Stat 5101 Notes: Algorithms (thru 1st midterm)

Charles J. Geyer

September 23, 2012

Contents

1	Cal	culatir	ng an Expectation or a Probability	1
	1.1	From	a PMF	6
	1.2		given Expectations using Uncorrelated	6
	1.3	From	given Expectations using Independent	4
	1.4	From	given Expectations using Linearity of Expectation	,
		1.4.1	Expectation of Sum and Average	,
		1.4.2	Variance of Sum and Average	,
		1.4.3	Expectation and Variance of Linear Transformation .	4
		1.4.4	Covariance of Linear Transformations	4
		1.4.5	Expectation and Variance of Vector Linear Transfor-	
			mation	4
		1.4.6	"Short Cut" Formulas	
2	Change of Variable Formulas			į
	2.1 Discrete Distributions			ļ
		2.1.1	One-to-one Transformations	
		2.1.2	Many-to-one Transformations	,
			Independence	

1 Calculating an Expectation or a Probability

Probability is a special case of expectation (deck 1, slide 62).

1.1 From a PMF

If f is a PMF having domain S (the *sample space*) and g is any function, then

$$E\{g(X)\} = \sum_{x \in S} g(x)f(x)$$

(deck 1, slide 56), and for any event A (a subset of S)

$$Pr(A) = \sum_{x \in S} I_A(x) f(x)$$
$$= \sum_{x \in A} f(x)$$

(deck 1, slide 62).

1.2 From given Expectations using Uncorrelated

If X and Y are uncorrelated random variables, then

$$E(XY) = E(X)E(Y)$$

(deck 2, slide 73).

1.3 From given Expectations using Independent

If X and Y are independent random variables and g and h are any functions, then

$$E\{g(X)h(Y)\} = E\{g(X)\}E\{h(Y)\}$$

(deck 2, slide 76).

More generally, if $X_1, X_2, ..., X_n$ are independent random variables and $g_1, g_2, ..., g_n$ are any functions, then

$$E\left\{\prod_{i=1}^{n} g_{i}(X_{i})\right\} = \prod_{i=1}^{n} E\{g_{i}(X_{i})\}$$

(deck 2, slide 76).

1.4 From given Expectations using Linearity of Expectation

1.4.1 Expectation of Sum and Average

If $X_1, X_2, ..., X_n$ are random variables, then

$$E\left\{\sum_{i=1}^{n} X_i\right\} = \sum_{i=1}^{n} E(X_i)$$

(deck 2, slide 10). In particular, if X_1, X_2, \ldots, X_n all have the same expectation μ , then

$$E\left\{\sum_{i=1}^{n} X_i\right\} = n\mu$$

(deck 2, slide 90), and

$$E(\overline{X}_n) = \mu,$$

where

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \tag{1}$$

(deck 2, slide 90).

1.4.2 Variance of Sum and Average

If $X_1, X_2, ..., X_n$ are random variables, then

$$\operatorname{var}\left\{\sum_{i=1}^{n} X_{i}\right\} = \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{cov}(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} \operatorname{var}(X_{i}) + \sum_{i=1}^{n} \sum_{j=1 \neq i}^{n} \operatorname{cov}(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} \operatorname{var}(X_{i}) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{cov}(X_{i}, X_{j})$$

(deck 2, slide 71). In particular, if $X_1, X_2, ..., X_n$ are uncorrelated, then

$$\operatorname{var}\left\{\sum_{i=1}^{n} X_i\right\} = \sum_{i=1}^{n} \operatorname{var}(X_i)$$

(deck 2, slide 75). More particular, if $X_1, X_2, ..., X_n$ are uncorrelated and all have the same variance σ^2 , then

$$\operatorname{var}\left\{\sum_{i=1}^{n} X_i\right\} = n\sigma^2$$

(deck 2, slide 90) and

$$\operatorname{var}(\overline{X}_n) = \frac{\sigma^2}{n}$$

(deck 2, slide 90), where \overline{X}_n is given by (1).

1.4.3 Expectation and Variance of Linear Transformation

If X is a random variable and a and b are constants, then

$$E(a + bX) = a + bE(X)$$
$$var(a + bX) = b^{2} var(X)$$

(deck 2, slide 8 and slide 37).

1.4.4 Covariance of Linear Transformations

If X and Y are random variables and a, b, c, and d are constants, then

$$cov(a + bX, c + dY) = bd cov(X, Y)$$

(homework problem 3-7).

1.4.5 Expectation and Variance of Vector Linear Transformation

If X is a random vector, \mathbf{a} is a constant vector, and \mathbf{B} is a constant matrix such that $\mathbf{a} + \mathbf{B}\mathbf{X}$ makes sense (the dimension of \mathbf{a} and the row dimension of \mathbf{B} are the same, and the dimension of \mathbf{X} and the column dimension of \mathbf{B} are the same), then

$$E(\mathbf{a} + \mathbf{B}\mathbf{X}) = \mathbf{a} + \mathbf{B}E(\mathbf{X})$$
$$var(\mathbf{a} + \mathbf{B}\mathbf{X}) = \mathbf{B} var(\mathbf{X})\mathbf{B}^{T}$$

(deck 2, slide 64).

1.4.6 "Short Cut" Formulas

If X is a random variable, then

$$var(X) = E(X^2) - E(X)^2$$

(deck 2, slide 21).

If X and Y are random variables, then

$$cov(X,Y) = E(XY) - E(X)E(Y)$$

(homework problem 3-7).

2 Change of Variable Formulas

2.1 Discrete Distributions

2.1.1 One-to-one Transformations

If f_X is the PMF of the random variable X, if Y = g(X), and g is an invertible function with inverse function h (that is, X = h(Y)), then

$$f_Y(y) = f_X[h(y)]$$

and the domain of f_Y is the range of the function g (the set of possible Y values) (deck 2, slide 86).

2.1.2 Many-to-one Transformations

If f_X is the PMF of the random variable X having sample space S and Y = g(X), then

$$f_Y(y) = \sum_{\substack{x \in S \\ g(x) = y}} f_X(x)$$

and the domain of f_Y is the codomain of the function g (deck 2, slide 81).

3 PMF and Independence

If X_1, \ldots, X_n are independent random variables having PMF f_1, \ldots, f_n , then

$$f(x_1, \dots, x_n) = \prod_{i=1}^n f_i(x_i)$$

(deck 1, slide 98).

In particular, if X_1, \ldots, X_n are independent and identically distributed random variables having PMF h, then

$$f(x_1,\ldots,x_n)=\prod_{i=1}^n h(x_i).$$