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1 Introduction

1.1 Philosophy

The first (and only) postulate of Bayesian inference is

probability is the right way to describe uncertainty. (1)

Once you buy this, the rest is obvious. If a parameter is unknown, that
means you are uncertain about what its value is, hence the right way to
describe that uncertainty is a probability distribution. Thus we consider
the parameter θ a random variable that has a distribution characterized by
its PDF f .

In this Bayesians differ from “frequentists.” The scare quotes are be-
cause being a “frequentist” doesn’t have anything to do with the frequentist
philosophy of probability but rather means one thinks statistical inference
should be based on sampling distributions. “Samplingdistributionist” would
be a better name than “frequentist” if English made compound words that
way.

1.2 Bayes’ Rule

Like frequentists, Bayesians also have the distribution of the data given
the parameters. Bayesians write f(x | θ) where frequentists write fθ(x).
This emphasizes their fundamental philosophical disagreement: Bayesians
think θ is a random variable, so f(x | θ) is the conditional distribution of x
given θ, whereas frequentists deny that θ is a random variable, so fθ(x) is
the distribution of x, a different distribution for each different θ. But

f(x | θ) = fθ(x), for all x and θ

so they are talking about the same thing in different language. Thought of
as a function of θ rather than x, this same object is also called the likelihood

Lx(θ) = f(x | θ) = fθ(x), for all x and θ. (2)
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It’s still the same thing in different language.
In the Bayesian setup, it is natural to think of the joint distribution of

the data and parameter

joint = conditional×marginal

f(x, θ) = f(x | θ)f(θ)

and of the other conditional

conditional =
joint

marginal

f(θ | x) =
f(x, θ)

f(x)

=
f(x | θ)f(θ)∫
f(x | θ)f(θ) dθ

There is nothing controversial here. This is just the way conditional proba-
bility works. However, in this context,

f(θ | x) =
f(x | θ)f(θ)∫
f(x | θ)f(θ) dθ

(3)

is often called Bayes’ rule or Bayes’ theorem because it was formulated by
Thomas Bayes before conditional probability was formalized. It appeared
in a paper published posthumously in 1763.

We have above what mathematicians call “abuse of notation” in using
the same letter f for five different functions

f(θ)

f(x)

f(x | θ)
f(θ | x)

f(x, θ)

(two marginals, two conditionals, one joint). To be pedantically correct,
we should distinguish them by different letters or different decoration. The
three that appear in Bayes’ rule are called

• the prior distribution of the parameter f(θ), which expresses your
uncertainty about the value of the parameter before you have seen the
data,
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• the posterior distribution of the parameter f(θ | x), which expresses
your uncertainty about the value of the parameter after you have seen
the data,

• the data model, also called the likelihood, f(x | θ) (see equation (2)),
which the Bayesian shares with the frequentist.

Decorating the prior and posterior, Bayes’ rule becomes

fposterior(θ | x) =
f(x | θ)fprior(θ)∫
f(x | θ)fprior(θ) dθ

It is not clear (to me) that this pedantry actually helps understanding.

1.3 Unnormalized Densities

We can also express Bayes’ rule in words as follows. Express Bayes’ rule
as

f(θ | x) =
f(x | θ)f(θ)

f(x)
(4)

and recall that one way of expressing the philosophical disagreement between
Bayesians and frequentists is that

• the frequentist thinks x is random but θ is not random,

• and the Bayesian thinks θ is random but x is not random after the
data have been seen. (Before the data were seen they were random,
described by f(x | θ), but afterwards they are just the numbers they
turned out to be and no more random than any other numbers, and
similarly for categorical data. If we observe x = 2.7, there is nothing
random about 2.7).

So the Bayesian thinks of x as a constant, hence of f(x) in (4) as a constant.
If we leave it out, we still have an unnormalized posterior distribution.

An unnormalized PDF is a function h that is nonnegative and integrates
to some number that is not zero and not infinity. The relation between h
and the corresponding PDF f is

f(x) =
h(x)∫
h(x) dx

and this normalization operation is just what Bayes’ rule does, just what the
operation of deriving a conditional from a joint does. Since the unnormalized
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density h determines the normalized density f , it makes sense to talk about
the unnormalized density as characterizing the distribution.

With that bit of jargon explained, we can return to (4) and drop the
“constant” f(x) obtaining

unnormalized posterior = likelihood× prior

h(θ | x) = f(x | θ)f(θ)

(recall that f(x | θ) is also the likelihood, see equation (2)) and we also
realize that it does no harm if the prior is unnormalized here (we just get a
different unnormalized posterior)

unnormalized posterior = likelihood× unnormalized prior

h(θ | x) = f(x | θ)h(θ)

1.4 Improper Priors

One more bit of arcana and we are done with the theory of Bayesian
inference. We also realize that it does no harm, except perhaps philosoph-
ically, if the unnormalized prior doesn’t even integrate, in which case it is
called an improper prior. So long as applying Bayes’ rule is concerned, it
still works so long as the posterior is proper. If the integral is finite in

f(θ | x) =
f(x | θ)h(θ)∫
f(x | θ)h(θ) dθ

(5)

it doesn’t matter whether ∫
h(θ) dθ (6)

is finite or infinite. We can still interpret (5) as a posterior distribution.
When we use (5) when (6) is infinite, we say h is an improper prior.

But this is philosophical abuse of probability theory. An improper prior
does not characterize a probability distribution of the parameter before the
data are seen (as a normalized prior does). This is because a function h
that doesn’t integrate to something finite isn’t an unnormalized density. It
doesn’t characterize any probability distribution. And this has nothing to
do with Bayesian inference, except that only Bayesians are crazy enough to
use “improper” unnormalized densities.

And not all Bayesians are so crazy. Some Bayesians say improper priors
are complete nonsense. Others blithely use them. They say improper priors
are a harmless approximation to proper priors.
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But the technical literature says otherwise.

• If you don’t check whether the posterior integrates when using an
improper prior, you can get nonsense, and it will be embarrassing
when someone else discovers it. This happened to your humble author
(Geyer, 1992, see “note added in proof” — actually my mistake was
forgetting the Jacobian in a change-of-parameter rather than forget-
ting to check integrability, but it came to the same thing and was just
as embarrassing). It has also happened to others (who shall remain
nameless).

• Some researchers have tried to make a virtue out of errors and tried
to show that, at least sometimes, some sense can be made of improper
posteriors, but only in very special situations (Hobert and Casella,
1998; Gelfand and Sahub, 1999). Everybody agrees that improper
posteriors are mostly nonsense.

• Even when the improper prior yields a proper posterior, technical is-
sues arise.

– Using an improper prior isn’t really using probability theory (an
improper prior doesn’t characterize a probability distribution),
hence if you naively try to reason probabilistically, you may get
paradoxical results (Dawid, Stone, and Zidek, 1973).

– More technically, some improper priors lead to inadmissible in-
ferences (Eaton, 1992; Eaton, Hobert, Jones, and Lai, 2008; Shea
and Jones, 2014) or to strongly inconsistent inferences (Eaton and
Sudderth, 1999), two kinds of technical problems that I don’t even
want to try to describe, but which are really bad, and, moreover,
figuring out whether an improper prior falls into either of these
“really bad” classes is really hard (a PhD thesis worth or even
harder).

With all of these problems (there are alligators in that swamp), improper
priors are best avoided unless you know what you are doing (and few do).
At the very least, academic weasel wording should be employed to hint at
lack of guarantees that using an improper prior makes sense. For exam-
ple, pedantically, (5) when h is improper is called the formal Bayes’ rule
(“formal” in the sense of having the form but not the content).

However, many enthusiastic and naive Bayesians use improper priors
unthinkingly.
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A technical solution to all issues with improper priors is to use finitely
additive proper priors that mimic improper priors in most (all?) cases where
improper priors do behave well (Sudderth, 1980), but since very few (not
even a handful) of statisticians understand finitely additive probability the-
ory, this proposal has not gotten much traction.

2 Monte Carlo

2.1 Ordinary Monte Carlo

Bayesian inference isn’t always easy. The integral in Bayes’ rule isn’t
always easy to do. In mathematical statistics (Stat 4102, 5102, 8102, 8111)
one learns to do Bayesian inference in the few simple problems where it can
be done by hand. Otherwise, nowadays, one does Bayesian inference by
“computationally intensive methods,” also called brute force and ignorance.

If one can simulate a probability distribution, one can answer any ques-
tion at all about it by averaging over the simulations. Suppose X1, X2, . . .
are independent and identically distributed (IID) from some distribution.
Then any parameter

θ = E{g(X)} (7)

can be estimated by an average over the simulations

θ̂n =
1

n

n∑
i=1

g(Xi). (8)

The law of large numbers (LLN) guarantees that θ̂n can be gotten arbitrarily
close to θ if only one does enough simulation (if only the Monte Carlo sample
size n is large enough, if only one runs the computer long enough).

If g(X) has finite variance, say

σ2 = var{g(X)}, (9)

then the central limit theorem (CLT) tells us about the distribution of the
Monte Carlo error

θ̂n − θ ≈ Normal

(
0,
σ2

n

)
. (10)

Since this obeys the “square root law” (the asymptotic standard deviation is
σ/
√
n), the precision one gets is limited. If a minute of computing time yields

about three-significant-figure accuracy, then six-significant-figure accuracy
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(1000 times the precision) would require 10002 times the time (almost two
years of computing time).

If the parameter in question is a probability, then the theory is the same
because probability is just expectation of indicator functions

Pr(X ∈ A) = E{IA(X)}

where IA is the indicator function of the event A, defined by

IA(x) =

{
1, x ∈ A
0, otherwise

So much for the theory of computation by IID computer simulation. It
is just elementary statistics. The only difference is not in the math, but in
the application, applying it to computer simulation rather than data about
the real world.

The methodology described in this section — computation by averaging
over IID simulations is called ordinary Monte Carlo (OMC) or (somewhat
facetiously) good old-fashioned Monte Carlo (GOFMC).

The only problem with OMC is its limited applicability. There are zil-
lions of different methods for simulating univariate distributions (Devroye,
1986). There are very few methods for simulating multivariate distributions.
Uniform on a box can be easily simulated because the components of the
random vector are independent. Multivariate normal can be easily simu-
lated because they can are linear functions of normal random vectors with
independent components. Uniform on a (hyper)sphere can be easily simu-
lated by taking an isotropic multivariate normal, normalizing it to length
one, and then multiplying it by the radius of the (hyper)sphere. Any mul-
tivariate distribution that factors as the product of univariate conditionals
and marginals

f(x1, . . . , xn) = f(x1 | x2, . . . , xn)f(x2 | x3, . . . , xn) · · · f(xn−1 | xn)f(xn)

can be easily simulated by going right to left along the equation (simulate
xn, then simulate xn−1 from its conditional distribution given the simulated
value of xn, then simulate xn−2 from its conditional distribution given the
variables already simulated, and so forth). The multinomial distribution
factors as a product of binomials and the Dirichlet distribution factors as
a product of betas, so these distributions are easily simulated. And that is
about the end of the story for multivariate OMC. That leaves lots and lots
of distributions having no OMC method available. And that includes most
non-toy Bayesian posterior distributions.
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2.2 Markov Chain Monte Carlo

2.2.1 Introduction

Markov chain Monte Carlo (MCMC) is the same, only different. For any
multivariate distribution, a Markov chain that simulates it (in fact an infinite
variety of Markov chains) are described by the the Metropolis-Hastings-
Green algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, Teller, 1953;
Hastings, 1970; Green, 1995) and its special case the Gibbs sampler (Geman
and Geman, 1984; Gelfand and Smith, 1990).

What is a Markov chain? It is a sequence of random variables or random
vectors X1, X2, . . . having the property that the past and future are condi-
tionally independent given the present: for any time t, the sets of variables or
vectors {X1, . . . , Xt−1} and {Xt+1, Xt+2, . . .} are conditionally independent
given Xt. This means the Markov chain has an even simpler factorization
than the one discussed in the preceding section

f(x1, . . . , xn) = f(x1)

n∏
t=2

f(xt | xt−1)

When all of the conditional distributions on the right-hand side are the
same we say the Markov chain has stationary transition probabilities, but
this usually goes without saying. Authoritative books on Markov chain the-
ory (Nummelin, 1984; Meyn and Tweedie, 2009) discuss only Markov chains
with stationary transition probabilities and call them Markov chains (with-
out qualification). The term MCMC always implies stationary transition
probabilities unless explicitly stated otherwise.

It is easy to simulate a Markov chain. Simulate x1, then simulate x2 from
its conditional distribution given the simulated value of x1, and so forth, at
time t simulate xt from its conditional distribution given xt−1.

Almost any method of simulation whatsoever, any computer program
that looks like

Initialize x
repeat {

Generate pseudorandom change to x
Output x

}

Simulates a Markov chain so long as x denotes the entire state of the
computer program (comprising all its variables). It simulates a Markov
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chain with stationary transition probabilities so long as the code is not self-
modifying (only x changes, the code that changes x remains the same). (We
are treating pseudorandom as really random and not considering internals
of pseudorandom number generators as part of the state.)

This shows us that MCMC is a very general simulation method. It can
do any distribution. And almost any simulation method, when thought
about the right way, is a special case of MCMC.

2.2.2 Equilibrium

Given specified transition probabilities (that is, given f(xt | xt−1), which
is the same for all t, by stationary transition probabilities) we say an initial
distribution f(x1) is invariant if X2 has the same (marginal) distribution
as X1, in which case Xt will have the same (marginal) distribution for all
t. Other names for an invariant distribution are stationary distribution and
equilibrium distribution.

A Markov chain need not have an equilibrium distribution (consider a
Markov chain with integer-valued state satisfying Xt+1 = Xt + 1). But
the Metropolis-Hastings-Green algorithm always describes a Markov chain
having a specified equilibrium distribution (the distribution you want to
sample).

If a Markov chain has a unique equilibrium distribution, then the LLN
for Markov chains applies. If X1, X2, . . . are a Markov chain having a unique
equilibrium distribution, and we want to calculate an expectation (7), where
now the expectation is with respect to that equilibrium distribution, and we
use the same estimator (8) that we used in OMC except now on the Markov
chain, this is MCMC. We still have that (8) converges to (7) as the Monte
Carlo sample size n goes to infinity.

Under some conditions, the CLT for Markov chains holds, and we have
(10) holding but with σ2 not being the population variance (9). The σ2

in the Markov chain case is explained without unnecessary technicality by
Geyer (2011, Section 1.8). Conditions for the Markov chain CLT are given
by Chan and Geyer (1994), Roberts and Rosenthal (1997), Jones (2004), and
Roberts and Rosenthal (2004), but are not easy reading. We will consider
them beyond the scope of this course.

Suffice it to say that for nice enough Markov chains both the LLN and
CLT hold, in which case the theory of MCMC is just like the theory of OMC
except the formula for the variance in the CLT is different. This does not
matter. It only matters that we know how to estimate the variance, and we
will explain only one such method, the method of batch means. Geyer (2011,
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Section 1.10) explains more about this method and also explains two other
methods.

A section of the Markov chain Xk+1, . . . , Xk+b is called a batch and the
length b is called the batch length. If the batch is long enough it has all of the
properties of the whole chain. In particular, its average, the corresponding
batch mean

1

b

b∑
i=k+1

g(Xi)

obeys the LLN and the CLT just like the whole chain. The only difference
between the batch and the whole chain is that the lengths are different (b and
n, respectively) and, consequently, the variances in their CLT’s are different
σ2/b and σ2/n. Also, if b is large enough, different batches will be nearly
independent.

Hence the method of batch means. Choose b so that n is a multiple of
b, and b is large but small enough so that n/b is also large. We abbreviate
this 1� b� n. Then calculate the batch means for consecutive batches of
length b

θ̂n,k =
1

b

b∑
i=1

g(X(k−1)b+i), k = 1, . . . , n/b.

For sufficiently large b, these are asymptotically IID with mean θ, the quan-
tity to be estimated, (Geyer, 1992, Section 3.2), so the usual z confidence
interval or (if n/b is not large) t confidence interval will cover θ with the
stated coverage probability.

It is important that the batch length b be as large as possible. It is nice,
but not necessary if one uses t confidence intervals rather than z confidence
intervals to characterize Monte Carlo error, to have n/b large too. But it
is far more important that b be large than n/b be large. Of course, if n is
really large, one can have both. If not, make b large and n/b moderate.
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