.7.3 User function arguments and value returned All arguments to User() are user
function arguments with the exception of the file name and quiet, callback, symbol,
pointers or resource keyword phrases . They provide input to the user function and
provide a place for it to put its results. For conciseness, in this section “user function
argument” is shortened to “argument.”

Except when symbols:T is an argument to User(), all arguments must be either REAL,
LOGICAL, CHARACTER or LONG variables. REAL arguments are passed as double precision
data (C double, Fortran REAL *8), as are LOGICAL arguments (True = 1.0, False = 0.0).
LONG variables may be created by function asLong() (Sec. 9.7.4) and have only a
transitory existence as the arguments to User(). Their values are signed integers
between –231+1 and 231 – 1. CHARACTER arguments are passed as character vectors (C
char []). If a CHARACTER argument argument is a vector, matrix or array, the
individual elements follow one another, each terminated by a null character ('\0').
Since this is based on the standard form of strings in C, it may not be possible to use
CHARACTER arguments with a user function compiled in Fortran.

9-34

MacAnova Version 4.07

If an argument is a matrix or array, the values are ordered such that the first subscript
changes fastest.

Two user functions, add1 and innerprod, are used as examples. add1 has three real
scalar arguments, say a, b, and c and performs the computation c = a + b.
innerprod has four arguments, say, x, y, n and s, where n is a positive integer (type
LONG), x and y are REAL vectors of length n and s is a REAL scalar. It performs the

computation

s = xiyi

i =1

n

∑ .

An argument that is not a keyword phrase is passed directly to the user function
without being copied. If it is a named MacAnova variable and the user function
modifies that argument, the value of the variable itself is changed.

Cmd> c <- 0; User("add1",3,sqrt(25),c)

Cmd> c # c has a new value
(1) 8

If the argument is a literal number or expression as is the case with the first two
arguments in the example, the function can safely change the argument without
danger to any variable as long it does not go beyond the size of the variable, that is, with
a REAL or LOGICAL argument arg, no more than length(arg) elements are modified.

Keyword phrase arguments are used for two purposes – to protect the argument passed
from modification by the user function and to specify what values User() returns.

Only a copy of an argument that is a keyword phrase value is passed to the user
function. This means that the user function can modify such an argument with no
danger of changing any MacAnova variable, again as long as it respects the size of the
variable.

The values of keyword arguments, possibly modified by the user function, are returned
as the value of User().

Cmd> c <- 0; User("add1",3,5,result:c)
(1) 8 Value returned by User()

Cmd> c # c has a original value
(1) 0

When more than one argument is a keyword phrase, User() returns a structure, with
one component for each keyword phrase:

Cmd> c <- 0; User("add1",a:3,b:5,result:c)
component: a
(1) 3
component: b
(1) 5
component: result
(1) 8

Cmd> User("innerprod",x:run(5),y:vector(3,1,10,2,4),n:asLong(5),s:0)
component: x
(1) 1 2 3 4 5

9-35

MacAnova Version 4.07

component: y
(1) 3 1 10 2 4
component: n
(1) 5
component: s
(1) 63

Keyword protect is special in that its value will not be returned although it will be
copied before being passed to the user function. For example, a function that computes
a median from a vector x might first sort x and then find the middle value of the sorted
vector. If you want to preserve the original ordering of x, you should pass it to the
function using keyword phrase protect:x.

As mentioned above, when a user function modifies an argument it is essential that
the argument be long enough to hold all the changes. For example, suppose add4 is a
user function similar to add1 except its arguments are expected to be vectors of length 4,
with the third argument set to the sum of the first two arguments.

Cmd> User("add4",run(4),vector(3,1,0,2),result:rep(0,4))
(1) 4 3 3 6

But

Cmd> User("add4",run(4),vector(3,1,0,2),result:0)

will probably result in MacAnova crashing, because room for only one number was
provided as value for result and add4 will try to change four numbers.

Often, as here, the value of an argument that a user function modifies has no purpose
other than to provide space for the user function to put its answer.

When keyword phrase symbols:T is an argument to User(), all user function
arguments are passed as symbols (see Sec. 9.7.2). You cannot have some arguments be
symbols and some just data

9.7.4 Passing integer arguments – aslong() Many C or Fortran functions expect integer
arguments (type int or long in C and INTEGER in Fortran). To accommodate this
need, at least partially, user function arguments to User() can be of the form
asLong(n), where n is a variable of type REAL all of whose elements are integers with
values between –231+1 and 231–1. A transitory variable of MacAnova type LONG is
created and passed to the function. If the user function is written in C, the
corresponding argument must be declared as a 32 bit integral type. This will usually be
type int or long, depending on the computer or compiler. A user function written in
Fortran would normally declare the argument to be INTEGER*4.

If you assign the value of asLong() to a variable, it gets automatically “coerced” back to
a REAL variable.

Cmd> a <- asLong(run(-2,2))

Cmd> list(a)
a REAL 5

The same thing happens when a user function argument is a keyword phrase. The

9-36

MacAnova Version 4.07

value is coerced to REAL before returning.

Cmd> s <- 0; n <- User("innerprod",x,y,n:asLong(5),s); list(n)
n REAL 1

You can’t use LONG data created by asLong() in arithmetic or, with the exception of
User(), print() and write(), as the argument to a function.

Cmd> 3 + asLong(5)
ERROR: arithmetic with non-numeric and non-logical operand
REAL + LONG near 3 + asLong(5)

Cmd> sum(asLong(run(5)))
ERROR: argument to sum must not have type LONG

Cmd> print(asLong(run(-2,2)))#prints as if REAL
VECTOR:
(1) -2 -1 0 1 2

9-37

	9.1 Working with structures
	9.1.1 Creating structures
	9.1.2 Getting structure information
	9.1.3 Changing a structure

	9.2 Compound, conditional and looping commands
	9.2.1 Compound commands
	9.2.2 Conditional commands
	9.2.3 Looping – for and while
	9.2.4 Escaping from loops – break
	9.2.5 Skipping to the end of a loop

	9.3 Macros
	9.3.1 Creating macros
	9.3.2 Argument substitution
	9.3.3 Using temporary variables and $$
	9.3.4 Other expanding symbols
	9.3.5 In-line and out-of-line macros
	9.3.6 Using delete(result,return:T)

	9.4 Functions useful in macros
	9.4.1unique() and match()
	9.4.2 isxxxx() functions
	9.4.3 Other miscellaneous functions
	9.4.4 Keywords in macros
	9.4.5 Checking keyword arguments
	9.4.6 Checking non-keyword arguments
	9.4.7 Properties checked

	9.5 Indirect evaluation of commands
	9.5.1 evaluate()
	9.5.2 Indirect references using <<...>>

	9.6 Analysis of macro regs
	9.7 User functions
	9.7.1 loadUser()
	9.7.2 User()
	9.7.3 User function arguments
	9.7.4 Passing integer arguments

