Stat 5421 Lecture Notes
Exponential Families, Part 11
Charles J. Geyer

May 4, 2016

Contents

1

1 Existence of Maximum Likelihood Estimates

Existence of Maximum Likelihood Estimates

1.1
1.2
1.3
1.4
1.5

A Fact about Exponential Families
History
The Binomial Family Again
Directions of Recession and Constancy
Existenceof MLEo

MLE as Limits

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

Limits in Directions of Recession
Generic Directions of Recession
ExampleIo oo oo
Canonical Affine Submodels
Example IT
Tangent Vectors
Calculating the Linearity
Calculating Generic Directions of Recession
Summary ..o ...
Statistics
Example IIT
A Digression about Computer Arithmetic
Example III Continued

Confidence Intervals and Regions

3.1
3.2

Submodel Canonical Parameters
Mean Value Parameters

1.1 A Fact about Exponential Families

Section 1.5 of Part I of these lecture notes (Geyer, 2016, hereinafter
referred to as “Part I of these notes”) stresses a property of exponential

families: all distributions in the family must have the same support. Then
near the end of Section 2.1 of Part I of these notes it is explictly stated
that the mean value parameter p of the binomial family of distributions,
considered as an exponential family, has range 0 < g < n. It then follows
from the “observed equals expected property” of regular full exponential
families (Theorem 3 of Part I of these notes and the discussion following
following it) that the maximum likelihood estimate (MLE) for the mean
value parameter is i = y, where y is the canonical statistic of the binomial
distribution (the observed number of successes in n Bernoulli trials).

It follows from these facts that when y = 0 or y = n (we observe all
successes or all failures) the MLE does not exist (this is explicitly stated by
the aforementioned Theorem 3). Part II of these notes (this document) is
about this issue: What do we do when the MLE for a regular full exponential
family does not exist?

The binomial example already shows this is a phenomenon that cannot
just be ignored. Most statistics books do ignore it, although not Agresti
(2013), which has Section 6.5 devoted to this issue, which it calls, in the
context of logistic regression, complete separation and quasi-complete separa-
tion. Agresti does not deal with this issue in the context general exponential
families or in the limited contexts of Poisson regression or log-linear models
for contingency tables. Moreover, Agresti does not provide any useful advice
about what to do when the problem of MLE nonexistence arises.

1.2 History

The problem of nonexistence of the MLE in regular full exponential fam-
ilies has long been completely understood. The theory is found in the books
of Barndorff-Nielsen (1978, pp. 154-158 and 163-164) and Brown (1986,
pp. 191-202). Computing for this theory has also long been completely un-
derstood. An algorithm is found in your humble author’s unpublished PhD
thesis (Geyer, 1990). A modified version of this algorithm that makes use
of the R package rcdd (Geyer, Meeden, and Fukuda, 2016) was published
as Geyer (2009Db).

The theory in Barndorff-Nielsen (1978) covers full exponential familes
with finite support (which are automatically regular), which includes logis-
tic regression and log-linear models for contingency tables if multinomial
or product multinomial sampling is assumed. The theory in Brown (1986)
covers some regular full exponential families with infinite support, includ-
ing Poisson regression with log link and log-linear models for contingency
tables (as well as including the results of Barndorff-Nielsen). The theory in

Chapter 4 of Geyer (1990) covers any exponential family whatsoever (full,
non-full, regular or non-regular) but is not needed for models for discrete
multivariate data covered in this course.

The algorithm in Chapter 2 of Geyer (1990) covers some non-full ex-
ponential families, but the algorithm in Geyer (2009b) only covers regular
full exponential families satisfying the conditions of Brown (1986). But that
covers everything we want in this course.

1.3 The Binomial Family Again

One can define binomial distributions with success probability equal to
zero or one. Look at the probability mass function (PMF)

n J—
B = (M)pra-prr y=on
In case y = 0, this becomes

fp(0) = (1 =p)" (1)

and if we take the limit as p — 0 we obtain

fo(0) =1

which implies that the distribution is degenerate

foly) = {1’ v=9 2)

0, y#0
A similar limit process applied to the case y = n gives
0, y#n
fily) = { (3)
1, y=n

If we include these distributions in the statistical model, then maximum
likelihood estimates do exist. And we preserve the “observed equals ex-
pected” property i = y. The MLE distribution when we observe y = 0 is
the distribution concentrated at zero, which has PMF (2). The MLE dis-
tribution when we observe y = n is the distribution concentrated at zero,
which has PMF (2).

We can see these assertions by looking at the likelihood, which is (1) in
the case y = 0 and which is a strictly decreasing function of p. This means
the likelihood is maximized at the lower end of the range of values 0 < p < 1.
The proof for the y = n case is similar. We won’t bother with the details.

1.4 Directions of Recession and Constancy

It turns out that this binomial example perfectly illustrates the theo-
retical issues that arise for arbitrary full exponential families. The only
additional issue is that the geometry becomes impossible to visualize when
the dimension of the model is greater than two.

MLE fail to exist when the data are at one end of the range of possible
values in some direction. If y denotes the observed value of the canonical
statistic and Y a random value, then we say y is extreme if there exists
a vector ¢ in the parameter space such that (Y,d) < (y,d) almost surely.
“Almost surely” means with probability one, and in an exponential family
this does not depend on the parameter value because all distributions in the
family have the same support.

Geyer (2009b, Theorem 3 and the following discussion) introduces into
the exponential family literature the term direction of recession for a vector
0 having the property discussed in the preceding paragraph. The term comes
from the theory of convex sets and functions (Rockafellar, 1970, p. 69).

Recall that a direction § in the parameter space is called a direction of
constancy if (Y, §) is almost surely constant (Theorem 1 and the surrounding
discussion in Part I of these notes). In this case we must have (y,) = (Y, 0)
almost surely. Thus, for comparison, we have

term definition

direction of recession (Y, d) < (y,0) almost surely
direction of constancy (Y, d) = (y,d) almost surely

It is clear from the alternative definition (Y, d) is constant almost surely that
whether 0 is a direction of constancy does not depend on the observed data
y. As we shall see, whether § is a direction of recession does depend on y.

1.5 Existence of MLE

Theorem 1. The MLE in a full exponential family exists if and only if
every direction of recession is a direction of constancy.

This is Theorem 4 in Geyer (2009b). It tells us exactly when MLE exist in
a full exponential family.

We can see why maximum likelihood don’t exist when there is a direction
of recession that is not a direction of constancy by looking at the derivative

of the function s — (0 + sd) where [is the log likelihood

‘”(90;‘5@ CT[y,6+55)—6(9+35)
=y

,0) — (1(0 + s0),0)

where

u(6) = Ve(8) = Eg(Y)

by equation (5) in Part I of these notes; which is the mean value parameter
expressed as a function of the canonical parameter. Hence

dl(@d—ls-sé) = <y, 5) — <E9+s5(Y)75>
= Fp1s5({y — Y, 6))

(the bilinear form and the subtraction can be moved inside the expectation
by linearity). We know that if ¢ is a direction of recession that is not a
direction of constancy, then (y — Y, d) is nonnegative almost surely and is
not zero almost surely. Thus its expectation is strictly positive. Hence we
have deduced that, if § is a direction of recession that is not a direction of
constancy, then [(6 + sd) is a strictly increasing function of s; the likelihood
keeps increasing all the way to infinity. No point € can be the MLE because
0 + sd has a higher likelihood whenever s > 0.

It is not obvious that 6+ sd remains in the full canonical parameter space
of the family as s — oo. But we can see this is so by (4) in Part I of these
notes, which is

c(0) = c(v) +1log Ey, {6<Y’97w>} (4)

and comes from Geyer (2009b, equation (5) there). We have (still assuming
J is a direction of recession)

c(@+ s6) = c(y -|-10ng{

) + log By {e (Yi0—) 5(Y:0) }
() + log By {0 eslwd) |

= C(¢) + S<y7 5> + lOg Ew {e(Y’g_'LM}
c(6) + s(y, 9)

And this shows that ¢(f) < oo and § a direction of recession proves c¢(6+sd) <
oo for all s > 0.

(Y0456 1) }

IN

2 MLE as Limits

2.1 Limits in Directions of Recession

What when MLE don’t exist? In the binomial family we saw that we
needed to take limits. That works in general, at least for exponential families
for discrete data.

Theorem 2. For a full exponential family for discrete data having PMF
given by

fo(w) = YO —e@thlw) =y e, (5)

if 6 is a direction of recession for observed value y of the canonical statistic
Y which takes values in RP and

Hs={weRP:(w—y,0) =0}, (6)

then
forss(w) = fo(w | Y € Hy) as s — oo. (7)

This is Theorem 6 in Geyer (2009b). In equation (5) w is the whole data
which may or may not be the canonical statistic Y and €2 is the sample space
(the set of all possible values of w). The conditional distribution that is the
limiting distribution in (7) has PMF

fo(w)/pro(Y € Hs), Y(w) € Hs

, otherwise

fg(w]YEHa):{

It is important to remember that the limiting distribution in the theorem
can be thought of in two different ways: it can be derived by taking a limit or
by conditioning. No matter which one we choose to emphasize by notation
or terminology, it is also the other one. It is both a limit distribution and a
conditional distribution.

If © is the full canonical parameter space of the original model (before
limits or conditioning), then the statistical model having densities

Jo(+ |Y € Hy), 0 €0,
is an exponential family, because the log likelihood is
15(0) = (y,0) — c(0) —logpry(Y" € Hj)

so we see we have a new exponential family with the same canonical statistic
y and the same canonical parameter 6 but a new cumulant function

cs(0) = c(0) +logpry(Y € Hy).

Geyer (2009b) calls this exponential family the limiting conditional model
(LCM). For contrast, call the original model (before limits or conditioning)
the OM.

It is implicit that we have taken limits in a direction of recession 4. If
we wanted to be more specific, we could write LCM; to indicate that the
LCM can depend on the direction in which we take limits. But, as we shall
soon see, we usually do not need to consider more than one § or more than
one LCM.

Now suppose J is a direction of recession that is not a direction of con-
stancy (for the OM). This means that distributions in the original model are
not concentrated on Hs. Hence pry(Y € Hy) < 1 and logpry(Y € Hs) < 0.
So, if we compare log likelihoods [for the original model and l5 for the LCM,
we see that

1(0) < 15(0), 0eo,

and the maximum of the log likelihood is always at least as large in the
LCM as in the OM. Hence the MLE for the LCM is always the MLE for
the model that is the union of the OM and LCM. Hence, if the MLE exists
for the LCM, then we have found the MLE as a limit of distributions in the
OM.

And if the MLE does not exist for the LCM, then it has a direction of
recession that is not a direction of constancy, and we can repeat the process.
Eventually we must get an MLE in an LCM. And we find the MLE as a
limit of limits or limit of limits of limits, etc. of distributions in the OM.

2.2 Generic Directions of Recession

Geyer (2009b) not only introduces the concepts of directions of recession
and constancy to exponential family theory but also the concept of a generic
direction of recession (GDOR). This is a direction of recession that is in
the relative interior of the set of all directions of recession (Geyer, 2009b,
Section 3.6), but we need not understand that definition because we are going
to use Theorems in Geyer (2009b) to characterize it that do not obviously
refer to the definition. Under a regularity condition of Brown (1986) that
always holds for logistic regression, Poisson regression, and log-linear models
for contingency tables there is always a GDOR ¢ whenever the MLE for the
OM does not exist, and if we take limits in this direction § the MLE for the
LCM is guaranteed to exist. So we never have to take limits of limits if the
first direction is a GDOR.

2.3 Example I

Consider a binomial family. This is a one-dimensional exponential family.
Suppose the observed data are y = 0. Then there is a direction of recession
that it not a direction of constancy of the original family. A direction vector
in one-dimensional space is just a number. If § < 0, then Y4 < yé = 0 for
all possible values Y. If we take limits 6 4+ s§ as s — oo, this is the same
as taking limits as § — —oo. Since the map from canonical to mean value
parameter is (for the binomial family)

n

F=1y exp(—0)

(this follows from (10) in Part I of these notes), so u — 0 as § — —oo. And
the LCM in the direction ¢ contains only one distribution the distribution
concentrated at y = 0, which is (by our previous analysis) the MLE.
Similarly, if we observe y = n, then any § > 0 is a direction of recession
that is not a direction of constancy, and, if we take limits in this direc-
tion, then the LCM in this direction § contains only one distribution the
distribution concentrated at y = n, which is the MLE for these data.

2.4 Canonical Affine Submodels

Section 4.6 of these notes introduces the concept of canonical affine sub-
models of an exponential family statistical model. These too are exponential
families. They have canonical parameter g related to the canonical param-
eter of the original family (called the saturated model in this context) by

=a+Mp

where a is a known vector (the offset vector) and M is a known matrix
(the model matriz), where “known” means perhaps a function of predictor
variables but not a function of the response variable.

A canonical affine submodel is itself a regular full exponential family
with canonical parameter § and canonical statistic M7y, where y is the
saturated model canonical statistic (the response vector).

Thus all of our theory holds for canonical affine submodels. We just need
to replace y with M7y and Y with MY wherever they occur.

2.5 Example II

Agresti (2013, Section 6.5.1) introduces the notation of complete sepa-
ration with the following example

1.0

0.8

0.6

0.4

0.2

0.0
|
o
o
o
o

20 40 60 80

Figure 1: Some Logistic Regression Data.

> x <- seq(10, 90, 10)
> x <- x[x != 50]
> x

[1] 10 20 30 40 60 70 80 90

> y <- as.numeric(x > 50)
>y

[1J o0O0OO0O1111

Figure 1 shows these data.

Suppose we want to do “simple” logistic regression (one predictor x plus
intercept, so the model is two-dimensional). Our theory tells us that we
must look at the set of all possible values of the canonical statistic M7y

where M is the model matrix for this model, which has two columns: the
first column is all ones (the “intercept” column) and the second column is x.
So let’s find that set. There are 2™ possible values where n is the dimension
of the response vector because each component of y can be either zero or
one. The following code makes all of those vectors.

> yy <- NULL
> n <- length(y)
> for (i in 1:n) {

+ j <27 -1)

+ k<-21n/j/2

+ yy <- cbind(rep(rep(0:1, each = j), times = k), yy)
+ }

> head(yy)

[,11 [,21 [,31 [,41 C,51 [,61 [,71 [,8]
[1,] 0 0 0 0 0 0 0
[2,]
[3,]
[4,]
(5,]
(6,]

o O O O O
o O O O O
O O O O O
O O O O o
O O O © o
= = O O O
O O r O
=, O =, O O

> dim(yy)
[1] 266 8

For those who know how to count in binary, row ¢ is ¢ — 1 expressed in binary.
Have you heard the joke: there are two kinds of people in this world, those
who divide everything into two kinds and those who don’t? And its nerd
version: there are 10 kinds of people in this world, those who know binary
and those who don’t?

For those who don’t, the following code shows that every row of yy is
different, every row contains only zeros and ones, and there are 2" rows.

> fred <- apply(yy, 1, paste, collapse = "")
> head(fred)

[1] "00000000" "00000001" "00000010" "00000011" "00000100"
[6] "0000O101"

10

> length(unique(fred)) == length(fred)

(1] TRUE

> all(apply(yy, 1, function(x) all(x %inj 0:1)))
[1] TRUE

> nrow(yy) == 2°n

[1] TRUE

But there are not so many distinct values of the submodel canonical statistic.

> m <- cbind(1, x)

> mtyy <- t(m) 7%*} t(yy)
> t1 <- mtyy[1,]

> t2 <- mtyyl[2,]

> t1.obs <- sum(y)

> t2.0bs <- sum(x * y)

Figure 2 shows these possible values of the submodel canonical statistic.

And now we are stuck. Figure 2 seems to show that the observed data
vector is an extreme value, but we cannot easily figure out the direction of
recession.

2.6 Tangent Vectors

Vectors Y (w) —y, where y is the observed value of the canonical statistic
vector and Y (w) are other possible values of the canonical statistic vector,
are called tangent vectors (Geyer, 2009b, explains the reason they have this
name). If

V={v:iel}

is the set of tangent vectors, then the set of a nonnegative combinations of
them, vectors of the form
S o

€A
where A is a finite set and a; > 0 for all 4, is called the tangent cone. It is
denoted con(posT) in Geyer (2009b).
Figure 3 shows the tangent vectors and tangent cone. The points in
Figures 2 and 3 are the same except in Figure 3 they are moved so the one

11

o
o o
< o
°
o o
o o
°
o o °
o o °
o o o
o o o o
o o o o
™ o)
o o o
o o o
o o o
o o °
o o o o
o o o o
o o o
Q o o o o
o o o o
N o o o
o o o
° o o o
° o o o
o o o
° o o
o o o
° o o
o o °
o o o o
— o ° o
o ° o
o ° o
o o o
°
o °
o °
o
o
o — o
I I I I I
0 2 4 6 8
2y

Figure 2: Possible values of the submodel canonical statistic vector M7y for
the data shown in Figure 1. Solid dot is the observed value of the submodel
canonical statistic vector.

12

t2 — t2.0bs
-100 0 100

-200

-300

-4 -2 0 2 4

tl - tl.obs

Figure 3: Tangent vectors and tangent cone for data shown in Figure 1.
Dots are tangent vectors, gray region is tangent cone.

13

corresponding to the observed value of the canonical statistic is the origin
(0,0). The gray area is the tangent cone (set of all nonnegative combinations
of tangent vectors).

We are interested in the case where a finite subset of the tangent vectors
gives the same tangent cone, that is, when S is a finite subset of T' such
that con(posS) = con(posT'). This is obviously the case, when the sta-
tistical model has finite support so T is finite, as in logistic regression and
log-linear models for contingency tables with multinomial or product multi-
nomial sampling. As we shall see, it is also the case for Poisson regression
with log link and for log-linear models for contingency tables with Poisson
sampling.

For generalized linear models (GLM) we do not need all the tangent
vectors. For the saturated model, tangent vectors Y (w) — y such that Y (w)
and y differ only in one coordinate are enough to generate the whole tangent
cone (Geyer, 2009b, Section 3.11). Moreover, if Vi, is a set of vectors
generating the tangent cone for the saturated model, then

Viub = { M0 : v € Viay }

is a set of vectors generating the tangent cone for the canonical affine sub-
model with model matrix M (Geyer, 2009b, Section 3.10).

So now we need to learn how to find these tangent vectors for the satu-
rated model.

First consider logistic regression when y has Bernoulli components (zero-
or-one-valued). If the observed value of y; is 0, the only other possible value
is 1, so the vector e;, which has all coordinates equal to 0 except the i-th
component, which is 1, is a tangent vector. Similar reasoning says —e; is a
tangent vector if y; = 1.

Second consider logistic regression when y has binomial components.
Now we have not only components y; of the response vector but sample
sizes n; that go with them. We see that if y; = 0, then e; is a tangent vector
(as before), and if y; = n;, then —e; is a tangent vector (as before), but now
we also have the case 0 < y; < n; in which case it is possible to change the
i-th coordinate either up or down, so both e; and —e; are tangent vectors.

Third consider Poisson regression with log link. Just like in the binomial
case we have e; is a tangent vector when y; = 0, and both e; and —e; are
tangent vectors when 0 < y; < oco. Since there is no upper bound to the
range of a Poisson random variable, there is no case where only —e; is a
tangent vector.

14

2.7 Calculating the Linearity

We now want to calculate a GDOR, but that calculation proceeds in
two steps in the algorithm of Geyer (2009b). First we need to find the
linearity of the tangent cone (Geyer, 2009b, Section 3.12), which is the
smallest vector subspace contained in the tangent cone, although Geyer
(2009b) also (somewhat sloppily) uses the same term for a set of vectors
spanning this vector subspace.

If Viup is a set of vectors generating the tangent cone for the canonical
affine submodel, then there is an R function linearity in the R package
rcdd that calculates

Lsub = {U € Vvsub AU COD(pOS Vvsub) } (8)

This is the set of all the given tangent vectors that are in the linearity of
the tangent cone. They also span it, hence determine it.

If we use Lgyp as defined in (8) to denote a set of tangent vectors. Then
the linearity considered as a vector space is denoted span Lgy,.

The linearity is useful for three reasons. We have Y € Hy if and only if
Y —y € span Lg,p. So the linearity tells us the support of the LCM. We also
need to know what the linearity is in order to calculate a GDOR. Finally,
the linearity tells whether the MLE exists or not. It exists if and only if
Lsub # Vsup (Geyer, 2009b, Theorem 4).

So let us calculate the linearity for our example, the data shown in
Figure 1. We follow Section 4.1 of Geyer (2008).

> library(rcdd)

> tanv <- m

> tanv([y == 1,] <~ (~tanv([y == 1,])

> vrep <- makeV(rays = tanv)

> lout <- linearity(d2q(vrep), rep = "V'")
> lout

integer (0)

M7e; is just the i-th row of M, so the rows of m are either tangent vectors
or —1 times tangent vectors. So we assign tanv to be m and then adjust
the signs. For rows of m such that corresponding component of y is equal
to one, we need to change the sign. So the second and third lines of the
code chunk above make tanv a matrix whose rows are the elements of Vgyp.
Then next two lines are idiomatic usage of the R package rcdd. The result

15

lout is an integer vector giving the indices of the tangent vectors in the
linearity, that is, tanv[linearity,] is a basis for the linearity considered
as a vector subspace.

Here the result is a vector of length zero, which says the empty set of
vectors spans the linearity, which means it is the trivial vector subspace {0}
that has only one point. We could actually see this in Figure 3, the gray
area is a pointed cone, so it contains only the trivial subspace.

So this tells us that the support of the LCM for this example contains
only one point. The MLE distribution is completely degenerate, concen-
trated at y. The MLE distribution says the only data we could have ob-
served is what we did observe; no other data values were possible. Before
anyone decides this is weird, let me remind you this is only an estimate,
and, as always, estimates are not parameters. This degeneracy causes no
problem so long as we don’t overinterpret it.

This complete degeneracy of the MLE distribution is what Agresti calls
“complete separation.”

2.8 Calculating Generic Directions of Recession

If Leup # Vsup the MLE does not exist in the OM, and we need to
calculate a GDOR. In this we follow Geyer (2009b, Section 3.13). A vector
0 in the parameter space is a GDOR if and only if

<’U, 5) =0, v € Lgyp (9&)
<1), 5) <0, v € Vaub \ Lsub (9b)

and we can find one such § by solving the following linear program

maximize
€
subject to
e<1
(v,0) =0, v € Lgup
(v,0) < —¢, v € Vaub \ Lsub

where ¢ is a vector, € is a scalar, and (0,¢) denotes a vector of length one
more than the length of §. This vector is the vector of variables of the linear
program. The § part of the solution is a generic direction of recession. The
€ part does not matter.

So we solve this linear program to calculate the GDOR, still following
Section 4.1 of Geyer (2008).

16

p <- ncol(tanv)

hrep <- cbind(0, 0, -tanv, -1)

hrep <- rbind(hrep, c(0, 1, rep(0, p), -1))

objv <- c(rep(0, p), 1)

pout <- lpcdd(d2q(hrep), d2q(objv), minimize = FALSE)
names (pout)

vV V.V Vv VvV

[1] "solution.type" "primal.solution" "dual.solution"
[4] "optimal.value"

> pout$solution.type
[1] "Optimal"

> gdor <- g2d(pout$primal.solution[1:p])
> gdor

[1] -5.0 0.1

The code chunk above is not general. It assumes the linearity is trivial, as
in the particular example we are working on. More on this later.

So now we have a GDOR, we should put that on the plot, but we cannot.
The reason is that § is a vector in the parameter space (as we have been
saying over and over), but the space plotted in Figure 2 is the sample space
for the canonical statistic vector. (I tried. There is no way to draw ¢ into
Figure 2.) What we can do is add Hy. See Figure 4. The fact that the only
possible value of the canonical statistic vector that is on Hjy is the observed
value y again tells us that the LCM is completely degenerate, concentrated
at the observed value.

2.9 Summary

So now we have the MLE for the LCM, which is the limit of distributions
in the OM that maximizes the likelihood. We should say that it is somewhat
unusual.

The MLE of the mean value parameter satisfies the “observed equals
expected” property it = y. That is because it is the MLE in the LCM.

The MLE of the canonical parameter is very weird. Firstly, it doesn’t
exist. Second, we can think of it as a point at infinity. Start at the MLE for
the canonical parameter in the LCM (which does exist) and head to infinity
in the direction of the GDOR. The likelihood in the OM increases all the

17

o
o o
< °
°
° °
° °
=]
o o °
o ° °
o ° °
o o ° °
o o o
2] o o
o o °
o o °
o o °
o o =]
o o o o
o o o °
o o o
> o o o o
x o o o o
N o o o
° o o
o o o o
) o o o
o o o
o ° o
o ° o
o o o
o o o
o o o o
— o o o
° o o
° o o
°))
o
° o
° o
°
°
o - o
T T T T I
0 2 4 6 8
2y

Figure 4: Possible values of the submodel canonical statistic vector M7y for
the data shown in Figure 1. Solid dot is the observed value of the submodel
canonical statistic vector. Solid line is the hyperplane Hs on which the LCM
is concentrated.

18

way but does asymptote at the supremum of the likelihood. The supremum
is never achieved (that is why we say “supremum” rather than “maximum?”),
but we do converge to it.

In Example II the MLE in the LCM is any point in R?. Since the LCM is
completely degenerate, every direction in the parameter space is a direction
of constancy (for the LCM) so every point in R? corresponds to the same
distribution. This is not surprising since there is only one distribution in the
LCM (the one concentrated at the observed data). Thus we can think of the
MLE for the canonical parameter as start anywhere and head to infinity in
the direction of the GDOR.

2.10 Statistics

Hypothesis tests and confidence intervals become difficult and hard to
understand when the MLE does not exist in the OM. We will say a lot more
about both, but will creep up on them slowly, waiting until we have some
interesting examples.

But there is one statistical procedure we can do on Example II. The usual
Wilks and Rao hypothesis tests work just fine when n is large (their assump-
tions are satisfied) when the MLE exists for the null hypothesis. There is no
need for the MLE to exist for the alternative hypothesis. The reason is that
the Rao test statistic does not use the MLE for the alternative hypothesis,
and the Wilks test only seems to use the MLE for both hypotheses. If O
and O are the two hypotheses and [,, is the log likelihood, the Wilks test
statistic can be written

7,=2 (50 1,0)) -2 (50 1.0))

0O, SISH)

and we can calculate the supremum of the log likelihood even when the MLE
does not exist (just keep going uphill on the log likelihood until the increases
in the steps get very small).

Hence
> gout.0 <- glm(y ~ 1, family = binomial)
> gout.1 <- glm(y ~ x, family = binomial)

> anova(gout.0, gout.1, test = "Chisq")

Analysis of Deviance Table

Model 1: y 7 1

19

Model 2: y 7 x
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 7 11.09
2 6 0.00 1 11.09 0.0008678 *xx*

Signif. codes:
0 “*%x’ 0.001 ‘*x’ 0.01 ‘%> 0.05 “.” 0.1 “ ’ 1

is completely valid (except for n being small). So it is clear that just using
a smaller model for which the MLE exists is a non-starter. We have to use
the theory of this document when we can prove that no model for which the
MLE exists fits the data.

Similarly,

> add1(gout.0, ~ x, test = "Rao")

Single term additions

Model:
y ~ 1
Df Deviance AIC Rao score Pr(>Chi)
<none> 11.09 13.09
X 1 0.00 4.00 6.6667 0.009823 x*x*

Signif. codes:
0 “x*x%x> 0.001 ‘*x’ 0.01 ‘x> 0.05 “.” 0.1 ¢ 7 1

is just as valid. The fact that these two test do not agree about the P-value
is because n is small.
The R functions glm and addl issue warnings

Warning: glm.fit: fitted probabilities numerically O or 1 occurred

(which Sweave does not capture). These can be ignored in this case. We
know what we are doing. The tests are valid (except for smallness of n)
because the MLE exists for the null hypothesis (the one with the formula
y ~1).

Before we leave, save the GDOR (the next example will clobber it). Also
save the model.

> ex.ii <- list(x = x, y =y, m = m)
> ex.ii.gdor <- gdor

20

2.11 Example III

This is the other example mentioned in Agrest. If we add two data points
to the data for Example IT with = 50 and one success and one failure,

> x <- c(x, 50, 50)
>y <-cly, 0, 1)

then we will not have a completely degenerate LCM and will have to work
a little harder. Agresti calls this case quasi-complete separation.
We find the linearity as before

> m <- cbind(1, x)

> tanv <- m

> tanv([y == 1,] <~ (~tanv([y == 1,])

> vrep <- makeV(rays = tanv)

> lout <- linearity(d2q(vrep), rep = "V'")
> lout

[1] 9 10

> tanv/[lout,]

X
[1,] 1 50
[2,] -1 -50

We already know (by definition) that if v is in the linearity, so is —v. So
the linearity is actually one-dimensional here. Again, the fact that not all
tangent vectors are in the linearity means that the MLE in the OM does
not exist.

Next we determine the GDOR. The R code now has to account for the
linearity not being trivial.

> p <- ncol(tanv)

> hrep <- cbind(0, 0, -tanv, -1)

> hrep[lout, 1] <- 1

> hrepl[lout, p + 3] <- 0

> hrep <- rbind(hrep, c(0, 1, rep(0, p), -1))

> objv <- c(rep(0, p), 1)

> pout <- lpcdd(d2q(hrep), d2q(objv), minimize = FALSE)
> names (pout)

21

[1] "solution.type" "primal.solution" "dual.solution"
[4] "optimal.value"

> pout$solution.type
[1] "Optimal"

> gdor <- q2d(pout$primal.solution[1:p])
> gdor

[1] -5.0 0.1

Now we make a figure like Figure 4 except for these data. It is Figure 5.
We can see that the support of the LCM contains three points, because there
are three points on the line in Figure 5.

Another way to figure out the support of the LCM that does not involve
looking at a picture is to find the GDOR for the saturated model canonical
parameter. We find the LCM by taking limits as s — oo of distributions with
submodel canonical parameter 5 + sd, which corresponds to the saturated
model canonical parameter

M (B + s6) = 0 + sn,

where § = M and n = M. Thus n is a GDOR in the saturated model
canonical parameterization.

For any component of n that is positive, the corresponding component
of the response vector y is fixed at the upper limit of its range in the LCM.
For any component of n that is negative, the corresponding component of
the response vector y is fixed at the lower limit of its range in the LCM.
Such fixed components must agree with the observed data. Let’s check.

> eta <- m }*), gdor
> yleta < 0]

[1J] 0o0O0OO
> yleta > 0]

[1] 1111

22

500
1
000000000
o

400
|

000000000000000

300
|
0000000000000000000

Xy

200
|
00000000000000C000000

|
000000000000000
0000000000000000000
©00000000000000000000

000000000

oy

Figure 5: Possible values of the submodel canonical statistic vector M7Ty
for the data of Example III. Solid dot is the observed value of the submodel
canonical statistic vector. Solid line is the hyperplane Hs on which the LCM
is concentrated.

23

2.12 A Digression about Computer Arithmetic
That was an unexpected disaster (a bug). But it should not have been.

> as.vector(eta)
[1] -4 -3-2-1 1 2 3 4 0 O

Those really small components of eta are probably zero, but R has no way
to know that.
Every time we say library(rcdd) it prints

If you want correct answers, use rational arithmetic.
See the Warnings sections added to help pages for
functions that do computational geometry.

We used rational arithmetic in the computations done by rcdd but then we
converted back to ordinary arithmetic. That’s what the R function q2d did
when we computed the GDOR. Had we not done this, we would have had
an exact GDOR

> gdor.exact <- pout$primal.solution[1:p]
> gdor.exact

[1] ||_5n ||1/10||
> all(m == round(m))
[1] TRUE

> eta.exact <- gmatmult(d2q(m), cbind(gdor.exact))
> as.vector(eta.exact)

[1] ||_4II II_3II II_2II Il_lll Hlll II2II ll3|| ll4|l IIOH IIOII

What happened to the ordinary computer arithmetic calculation?

> d2q(q2d(gdor.exact))

[1] ||_5ll
[2] "7205759403792793/72057594037927936"

The problem is that 1/10 is a “round number” in decimal arithmetic but
not a “round number” in binary arithmetic, which computers use. This is a
widespread issue that every user of computers for anything numerical should
understand, but most don’t. We quote from the R FAQ (Hornik, 2016)

24

7.31 Why doesn’t R think these numbers are equal?

The only numbers that can be represented exactly in R’s
numeric type are integers and fractions whose denominator is a
power of 2. Other numbers have to be rounded to (typically) 53
binary digits accuracy. As a result, two floating point numbers
will not reliably be equal unless they have been computed by the
same algorithm, and not always even then. For example

R> a <- sqrt(2)
R> a *x a ==

[1] FALSE

R>a x a- 2

[1] 4.440892e-16

The function all.equal() compares two objects using a nu-
meric tolerance of .Machine$double.eps ~ 0.5. If you want
much greater accuracy than this you will need to consider error
propagation carefully.

For more information, see e.g. David Goldberg (1991), “What
Every Computer Scientist Should Know About Floating-Point
Arithmetic”, ACM Computing Surveys, 23/1, 548,

To quote from “The Elements of Programming Style” by
Kernighan and Plauger:

10.0 times 0.1 is hardly ever 1.0.
Let’s try it.
> 10 * 0.1 == 1.0
[1] TRUE
That’s tricky. I don’t know how R manages to do that. Let’s try another.
>0.1+0.2+0.3+0.4==1.0
(1] TRUE

Here is an example from the help page for the == operator obtained by doing
?"=="in R.

> x1 <- 0.5 -0.3
> x2 <- 0.3 -0.1
> x1 == x2 # FALSE on most machines

[1] FALSE

25

2.13 Example III Continued
Now the check that eta.exact does the right thing.

> ylgsign(eta.exact) < 0]
[1] 0000
> ylgsign(eta.exact) > 0]
(1] 1111

So we are finally in position to find the MLE for the LCM.

> gout.lcm <- glm(y
> summary (gout.lcm)

x, family = binomial, subset = gsign(eta.exact) == 0)

Call:
glm(formula = y
0)

x, family = binomial, subset = gsign(eta.exact) ==

Deviance Residuals:
9 10
-1.177 1.177

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|zl)

(Intercept) 4.710e-16 1.414e+00 0 1

X NA NA NA NA

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2.7726 on 1 degrees of freedom
Residual deviance: 2.7726 on 1 degrees of freedom
AIC: 4.7726
Number of Fisher Scoring iterations: 2
Because the model is partially degenerate, it drops one parameter. Although

R reports the value as NA, this actually means zero, because dropping a
predictor variable is the same as setting its regression coefficient to be zero.

26

The “intercept” parameter is also zero. The reported value 4.71e-16 is just
more inexactness of computer arithmetic.

The only components of the response vector that are not fixed in the
LCM are the two components that have the corresponding components of z
equal to 50. There is one success and one failure, so we estimate 1/2 for the
success probability, and logit(1/2) = 0.

3 Confidence Intervals and Regions

3.1 Submodel Canonical Parameters

A confidence region is like a confidence interval except that it covers a
vector parameter. In this section we do confidence regions for the canonical
parameter vector of a canonical affine submodel, also known as the “coeffi-
cients” in the terminology of the R function glm.

We know from Wilk’s theorem that, assuming the “usual regularity con-
ditions,”

2 [sup I,(B) — ln(ﬁo)] ~ chi-square(p),
BeB

where [,, is the log likelihood, p is the dimension of 3, and B is the parameter
space for 3. If we let x?(p)a denote the 1 — a quantile of the chi-square(p)
distribution, and let

¢ = sup l,(B) — X2(p)a
BEB

then
{BeB:1,(8)>c}

is a large sample (asymptotic) confidence region for 5 with (approximate)
coverage probability 1 — a.

Let’s try it. First we need the log likelihood function, which we do for
Bernoulli regression only because that enough for our two examples.

> check <- function(model) {

+ stopifnot(is.list(model))

+ stopifnot (c("x", "y", "m") Jinj, names (model))
+ stopifnot (is.matrix(model$m))

+ stopifnot (nrow(model$m) == length(model$y))
+ stopifnot (nrow(model$m) == length(model$x))
+ stopifnot (model$y 7inj, c(0, 1))

+ }

27

> logl <- function(beta, model) {

+ check (model)

+ m <- model$m

+ y <- model$y

+ eta <- as.numeric(m /*), beta)

+ logp <- ifelse(eta < 0, eta - loglp(exp(eta)), - loglp(exp(- eta)))
+ logg <- ifelse(eta < 0, - loglp(exp(eta)), - eta - loglp(exp(- eta)))
+ sum(y * logp) + sum((1 - y) * logq)
+ }

> score <- function(beta, model) {

+ check (model)

+ m <- model$m

+ y <- model$y

+ eta <- as.vector(m /*J, beta)

+ p<-1/ (1 + exp(- eta))

+ g <-1/ (1 + exp(eta))

+ f <- ifelse(y == 1, q, -p)

+ foo <- rbind(f) 7*7 m

+ dimnames (foo) <- NULL

+ foo

+ }

Check numerically that the score function (derivative of log likelihood) seems
to be all right.

> beta <- rnorm(2, sd = 0.1)

> ex.iii <- list(x =x, y =y, m = m)
> logl(beta, ex.iii)

[1] -5.786526

> score(beta, ex.iii)

[,1] [,2]
[1,] -1.674873 -10.56689

> library(numDeriv)
> grad(logl, beta, model = ex.iii)

[1] -1.674873 -10.566895

Now we need the maximized value of the log likelihood

28

>
+
+
+
+
>

foo <- function(beta) {
fred <- (- logl(beta, ex.iii))
attr(fred, "gradient") <- (- score(beta, ex.iii))
fred

}

foo(beta)

[1] 5.786526
attr(,"gradient")

[,1] [,2]

[1,] 1.674873 10.56689

>
>

nout <- nlm(foo, beta)
nout$code <= 2

[1] TRUE

>
>

sup.logl <- (- nout$minimum)
sup.logl

[1] -1.386294

>
>
>

alpha <- 0.05
crit <- qchisq(alpha, df = 2, lower.tail = FALSE) / 2
crit

[1] 2.995732

In order to trace the boundary of the critical region, we need to find a

starting point on the boundary.

V V.V + + VvV VVYyV

library(alabama)

confun <- function(beta) sup.logl - logl(beta, ex.iii) - crit

conjac <- function(beta) (- score(beta, ex.iii))

aout <- auglag(rep(0, 2), function(beta) sum(beta~2) / 2,
function(beta) beta, heq = confun, heq.jac = conjac,
control.outer = list(trace = FALSE))

stopifnot (aout$convergence == 0)

beta <- aout$par

confun(beta)

[1] -2.441516e-09

29

There seem to be no R packages that do what we want here, so we just
invent our own algorithm. From the current point on the curve 5 we do
the following, letting h stand for the function (confun in R) that implicitly
defines the curve we are following, the set of 8 such that h(8) = 0. We let
€ stand for an arbitrary small positive number.

1. g:= Vh(p).

2. v:=(—g2,91) { rotate g by 90° }.
3. v:=uv/|v].

4. =L +¢€- 0.

Now we have moved a ways along the curve (about ¢ in whatever norm || - ||
indicates), or, more precisely, “almost” along the curve, because we took a
step along the straight line tangent to the curve.

We do Newton iterations to get back onto the curve. Again letting
g = Vh(B), we try to find the s such that h(5 + sg) = 0. The Taylor series
up to first derivative terms is

h(B + sg) = h(B) + s(Vh(B), 9)-
Setting this equal to zero and solving for s gives

h(B)
IVA(BI[*”

s =—

where now we have to be using the Euclidean norm

lgll* = (g, 9)-

Then we set = § + sVh(S) and then we iterate to convergence (till we
are on the curve again). Let 7 be another small number (the convergence
tolerance). Then we continue our algorithm

5. Repeat the following steps.

(a) f:=h(B).

(b) If (|| f|]| < T) stop the repetition.
(c) g=Vh(B).

(d) s:=—f/llgl*

(e) B:=pB+sg.

30

And all of that takes us just one step along the curve. Then we repeat the
whole thing over and over, taking many steps to trace the whole curve. Since
the curve goes to infinity when the MLE does not exist in the conventional
sense, we stop when we have gone as far as we want to plot.

>
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

fred <- function(confun, conjac, epsilon, max.beta, tau = le-6) {

norm <- function(beta) sqrt(sum(beta~2))
is.out <- function(beta) max(abs(beta)) > max.beta

aout <- auglag(rep(0, 2), function(beta, ...) sum(beta"2) / 2,

function(beta, ...) beta, heq = confun, heq.jac = conjac,
control.outer = list(trace = FALSE))
stopifnot (aout$convergence == 0)

beta <- aout$par
betas <- aout$par
repeat {
g <- as.vector(conjac(beta))
v <- c(- gl2], gl1])
v <= v / norm(v)
beta <- beta + v * epsilon
repeat {
f <- confun(beta)
if (norm(f) < tau) break
g <- as.vector(conjac(beta))
s <= (- f) / sum(g~2)
beta <- beta + s * g
}
if (is.out(beta)) break
betas <- rbind(betas, beta)
}
beta <- aout$par
repeat {
g <- as.vector(conjac(beta))
v <- c(gl2], - gl1])
v <- v / norm(v)
beta <- beta + v * epsilon
repeat {
f <- confun(beta)

31

+ if (norm(f) < tau) break

+ g <- as.vector(conjac(beta))
+ s <= (- f) / sum(g~2)

+ beta <- beta + s * g

+ }

+ if (is.out(beta)) break

+ betas <- rbind(beta, betas)

+ }

+

+ rownames (betas) <- NULL

+ colnames (betas) <- c("x", "y")

+ betas

+ }

> trace.ex.iii <- fred(confun, conjac, 0.01, 6)

The result is shown in Figure 6. This figure shows more than ever that
canonical parameters are meaningless (compare Sections 6.3 and 6.7.11 of
Part I of these notes). The confidence region is unbounded, going all the way
to infinity. We could convert this confidence region to one-sided intervals
for the separate parameters, (—oo, —1.42) for 1 and (0.033,400) for So,
but when we convert those intervals back to a confidence region with sides
parallel to the axes, it is infinitely larger than the confidence region shown
in the figure.

For comparison, we also do the corresponding region for Example II.

> qux <- function(beta) {

+ fred <- (- logl(beta, ex.ii))

+ attr(fred, "gradient") <- (- score(beta, ex.ii))
+ fred

+

> nout <- nlm(qux, beta)

> nout$code <= 2

[1] TRUE

> sup.logl <- (- nout$minimum)
> sup.logl

[1] -1.077311e-08

> confun <- function(beta) sup.logl - logl(beta, ex.ii) - crit
> conjac <- function(beta) (- score(beta, ex.ii))
> trace.ex.ii <- fred(confun, conjac, 0.01, 6)

32

B2
0.06 0.08 0.12 0.14
| | | l

0.04
|

-5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5

B

Figure 6: 95% Confidence Region for Submodel Canonical Parameter
(a. k. a., Coefficients) for Example III.

33

B
004 006 008 010 012 014 0.16

Figure 7: 95% Confidence Regions for Submodel Canonical Parameter
(a. k. a., Coefficients) for Examples II and III. Region for Example II is
larger, shaded at 45° angle. Region for Example II is smaller, shaded at
—45° angle.

34

Figure 7 shows this confidence region.

3.2 Mean Value Parameters

Geyer (2009b, Section 3.16) gives a recipe for making confidence intervals
for mean value parameters that are fixed in the LCM.

We will not follow that but continue with likelihood-based confidence
regions and intervals. For intervals we follow the same procedure as was
mention in the preceding section. First form the confidence region (at least
conceptually), then calculate intervals by finding the smallest and largest
values of the parameter of interest in that region. This recipe actually
works for any function of the parameter vector not just for components
of the parameter vector.

When doing confidence intervals, we can have intervals that have 95%
simultaneous coverage, which is what we would get if we maximize over the
confidence regions shown in Figures 6 and 7, or we can have intervals that
have 95% non-simultaneous coverage. The latter sort of interval is what is
usually done. Users like them because they are smaller (or perhaps users
don’t like them but programmers think users like them so that is what they
provide). But they invite misinterpretation. It is hard to understand that
the assertion is that there is (approximately, for large n) 95% probability
that any particular interval covers the parameter it is supposed to capture,
but perhaps much less than 95% probability that all the intervals cover the
parameters they are supposed to capture.

Nevertheless, we follow tradition and provide both. To get non-simultaneous
intervals we simply change the critical value, using the critical value for one
degree of freedom.

> crit.non.simultaneous <- qchisq(alpha, df = 1, lower.tail = FALSE) / 2
> crit.non.simultaneous

[1] 1.920729

In forming these intervals, we do not actually form the confidence region
and then maximize a function over it. Instead we maximize and minimize
the scalar parameter of interest subject to the constraint that the parameter
vector lie in the confidence region.

Let’s try that out for the data of Example II and parameter p;. We
know the confidence interval will be one-sided. So we don’t need to calculate
the lower bound of the interval. Since the optimization routine we will use
(function auglag in package alabama, which we used above) only minimizes,
to maximize we minimize minus the function.

35

objfun <- function(beta, model, i) {
check (model)

stopifnot (is.numeric(i))
stopifnot (length(i) == 1)
stopifnot (i 7inj, 1:nrow(model$m))
m <- model$m

y <- model$y

theta <- m 7*J), beta

p <1/ (1 + exp(- thetal[i]))

q <- 1/ (1 + exp(thetal[i]))
if(y[i] == 1) return(p) else return(q)

>
+
+
+
+
+
+
+
+
+
+
+ }
> objgrd <- function(beta, model, i) {

+ check(model)

+ stopifnot (is.numeric(i))

+ stopifnot(length(i) == 1)

+ stopifnot (i /inj 1:nrow(model$m))

+ m <- model$m

+ y <- model$y

+ theta <- m 7*J, beta

+ p <-1/ (1 + exp(- thetali]))

+ q <- 1/ (1 + exp(thetalil))

+ g <- as.vector(p * q * m[i,])

+ if(y[i] == 1) return(g) else return(- g)
+ }

> beta <- rnorm(2, sd = 0.1)

> objfun(beta, ex.ii, 1)

[1] 0.2232844

> objgrd(beta, ex.ii, 1)

[1] -0.1734285 -1.7342850

> grad(objfun, beta, model = ex.ii, i = 1)
[1] -0.1734285 -1.7342850

> confun <- function(beta, ...) crit - (sup.logl - logl(beta, ex.ii))
> conjac <- function(beta, ...) score(beta, ex.ii)
> confun(beta)

36

[1] -8.952064
> conjac(beta)

[,1] [,2]
[1,] -3.64546 -94.53861

> grad(confun, beta)
[1] -3.64546 -94.53861

> beta.start <- colMeans(trace.ex.ii)

> aout <- auglag(beta.start, objfun, objgrd, hin
+ hin. jac = conjac, model = ex.1ii, 1 =1,
+
>

confun,

control.outer = list(trace = FALSE, method = "nlminb"))
aout$convergence == 0

[1] TRUE

> confun(aout$par)

[1] 1.002372e-09

> objgrd(aout$par, ex.ii, 1) / conjac(aout$par)

[,1] [,2]
[1,] 0.1646102 0.1646101

It looks like it is working. At the solution we should have the gradient of the
objective function proportional to the gradient of the constraint function if
the constraint is zero (meaning the solution is on the boundary). This
implies the only directions downhill on the objective function take us out of
the constraint set.

So let’s see what we get when applied to all the mean value parameters.

> ci.raw <- rep(NA, length(ex.ii8y))
> for (i in seq(along = ci.raw)) {
+ aout <- auglag(beta.start, objfun, objgrd, hin = confun,

+ hin. jac = conjac, model = ex.ii, i = 1,

+ control.outer = list(trace = FALSE, method = "nlminb"))
+ stopifnot (aout$convergence == 0)

+ ci.raw[i] <- aout$value

+ }

> ci.raw

37

[1] 0.71474998 0.60596408 0.42917079 0.05000004 0.05000000
[6] 0.42917079 0.60596408 0.71474998

> ci.low <- ifelse(ex.ii$y == 1, ci.raw, 0)
> ci.hig <- ifelse(ex.ii$y == 1, 1, 1 - ci.raw)
> ci.low

[1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0500000
[6] 0.4291708 0.6059641 0.7147500

> ci.hig

[1] 0.2852500 0.3940359 0.5708292 0.9500000 1.0000000
[6] 1.0000000 1.0000000 1.0000000

Figure 8 shows these simultaneous confidence intervals for u.
Now let’s redo, non-simultaneously. The only thing we need to change
is confun.

> confun <- function(beta, ...) crit.non.simultaneous -

+ (sup.logl - logl(beta, ex.ii))

> ci.raw <- rep(NA, length(ex.ii$y))

> for (i in seq(along = ci.raw)) {

+ aout <- auglag(beta.start, objfun, objgrd, hin = confun,
+ hin. jac = conjac, model = ex.ii, i = 1,

+ control.outer = list(trace = FALSE, method = "nlminb"))
+ stopifnot (aout$convergence == 0)

+ ci.raw[i] <- aout$value

+ }

> ci.raw

[1] 0.8822385 0.7866289 0.6078324 0.1465001 0.1465002
[6] 0.6078324 0.7866289 0.8822385

> ci.low <- ifelse(ex.ii$y == 1, ci.raw, 0)
> ci.hig <- ifelse(ex.ii$y == 1, 1, 1 - ci.raw)
> ci.low

[1] 0.0000000 0.0000000 0.0000000 0.0000000 0.1465002
[6] 0.6078324 0.7866289 0.8822385

> ci.hig

38

1.0

0.6

0.4

0.2

20 40 60 80

Figure 8: Logistic Regression Data (dots) for Example II. With 95% simul-
taneous likelihood-based confidence intervals for the success probabilities
(bars).

39

1.0

0.8

0.6

0.4

0.2

20 40 60 80

Figure 9: Logistic Regression Data (dots) for Example II. With 95% non-
simultaneous likelihood-based confidence intervals for the success probabil-
ities (bars).

[1] 0.1177615 0.2133711 0.3921676 0.8534999 1.0000000
[6] 1.0000000 1.0000000 1.0000000

Figure 9 shows these non-simultaneous confidence intervals for p. These
are a lot tighter but may be subject to misinterpretation as simultaneous
intervals.

Now we do the same for Example III.

> confun <- function(beta, ...) crit - (sup.logl - logl(beta, ex.iii))
> conjac <- function(beta, ...) score(beta, ex.iii)

> ci.raw <- rep(NA, length(ex.iii$y))

> for (i in seq(along = ci.raw)) {

+ aout <- auglag(beta.start, objfun, objgrd, hin = confun,

40

+ hin. jac = conjac, model = ex.iii, i = i,

+ control.outer = list(trace = FALSE, method = "nlminb"))
+ stopifnot (aout$convergence == 0)

+ ci.raw[i] <- aout$value

+ }

> ci.raw

[1] 0.92917552 0.85956225 0.72800115 0.48279350 0.48279351
[6] 0.72800115 0.85956225 0.92917552 0.05278641 0.05278640

> xx <- sort(unique(ex.iii$x))
> ci.low <- rep(NA, length(xx))
> ci.hig <- rep(NA, length(xx))
> for (i in seq(along = xx)) {

+ j <- which(ex.iii$x == xx[i])

+ yy <- ex.iii$y[j]

+ if (all(yy == 1)) {

+ ci.hig[i] <- 1

+ ci.low[i] <- min(ci.raw[j])

+ } else if (all(yy == 0)) {

+ ci.low[i] <- 0

+ ci.hig[i] <- max(1 - ci.raw[j])
+ ci.low[i] <- 0

+ } else {

+ ci.low[i] <- min(ci.raw[j])

+ ci.higl[i] <- max(1 - ci.rawl[j])
+ }

+ }

> xx

[1] 10 20 30 40 50 60 70 80 90

> ci.low

[1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0527864
[6] 0.4827935 0.7280011 0.8595622 0.9291755

> ci.hig

[1] 0.07082448 0.14043775 0.27199885 0.51720650 0.94721360
[6] 1.00000000 1.00000000 1.00000000 1.00000000

Figure 8 shows these simultaneous confidence intervals for u.

41

1.0

_ °]
®
o
©
o
=
<
o
N
o
O—J o
o

20 40 60 80

Figure 10: Logistic Regression Data (dots) for Example III. With 95% si-
multaneous likelihood-based confidence intervals for the success probabilities
(bars).

42

References

Agresti, A. (2013). Categorical Data Analysis, third edition. John Wiley &
Sons, Hoboken, NJ.

Barndorff-Nielsen, O. (1978). Information and Exponential Families. John
Wiley & Sons, Chichester, England.

Brown, L. D. (1986). Fundamentals of Statistical Exponential Families: with
Applications in Statistical Decision Theory. Institute of Mathematical
Statistics, Hayward, CA.

Geyer, C. J. (1990). Likelihood and Exponential Families. PhD thesis,
University of Washington. http://purl.umn.edu/56330.

Geyer, C. J. (2008). Supporting theory and data analysis for “likelihood
inference in exponential families and directions of recession”. Technical
Report 672, School of Statistics, University of Minnesota. http:www.
stat.umn.edu/geyer/gdor/phaseTR.pdf.

Geyer, C. J. (2009a). More supporting data analysis for “likelihood inference
in exponential families and directions of recession”. Technical Report 673,
School of Statistics, University of Minnesota. http:www.stat.umn.edu/
geyer/gdor/phase2TR.pdf.

Geyer, C. J. (2009b). Likelihood inference in exponential families and direc-
tions of recession. Electronic Journal of Statistics, 3, 259-289.

Geyer, C. J. (2016). Exponential families, part I. Lecture notes for
Stat 5421 (categorical data analysis). http://www.stat.umn.edu/geyer/
5421/notes/expfam.pdf.

Geyer, C. J., and Meeden, G. D. (2005). Fuzzy and randomized confidence
intervals and P-values (with discussion). Statistical Science, 20, 358-387.

Geyer, C. J., Meeden, G. D., and Fukuda, K. (2016). R package rcdd
(Computational Geometry), version 1.1-10. http://CRAN.R-project.
org/package=rcdd.

Hornik, K. (2016). The R FAQ. https://CRAN.R-project.org/doc/FAQ/
R-FAQ.html.

Rockafellar, R. T. 1970. Convexr Analysis. Princeton University Press,
Princeton, NJ.

43

Varadhan, R. (2015). R package alabama (Constrained Nonlinear Opti-
mization), version 2015.3-1. https://CRAN.R-project.org/package=
alabama.

44

