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ABSTRACT The cumulative sum (CUSUM) and the exponentially weighted

moving average (EWMA) control charts are alternatives to the Xbar chart.

The CUSUM’s theoretical optimality suggests that it should outperform the

EWMA for detecting persistent shifts, but practitioners have long thought

that the two perform about equally. Each also involves design decisions

on the likely shift in the process. This article quantifies the effect of these

choices and concludes that, though the CUSUM outperforms the EWMA at

the shift for which each was designed, if the actual shift is smaller than that

used in the design, the EWMA may respond faster.
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INTRODUCTION
Since Walter Shewhart introduced the first control chart for statistical process
control in the 1920s, the Shewhart Xbar chart has remained popular. The
major reasons for this are its ease of implementation without intensive
statistical training and its low cost in time and resources. However, as
asserted by Stoumbos et al. (2000, p. 993), ‘‘such simple charts are usually far
from optimal and may even be inappropriate.’’ In particular, Shewhart charts
are not competitive for detecting small but sustained shifts in the process
(Hawkins and Olwell 1998; Reynolds and Stoumbos 2005). This failing of
Shewhart charts comes from their limitation to the information from only the
most recent rational group, ignoring any information contained earlier in
the data sequence (Montgomery 2013). The Western Electric supplementary
runs rules were developed as a way to carry information forward from
successive rational groups, but these rules have been found to be not
particularly effective. Champ and Woodall (1987) gave a compendium of
the rules and showed that the improvement in out-of-control behavior came
at the cost of a disproportionate increase in false alarms, leading to the
conclusion that the rules are of dubious value for hastening the response
to moderate-sized persistent shifts. As Hawkins and Zamba (2003) pointed
out, it is exactly these moderate-sized sustained shifts that may be most
damaging, supporting a need for methods more sensitive to shifts between
one-half and one standard deviation.

The key to improved performance is accumulating evidence
from sequences of process readings. Two major charts that do this are the

Color versions of one or more of
the figures in the article can be
found online at
www.tandfonline.com/lqen.
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cumulative sum(CUSUM)andexponentiallyweighted
moving average (EWMA) control charts. They both
accumulate information from successive readings and
signal a change when a shift occurs, even if the change
is relatively small so that a Shewhart Xbar chart fails
to detect it. According to Montgomery (2013), the
general consensus is that the practical performances
of the CUSUM and EWMA are quite similar and
neither of them has a clear advantage over the other.
Thus, users only need to implement one or the other
to monitor their process. Some statistical process
control practitioners recommend that the CUSUM or
the EWMA charts be used in combination with the
Shewhart charts (Hawkins and Olwell 1998; Lucas
1982; Ryan 2011; Woodall 2000), to gain the power of
the former to detect small sustained shifts and the latter
to detect large, possibly intermittent, shifts. Reynolds
and Stoumbos (2005) provided a deeper discussion
of this approach. However, this is not our concern in
this article. We only address the question of which is
moreeffective indetectingsustainedshifts inmean, the
CUSUM or the EWMA.

DEFINITIONS AND FORMULAS
Suppose that the process produces readings that,

in control, have mean �0 and standard deviation � ,
both of which are assumed known. Unknown special
(or assignable) causes can intervene at any time and
disrupt this in-control behavior. When a special cause
event happens, it will lead to a change in mean, or
in variability, or both, or even in distribution. We
will only concentrate on the change in process mean.
Some special causes are intermittent and resolve
themselves even without corrective action; others
are sustained, or persistent, and continue until the
process owner takes corrective action. This is the
type of shift we consider.

The CUSUM and the EWMA each have two design
parameters, one of which tunes the chart for a
particular magnitude of shift in the mean and the
other of which sets the in-control (IC) average run
length (ARL). But the actual shift that occurs when
the process goes out of control will not necessarily
be the shift to which the chart was tuned, raising
the question of how sensitive chart performance is to
variation in the size of the actual out-of-control shift
compared to the design value.

Another issue is the time at which the process goes
out of control. This could be right at, or close to,

the time at which the charting begins—this situation
is called an initial-state shift. Or the shift could
happen after the chart has been in operation for some
time—this is called a steady-state shift. The CUSUM
chart has a well-known optimality property: if a shift
occurs in steady state, the CUSUM to which it is tuned
has a faster average response than does any other
chart (Hawkins and Olwell 1998), but little formal
work has been done on the size of this benefit, the
impact of initial-state shifts, or the occurrence of a
different-sized shift.

Turning to definitions, the CUSUM charting statistic
is applied to an unending stream of readings
X1� X2� � � �� Xn. CUSUMs are parametric procedures.
Each distributional model for the data defines a
particular CUSUM, based on the likelihood ratio test,
for a shift in its parameter. The most familiar CUSUM
is that for a change in the mean of normal data. It
requires a reference value k, which tunes the CUSUM
to be particularly sensitive to a specific anticipated
shift. The CUSUM to detect an upward shift in process
mean is initialized to

C+
0

= c� [1]

Traditionally c was zero, but this makes the CUSUM
insensitive to shifts that occur soon after startup. For
this reason, it is common to give the CUSUM a head
start by initializing it to some c greater than zero.
Lucas and Crosier (1982) motivated this approach,
calling it the fast initial response CUSUM. After this
initialization, the CUSUM is updated with each new
process reading,

C+
n = max �0� C+

n−1
+ �Xn − �0 �− k�� [2]

and signals if C+
n > H , where H is a second design

constant called the decision interval that is used to
fix the IC ARL at some target level.

To tune the CUSUM for an upward shift from �0 to
�1, set k = ��1 − �0�/2. In other words, k is half the
anticipated shift size. It is known that if the process
does indeed have a shift in the steady state from
�0 to �1, then there is no other procedure with
the same IC ARL that will match the performance
of the CUSUM. This is the theoretical optimality of
the CUSUM. CUSUMs for other parameters and other
distributions share this same optimality property.
Hawkins and Olwell (1998) described the general
methodology for setting up CUSUMs in chapter 6,
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and other chapters list some of the other distributions
for which CUSUMS are known.

An attraction of the CUSUM is that, following
a signal, it provides simple and quite effective
estimates of the time and the magnitude of the shift.
The CUSUM resets to zero when the data stream
indicates that the process is in control, so when the
CUSUM does exceed its control limit, an estimate of
the end of the in-control period is given by the time
of the most recent reset. Further, if the mean shifts
from �0 to some value �1>�0, the successive values
of C+

n will drift up with an average slope of �1−�0−k,
and so the slope of the line from the axis up to the
point that signals gives an estimate of �1−�0−k, and
hence (since �0 and k are known) of the new mean
�1u.

As the shift may, in most settings, be either upward
or downward, the upward CUSUM is implemented
along with a downward CUSUM. This downward
CUSUM usually mirrors the upward shift and uses the
same reference value k. The equation for downward
CUSUM is

C−
0

= −c

C−
n = min �0� C−

n−1
+ �Xn − �0�+ k��

[3]

The pair of charts signals if either C+
n >H

or C−
n <−H .

The other control chart, the EWMA, also requires
two parameters: � and L� It is defined by

Z0 = �0

Zn = �Xn + �1 − ��Zn−1

� [4]

where � is a parameter that determines the weight
assigned to the current sample value. The EWMA’s
control limits are defined by

LCL = �0 − L�
√

�
2−�

	1 − �1 − ��2n


UCL = �0 + L�
√

�
2−�

	1 − �1 − ��2n

[5]

and the EWMA signals if Zn is either above the UCL
or below the LCL. The constant L sets the IC ARL.

If the mean shifts from �0 to �1, then the EWMA
drifts in expectation from its in-control value �0 up
(or down) toward an asymptote at �1. Though this
is not as tidy as the estimates from the CUSUM,
the latest point on the EWMA provides an evolving
estimate of the new process mean.

The control limits of the EWMA vary with n, going
from �0 ± L�� for n = 1 to the asymptotic value

�0 ± L�
√
�/�2 − ��. Some users prefer using

constant control limits and use the asymptotic value
for all n� The price paid for this greater simplicity
is that the wider control limits for small n reduce
the ability of the EWMA to react quickly to early
shifts. As we consider maximal performance more
important than the modest simplicity gained by using
a constant limit rather than one that varies, we favor
using the exact control limits of Eq. [5] rather than
the asymptotic control limits.

The EWMA is also tuned to the size of shift through
the weight �—small � if you anticipate a small shift
and large � if you anticipate a larger shift (Lucas and
Saccucci 1990), but there is no explicit formula to find
themost appropriate� for aparticular anticipated shift.

A unique phenomenon of the EWMA is the so-
called inertia effect. If an upward shift happens when
the EWMA statistic is in the lower part of its range, it
first has to come back up to the center line before it
can continue up to the UCL. This delays the detection
of the shift in � (Montgomery 2013; Reynolds
and Stoumbos 2006; Woodall and Mahmoud 2005).
Various adaptions have been proposed such as the
adaptive EWMA of Cappizi and Masarotto (2003) and
one-sided EWMAs with reflecting barriers, but these
refinements add complexity to what is otherwise a
very simple procedure, and it is not clear that they
are generally used.

Not all control charts suffer from inertia—Shewhart
charts do not, and the CUSUM may actually be more
effective in steady state than in initial state because
in the steady state it is likely to already be on its way
to the control limit.

Lucas and Saccucci (1990) provided a detailed
comparison of the performance of the CUSUM and
the EWMA, including a number of enhancements to
the basic EWMA incorporating a head-start capability
paralleling that of the CUSUM. In their comparisons,
however, the EWMA was tested using the asymptotic
control limit rather than the exact limit, which
to our mind needlessly sacrifices some initial-state
performance, and so their results apply to a different
problem than our calculations using the exact limit.

SIMULATION METHODS
The performance of the charts then involves

several factors—the chart itself (CUSUM or EWMA),
the shift to which the chart is tuned, the time of the
shift, and the magnitude of the shift. We explored
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the impact of these factors with simulation. Streams
of random variables following a normal distribution
with � = 0 and � = 1 were generated. From the
instant of going out of control, a constant � was
added to each subsequent reading in the sequence.
We took 121 values of �, from 0 to 3, with a step size
0.025, to represent the actual shifts of the process
mean.

The CUSUM and EWMA were designed for small
(�= 0.5), medium-sized (�= 1), and large (�= 2)
shifts in mean. In our simulation, only upward shifts
were studied because a downward shift gives the
same behavior as an upward shift by the same
absolute amount.

To explore the impact of the time of the shift,
the artificial shifts were applied to the sample
sequence from either the beginning of the sequence
(simulating an initial-state shift) or after 50 terms
of the sequence (simulating a steady-state shift.)
The value 50 seems to be generally accepted as
long enough to all but erase the effects of initial
conditions, and this expectation was confirmed by
some runs using 100 initial in-control readings that
gave essentially identical results to those with 50.

The IC ARL was set to 500, which is a widely
used choice. We have no reason to doubt that our
substantive conclusions would carry over to other
sensible choices for the IC ARL.

The reference value k of the three CUSUMs was
set to the optimal level for that size shift, and the
corresponding decision interval H was calculated
using the software provided by Hawkins and Olwell
(1998). This led to the design parameters in Table 1.

In all runs, the default head-start c =0.5H was
used.

TABLE 1 CUSUM Chart Parameters

Shift � k H

Small 0.5 0.25 8.585
Medium 1 0.5 5.071
Large 2 1 2.665

TABLE 2 EWMA Chart Parameters

Shift � � L

Small 0.5 0.047 2.595
Medium 1 0.134 2.883
Large 2 0.364 3.045

Turning to the design of the EWMA, there is
no explicit formula for the best � for a specific
shift �. The parameters for EWMA were selected from
a table of steady-state optimal parameter settings
kindly provided by Edgard M. Maboudou-Tchao of
the University of Central Florida. He generated this
table by a grid search of � and L values yielding
an in-control ARL of 500 and having the minimum
out-of-control ARL at the design shift. The resulting
parameters are shown in Table 2.

For each combination of chart, design shift size,
and �, 10 million data sequences were simulated and
the run length from the time of shift to the signal time
computed. Any data set in which a signal occurred
before the actual time of the shift was discarded.
From these, the out-of-control ARLs were computed.

RESULTS
Figures 1 to 4 show the ARL of each of these

control charts. The ARL is on a logarithmic scale to
better show its main features. Each figure shows the
ARL of the chart tuned for small, medium, or large
shifts. Dotted vertical lines show the three design
shifts.

As expected, in Figures 2, 3, and 4, each of the
three designs is best in some settings. The chart
designed for � = 0.5 has the lowest ARL for all small
� values; that designed for � = 2 is best for all large
�g values; and that designed for � = 1 is best in the
middle range.

Figure 1 may be surprising—it shows that the
EWMA with the smallest � was the lowest ARL right
across the range of � values; the same observation

FIGURE 1 OOC ARL of EWMA with initial-state shifts.
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FIGURE 2 OOC ARL of EWMA with steady-state shifts.

FIGURE 3 OOC ARL of CUSUM with initial-state shifts.

FIGURE 4 OOC ARL of CUSUM with steady-state shifts.

was, however, made by Frisén (2003) and Frisén and
Sonesson (2006), so this is not a novel discovery.

Comparing Figures 1 and 2, the expected inertia
of the EWMA is clear, with each line in Figure 2

being well above its Figure 1 counterpart. Perhaps
more surprising, the CUSUM panels also show clear
evidence of inertia. This comes about because of the
head start, which turns out to initialize the CUSUM
to an even more favorable starting value than its gets
from being in steady state.

Coming back to the main topic, we are interested
in comparing the performance of the EWMA and
CUSUM with a view to routinely using one or the
other. This choice is helped by looking at the ratio

ARL Ratio = Cusum ARL

EWMA ARL
[6]

as a function of the shift �. Where this ratio exceeds
1, the EWMA outperforms the CUSUM; where it is
less than 1, the CUSUM is better.

Figure 5 shows the ratio for shifts occurring in the
initial state. Looking at where the vertical markers
cross the curves of the ratios, we can see that if
the shift is about what was expected, the CUSUM
outperforms the EWMA. More generally, the CUSUM
designed for any particular shift mainly outperforms
the EWMA designed for the same shift, with two
striking exceptions:

• If you designed for a small shift (�= 0.5) and a
large shift (� > 1) occurs, the misdesigned EWMA
is much better than the misdesigned CUSUM.

• If you designed for a large shift (�= 2) and a small
shift (�< 0.8) occurs, the misdesigned EWMA is
much better than the misdesigned CUSUM.

Figure 6 shows the corresponding plot for the
steady state. Here the EWMA outperforms the

FIGURE 5 Comparison of EWMA and CUSUM for initial-state
shifts.
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FIGURE 6 Comparison of EWMA and CUSUM for steady-state
shifts.

CUSUM if the actual shift is smaller than the design
shift (much smaller for � = 2), but above this
threshold the CUSUM is uniformly better.

EXAMPLE
We illustrate the six charts with some simulated

data. Montgomery (2013, p. 240) gives an example
of monitoring the flow width of wafers produced
by a hard-bake process. His Phase I data set gives
the estimates �0 = 1.51 �m, � =0.14 �m for the
in-control setting. We simulated a data set with
25 readings coming from this normal distribution,
following which the mean increased by 0.14 �m (i.e.,
one standard deviation) to 1.65 �m. This sequence
was then run through the three EWMAs and the three
CUSUMs discussed earlier. A time plot of the data is
given in Figure 7 and the EWMA and CUSUM charts
are shown in Figures 8–13.

FIGURE 7 Illustrative simulated data.

FIGURE 8 EWMA tuned to small shift applied to example
data.

FIGURE 9 CUSUM tuned to small shift applied to example
data.

FIGURE 10 EWMA tuned to medium-sized shift applied to
example data.

Following a signal by C+ in the CUSUM, tracking
backward, the last i for which C+

i was zero is an
estimate of the last time the process was in control
before the shift. Taking the slope of the segment from
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FIGURE 11 CUSUM tuned to medium-sized shift applied to
example data.

FIGURE 12 EWMA tuned to large shift applied to example
data.

FIGURE 13 CUSUM tuned to large shift applied to example
data.

that point to the point giving the signal and adding
�0 + k gives an estimate of the new mean.

TABLE 3 Follow-up Estimation From Example

EWMA CUSUM

Signal Current Signal Last New
Design time mean time IC time mean

Small 31 1.57 31 23 1.70
Medium 31 1.63 29 23 1.70
Large 37 1.74 31 23 1.70

The EWMA does not give an estimate of the time
of change, but its value at the time of the signal gives
an estimate of the new mean. Table 3 gives the values
for the simulated data:

With regard to performance, the actual shift is
one standard deviation, which our earlier discussion
called a medium-sized shift, and, as expected, the
CUSUM designed for a medium-size shift signaled
sooner than any of the other five charts. The EWMA
designed for a large shift had a much slower reaction,
but the other four charts all signaled at the 31st
reading, six readings after the actual shift occurred.

All three CUSUMs estimated the last in-control
time as being observation 23, a bit earlier than
when the shift was actually introduced. The postshift
mean was simulated to be 1.65. All three CUSUMs
gave the estimate 1.70, reflecting a known moderate
upward bias in the estimate. The current mean of
the EWMA designed for the medium-sized shift was
almost exactly on target, but the other two were
much further from the truth.

CONCLUSION
The inadequacy of the Shewhart chart for detecting

small but persistent shifts in the process mean has led
to the exploration of alternative tools. The relative
merits of the CUSUM and the EWMA control charts
have been debated for over half a century, but neither
of them has supplanted the other. This is partly
due to the way they are used—the EWMA is more
convenient for estimating where the process mean is
following a signal; the CUSUM is better for estimating
when the shift occurred—but relative performance is
an important consideration. Our work has evaluated
the performances of both methodologies in different
settings and situations.

The simulations agree with theory that if the actual
shift is close to what was expected, the CUSUM
outperforms the EWMA. The advantage is substantial
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for large shifts (25% for an initial-state shift with
�= 2) and for initial-state shifts.

Misspecification matters. Both the CUSUM and the
EWMA lose performance if the shift is much different
than was anticipated, and it is worse to specify a too-
large than a too-small shift.

Combining the two factors, if the user is wrong
about the true shift and designs for a large � but a
much smaller shift occurs, then the EWMA suffers
less than the CUSUM.

The decision of what shift to design for does
not get as much attention as it perhaps should.
Discussion in the literature often suggests that the
user is expected to know that the mean is either
its in-control value of (say) 1.51 �m or the out-
of-control value of (say) 1.65 �m. The reality may
be that users design for a shift large enough to
matter but small enough not to be obvious. The
work of Hawkins and Zamba (2003) suggested that
the costliest sustained shifts are those somewhat less
than a standard deviation, because they are small
enough to escape detection but large enough to
incur substantial costs. Motivated by guarding against
them, one might favor CUSUMs with k values of 0.25
to 0.5 and EWMAs with � values of 0.05 to 0.15. These
values are in line with, though perhaps somewhat
smaller than, textbook recommendations.
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