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1 License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http:
//creativecommons.org/licenses/by-sa/4.0/).

2 R

• The version of R used to make this document is 3.3.3.

• The version of the rmarkdown package used to make this document is 1.4.

• The version of the knitr package used to make this document is 1.15.1.

• The version of the bootstrap package used to make this document is 2017.2.

3 Relevant and Irrelevant Simulation

3.1 Irrelevant

Most statisticians think a statistics paper isn’t really a statistics paper or a statistics talk isn’t really a
statistics talk if it doesn’t have simulations demonstrating that the methods proposed work great (at least in
some toy problems).

IMHO, this is nonsense. Simulations of the kind most statisticians do prove nothing. The toy problems used
are often very special and do not stress the methods at all. In fact, they may be (consciously or unconsciously)
chosen to make the methods look good.

In scientific experiments, we know how to use randomization, blinding, and other techniques to avoid biasing
the results. Analogous things are never AFAIK done with simulations.

When all of the toy problems simulated are very different from the statistical model you intend to use for
your data, what could the simulation study possibly tell you that is relevant? Nothing.

Hence, for short, your humble author calls all of these millions of simulation studies statisticians have done
irrelevant simulation.

3.2 Relevant

But there is a well-known methodology of relevant simulation, except that it isn’t called that. It is called the
bootstrap.

It idea is, for each statistical model and each data set to which it is applied, one should do a simulation study
of this model on data of this form.

But there is a problem: the fundamental problem of statistics, that θ̂ is not θ. To be truly relevant we should
simulate from the true unknown distribution of the data, but we don’t know what that is. (If we did, we
wouldn’t need statistics.)
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So as a second best choice we have to simulate from our best estimate of the true unknown distribution, the
one corresponding to the parameter value θ̂ if that is the best estimator we know.

But we know that is the Wrong Thing. So we have to be sophisticated about this. We have to arrange what
we do with our simulations to come as close to the Right Thing as possible.

And bootstrap theory and methods are extraordinarily sophisticated with many different methods of coming
very close to the Right Thing.

4 R Packages and Textbooks

There are two well known R packages concerned with the bootstrap. They go with two well known textbooks.

• R package boot is an R recommended package that is installed by default in every installation of R. As
the package description says, it goes with the textbook Davison and Hinkley (1997).

• The CRAN package bootstrap goes with, as its package description says, the textbook Efron and
Tibshirani (1993).
The package description also says that “new projects should preferentially use the recommended package
‘boot’ ”. But I do not agree. The package maintainer is neither of Efron or Tibshirani, and I do
not think they would agree. Whatever the politics of the R core team that make the boot package
“recommended”, they have nothing to do with the quality of the package or with the quality of the
textbook they go with. If you like Efron and Tibshirani (1993), you should be using the R package
bootstrap that goes with it.

These authors range from moderately famous (for a statistician) to very, very famous (for a statistician).
Efron is the inventor of the term bootstrap in its statistical meaning.

5 The Bootstrap Analogy

5.1 The Name of the Game

The term “bootstrap” recalls the English idiom “pull oneself up by one’s bootstraps”.

The literal meaning of “bootstrap” in non-technical language is leather loops at the top of boots used to
pull them on. So the literal meaning of “pull oneself up by one’s bootstraps” is to reach down, grab your
shoes, and lift yourself off the ground — a physical impossibility. But, idiomatically, it doesn’t mean do the
physically impossible; it means something like “succeed by one’s own efforts”, especially when this is difficult.

The technical meaning in statistics plays off this idiom. It means to get a good approximation to the sampling
distribution of an estimator without using any theory. (At least not using any theory in the computation. A
great deal of very technical theory may be used in justifying the bootstrap in certain situations.)

5.2 Introduction

The discussion in this section (all of Section 5) is stolen from Efron and Tibshirani (1993, Figure 8.1 and the
surrounding text).

To understand the bootstrap you have to understand a simple analogy. Otherwise it is quite mysterious. I
recall being mystified about it when I was a graduate student. I hope the students I teach are much less
mystified because of this analogy. This appears to the untutored to be impossible or magical. But it isn’t
really. It is sound statistical methodology.
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5.3 The Nonparametric Bootstrap

The nonparametric bootstrap (or, to be more precise, Efron’s original nonparametric bootstrap, because others
have been proposed in the literature, although no other is widely used AFAIK) is based on a nonparametric
estimate of the true unknown distribution of the data.

This nonparametric estimate is just the sample itself, thought of as a finite population to sample from. Let P
denote the true unknown probability distribution that we assume the data are an IID sample from, and let
P̂n denote probability model that samples IID from the original sample thought of as a finite population to
sample from.

As we said above, this is the Wrong Thing with a capital W and a capital T. The sample is not the population.
But it will be close for large sample sizes. Thus all justification for the nonparametric bootstrap is asymptotic.
It only works for large sample sizes. We emphasize this because many naive users have picked up the opposite
impression somewhere. The notion that the bootstrap (any kind of bootstrap) is an exact statistical method
seems to be floating around in the memeosphere and impossible to stamp out.

The bootstrap makes an analogy between the real world and a mythical bootstrap world.

real world bootstrap world

true unknown
distribution

P P̂n

true unknown parameter θ = r(P ) θ̂n = r(P̂n)

data X1, . . . , Xn IID P X∗
1 , . . . , X∗

n IID P̂n
estimator θ̂n = t(x1, . . . , xn) θ∗

n = t(x∗
1, . . . , x

∗
n)

estimated standard error ŝn = s(x1, . . . , xn) s∗
n = s(x∗

1, . . . , x
∗
n)

approximate pivotal
quantity

(θ̂n − θ)/ŝn (θ∗
n − θ̂n)/s∗

n

The explanation.

• In the real world we have the true unknown distribution of the data P . In the bootstrap world we have
the “true” pretend unknown distribution of the data P̂n. Actually the distribution P̂n is known, and
that’s a good thing, because it allows us to simulate data from it. But we pretend it is unknown when
we are reasoning in the bootstrap world. It is the analog in the bootstrap world of the true unknown
distribution P in the real world.

• In the real world we have the true unknown parameter θ. It is the aspect of P that we want to estimate.
In the bootstrap world we have the “true” pretend unknown parameter θ̂n. Actually the parameter θ̂n
is known, and that’s a good thing, because it allows to see how close estimators come to it. But we
pretend it is unknown when we are reasoning in the bootstrap world. It is the analog in the bootstrap
world of the true unknown parameter θ in the real world.
θ̂n is the same function of P̂n as θ is of P .

– If θ is the population mean, then θ̂n is the sample mean.
– If θ is the population median, then θ̂n is the sample median.

and so forth.

• In the real world we have data X1, . . . , Xn that are assumed IID from P , whatever it is. In the
bootstrap world we simulate data X∗

1 , . . . , X∗
n that are IID from P̂n.
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The way we simulate IID P̂n is to take samples from the original data considered as a finite population
to sample. These are samples with replacement because that is what IID requires.
Sometimes the nonparametric bootstrap is called “resampling” because it samples from the sample,
called resampling for short. But this terminology misdirects the naive. What is important is that we
have the correct analogy on the “data” line of the table.

• We have some estimator of θ, which must be a statistic, that is some function of the data that does not
depend on the unknown parameter. In order to have the correct analogy in the bootstrap world, our
estimate there must be the same function of the bootstrap data.

• Many procedures require some estimate of standard error of θ̂n. Call that ŝn. It too must be a statistic,
that is some function of the data that does not depend on the unknown parameter. In order to have the
correct analogy in the bootstrap world, our estimate there must be the same function of the bootstrap
data.

• Many procedures use so-called pivotal quantities, either exact or approximate.
An exact pivotal quantity is a function of the data and the parameter of interest whose distribution
does not depend on any parameters. The prototypical example is the t statistic

Xn − µ
sn/
√
n

which has, when the data are assumed to be exactly normal, an exact t distribution on n− 1 degrees of
freedom (which does not depend on the unknown parameters µ and σ of the distribution of the data).
Note that the pivotal quantity is a function of µ but the sampling distribution of the pivotal quantity
does not depend on µ or σ: the t distribution with n− 1 degrees of freedom does not does not have any
unknown parameters.
An asymptotic pivotal quantity is a function of the data and the parameter of interest whose asymptotic
distribution does not depend on any parameters. The prototypical example is the z statistic

Xn − µ
sn/
√
n

(actually the same function of data and parameters as the t statistic discussed above), which has, when
the data are assumed to have any distribution with finite variance, an asymptotic standard normal
distribution (which does not depend on the unknown the distribution of the data). Note that the
pivotal quantity is a function of µ but the sampling distribution of the pivotal quantity does not depend
on the unknown distribution of the data: the standard normal distribution does not does not have any
unknown parameters.
An approximate pivotal quantity is a function of the data and the parameter of interest whose sampling
distribution does not depend on the unknown distribution of the data, at least not very much. Often such
quantities are made by standardizing in a manner similar to those discussed above: by standardization.
Any time we have some purported standard errors of estimators, we can use them to make approximate
pivotal quantities.

θ̂n − θ
ŝn

as in the bottom left cell of the table above.
The importance of pivotal quantities in (frequentist) statistics cannot be overemphasized. They are what
allow valid exact or approximate inference. When we invert the pivotal quantity to make confidence
intervals, for example,

θ̂n ± 1.96 · ŝn
this is (exactly or approximately) valid because the sampling distribution does not depend on the true
unknown distribution of the data, at least not much. If it did depend strongly on the true distribution
of the data, then our coverage could be way off, because our estimated sampling distribution of the
pivotal quantity might be far from its correct sampling distribution.
As we shall see, even when we have no ŝn available, the bootstrap can find one for us.
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5.3.1 Cautions

5.3.1.1 Use the Correct Analogies

In the bottom right cell of the table above there is a strong tendency for naive users to replace θ̂n with θ.
But this is clearly incorrect. What plays the role of true unknown parameter value in the bootstrap world is
θ̂n not θ.

5.3.1.2 Hypothesis Tests are Problematic

Any hypothesis test calculates critical values or P -values using the distribution under the null hypothesis.
But the bootstrap does not sample that unless the null hypothesis happens to be correct. Usually, we want
to reject the null hypothesis, meaning we hope it is not correct. And in any case, we would not be doing a
hypothesis test unless we did not know whether the null hypothesis is correct.

Thus the obvious naive way to calculate a bootstrap P -value, which has been re-invented time and time again
by naive users, is completely bogus. It says, if w(X1, . . . , Xn) is the test statistic of the test, then the naive
bootstrap P -value is the fraction of simulations of bootstrap data in which w(X∗

1 , . . . , X
∗
n) ≥ w(X1, . . . , Xn).

This test typically has no power. It rejects at level α with probability α no matter how far the true unknown
distribution of the data is from the null hypothesis. This is because the bootstrap samples (approximately,
for large n) from the true unknown distribution, not from the null hypothesis.

Of course, there are non-bogus ways of doing bootstrap tests, but one has to be a bit less naive. For example,
any valid bootstrap confidence interval also gives a valid bootstrap test. The test rejects H0 : θ = θ0
(two-tailed) at level α if and only if a valid confidence interval with coverage probability 1− α does not cover
θ0.

We won’t say any more about bootstrap hypothesis tests. The textbooks cited above each have a chapter on
the subject.

5.3.1.3 Regression is Problematic

If we consider our data to be IID pairs (Xi, Yi), then the naive bootstrap procedure is to resample pairs
(X∗

i , Y
∗
i ) where each (X∗

i , Y
∗
i ) = (Xj , Yj) for some j. But this mimics the joint distribution of X and Y and

regression is about the conditional distribution of X and Y . So again the naive bootstrap samples the wrong
distribution.

A solution to this problem is to resample residuals rather than data. Suppose we are assuming a parametric
model for the regression function but are being nonparametric about the error distribution, as in Section
3.4.1 of the course notes about models, Part I. Just for concreteness, assume the regression function is simple
α+ βx. Then the relation between the bootstrap world and the real world changes as follows.

real world bootstrap world

true unknown error
distribution

P P̂n

errors E1, . . . , En IID P E∗
1 , . . . , E∗

n IID P̂n
true unknown parameters α and β α̂n and β̂n
true unknown regression
equation

Yi = α+ βxi + Ei Y ∗
i = α̂n + β̂nxi + E∗

i

estimators α̂n and β̂n α∗
n and β∗

n

The table is not quite as neat as before because there is no good way to say that α̂n and β̂n are the same
function of the regression data, thought of as a finite population to sample, as α and β are of the population,
and similarly that α∗

n and β∗
n are the same function of the bootstrap data as α̂n and β̂n are of the original
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data.

The textbooks cited above each have a chapter on this subject.

5.4 The Parametric Bootstrap

The parametric bootstrap was also invented by Efron.

Now we have a parametric model. Let Pθ denote the true unknown probability distribution that we assume
the data are an IID sample from,

The bootstrap makes an analogy between the real world and a mythical bootstrap world.

real world bootstrap world
true unknown
distribution

Pθ Pθ̂n

true unknown
parameter

θ θ̂n

data X1, . . . , Xn IID Pθ X∗
1 , . . . , X∗

n IID Pθ̂n

estimator θ̂n = t(x1, . . . , xn) θ∗
n = t(x∗

1, . . . , x
∗
n)

estimated standard
error

s(θ̂n) s(θ∗
n)

approximate pivotal
quantity

(θ̂n − θ)/s(θ̂n) (θ∗
n − θ̂n)/s(θ∗

n)

We won’t be so detailed in our explanation as above. The main point is that everything is the same except as
with the nonparametric bootstrap except that we are using parametric estimates of distributions rather than
nonparametric.

The same caution about being careful about the analogy applies as with the nonparametric bootstrap. But
the other cautions do not apply. Neither hypothesis tests nor regression are problematic with the parametric
bootstrap. One simply samples from the correct parametric distribution. For hypothesis tests, one estimates
the parameters under the null hypothesis and then simulates that distribution. For regression, one estimates
the parameters and then simulates new response data from the estimated conditional distribution of the
response given the predictors.

6 Examples

6.1 Nonparametric Bootstrap

6.1.1 Data

We will use the following highly skewed data.

x <- read.csv("http://www.stat.umn.edu/geyer/3701/data/boot1.csv")$x
length(x)

## [1] 30
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Suppose we wish to estimate the population mean using the sample mean as its estimator. We have the
asymptotically valid confidence interval

x̄n ± critical value · sn√
n

where sn is the sample standard deviation. We also have the rule of thumb widely promulgated by intro
statistics books that this interval is valid when n ≥ 30. That is, according to intro statistics books, 30 =∞.
These data show how dumb that rule of thumb is.

6.1.2 Bootstrap

So let us bootstrap these data. There is an R function boot in the R recommended package of the same name
that does bootstrap samples, but we find it so complicated as to be not worth using. We will just use a loop.

mu.hat <- mean(x)
nboot <- 999
set.seed(42)
mu.star <- double(nboot)
s.star <- double(nboot)
for (iboot in 1:nboot) {

xstar <- sample(x, replace = TRUE)
mu.star[iboot] <- mean(xstar)
s.star[iboot] <- sd(xstar)

}
hist(mu.star)
abline(v = mu.hat, lty = 2)
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Histogram of mu.star
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As the histogram shows, the sampling distribution of our estimator is also skewed (the vertical line shows µ̂n).

We want to use the method of pivotal quantities here using the sample standard deviation as the standardizer.

n <- length(x)
z.star <- (mu.star - mu.hat) / (s.star / sqrt(n))
hist(z.star, probability = TRUE, ylim = c(0, dnorm(0)), breaks = 20)
curve(dnorm, from = -10, to = 10, add = TRUE)

8



Histogram of z.star
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We can see that the distribution of z.star which is supposed to be standard normal (it would be standard
normal when n =∞) is actually for these data far from standard normal.

6.1.3 Bootstrap Confidence Interval

But since we have the bootstrap estimate of the actual sampling distribution we can use that to determine
critical values.

I chose nboot to be 999 (a round number minus one) in order for the following trick to work. Observe that
n values divide the number line into n+ 1 parts. It can be shown by statistical theory that each part has
the same sampling distribution of when stated in terms of fraction of the population distribution covered.
Thus sound estimates of the quantiles of the distribution are z[k] estimates the k/(n+ 1) quantile. So we
want to arrange the bootstrap sample size so that (nboot + 1) * alpha is an integer, where alpha is the
probability for the critical value we want.

alpha <- 0.025
k <- round(c(alpha, 1 - alpha) * (nboot + 1))
k

## [1] 25 975

crit <- sort(z.star)[k]
crit

## [1] -3.205279 1.636923
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quantile(z.star, probs = c(alpha, 1 - alpha))

## 2.5% 97.5%
## -3.160355 1.634057

The last command (the result of which we don’t bother to save) shows that we are doing (arguably) the right
thing. And we don’t have to decide among the 9 different “types” of quantile estimator that the R function
quantile offers. The recipe used here is unarguably correct so long as (nboot + 1) * alpha is an integer.

Note that our critical values are very different from

qnorm(c(alpha, 1 - alpha))

## [1] -1.959964 1.959964

which asymptotic (large sample) theory would have us use.

Our confidence interval is now
c1 <

x̄n − µ
sn/
√
n
< c2

where c1 and c2 are the critical values. We “solve” these inequalities for µ as follows.

c1 ·
sn√
n
< x̄n − µ < c2 ·

sn√
n

c1 ·
sn√
n
− x̄n < −µ < c2 ·

sn√
n
− x̄n

x̄n − c2 ·
sn√
n
< µ < x̄n − c1 ·

sn√
n

(in going from the second line to the third, multiplying an inequality through by −1 reverses the inequality).

Now we use the last line of the nonparametric bootstrap analogy table. We suppose that the critical values
are the same for both distributions on the bottom line (in the real world and in the bootstrap world).

Thus the bootstrap 95% confidence interval is

mu.hat - rev(crit) * sd(x) / sqrt(n)

## [1] 4.852995 15.666178

which is very different from

mu.hat - rev(qnorm(c(alpha, 1 - alpha))) * sd(x) / sqrt(n)

## [1] 4.131608 12.885250

6.1.4 Using boott

There is an R function boott in the CRAN package bootstrap that does this whole calculation for us.
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library(bootstrap)
boott(x, theta = mean, sdfun = function(x, nbootsd, theta, ...) sd(x),

nboott = nboot, perc = c(alpha, 1 - alpha))$confpoints

## 0.025 0.975
## [1,] 4.525321 15.61439

where the weird signature of the sdfun

function(x, nbootsd, theta, ...)

is required by boott as help(boott) explains. Even though we have no use for the arguments nbootsd and
theta, we have to have them in the function arguments list because the function is going to be passed them
by boott whether we need them or not.

And what if you cannot think up a useful standardizing function? Then boott can find one for you using
the bootstrap to the standard deviation of the sampling distribution of the estimator. So there is another
bootstrap inside the main bootstrap. We call this a double bootstrap.

boott(x, theta = mean, nboott = nboot, perc = c(alpha, 1 - alpha))$confpoints

## 0.025 0.975
## [1,] 4.209999 18.02688

Pretty cool.

6.1.5 Bootstrapping the Bootstrap

So how much better is the bootstrap confidence interval than the asymptotic confidence interval? We should
do a simulation study to find out. But we don’t have any idea what the population distribution is, and
anyway, as argued in Section 3 above, simulations are irrelevant unless they are instances of the bootstrap.
So we should check using the bootstrap. In order to not have our code too messy, we will use boott.

boott.interval <- matrix(NaN, nboot, 2)
asymp.interval <- matrix(NaN, nboot, 2)
for (iboot in 1:nboot) {

xstar <- sample(x, replace = TRUE)
boott.interval[iboot, ] <- boott(xstar, theta = mean,

sdfun = function(x, nbootsd, theta, ...) sd(x),
nboott = nboot, perc = c(alpha, 1 - alpha))$confpoints

asymp.interval[iboot, ] <- mean(xstar) -
rev(qnorm(c(alpha, 1 - alpha))) * sd(xstar) / sqrt(n)

}

This is the first thing that actually takes more than a second of computing time, but it is still not very long.

boott.miss.low <- mean(mu.hat < boott.interval[ , 1])
boott.miss.hig <- mean(mu.hat > boott.interval[ , 2])
asymp.miss.low <- mean(mu.hat < asymp.interval[ , 1])
asymp.miss.hig <- mean(mu.hat > asymp.interval[ , 2])
boott.miss.low
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## [1] 0.01801802

boott.miss.hig

## [1] 0.02302302

boott.miss.low + boott.miss.hig

## [1] 0.04104104

asymp.miss.low

## [1] 0.01101101

asymp.miss.hig

## [1] 0.07807808

asymp.miss.low + asymp.miss.hig

## [1] 0.08908909

The bootstrap is apparently quite a bit better, but we can’t really say that until we look at MCSE. For this
kind of problem where we are looking at a dichotomous result (hit or miss), we know from intro stats how
to calculate standard errors. This is the same as the problem of estimating a population proportion. The
standard error is √

p̂n(1− p̂n)
n

foompter <- rbind(c(boott.miss.low, boott.miss.hig,
boott.miss.low + boott.miss.hig), c(asymp.miss.low, asymp.miss.hig,
asymp.miss.low + asymp.miss.hig))

rownames(foompter) <- c("bootstrap", "asymptotic")
colnames(foompter) <- c("miss low", "miss high", "miss either")
foompter.se <- sqrt(foompter * (1 - foompter) / nboot)
library(knitr)
kable(foompter, digits=4, align="lcc", caption="Bootstrap Estimates")

Table 4: Bootstrap Estimates

miss low miss high miss either
bootstrap 0.018 0.0230 0.0410
asymptotic 0.011 0.0781 0.0891

kable(foompter.se, digits=4, align="lcc",
caption="Bootstrap Standard Errors")
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Table 5: Bootstrap Standard Errors

miss low miss high miss either
bootstrap 0.0042 0.0047 0.0063
asymptotic 0.0033 0.0085 0.0090

We say “bootstrap estimates” and “bootstrap standard errors” here rather than “Monte Carlo estimates”
and “Monte Carlo standard errors” or “simulation estimates” and “simulation standard errors” because, of
course, we are not doing the Right Thing (with a capital R and a capital T) which is simulating from the
true unknown population distribution because, of course, we don’t know what that is.

6.1.6 A Plethora of Bootstrap Confidence Intervals

The recipe for bootstrap confidence intervals illustrated here is a good one but far from the only good one.
There are, in fact, a plethora of bootstrap confidence intervals covered in the textbooks cited above and even
more in statistical journals.

Some of these are covered in the course materials for your humble author’s version of STAT 5601. So a lot
more could be said about the bootstrap. But we won’t.

6.1.7 The Moral of the Story

The bootstrap can do even better than theory. Theory needs n to be large enough for theory to work. The
bootstrap needs n to be large enough for the bootstrap to work. The n for the latter can be smaller than the
n for the former.

This is well understood theoretically. Good bootstrap confidence intervals like the so-called bootstrap
t intervals illustrated above, have the property called higher-order accuracy or second-order correctness.
Asymptotic theory says that the coverage error of the asymptotic interval will be of order n−1/2. Like
everything else in asymptotics it too obeys the square root law. The actual coverage probability of the interval
will differ from the nominal coverage probability by an error term that has approximate size c/

√
n for some

constant c (which we usually do not know, as it depends on the true unknown population distribution). For
a second-order correct bootstrap interval the error will have approximate size c/n for some different (and
unknown) constant c. The point is that 1/n is a lot smaller than 1/

√
n.

We expect second-order correct bootstrap intervals to do better than asymptotics.

And we don’t need to do any theory ourselves! The computer does it for us!

6.2 Parametric Bootstrap

We are going to use the same data to illustrate the parametric bootstrap.

But we now need a parametric model for these data. It was simulated from a gamma distribution, so we will
use that.

6.2.1 The Gamma Distribution

The gamma distribution is a continuous distribution of a strictly positive random variable having PDF

fα,λ(x) = 1
βαΓ(α)x

α−1e−x/β , 0 < x <∞,
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where α and β are unknown parameters that are strictly positive.

It has a lot of appearances in theoretical statistics. The chi-square distribution is a special case. So is the
exponential distribution, which is a model for failure times of random thingummies that do not get worse
as they age. Also random variables having the F distribution can be written as a function of independent
gamma random variables. In Bayesian statistics, it is the conjugate prior for several well-known families of
distributions. But here we are just using it as a statistical model for data.

The function Γ is called the gamma function. It gives the probability distribution its name. If you haven’t
heard of it, don’t worry about it. Just think of Γ(α) as a term that has to be what it is to make the PDF
integrate to one.

The parameter α is called the shape parameter because different α correspond to distributions of different
shape. In fact, radically different.

• For α < 1 the PDF goes to infinity as x→ 0.

• For α > 1 the PDF goes to zero as x→ 0.

• For α = 1 the PDF goes to λ as x→ 0.

The parameter β is called the scale parameter because it is one. If X has the gamma distribution with shape
parameter α and scale parameter one, then βX has the gamma distribution with shape parameter α and
scale parameter β. So changing β does not change the shape of the distribution. We could use the same plot
for all β if we don’t put numbers on the axes.

for (alpha in c(1/2, 1, 2)) {
curve(dgamma(x, shape = alpha), from = 0, to = 3 * alpha,

axes=FALSE, xlab = "", ylab = "")
title(main = paste("Gamma Distribution, shape parameter", alpha))
title(ylab = "probability density", line = 2)
title(xlab = "x")
box()
usr <- par("usr")
i <- seq(0, usr[2])
if (length(i) > 2) {

labs <- paste(i[-(1:2)], "* beta")
labs <- parse(text = labs)
labs <- c(expression(0), expression(beta), labs)

} else {
labs <- c(expression(0), expression(beta))

}
axis(side=1, at = i, labels = labs)

}
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Gamma Distribution, shape parameter 2
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The mean and variance are

E(X) = αβ

var(X) = αβ2

6.2.2 Method of Moments Estimators

Solving the last two equations for the parameters gives

α = E(X)2

var(X)

β = var(X)
E(X)

This suggests the corresponding sample quantities as reasonable parameter estimates.

theta.start <- c(mean(x)^2 / var(x), var(x) / mean(x))
theta.start

## [1] 0.4839005 17.5830111

These are called method of moments estimators because expectations of polynomial functions of data are
called moments (mean and variance are special cases).
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6.2.3 Maximum Likelihood

mlogl <- function(theta, x) {
stopifnot(is.numeric(theta))
stopifnot(is.finite(theta))
stopifnot(length(theta) == 2)
alpha <- theta[1]
beta <- theta[2]
# stopifnot(alpha > 0)
# stopifnot(beta > 0)
sum(- dgamma(x, shape = alpha, scale = beta, log = TRUE))

}
oout <- optim(theta.start, mlogl, x = x, method = "BFGS")

## Warning in dgamma(x, shape = alpha, scale = beta, log = TRUE): NaNs
## produced

## Warning in dgamma(x, shape = alpha, scale = beta, log = TRUE): NaNs
## produced

## Warning in dgamma(x, shape = alpha, scale = beta, log = TRUE): NaNs
## produced

## Warning in dgamma(x, shape = alpha, scale = beta, log = TRUE): NaNs
## produced

## Warning in dgamma(x, shape = alpha, scale = beta, log = TRUE): NaNs
## produced

## Warning in dgamma(x, shape = alpha, scale = beta, log = TRUE): NaNs
## produced

## Warning in dgamma(x, shape = alpha, scale = beta, log = TRUE): NaNs
## produced

oout$convergence == 0

## [1] TRUE

oout$par

## [1] 0.2877807 29.4915638

Since we got warnings, redo.

oout <- optim(oout$par, mlogl, x = x, method = "BFGS")
oout$convergence == 0

## [1] TRUE
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oout$par

## [1] 0.2877506 29.4915650

We commented out the checks that the parameter values are strictly positive because optim often goes outside
the parameter space but then gets back on track, as it does here. We seem to have gotten the correct answer
despite the warnings.

So now we are ready to bootstrap. Let us suppose we want a confidence interval for α.

6.2.4 Bootstrap

The parametric bootstrap simulates from the MLE distribution.

theta.hat <- oout$par
alpha.hat <- theta.hat[1]
beta.hat <- theta.hat[2]

starter <- function(x) c(mean(x)^2 / var(x), var(x) / mean(x))

alpha.star <- double(nboot)
alpha.star.asymp.var <- double(nboot)
for (iboot in 1:nboot) {

xstar <- rgamma(length(x), shape = alpha.hat, scale = beta.hat)
oout <- suppressWarnings(optim(starter(xstar), mlogl, x = xstar,

method = "BFGS", hessian = TRUE))
while (oout$convergence != 0)

oout <- suppressWarnings(optim(oout$par, mlogl, x = xstar,
method = "BFGS", hessian = TRUE))

alpha.star[iboot] <- oout$par[1]
alpha.star.asymp.var[iboot] <- solve(oout$hessian)[1, 1]

}
hist(alpha.star)
abline(v = alpha.hat, lty = 2)
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Histogram of alpha.star
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We now follow the same “bootstrap t” idea with the parametric bootstrap that we did for the nonparametric.

n <- length(x)
z.star <- (alpha.star - alpha.hat) / sqrt(alpha.star.asymp.var)
hist(z.star, probability = TRUE, breaks = 20)
curve(dnorm, from = -10, to = 10, add = TRUE)
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Histogram of z.star
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This tells the asymptotics is working pretty well at n = 30. Perhaps the bootstrap is unnecessary. (But we
didn’t know that without using the bootstrap to show it.)

alpha <- 0.025
k <- round(c(alpha, 1 - alpha) * (nboot + 1))
crit <- sort(z.star)[k]
crit

## [1] -1.961735 1.887759

qnorm(c(alpha, 1 - alpha))

## [1] -1.959964 1.959964

Not a lot of difference in the critical values from the standard normal ones.

Since we forgot about the Hessian when estimating the parameters for the real data, we have to get it now.

oohess <- optimHess(theta.hat, mlogl, x = x)
oohess

## [,1] [,2]
## [1,] 396.79943 1.017240017
## [2,] 1.01724 0.009977221

alpha.hat.se <- sqrt(solve(oohess)[1, 1])
alpha.hat - rev(crit) * alpha.hat.se
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## [1] 0.1774826 0.4023396

alpha.hat - rev(qnorm(c(alpha, 1 - alpha))) * alpha.hat.se

## [1] 0.1732649 0.4022362

6.2.5 The Moral of the Story

The moral of the story here is different from the nonparametric story above. Here we didn’t need the
bootstrap, and the confidence interval it made wasn’t any better than the interval derived from the usual
asymptotics of maximum likelihood.

But we didn’t know that would happen until we did it. If anyone ever asks you “How do you know the sample
size is large enough to use asymptotic theory?”, this is the answer.

If the asymptotics agrees with the bootstrap, then both are correct. If the asymptotics does not agree with
the bootstrap, use the bootstrap.
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