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1 Calculating an Expectation or a Probability

Probability is a special case of expectation (deck 1, slide 62).

1.1 From a PMF

If f is a PMF having domain S (the sample space) for a random variable
X and g is any function, then

E{g(X)} =
∑
x∈S

g(x)f(x)

(deck 1, slide 56 and deck 3, slide 12), and for any event A (a subset of S)

Pr(A) =
∑
x∈S

IA(x)f(x)

=
∑
x∈A

f(x)

(deck 1, slide 62).

1.2 From a PDF

If f is a PDF having domain S (the sample space) for a random variable
X and g is any function, then

E{g(X)} =

∫
S
g(x)f(x) dx

(deck 3, slide 66), and for any event A (a subset of S)

Pr(A) =

∫
S
IA(x)f(x) dx

=

∫
A
f(x) dx
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(deck 1, slide 84).
And similarly for random vectors,

E{g(X)} =

∫
S
g(x)f(x) dx

(deck 3, slide 66), and

Pr(A) =

∫
S
IA(x)f(x) dx

=

∫
A
f(x) dx

(deck 1, slide 84), where the boldface indicates vectors and the integral signs
indicate multiple integrals (the same dimension as the dimension of x).

1.3 From given Expectations using Uncorrelated

If X and Y are uncorrelated random variables, then

E(XY ) = E(X)E(Y )

(deck 2, slide 73).

1.4 From given Expectations using Independent

If X and Y are independent random variables and g and h are any
functions, then

E{g(X)h(Y )} = E{g(X)}E{h(Y )}

(deck 2, slide 76).
More generally, if X1, X2, . . ., Xn are independent random variables and

g1, g2, . . ., gn are any functions, then

E

{
n∏
i=1

gi(Xi)

}
=

n∏
i=1

E{gi(Xi)}

(deck 2, slide 76).
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1.5 From given Probabilities using Inclusion-Exclusion

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)

Pr(A ∪B ∪ C) = Pr(A) + Pr(B ∪ C)− Pr(A ∩ (B ∪ C))

= Pr(A) + Pr(B ∪ C)− Pr((A ∩B) ∪ (A ∩ C))

= Pr(A) + Pr(B) + Pr(C)− Pr(B ∩ C)

− Pr(A ∩B)− Pr(A ∩ C) + Pr(A ∩B ∩ C)

and so forth (deck 2, slides 139 and 140).
In the special case that A1, . . ., An are mutually exclusive events

Pr

(
n⋃
i=1

Ai

)
=

n∑
i=1

Pr(Ai)

(deck 2, slide 137).

1.6 From given Probabilities using Complement Rule

Pr(Ac) = 1− Pr(A)

(deck 2, slide 143).

1.7 From given Probabilities using Independent

In the special case that A1, . . ., An are independent events

Pr

(
n⋂
i=1

Ai

)
=

n∏
i=1

Pr(Ai)

(deck 2, slide 147).

1.8 From given Expectations using Linearity of Expectation

1.8.1 Expectation of Sum and Average

If X1, X2, . . ., Xn are random variables, then

E

{
n∑
i=1

Xi

}
=

n∑
i=1

E(Xi)
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(deck 2, slide 10). In particular, if X1, X2, . . ., Xn all have the same
expectation µ, then

E

{
n∑
i=1

Xi

}
= nµ

(deck 2, slide 90), and
E(Xn) = µ,

where

Xn =
1

n

n∑
i=1

Xi (1)

(deck 2, slide 90).

1.8.2 Variance of Sum and Average

If X1, X2, . . ., Xn are random variables, then

var

{
n∑
i=1

Xi

}
=

n∑
i=1

n∑
j=1

cov(Xi, Xj)

=

n∑
i=1

var(Xi) +

n∑
i=1

n∑
j=1j 6=i

cov(Xi, Xj)

=
n∑
i=1

var(Xi) + 2
n∑
i=1

n∑
j=i+1

cov(Xi, Xj)

(deck 2, slide 71). In particular, if X1, X2, . . ., Xn are uncorrelated, then

var

{
n∑
i=1

Xi

}
=

n∑
i=1

var(Xi)

(deck 2, slide 75). More particular, if X1, X2, . . ., Xn are uncorrelated and
all have the same variance σ2, then

var

{
n∑
i=1

Xi

}
= nσ2

(deck 2, slide 90) and

var(Xn) =
σ2

n

(deck 2, slide 90), where Xn is given by (1).
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1.8.3 Expectation and Variance of Linear Transformation

If X is a random variable and a and b are constants, then

E(a+ bX) = a+ bE(X)

var(a+ bX) = b2 var(X)

(deck 2, slide 8 and slide 37).

1.8.4 Covariance of Linear Transformations

If X and Y are random variables and a, b, c, and d are constants, then

cov(a+ bX, c+ dY ) = bd cov(X,Y )

(homework problem 3-7).

1.8.5 Expectation and Variance of Vector Linear Transformation

If X is a random vector, a is a constant vector, and B is a constant matrix
such that a + BX makes sense (the dimension of a and the row dimension
of B are the same, and the dimension of X and the column dimension of B
are the same), then

E(a + BX) = a + BE(X)

var(a + BX) = B var(X)BT

(deck 2, slide 64).

1.8.6 “Short Cut” Formulas

If X is a random variable, then

var(X) = E(X2)− E(X)2

(deck 2, slide 21).
If X and Y are random variables, then

cov(X,Y ) = E(XY )− E(X)E(Y )

(homework problem 3-7).
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1.9 From Moment Generating Function

E(Xk) = ϕ(k)(0)

(deck 3, slide 20), where ϕ is the moment generating function of the random
variable X and the right-hand side denotes the k-th derivative of ϕ evaluated
at zero.

1.10 Convolution Formula

If X and Y are independent random variables in the same probability
model and Z = X+Y and fX , fY , and fZ denote the PMFs of these random
variables, then

fZ(z) =
∑
x

fX(x)fY (z − x)

(deck 3, slide 52), where the sum ranges over the possible values of X and
fY is extended to be zero off of the support of Y .

And similarly if X and Y are independent continuous random variables
with PDFs fX and fY

fZ(z) =

∫
fX(x)fY (z − x) dx

(this assumes fX and fY are defined on the whole real line having the value
zero off the respective supports).

2 Change of Variable Formulas

2.1 Discrete Distributions

2.1.1 One-to-one Transformations

If fX is the PMF of the random variable X, if Y = g(X), and g is an
invertible function with inverse function h (that is, X = h(Y )), then

fY (y) = fX [h(y)]

and the domain of fY is the range of the function g (the set of possible Y
values) (deck 2, slide 86).
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2.1.2 Many-to-one Transformations

If fX is the PMF of the random variable X having sample space S and
Y = g(X), then

fY (y) =
∑
x∈S
g(x)=y

fX(x)

and the domain of fY is the codomain of the function g (deck 2, slide 81).

2.2 Continuous Distributions

2.2.1 One-to-one Transformations

Univariate If fX is the PDF of the random variable X, if Y = g(X), and
g is an invertible function with inverse function h (that is, X = h(Y )), then

fY (y) = fX [h(y)] · |h′(y)|

and the domain of fY is the range of the function g (the set of possible Y
values) (deck 3, slide 123).

Linear Transformation (Special Case of Above) If fX is the PDF of
the random variable X defined on the whole real line and Y = a+ bX with
b > 0, then the PDF of Y is

fY (y) =
1

b
fX

(
y − a
b

)
and the domain of fY is the whole real line (deck 3, slide 140).

Multivariate If fX is the PDF of the random vector X, if Y = g(X), and
g is an invertible function with inverse function h (that is, X = h(Y)), then

fY(y) = fX[h(y)] · |det J(y)|

and the domain of fY is the range of the function g (the set of possible
Y values) (deck 3, slide 122), where J(y) is the Jacobian matrix of the
transformation h, the matrix whose i, j component is ∂hi(y)/∂yj , where

h(y) =
(
h1(y), . . . , hn(y)

)
(deck 3, slide 121).
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2.2.2 Alternate Method (Does not Require One-to-one)

If fX is the PDF of the random variable X and Y = g(X), then the DF
of Y is

FY (y) = Pr(Y ≤ y) = Pr{g(X) ≤ y}

(deck 3, slide 154), and then the PDF of Y can be found by differentiation
(Section 4.1 below).

3 PMF or PDF and Independence

If X1, . . ., Xn are independent random variables having PMF or PDF
f1, . . ., fn, then

f(x1, . . . , xn) =
n∏
i=1

fi(xi)

(deck 1, slide 98 and deck 3, slide 115). In this terminology of deck 5
(Section 6 below) this says the joint is the product of the marginals (when
the components are independent).

In particular, if X1, . . ., Xn are independent and identically distributed
random variables having PMF or PDF h, then

f(x1, . . . , xn) =
n∏
i=1

h(xi).

4 PDF or PMF to DF and Vice Versa

4.1 DF to PDF

If f is the PDF of a random variable defined on the whole real line and
F is the corresponding DF, then

f(x) = F ′(x), at points x where F is differentiable

(deck 3, slide 105) (and may be arbitrarily defined at other points).
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4.2 PDF to DF

If f is the PDF of a random variable defined on the whole real line and
F is the corresponding DF, then

F (x) = Pr(X ≤ x)

=

∫ x

−∞
f(s) ds

(deck 3, slides 92 and 104).

4.3 PDF to DF (Alternative Method)

If f is the PDF of a random variable defined by case splitting, say

f(x) =


f1(x), x < a1

f2(x), a1 < x < a2

f3(x), a2 < x < a3

f4(x), a3 < x

then the DF is

F (x) =

∫
fi(x) dx

on each of the four intervals, the indefinite integral containing an arbitrary
constant, which is different for each interval, and the constants must be
adjusted to make F have the properties of a DF given on deck 3, slides 112
and 113, that is F is continuous, goes to zero as x → −∞ and goes to one
as x→ +∞.

4.4 DF to PMF

If f is the PMF of a random variable defined on the whole real line and
F is the corresponding DF, then f(x) is the size of the jump F makes at x,
that is,

f(x) = F (x)− sup
y<x

F (y)

(deck 3, slide 109). In particular, f(x) = 0 whenever F is continuous at x.
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4.5 DF to PMF

If f : S → R is the PMF of a random variable and F is the corresponding
DF, then

F (x) =
∑
s∈S
s≤x

f(s)

(deck 3, slide 109).

5 Quantiles

5.1 Continuous Random Variables

If F is the DF of a continuous random variable, then the p-th quantile
of this random variable or this distribution is any x satisfying

F (x) = p

and the solution is unique if F is differentiable at x with F ′(x) > 0 (deck 4,
slide 2).

The solution is non-unique only if F has a flat section with value p, that
is if there exist points a and b with a < b such that

F (x) = p, a ≤ x < b

in which case every x ∈ [a, b] is a p-th quantile.

5.2 Discrete Random Variables

If F is the DF of a discrete random variable, then the p-th quantile of
this random variable or this distribution is any x satisfying

F (y) ≤ p ≤ F (x), for all y < x

(deck 4, slide 2).
There are two cases. The solution is unique if we do not have F (x) = p

for any x. In that case the p-th quantile is the point x where F jumps past
p, that is,

F (y) < p < F (x), y < x.

The solution is non-unique if we do have F (x) = p for some x, in which case
(because the DF of a discrete random variable is a step function) we must
have F (x) = p for all x in an interval, and every such x is a p-th quantile.
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6 Joint, Marginal, Conditional

The probability distribution of a random vector is often called the joint
distribution of the components of the random vector.

In this context the probability distribution of a random vector comprising
some subset of these components is called a marginal distribution.

The terms joint and marginal have meaning only in context. They have
no context-independent meaning.

We can say f(x, y, z) is the joint PDF of X, Y , and Z, and f(x, y),
f(y, z), and f(x, z) are three marginal PDF. So in one context f(x, y, z) is
a joint distribution and f(x, y) is a marginal. But in another context we
can say f(x, y) is a joint distribution and f(x) and f(y) are its marginals.
(Pedantically, each f here should have a different letter or distinguishing
subscript because each is a different function.)

6.1 Joint to Marginal

To derive a marginal PMF or PDF from a joint PMF or PDF, sum or
integrate out the variable(s) you don’t want (sum if discrete, integrate if
continuous). (deck 5, slides 4–9). Given the joint of X and Y , to obtain the
marginal of X sum out y

fX(x) =
∑
y

fX,Y (x, y)

or integrate out y

fX(x) =

∫
fX,Y (x, y) dy

as the case may be.
Given the joint of X, Y , and Z, to obtain the marginal of X sum out y

and z
fX(x) =

∑
y

∑
z

fX,Y,Z(x, y, z)

or integrate out y and z

fX(x) =

∫∫
fX,Y,Z(x, y, z) dy dz

as the case may be.
Given the joint of X, Y , and Z, to obtain the (bivariate) marginal of X

and Y sum out z
fX,Y (x, y) =

∑
z

fX,Y,Z(x, y, z)
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or integrate out z

fX,Y (x, y) =

∫
fX,Y,Z(x, y, z) dz

as the case may be.
And so forth (many special cases of the general principle could be given).

6.2 Joint to Conditional

conditional =
joint

marginal

and the marginal is the marginal for the variable(s) behind the bar in the
conditional

f(x | y) =
f(x, y)

f(y)

f(w, x | y, z) =
f(w, x, y, z)

f(y, z)

and so forth (pedantically, each f here should have a different letter or
distinguishing subscript because each is a different function).

6.3 Conditional and Marginal to Joint

joint = conditional×marginal

and the marginal is the marginal for the variable(s) behind the bar in the
conditional

f(x, y) = f(x | y)f(y)

f(w, x, y, z) = f(w, x | y, z)f(y, z)

and so forth (pedantically, each f here should have a different letter or
distinguishing subscript because each is a different function).

Note that the equations in this section are the equations in the preceding
section rearranged.
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6.4 Conditional Probability and Expectation

Everything in Sections 1 to 5 above can be redone for conditional proba-
bility distributions. The variables behind the bar in the conditional distribu-
tion just go along for the ride like parameters in unconditional distributions
(deck 5, slides 11–22). Calculating expectations (compare with Section 1
above)

E{g(X) | Y } =

∫
g(x)f(x | y) dx

E{g(W,X) | Y,Z} =

∫
g(w, x)f(w, x | y, z) dw dx

(replace integrals with sums if W and X are discrete). Calculating proba-
bilities (compare with Section 1 above)

Pr{X ∈ A | Y } =

∫
A
f(x | y) dx

Pr{(W,X) ∈ A | Y, Z} =

∫
IA(w, x)f(w, x | y, z) dw dx

(replace integrals with sums if W and X are discrete). PDF to DF (compare
with Section 4.2 above)

F (x | y) =

∫ x

−∞
fX|Y (s | y)

(replace the integral with a sum if X is discrete). Quantiles (compare with
Section 5 above, if F is the conditional DF of X given Y and X is continuous,
then the p-th quantile of this distribution is the x that satisfies

F (x | y) = p.

7 Conditional and Unconditional

7.1 Iterated Expectation Formula

E(Y ) = E{E(Y | X)}

and the same goes with multiple variables “behind the bar”

E(Y ) = E{E(Y | X1, . . . , Xk)}

(deck 5, slides 48 and 51).

15



7.2 Functions of Variables “Behind the Bar” Come Out

For any functions g and h

E{g(X)h(Y ) | X} = g(X)E{h(Y ) | X}

and the same goes with multiple variables “behind the bar”

E{g(X1, . . . , Xk)h(Y ) | X1, . . . , Xk} = g(X1, . . . , Xk)E{h(Y ) | X1, . . . , Xk}

(deck 5, slides 50 and 51).

7.3 Iterated Variance Formula

var(Y ) = E{var(Y | X)}+ var{E(Y | X)}

and the same goes with multiple variables “behind the bar”

var(Y ) = E{var(Y | X1, . . . , Xk)}+ var{E(Y | X1, . . . , Xk)}

(deck 5, slide 63).

8 Conditional Probability and Independence

Random variables X and Y are independent if and only if the conditional
distribution of X given Y is the same as the marginal distribution of X

fX(x) = fX|Y (x | y)

and similarly withX and Y interchanged (and x and y interchanged) (deck 5,
slide 65). and similarly with X and Y changed to boldface (turned into
random vectors) (and similarly for x and y) (deck 5, slide 66).

9 Poisson Process

9.1 Any Dimension

A random pattern of points in space is a Poisson process if the number
of points XA in region A has either of the following properties.

(i) If A1, . . ., Ak are disjoint regions, then XA1 , . . ., XAk
are independent

random variables.

16



(ii) For any region A, the random variableXA has the Poisson distribution.

(deck 3, slide 41).
A Poisson process is homogeneous if E(XA) is proportional to the size

of the region A.

9.2 One Dimensional

A one-dimensional Poisson is a random pattern of points in a line or line
segment. It still has the two properties stated in Section 9.1.

But for a homogeneous Poisson process in one dimension we also have
exponential waiting times and interarrival times (deck 5, slides 70–78).

Suppose X1, . . ., XN are the points in a one-dimensional homogeneous
Poisson process on the interval (a, b). N is capitalized because the number
of points is random. N = 0 is allowed, in which case there are no points. If
N ≥ 1, then X1 is the position of the first point. If N ≥ 2, then X2 is the
position of the second point. If N ≥ 1, then XN is the position of the last
point. We always have X1 < X2 < . . . < XN by definition.

T1 = X1 − a

is called the waiting time until the first point and

T2 = X2 −X1

T3 = X3 −X2

...

TN = XN −XN−1

are called the interarrival times between the points.
If E(N) = λ(b−a), so the expected number of points is λ per unit time,

then all the waiting and interarrival times have the Exp(λ) distribution.

10 Existence of Integrals and Infinite Sums

10.1 Integrals

10.1.1 Bounded Function, Bounded Domain

The integral of a bounded function over a bounded domain of integration
always exists (deck 6, slide 2). Moreover, a continuous function defined on
a closed interval is always bounded.
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10.1.2 Bounded Function, Unbounded Domain (“Case I”)

Suppose a > 0, suppose g is continuous on [a,∞), and suppose

lim
x→∞

|g(x)|
xα

= c

exists and is finite. If α < −1, then∫ ∞
a
|g(x)| dx <∞.

Conversely, if c > 0 and α ≥ −1, then∫ ∞
a
|g(x)| dx =∞

(deck 6, slide 9). And similarly for integrals on (−∞, a].

10.1.3 Unbounded Function, Bounded Domain (“Case II”)

Suppose g is continuous on (a, b] and suppose

lim
x↓a

|g(x)|
(x− a)α

= c

exists and is finite. If α > −1, then∫ b

a
|g(x)| dx <∞.

Conversely, if c > 0 and α ≤ −1, then∫ b

a
|g(x)| dx =∞

(deck 6, slide 24). And similarly when the integrand is unbounded at b
instead of a (deck 6, slide 25).

10.2 Infinite Sums

Suppose

lim
i→∞

|ai|
iα

= c
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exists and is finite. If α < −1, then

∞∑
i=1

|ai| <∞.

Conversely, if c > 0 and α ≥ −1, then

∞∑
i=1

|ai| =∞

(deck 6, slide 31).

10.3 Moments

If any p-th absolute moment exists, then all q-th moments exist for
0 < q ≤ p. Conversely, if any q-th absolute moment fails to exist, then all
p-th moments fail to exist for q ≤ p (deck 6, slide 56).

Bounded random variables always have expectation (deck 6, slide 58).
If X and Y both have p-th moments, then so does X + Y (deck 6,

slide 59).

11 Asymptotics (Large Sample Theory)

11.1 Central Limit Theorem

If X1, X2, . . . are independent and identically distributed (IID) random
variables having mean µ and variance σ2, then

√
n(Xn − µ)

D−→ N (0, σ2)

(deck 7, slide 32).
(“Sloppy version”) under the same conditions

Xn ≈ N
(
µ,
σ2

n

)
(deck 7, slide 34), where ≈ has no formal mathematical definition but means
approximately distributed as.
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11.2 Continuous Mapping Theorem

Suppose

Xn
D−→ X

and g is a function that is continuous on a set A such that

Pr(X ∈ A) = 1.

Then
g(Xn)

D−→ g(X)

11.3 Slutsky’s Theorem

Suppose (Xi, Yi), i = 1, 2, . . . are random vectors and

Xn
D−→ X

Yn
P−→ a

where X is a random variable and a is a constant. Then

Xn + Yn
D−→ X + a

Xn − Yn
D−→ X − a

XnYn
D−→ aX

and if a 6= 0

Xn/Yn
D−→ X/a

11.4 Delta Method

11.4.1 General

Suppose

nα(Xn − θ)
D−→ Y,

where α > 0, and suppose g is a function differentiable at θ, then

nα[g(Xn)− g(θ)]
D−→ g′(θ)Y

(deck 7, slide 52).
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11.4.2 Normal Asymptotic Distribution

Suppose √
n(Xn − θ)

D−→ N (0, σ2),

and suppose g is a function differentiable at θ, then the delta method says

√
n[g(Xn)− g(θ)]

D−→ N
(
0, [g′(θ)]2σ2

)
(deck 7, 59).

(“Sloppy version”) under the same conditions

g(Xn) ≈ N
(
g(µ),

[g′(µ)]2σ2

n

)
(deck 7, 61), where ≈ has no formal mathematical definition but means
approximately distributed as.

11.5 Variance Stabilizing Transformation

Suppose √
n(Xn − θ)

D−→ N
(
0, v(θ)

)
,

and define

g(θ) = c

∫
dθ

v(θ)1/2

where c is any nonzero constant, which does not depend on θ (and the
integral above is an indefinite integral so there is another additive constant,
which is also arbitrary but does not depend on θ), then

√
n[g(Xn)− g(θ)]

D−→ N (0, σ2)

where the asymptotic variance σ2 does not depend on θ (deck 7, slides 64–
65).

11.6 Multivariate Central Limit Theorem

Suppose X1, X2, . . . is an IID sequence of random vectors having mean
vector µ and variance matrix M and

Xn =
1

n

n∑
i=1

Xi
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Then √
n(Xn − µ)

D−→ N (0,M)

(deck 7, slide 90).
(“Sloppy version”) under the same conditions

Xn ≈ N
(
µ,

M

n

)
(deck 7, slide 90), where ≈ has no formal mathematical definition but means
approximately distributed as.

11.7 Multivariate Continuous Mapping Theorem

Suppose

Xn
D−→ X

and g is a function that is continuous on a set A such that

Pr(X ∈ A) = 1.

Then
g(Xn)

D−→ g(X)

(deck 7, slide 86).

11.8 Multivariate Slutsky’s Theorem

Suppose

Xn =

(
Xn1

Xn2

)
are partitioned random vectors and

Xn1
D−→ Y

Xn2
P−→ a

where Y is a random vector and a is a constant vector, and suppose g is a
function that is continuous at points of the form(

y
a

)
,

then we have
g(Xn1,Xn2)

D−→ g(Y,a)

(deck 7, slides 87–89).
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11.9 Multivariate Delta Method

11.9.1 General

Suppose

nα(Xn − θ)
D−→ Y,

where α > 0, and suppose g is a function differentiable at θ, then

nα[g(Xn)− g(θ)]
D−→ [∇g(θ)]Y

(deck 7, slide 99), where the right-hand side means the matrix multiplication
of the nonrandom matrix ∇g(θ) times the random vector Y.

11.9.2 Normal Asymptotic Distribution

Suppose √
n(Xn − θ)

D−→ N (0,M),

and suppose g is a function differentiable at θ, then the delta method says

√
n[g(Xn)− g(θ)]

D−→ N
(
0,BMBT

)
,

where
B = ∇g(θ)

(deck 7, slide 100).
(“Sloppy version”) under the same conditions

g(Xn) ≈ N
(
g(θ),

BMBT

n

)
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