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Existence of Integrals

Just from the definition of integral as area under the curve, the

integral ∫ b
a
g(x) dx

always exists when a and b are finite and g is bounded, which

means there exists a finite c such that

|g(x)| ≤ c, a < x < b.

In this case ∣∣∣∣∣
∫ b
a
g(x) dx

∣∣∣∣∣ ≤
∫ b
a
|g(x)| dx ≤ c(b− a)
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Existence of Integrals (cont.)

It is a theorem of advanced calculus (which we will not prove)

that every continuous function g having domain [a, b] where a

and b are finite is bounded.

So if we know g is continuous on [a, b], then we know∫ b
a
g(x) dx

exists.

It is important that the domain is a closed interval. The function

x 7→ 1/x is continuous but unbounded on (0,1). So continuous

on an open interval is not good enough.
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Existence of Integrals (cont.)

We are worried about non-existence. Clearly∫ b
a
g(x) dx

may fail to exist in one of two cases

(I) either a or b is infinite, or

(II) g is unbounded (meaning not bounded).
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Existence of Integrals: Case I

So when does ∫ ∞
a

g(x) dx

exist?

In probability theory, we require absolute integrability, so∫ ∞
a
|g(x)| dx

must be finite.

5



Existence of Integrals: Case I (cont.)

First we do a very important special case. Suppose a > 0, then∫ ∞
a

xα dx <∞

if and only if α < −1.
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Existence of Integrals: Case I (cont.)

Case I of Case I, if α 6= −1, then

∫ b
a
xα dx =

xα+1

α+ 1

∣∣∣∣∣
b

a

=
bα+1 − aα+1

α+ 1

If α > −1, then this goes to infinity as b → ∞. If α < −1, then

this goes to −aα+1/(α+ 1) as b→∞.

Case II of Case I, if α = −1, then∫ b
a
xα dx = log(x)

∣∣∣∣∣
b

a

= log(b)− log(a)

and this goes to infinity as b→∞.
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Existence of Integrals: Comparison Principle

Also obvious from the definition of integral as area under the

curve, if

|g(x)| ≤ |h(x)|, a < x < b,

then ∫ b
a
|g(x)| dx ≤

∫ b
a
|h(x)| dx

including when either integral is infinite, that is, when the right-

hand side is finite, then so is the left-hand side and when the

left-hand side is infinite, then so is the right-hand side.
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Existence of Integrals: Case I (cont.)

Suppose a > 0, suppose g is continuous on [a,∞), and suppose

lim
x→∞

|g(x)|
xα

= c

exists and is finite. If α < −1, then∫ ∞
a
|g(x)| dx <∞.

Conversely, if c > 0 and α ≥ −1, then∫ ∞
a
|g(x)| dx =∞.
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Existence of Integrals: Case I (cont.)

From the definition of limit, we know there exists a finite r such

that

c

2
≤
|g(x)|
xα

≤ 1 + c, x ≥ r

and we know that ∫ r
a
|g(x)| dx <∞

and
c

2

∫ ∞
r

xα dx ≤
∫ ∞
r
|g(x)| dx ≤ (1 + c)

∫ ∞
r

xα dx

Hence the result about g(x) follows from the result about xα.
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Existence of Integrals: Case I (cont.)

There exists a constant c such that

f(x) =
c

1 + x2 + 3(x− 1)4
, −∞ < x <∞

is a PDF.

Compare

f(x)

|x|−4
→

c

3

as x → −∞ or x → +∞. Since −4 < −1, it follows that the

integral of f is finite.
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Existence of Integrals: Case I (cont.)

In the preceding example we used two important principles.

• Constants don’t matter.

• In polynomials, only the term of highest degree matters.
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Existence of Integrals: Case I (cont.)

In more detail, if c is a constant∫ b
a
cg(x) dx = c

∫ b
a
g(x) dx

and both sides exist or neither does. And

lim
x→∞

a0 + a1x+ a2x
2 + · · ·+ akx

k

xk
= ak
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Existence of Integrals: Case I (cont.)

Returning to our example, suppose X has PDF

f(x) =
c

1 + x2 + 3(x− 1)4
, −∞ < x <∞,

then for what positive values of β does E(|X|β) exist?

Compare

|x|βf(x)

|x|β−4
→

c

3

as x → −∞ or x → +∞. Since β − 4 < −1, if and only if β < 3,

it follows E(|X|β) exists if and only if β < 3 (when β > 0 is

assumed).
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The Cauchy Distribution

There exists a constant c such that

f(x) =
c

1 + x2
−∞ < x <∞

is a PDF.

Compare

f(x)

|x|−2
→ c

as x → −∞ or x → +∞. Since −2 < −1, it follows that the

integral of f is finite.
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The Cauchy Distribution (cont.)

In this case we can actually determine the constant.∫ t
−t

dx

1 + x2
= atan(x)

∣∣∣∣t
−t

= atan(t)− atan(−t),

where atan is the arctangent function, which goes from −π/2 to

π/2 as its argument goes from −∞ to ∞. Thus∫ ∞
−∞

dx

1 + x2
= lim

t→∞

[
atan(t)− atan(−t)

]
= π

and c = 1/π.
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The Cauchy Distribution (cont.)

The distribution with PDF

f(x) =
1

π(1 + x2)
, −∞ < x <∞

is called the standard Cauchy distribution.

The distribution with PDF

fµ,σ(x) =
σ

π
·

1

σ2 + (x− µ)2
, −∞ < x <∞

is called the Cauchy distribution with location parameter µ and

scale parameter σ and is abbreviated Cauchy(µ, σ).
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The Cauchy Distribution (cont.)

The Cauchy(µ, σ) distributions are a location-scale family.

The Cauchy(µ, σ) distribution is symmetric about µ, so the pa-

rameter µ can be called the center of symmetry as well as the

location parameter.

18



The Cauchy Distribution (cont.)

If X has the Cauchy(µ, σ) distribution, then for what positive
values of β does E(|X|β) exist?

Compare

|x|βf(x)

|x|β−2
→

σ

π

as x → −∞ or x → +∞. Since β − 2 < −1, if and only if β < 1,
it follows E(|X|β) exists if and only if β < 1 (when β > 0 is
assumed).

Summary: If X has the Cauchy(µ, σ) distribution, then E(Xk)
exists for no positive integer k. The mean does not exist, neither
does the variance. Hence µ cannot be the mean, and σ cannot
be the standard deviation.
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Existence of Integrals: Case I (cont.)

The Maclaurin series

ex = 1 + x+
x2

2
+ · · ·+

xk

k!
+ · · ·

which we also know as the theorem that a Poisson PMF sums to
one, shows that ex grows faster than any polynomial as x→∞.
Similarly for eλx when λ > 0.

Hence for any β ∈ R, any α ∈ R, any λ > 0, and any a > 0

lim
x→∞

xβe−λx

xα
= lim

x→∞
xβ−α

eλx
= 0

and ∫ ∞
a

xβe−λx dx <∞
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Existence of Integrals: Case II

Now we turn to case II. The domain of integration is bounded,

but the integrand is unbounded.

Again we start with the monomial special case. If a > 0, then∫ a
0
xα dx <∞

if and only if α > −1.

Note that the magic exponent −1 is the same, but the inequality

is reversed.
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Existence of Integrals: Case II (cont.)

The substitution x = 1/y reduces this to the other case.∫ a
0
xα dx =

∫ 1/a

∞
y−α

(
−y−2

)
dy =

∫ ∞
1/a

y−α−2 dy

and we already know the latter is finite if and only if −α−2 < −1,

which is the same as −α < 1 or α > −1.
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Existence of Integrals: Case II (cont.)

We can move this theorem to any other point. If a < b, then∫ b
a

(x− a)α dx <∞

if and only if α > −1, and∫ b
a

(b− x)α dx <∞

if and only if α > −1.
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Existence of Integrals: Case II (cont.)

And we can analyze other integrals by comparison. Suppose g is

continuous on (a, b] and suppose

lim
x↓a

|g(x)|
(x− a)α

= c

exists and is finite. If α > −1, then∫ b
a
|g(x)| dx <∞.

Conversely, if c > 0 and α ≤ −1, then∫ b
a
|g(x)| dx =∞.
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Existence of Integrals: Case II (cont.)

The case where g is unbounded at b is an obvious modification.

Suppose g is continuous on [a, b) and suppose

lim
x↑b

|g(x)|
(b− x)α

= c

exists and is finite. If α > −1, then∫ b
a
|g(x)| dx <∞.

Conversely, if c > 0 and α ≤ −1, then∫ b
a
|g(x)| dx =∞.
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Existence of Integrals: Case I and II Summary

If g(x) is continuous on [a,∞), then∫ ∞
a
|g(x)| dx <∞

only if g(x) goes to zero as x→∞ fast enough, faster than 1/x.

If g(x) is continuous on (a, b), then∫ b
a
|g(x)| dx <∞

only if g(x) goes to infinity as x → a or as x → b slow enough,

slower than 1/(x− a) or 1/(b− x).
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Existence of Integrals: Gamma Distribution

When does there exist a c such that

f(x) = cxα−1e−λx, 0 < x <∞

is a PDF?

We have already been told this is the PDF of the Gam(α, λ)

distribution when α > 0 and λ > 0, but we haven’t proved it.

If λ > 0, then we know from applying our theorem about case I

that ∫ ∞
a

xα−1e−λx dx <∞

for any real α and any a > 0.
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Existence of Integrals: Gamma Distribution (cont.)

Still assuming λ > 0, we need to apply our theorem about case

II for the integral ∫ a
0
xα−1e−λx dx.

When is that finite?

Since

lim
x↓0

xα−1e−λx

xα−1
= 1,

we have ∫ a
0
xα−1e−λx dx <∞

if and only if α− 1 > −1, that is, if and only if α > 0.
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Existence of Integrals: Gamma Distribution (cont.)

Could we have λ < 0? No, because then xα−1e−λx →∞ as x→∞
and the integral cannot be finite.

Could we have λ = 0? Then for a > 0 we have∫ ∞
a

xα−1e−λx dx =
∫ ∞
a

xα−1 dx

finite if and only if α− 1 < −1, and we have∫ a
0
xα−1e−λx dx =

∫ a
0
xα−1 dx

finite if and only if α− 1 > −1. So no α works.
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Existence of Integrals: Gamma Distribution (cont.)

Summarizing our analysis∫ ∞
0

xα−1e−λx dx

is finite if and only if α > 0 and λ > 0.

Hence, if X has the Gam(α, λ) distribution, then E(Xβ) exists if

and only if α+ β > 0.
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Existence of Sums

We handle infinite sums by comparing them with integrals. Think

of an infinite sum as the integral of a step function, and get the

following. Suppose

lim
i→∞

|ai|
iα

= c

exists and is finite. If α < −1, then

∞∑
i=1

|ai| <∞.

Conversely, if c > 0 and α ≥ −1, then

∞∑
i=1

|ai| =∞.
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Existence of Sums (cont.)

For example, there is no constant c such that

f(x) =
c

x
, x = 1,2, . . .

is a PMF, but there is a constant c such that

f(x) =
c

x2
, x = 1,2, . . .

is a PMF.

Very similar to “Case I” of existence of integrals.

32



Deja Vu All Over Again

Now we redo the axioms.

This time, we are very careful about existence of expectations.
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Sharpening the Axioms

Our axioms for expectation are

E(X + Y ) = E(X) + E(Y ) (1)

E(X) ≥ 0, when X ≥ 0 (2)

E(aX) = aE(X) (3)

E(1) = 1 (4)

Now we add the proviso that in (1), (3), and (4), the expectation

on the left-hand side exists if all expectations on the right-hand

side exist.
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Sharpening the Monotonicity Axiom

If X and Y are nonnegative random variables such that X ≤ Y ,

then the expectation of X exists whenever the expectation of Y

exists, and

E(X) ≤ E(Y )

We already knew X ≤ Y implies E(X) ≤ E(Y ) when the expec-

tations exist, but this tells us something about when they do

not, that is, when the right-hand side is finite, then so is the

left-hand side and when the left-hand side is infinite, then so is

the right-hand side.
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Sharpening the Axioms (cont.)

All of these sharpenings of the axioms hold for expectations

defined by summation or integration or by a combination of the

two.

Calling them “axioms” means we assert they also hold for ex-

pectation defined any other way. And what would that be?

The answer to that question is really beyond the scope of this

course, but we take a brief digression into advanced probability

theory to give a hint at the answer.
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The Monotone Convergence Axiom

If X1, X2, . . . is an increasing sequence of nonnegative random

variables, meaning

0 ≤ X1(s) ≤ X2(s) ≤ · · · , for all s,

then

E
(

lim
n→∞Xn

)
= lim

n→∞E(Xn)

so monotone limits can be moved outside expectations.
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The Monotone Convergence Axiom (cont.)

The random variable in

E
(

lim
n→∞Xn

)
is the pointwise limit

X(s) = lim
n→∞Xn(s)

The limit always exists (perhaps +∞) because the limit of a

monotone sequence always exists (if +∞ is allowed as a limit).
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The Monotone Convergence Axiom (cont.)

In order for this axiom to make sense, we need to define what

E(X) means when X is nonnegative and allowed to have the

value +∞.

Let

A = { s ∈ S : X(s) =∞}

Then we have two cases. If Pr(A) > 0, then E(X) = +∞. If

Pr(A) = 0, then

E(X) = E{XIAc(X)}
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The Monotone Convergence Axiom (cont.)

The monotone convergence axiom is adopted in the vast majority

of advanced probability theory, despite its having no motivation

other than mathematical convenience.

It has the very great inconvenience that we have to redefine

integration in order to make it hold. It does not hold for proba-

bilities and expectations defined by the kind of integration taught

in first, second, and third year calculus.

Nothing we have said up to here requires the monotone conver-

gence axiom except for the properties of distribution functions

and the implications of variance zero discussed again below.
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The Monotone Convergence Axiom (cont.)

A convenient shorthand is “uparrow” for monotone convergence.
We can shorten the axiom to

Xn ↑ X implies E(Xn) ↑ E(X)

By subtracting an arbitrary function from both sides of the limit,
we see that this holds even if the Xn are not nonnegative, so
long as all of the expectations E(Xn) exist.

This also implies

Xn ↓ X implies E(Xn) ↓ E(X)

with the obvious definition of “downarrow”, still assuming all
E(Xn) exist.
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Continuity of Probability

For events, we write An ↑ A if

A1 ⊂ A2 ⊂ · · · and A =
∞⋃
n=1

An

and An ↓ A if

A1 ⊃ A2 ⊃ · · · and A =
∞⋂
n=1

An

Probability is expectation of indicator functions then implies

An ↑ A implies Pr(An) ↑ Pr(A)

and

An ↓ A implies Pr(An) ↓ Pr(A)

This is called continuity of probability.
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Continuity of Probability and DF

Distribution functions are right continuous

F (x) = Pr(X ≤ x) = lim
y↓x

F (y)

and have left limits

F−(x) = Pr(X < x) = lim
y↑x

F (y)

and

lim
y↓−∞

F (y) = 0

lim
y↑+∞

F (y) = 1

All of these properties follow from continuity of probability and

cannot be proved without the monotone convergence axiom.
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Countable Additivity

If A1, A2, . . . are disjoint (mutually exclusive) events, then

Pr

 ∞⋃
n=1

An

 =
∞∑
n=1

Pr(An)

This also follows from continuity of probability and cannot be
proved without the monotone convergence axiom.

In advanced probability theory, this is taken as an axiom, called
the axiom of countable additivity and monotone convergence is
derived from it (so is called the monotone convergence theorem),
but that requires a huge amount of work that is far beyond the
scope of this course and also goes against our style of emphasiz-
ing axioms for expectation and treating probability as a special
case of expectation.
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Countable Additivity (cont.)

One says conventional advanced probability theory is countably

additive probability theory to distinguish it from finitely additive

probability theory which only allows finite additivity

Pr

 n⋃
i=1

Ai

 =
n∑
i=1

Pr(Ai),

which we derived from E(X + Y ) = E(X) + E(Y ) by probabil-

ity being expectation of indicator functions and mathematical

induction.

Everything in this course up to now, except the properties of

DF just reviewed, and the implications of variance zero holds in

finitely additive probability theory.

45



Almost Surely

A logical expression involving random variables is said to hold
almost surely if it holds for all outcomes s except in an event A
such that Pr(A) = 0.

If X is a nonnegative random variable, then E(X) = 0 if and
only if X = 0 almost surely. Proofs both ways involve monotone
convergence.

If E(X) = 0, then we can conclude by Markov’s inequality that
Pr(X ≥ 1/n) = 0 for any n > 0. The events

An = { s ∈ S : X(s) ≥ 1/n }
increase to

A = { s ∈ S : X(s) > 0 }

so continuity of probability implies Pr(X > 0) = 0.
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Almost Surely (cont.)

If X = 0 almost surely, then the random variables defined by

Xn(s) =

X(s), X(s) ≤ n
n, otherwise

have expectation

E(Xn) ≤ 0 · E{I{0}(Xn)}+ n · E{I(0,n](Xn)}
= n · Pr(X > 0)

= 0

and Xn ↑ X, so E(X) = 0 by monotone convergence.
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Almost Surely (cont.)

A very useful “sanity check” is a special case of this principle.

If X has first and second moments, then var(X) = 0 if and only if

X is almost surely constant, in which case the constant is E(X).

This follows from the monotone convergence axiom and cannot

be proved without it.
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Riemann and Lebesgue Integration

The kind of integration taught in first, second, and third year
calculus does not conform to the monotone convergence axiom.
In general it is not true that

0 ≤ f1(x) ≤ f2(x) ≤ · · · , for all x

and

lim
n→∞ fn(x) = f(x)

implies

lim
n→∞

∫
S
fn(x) dx =

∫
S
f(x) dx (∗)

Although (∗) does hold whenever all the integrals are defined,
the fact that all of the fn are functions for which integrals are
defined, does not imply that f is such a function.
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Riemann and Lebesgue Integration (cont.)

It is a fact, but one that requires a huge amount of work that

is far beyond the scope of this course to prove, that one can

just take (∗) as a definition of the integral of f when f is a

function whose integral is not defined in first, second, and third

year calculus.

To distinguish, one says the definition of integration used in

first, second, and third year calculus is Riemann integration, and

the definition of integration via (∗) is Lebesgue integration. To

further distinguish, fourth, fifth, etc. year calculus are called real

analysis rather than calculus.
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Riemann and Lebesgue Integration (cont.)

Lebesgue integration allows some very weird functions to be

integrated.

Let {a1, a2, . . .} be an enumeration of the rational numbers in the

interval (0,1), for example

a1 = 1/2

a2 = 1/3

a3 = 2/3

a4 = 1/4

a5 = 3/4
...
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Riemann and Lebesgue Integration (cont.)

and let

An = {a1, . . . , an}

then

An ↑ A

where A is the set of rational numbers between zero and one

(exclusive).

Each IAn is Riemann integrable∫ 1

0
IAn(x) dx = 0

because IAn is nonzero only on a finite set.
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Riemann and Lebesgue Integration (cont.)

Hence by monotone convergence IA is Lebesgue integrable∫ 1

0
IA(x) dx = 0

But you can’t draw the graph of the function IA. We have come

a long way from the integral is “the area under the curve”.
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The Monotone Convergence Axiom (cont.)

If you don’t remember anything from our introduction of the

monotone convergence axiom to here except the continuity prop-

erties of DF and the sanity check that var(X) = 0 if and only if

X is almost surely constant, that’s all right.

The only reason we took this much class time about stuff that

is really beyond the scope of this course is that you are liable

to stumble over this stuff frequently if you read anything about

probability theory except textbooks designed for courses at this

level and even they often gratuitously drag in monotone conver-

gence or countable additivity. So you have to know something

about them just to avoid mystification. Hopefully, this is enough.
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Existence of Moments

For any real number a and any positive integer k, the expectation

E{(X−a)k}, if it exists, is called the k-th moment about the point

a.

For any real number a and any positive real number p, the expec-

tation E{|X−a|p}, if it exists, is called the p-th absolute moment

about the point a.

By definition, the k-moment exists if and only if the k-th absolute

moment exists.

If p is not an integer, then ap only makes sense for positive a,

and only p-th absolute moments make sense.
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Existence of Moments (cont.)

If 0 < q ≤ p <∞, then

|x− a|q

|x− b|p
→ I{0}(p− q), as x→∞ or x→ −∞.

Hence there exists an r such that

|x− a|q ≤ 2|x− b|p, |x| ≥ r,

from which we conclude: if any p-th absolute moment exists,

then all q-th moments exist for 0 < q ≤ p.

Conversely, if any q-th absolute moment fails to exist, then all

p-th moments fail to exist for q ≤ p.
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Existence of Moments (cont.)

This means we can say “second moments exist” without specify-

ing which one or bothering to mention that this also implies that

first moments also exist and also p-th moments for 0 < p ≤ 2.

Conversely, we can say “second moments do not exist” without

specifying which one or bothering to mention that this also im-

plies that third, fourth, fifth, etc. moments do not exist either

and also p-th moments for 2 ≤ p <∞.
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Existence of Moments (cont.)

Bounded random variables always have expectation. If

|g(x)| ≤ c, for all x,

then

E{|g(X)|} ≤ E(c) = c.
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Existence of Moments (cont.)

If X and Y both have p-th moments, then so does X + Y .

Proof: Define

A = { s ∈ S : |X(s)| ≥ |Y (s)| }.

Then

|X + Y | ≤ 2IA|X|+ 2IAc|Y |

hence

E{|X + Y |p} ≤ 2pE{IA|X|p}+ 2pE{IAc|Y |p}
≤ 2pE{|X|p}+ 2pE{|Y |p}

By mathematical induction, if X1, . . ., Xn have p-th moments,
then so does X1 + · · ·+Xn.
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Correlation

If X and Y are non-constant random variables, which implies

sd(X) > 0 and sd(Y ) > 0, then

cor(X,Y ) =
cov(X,Y )

sd(X) sd(Y )

is called the correlation of X and Y or the correlation coefficient

of X and Y .

If either X or Y is a constant random variable, then cor(X,Y ) is

undefined.
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Correlation (cont.)

0 ≤ var

(
X

sd(X)
±

Y

sd(Y )

)

=
var(X)

sd(X)2
±

2 cov(X,Y )

sd(X) sd(Y )
+

var(Y )

sd(Y )2

= 2± 2 cor(X,Y )

from which we infer

−1 ≤ cor(X,Y ) ≤ 1

which we call the correlation inequality.
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Correlation Matrix

The matrix with i, j component cor(Xi, Xj) is called the corre-

lation matrix of the random vector (X1, . . . , Xn).

Note that the diagonal elements are

cov(Xi, Xi)

sd(Xi) sd(Xi)
=

var(Xi)

sd(Xi)2
= 1

If M is the variance matrix and D is a diagonal matrix having

the same diagonal elements as M, then the correlation matrix is

D−1/2MD−1/2, from which we see that a correlation matrix, like

a variance matrix, is positive semidefinite.
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Correlation Matrix (cont.)

The requirement that a correlation matrix be positive semidef-

inite is stronger than the correlation inequalities for its compo-

nents.

In homework problem 4-5 we saw that if (X1, . . . , Xn) is ex-

changeable, then when i 6= j

cov(Xi, Xj) ≥ −
var(Xi)

n− 1

and since sd(Xi) = sd(Xj) by exchangeability

cor(Xi, Xj) ≥ −
1

n− 1

unless n = 2 this is stronger than the correlation inequality.
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Correlation (cont.)

0 ≤ var

(
Y − cor(X,Y )

sd(Y )

sd(X)
X

)

= var(Y )− 2 cor(X,Y )
sd(Y )

sd(X)
cov(X,Y )

+ cor(X,Y )2 sd(Y )2

sd(X)2
var(X)

= var(Y )− cor(X,Y )2 var(Y )

Assuming var(Y ) > 0, we have cor(X,Y )2 = 1 if and only if

Y − cor(X,Y )
sd(Y )

sd(X)
X

has variance zero hence is an almost surely constant random
variable.
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Correlation (cont.)

The constant must be

E(Y )− cor(X,Y )
sd(Y )

sd(X)
E(X)

Hence we have proved that cor(X,Y )2 = 1 if and only if

Y = E(Y ) + cor(X,Y )
sd(Y )

sd(X)

[
X − E(X)

]
almost surely. In short, the correlation of X and Y has the

extreme values −1 or +1 if and only if Y is a linear function of

X (and vice versa).
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Correlation (cont.)

In intro statistics we teach

Correlation measures linear association. It does not mea-

sure nonlinear association.

We just saw that maximal correlation implies perfect linear as-

sociation.

Conversely, a long time ago we looked at the example where X is

a nonconstant random variable whose distribution is symmetric

about zero and Y = X2. Then cor(X,Y ) = 0 even though there

is perfect, albeit nonlinear, association between the variables.
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