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Linear Models

We now return to frequentist statistics for the rest of the course.

The next subject is linear models, parts of which are variously

called regression and analysis of variance (ANOVA) and analysis

of covariance (ANCOVA), with regression being subdivided into

simple linear regression and multiple regression.

Although users have a very fractured view of the subject — many

think regression and ANOVA have nothing to do with each other

— a unified view is much simpler and more powerful.

2



Linear Models (cont.)

In linear models we have data on n individuals. For each individ-

ual we observe one variable, called the response, which is treated

as random, and also observe other variables, called predictors or

covariates, which are treated as fixed.

If the predictors are actually random, then we condition on them.

Collect the response variables into a random vector Y of length

n. In linear models we assume the components of Y are normally

distributed and independent and have the same variance σ2. We

do not assume they are identically distributed. Their means can

be different.
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Linear Models (cont.)

E(Y) = µ (∗)
var(Y) = σ2I (∗∗)

where I is the n× n identity matrix. Hence

Y ∼ N (µ, σ2I) (∗∗∗)

Recall that we are conditioning on the covariates, hence the ex-

pectation (∗) is actually a conditional expectation, conditioning

on any covariates that are random, although we have not indi-

cated that in the notation. Similarly, the variance in (∗∗) is a

conditional variance, and the distribution in (∗∗∗) is a conditional

distribution.
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Linear Models (cont.)

One more assumption gives “linear models” its name

µ = Mβ

where M is a nonrandom matrix, which may depend on the co-
variates, and β is a vector of dimension p of unknown parameters.

The matrix M is called the model matrix or the design matrix.
We will always use the former, since the latter doesn’t make
much sense except for a designed experiment.

Each row of M corresponds to one individual. The i-th row
determines the mean for the i-th individual

E(Yi) = mi1β1 +mi2β2 + · · ·+mipβp

and mi1, . . ., mip depend only on the covariate information for
this individual.
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Linear Models (cont.)

The joint PDF of the data is

f(y) =
n∏
i=1

1√
2πσ

exp
(
−

1

2σ2
(yi − µi)2

)

= (2πσ2)−n/2 exp

− 1

2σ2

n∑
i=1

(yi − µi)2


= (2πσ2)−n/2 exp

(
−

1

2σ2
(y −Mβ)T (y −Mβ)

)
Hence the log likelihood is

l(β, σ2) = −
n

2
log(σ2)−

1

2σ2
(y −Mβ)T (y −Mβ)
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The Method of Least Squares

The maximum likelihood estimate for β maximizes the log like-

lihood, which is the same as minimizing the quadratic function

β 7→ (y −Mβ)T (y −Mβ)

Hence this method of estimation is also called the “method of

least squares”. Historically, the method of least squares was

invented about 1800 and the method of maximum likelihood

was invented about 1920. So the older name still attaches to

the method.
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Linear Models (cont.)

Differentiating the log likelihood with respect to β gives

∂l(β, σ2)

∂βk
= −

1

2σ2

n∑
i=1

∂

∂βk
(yi − µi)2

=
1

2σ2

n∑
i=1

∂

∂βk
2(yi − µi)

∂µi
∂βk

and since ∂µi/∂βk = mik, this gives the matrix equation

∇βl(β, σ
2) =

1

σ2
(y −Mβ)TM

setting equal to zero and multiplying both sides by 1/σ2 gives us
the equations

(y −Mβ)TM = MT (y −Mβ) = 0

to solve to obtain the MLE of β.
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Linear Models (cont.)

MT (y −Mβ) = MTy −MTMβ = 0

is equivalent to

MTy = MTMβ

which is sometimes called the “normal equations” (not to be

confused with the normal distribution). Their solution is

β̂ = (MTM)−1MTy

assuming the matrix MTM is invertible. If it is not invertible,

then the MLE is not unique, more on this later.
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Linear Models (cont.)

Recall that only Y is random. The model matrix is considered

fixed. A linear function of a normal random vector is another

normal random vector. Hence the MLE for β is a normal random

vector with mean vector

E(β̂) = (MTM)−1MTE(Y)

= (MTM)−1MTMβ

= β

and variance matrix

var(β̂) = (MTM)−1MT var(Y)M(MTM)−1

= σ2(MTM)−1MTM(MTM)−1

= σ2(MTM)−1
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Linear Models (cont.)

By invariance of maximum likelihood the MLE for µ is

µ̂ = Mβ̂

which is also a normal random vector with mean vector

E(µ̂) = ME(β̂) = Mβ = µ

and variance matrix

var(µ̂) = M var(β̂)MT

= σ2M(MTM)−1MT
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Regression is Projection

Let V denote the vector subspace of Rn consisting of all possible
mean vectors

V = {Mβ : β ∈ Rp }

then the MLE for µ solves the constrained optimization problem

minimize

‖y − µ‖2

subject to

µ ∈ V
where

‖y − µ‖2 = (y − µ)T (y − µ)

is the square of the distance between y and µ in n-dimensional
space.
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Regression is Projection (cont.)

In words, the MLE for µ is the closest point in the set of all

possible mean vectors V to the observed data y. In mathematical

terminology, µ̂ is the projection of y on V .

Everything takes place in n-dimensional space, where n is the

number of individuals. µ and y are points in n-dimensional space,

and V is a vector subspace of n-dimensional space.

The MLE of µ is always unique. There is always a unique closest

point to y in V .

13



Regression is Projection (cont.)

V is the smallest vector space containing the columns of M, each

of which is an n-dimensional vector. If the p columns of M are

linearly independent (meaning none can be written as a linear

combination of the others) and p ≤ n, then V is a p-dimensional

vector space and the map

β 7→Mβ

is one-to-one so the linear equation

µ̂ = Mβ

has a unique solution for β, which is the MLE for β.
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Regression is Projection (cont.)

If the p columns of M are not linearly independent (meaning some

of them can be written as a linear combinations of the others),

then V is a q-dimensional vector space, where q is the largest

number of linearly independent vectors among the columns of

M. Then the map

β 7→Mβ

is many-to-one so the linear equation

µ̂ = Mβ

has many solutions for β, any of which is a (non-unique) MLE

for β.
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Regression is Projection (cont.)

The rank of a matrix M is the largest number of linearly inde-

pendent columns it has.

The rank of the model matrix M is the dimension q of the sub-

space V of all possible mean vectors.

When q = p (the rank equals the column dimension), we say the

model matrix is full rank.

When q < p (the model matrix is not full rank), we can find a

matrix M2 whose columns are a subset of the columns of M and

whose rank is q.
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Regression is Projection (cont.)

Then

β̂2 = (MT
2M2)−1MT

2y

is the unique MLE for the β for this new problem with model

matrix M2 and

µ̂2 = M2(MT
2M2)−1MT

2y

is the unique MLE for µ.

Since, by construction

V = {Mβ : β ∈ Rp } = {M2β : β ∈ Rq }

the “regression as projection” problem is the same in both cases

and µ̂ = µ̂2.
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Regression is Projection (cont.)

Thus we have figured out how to deal with the case where the
MLE for β is not unique.

Since every column of M2 is also a column of M, β̂2 can be
thought of as the solution for the original problem subject to the
constraint that βj = 0 for all j such that the the j-th column of
M is not a column of M2.

Thus we have also found a (non-unique) MLE for β for the
original problem

β̂j = β̂2,k

when the j-th column of M is the k-th column of M2 and

β̂j = 0

when the j-th column of M not a column of M2.
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Regression Coefficients are Meaningless

We have seen that the MLE for β is not always uniquely defined

but this is not a problem.

Let M3 be any n× r matrix such that

V = {Mβ : β ∈ Rp } = {M3β : β ∈ Rr }

Since the “regression as projection” problem is the same in both

cases, so is the MLE for µ. But the MLE for β and β3 seem to

have no relation to each other. None of the components need

be the same.
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Regression Coefficients are Meaningless (cont.)

If M and M3 are both full rank, then there is a relationship

between them: M = M3A for some invertible matrix A and

β̂3 = (MT
3M3)−1MT

3y

β̂ = (MTM)−1MTy

= (ATMT
3M3A)−1ATMT

3y

= A−1(MT
3M3)−1(AT )−1ATMT

3y

= A−1(MT
3M3)−1MT

3y

= A−1β̂3

so there is a relationship between β̂ and β̂3 but a highly non-

obvious one, since we usually don’t know A explicitly.
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Regression Coefficients are Meaningless (cont.)

We need the regression coefficient vector β because we don’t

have an explicit representation of the subspace V of all possible

mean vectors. We have to go through β̂ to get to µ̂.

But that doesn’t make β̂ meaningful. The MLE µ̂ of the mean

vector is always meaningful and interpretable. The MLE β̂ of the

regression coefficient vector is rarely meaningful or interpretable.

Despite this, many regression textbooks spend a large amount of

time teaching how to “interpret” these meaningless quantities.

This leads to many confusions on the part of the poor students

so taught!
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Regression Coefficients are Meaningless (cont.)

Worse, these regression textbooks do not even call µ a parameter
vector or µ̂ a parameter estimate.

They write ŷ instead of µ̂ and call ŷ the vector of predicted
values. This makes a crazy kind of sense. If you want to predict
Yi, then the best prediction is µi, where “best” means minimizing
expected squared prediction error (Deck 1, Slides 6–9). And
your best estimate of µi is µ̂i, where “best” means achieving the
Cramér-Rao lower bound for asymptotic variance (Deck 3, Slides
67–72).

That greatly complicates a simple situation. µ̂ is a point esti-
mate of µ, just like any other parameter estimate. ŷ is a best
prediction, where “best” involves two different bests with two
different meanings.
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Regression Coefficients are Meaningless (cont.)

When µ is not called a parameter and µ̂ is not called a parameter

estimate, students have only one parameter vector β to think

about. Unfortunately, they think about the meaningless one

rather than the meaningful one.

The notation ŷ does not fit with the rest of mathematical statis-

tics. Nowhere else do we put a hat on a random variable.

Nowhere else do we call a parameter estimate anything other

than a parameter estimate.

No wonder students taught this way are confused!
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Regression is Projection (cont.)

The matrix that “puts the hat on y” is called the hat matrix

µ̂ = Mβ̂ = M(MTM)−1MTy

so

µ̂ = Hy

where

H = M(MTM)−1MT
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Regression is Projection (cont.)

A matrix A is symmetric if A = AT . A square matrix A is

idempotent if A = A2.
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Regression is Projection (cont.)

A hat matrix is symmetric and idempotent. To check symmetry
recall

(AB)T = BTAT

(ABC)T = CTBTAT

and so forth. Hence

(MTM)T = MT (MT )T = MTM

is symmetric. The inverse of a symmetric matrix is symmetric
by Cramer’s rule for construction of inverses. Hence (MTM)−1

is symmetric. Hence(
M(MTM)−1MT

)T
= (MT )T (MTM)−1MT = M(MTM)−1MT

is symmetric.
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Regression is Projection (cont.)

The check for idempotence is straightforward

H2 = M(MTM)−1MTM(MTM)−1MT = M(MTM)−1MT = H
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Regression is Projection (cont.)

A square matrix H is a projection matrix if Hy is the point in

the vector subspace

V = {Hη : η ∈ Rn }

that is closest to y.

Theorem. A square matrix H is a projection matrix if and only

if it is symmetric and idempotent.

Proof. We already know one direction. Least squares does

projection and its hat matrix is symmetric and idempotent.
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Regression is Projection (cont.)

For the other direction assume H is symmetric and idempotent.

The matrix I − H is also square, symmetric, and idempotent,

because

(I−H)2 = I− 2H + H2 = I−H

Vectors u and v are perpendicular or orthogonal if uTv = 0. Hy

and (I−H)y are perpendicular because

yT (I−H)Hy = 0

because

(I−H)H = H−H2 = 0
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Regression is Projection (cont.)

Let µ̂ = Hy and let µ = Hη be any other point in V . Then

‖y − µ‖2 = (y − µ)T (y − µ)

= (y − µ̂ + µ̂− µ)T (y − µ̂ + µ̂− µ)

= (y − µ̂)T (y − µ̂) + 2(y − µ̂)T (µ̂− µ)

+ (µ̂− µ)T (µ̂− µ)

= ‖y − µ̂‖2 + ‖µ̂− µ‖2 + 2(y − µ̂)T (µ̂− µ)

= ‖y − µ̂‖2 + ‖µ̂− µ‖2 + 2(y −Hy)T (Hy −Hη)

= ‖y − µ̂‖2 + ‖µ̂− µ‖2 + 2yT (I−H)H(y − η)

= ‖y − µ̂‖2 + ‖µ̂− µ‖2

because (I−H)H = 0. And that proves the theorem.
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Regression is Projection (cont.)

Theorem. Suppose the assumptions for linear models. Then

Y − µ̂ is independent of µ̂ and

µ̂ ∼ N (µ, σ2H)

Y − µ̂ ∼ N
(
0, σ2(I−H)

)
‖Y − µ̂‖2

σ2
∼ chi2(n− q)

where q is the rank of H.

This is a generalization of the theorem about sampling distribu-

tions for normal populations (Deck 1, Slide 58–77).
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Regression is Projection (cont.)

A linear function of a normal random vector is a normal random

vector. Hence (
Y − µ̂

µ̂

)
=

(
I−H
H

)
Y

is a normal random vector. Uncorrelated implies independent for

jointly normal random vectors. Hence independence follows from

cov(Y − µ̂, µ̂) = cov
(
(I−H)Y,HY

)
= E{(I−H)(Y − µ)(Y − µ)TH}
= σ2(I−H)H

being zero, and this follows from (I−H)H = 0.
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Regression is Projection (cont.)

We already saw that µ̂ is a normal random vector.

E(µ̂) = E(HY)

= HE(Y)

= Hµ

= µ

var(µ̂) = var(HY)

= H var(Y)H

= σ2H2

= σ2H
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Regression is Projection (cont.)

Also Y − µ̂ is a normal random vector.

E(Y − µ̂) = E{(I−H)Y}
= (I−H)E(Y)

= (I−H)µ

= 0

var(Y − µ̂) = var{(I−H)Y}
= (I−H) var(Y)(I−H)

= σ2(I−H)2

= σ2(I−H)
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Regression is Projection (cont.)

Consider the spectral decomposition (5101, Deck 5, Slides 103–
110)

I−H = ODOT

where O is orthogonal and D is diagonal. Then

(I−H)2 = I−H

means

OD2OT = ODOT

hence

D2 = D

hence every diagonal element of D is its own square, hence either
zero or one.
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Regression is Projection (cont.)

Hence

ODOT = O1O
T
1

where O1 is the matrix whose columns are the columns of O

corresponding to diagonal elements of D that are equal to one.

The columns of O1 are an orthogonal basis for the vector sub-

space on which I−H projects

V ⊥ = { (I−H)η : η ∈ Rn }
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Regression is Projection (cont.)

Let k be the column dimension of O1, and let Z be a standard

normal random vector of dimension k. Then O1Z is a normal

random vector having mean vector zero and variance matrix

var(O1Z) = O1 var(Z)OT
1 = O1O

T
1 = I−H

Hence O1Z has the same distribution as (Y − µ̂)/σ. Since

‖O1Z‖2 = ZTOT
1O1Z = ZTZ = ‖Z‖2

and ‖Z‖2 has the chi2(k) distribution, that proves all of the the-

orem except for k = n− q.
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Regression is Projection (cont.)

Let O2 be the matrix whose columns are the columns of O cor-

responding to diagonal elements of I −D that are equal to one

and to diagonal elements of D that are equal to zero. Since

O(I−D)OT = I−ODOT = I− (I−H) = H

and since the diagonal elements of I−D are one when the diag-

onal elements of D are zero and vice versa, it follows that the

columns of O2 are an orthogonal basis for V .

Since O1 has k columns and O2 has n−k columns, V has dimen-

sion n− k = q. That finishes the proof of the theorem.
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Linear Models (cont.)

With the theorem, we can now finish parameter estimation in

linear models. As is usual when dealing with normal sampling

distributions, we do not use the MLE for σ2 but rather the un-

biased estimator

σ̂2 =
‖Y − µ̂‖2

n− q
where q is the rank of the hat matrix and the model matrix (the

MLE is the same except for dividing by n rather than n− q).

That this estimator is unbiased follows from the theorem and

the expectation of the chi-square distribution.
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Linear Models (cont.)

Let

W = (MTM)−1

then

var(β̂i) = σ2wii

where wij denotes the components of W. Hence

se(β̂i) = σ̂
√
wii

estimates the standard deviation of β̂i.
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Linear Models (cont.)

Moreover,

β̂i − βi
se(β̂i)

=

β̂i − βi
σ
√
wii√√√√‖Y − µ̂‖2

(n− q)σ2

∼ t(n− q)

is an exact pivotal quantity, which can be used to make exact
confidence intervals or hypothesis tests about βi.

If tα/2 is the 1− α/2 quantile of the t(n− q) distribution, then

β̂i ± tα/2 se(β̂i)

is an exact 100(1−α)% confidence interval for the true unknown
parameter βi.
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Linear Models (cont.)

If

t =
β̂i − β∗i
se(β̂i)

and T is a t(n − q) random variable, then Pr(T < t) is an exact

P -value for the test with hypotheses

H0 : βi ≥ β∗i
H1 : βi < β∗i

Pr(T > t) is an exact P -value for the test with hypotheses

H0 : βi ≤ β∗i
H1 : βi > β∗i
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Linear Models (cont.)

And 2 Pr(T > |t|) is an exact P -value for the test with hypotheses

H0 : βi = β∗i
H1 : βi 6= β∗i
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Linear Models (cont.)

We now repeat the last four slides changing the parameter from

βi to µi.

As before, define the hat matrix (slide 24)

H = M(MTM)−1MT

then

var(µ̂i) = σ2hii

where hij denotes the components of H. Hence

se(µ̂i) = σ̂
√
hii

estimates the standard deviation of µ̂i.

44



Linear Models (cont.)

Moreover,

µ̂i − µi
se(µ̂i)

∼ t(n− q)

is an exact pivotal quantity, which can be used to make exact

confidence intervals or hypothesis tests about µi.

If tα/2 is the 1− α/2 quantile of the t(n− q) distribution, then

µ̂i ± tα/2 se(µ̂i)

is an exact 100(1−α)% confidence interval for the true unknown

parameter µi.
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Linear Models (cont.)

If

t =
µ̂i − µ∗i
se(µ̂i)

and T is a t(n − q) random variable, then Pr(T < t) is an exact

P -value for the test with hypotheses

H0 : µi ≥ µ∗i
H1 : µi < µ∗i

Pr(T > t) is an exact P -value for the test with hypotheses

H0 : µi ≤ µ∗i
H1 : µi > µ∗i
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Linear Models (cont.)

And 2 Pr(T > |t|) is an exact P -value for the test with hypotheses

H0 : µi = µ∗i
H1 : µi 6= µ∗i

47



Confidence Intervals for New Data

Suppose that, instead of a confidence interval for the mean for

one of the individuals in our data, we want confidence intervals

for some new individuals, whose covariate data would form a new

model matrix Mnew. Then the vector of mean values for these

new individuals is µnew = Mnewβ, where β is the true unknown

parameter vector.
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Confidence Intervals for New Data (cont.)

The MLE for µnew is by invariance of maximum likelihood

µ̂new = Mnewβ̂

and this estimator is normal with mean and variance

E(µ̂new) = MnewE(β̂)

= Mnewβ

= µnew

var(µ̂new) = Mnew var(β̂)MT
new

= σ2Mnew(MTM)−1MT
new
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Confidence Intervals for New Data (cont.)

We repeated the four slides 40–43 changing the parameter from
βi to µi to get the four slides 44–47. We now repeat them again
changing µi to µnew,i.

Define the matrix

Hnew = Mnew(MTM)−1MT
new

then

var(µ̂new,i) = σ2hnew,ii

where hnew,ij denotes the components of Hnew. Hence

se(µ̂new,i) = σ̂
√
hnew,ii

estimates the standard deviation of µ̂new,i.
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Confidence Intervals for New Data (cont.)

Moreover,

µ̂new,i − µnew,i

se(µ̂new,i)
∼ t(n− q)

is an exact pivotal quantity, which can be used to make exact

confidence intervals or hypothesis tests about µnew,i.

If tα/2 is the 1− α/2 quantile of the t(n− q) distribution, then

µ̂new,i ± tα/2 se(µ̂new,i)

is an exact 100(1−α)% confidence interval for the true unknown

parameter µnew,i.
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Hypothesis Tests for New Data

If

t =
µ̂new,i − µ∗new,i

se(µ̂new,i)

and T is a t(n − q) random variable, then Pr(T < t) is an exact

P -value for the test with hypotheses

H0 : µnew,i ≥ µ∗new,i

H1 : µnew,i < µ∗new,i

Pr(T > t) is an exact P -value for the test with hypotheses

H0 : µnew,i ≤ µ∗new,i

H1 : µnew,i > µ∗new,i
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Hypothesis Tests for New Data (cont.)

And 2 Pr(T > |t|) is an exact P -value for the test with hypotheses

H0 : µnew,i = µ∗new,i

H1 : µnew,i 6= µ∗new,i
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Prediction Intervals for New Data

Suppose that, instead of estimating the vector µnew of mean

values of the response for new individuals, we wish to predict

the new data Ynew for these individuals.

Since

Ynew − µnew ∼ N (0, σ2I)

µ̂new − µnew ∼ N (0, σ2Hnew)

and these random vectors are independent (because Ynew is in-

dependent of the original data used to estimate µ̂new)

Ynew − µ̂new ∼ N
(
0, σ2(I + Hnew)

)
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Prediction Intervals for New Data (cont.)

We repeated the four slides 40–43 changing the parameter from

βi to µi to get the four slides 44–47. We repeated them again

changing µi to µnew,i to get the four slides 50–53. Now we par-

tially repeat them again changing confidence intervals for µnew,i

to prediction intervals for Ynew,i.

Since

var(Ynew,i − µ̂new,i) = σ2(1 + hnew,ii)

it follows that √
σ̂2 + se(µ̂new,i)

2 = σ̂
√

1 + hnew,ii

estimates the standard deviation of Ynew,i − µ̂new,i.
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Prediction Intervals for New Data (cont.)

Moreover,

Ynew,i − µ̂new,i√
σ̂2 + se(µ̂new,i)

2
∼ t(n− q)

is an exact pivotal quantity, which can be used to make exact

prediction intervals for Ynew,i.

If tα/2 is the 1− α/2 quantile of the t(n− q) distribution, then

µ̂new,i ± tα/2

√
σ̂2 + se(µ̂new,i)

2

is an exact 100(1− α)% prediction interval for new data Ynew,i.
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Linear Models (cont.)

We have seen that confidence intervals and hypothesis tests for

βi, for µi, for µnew,i, and prediction intervals for Ynew,i are very

similar.

Here’s something different.
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Nested Models

Suppose we have two linear models with model matrices M1 and

M2 both having the same row dimension n but different column

dimensions p1 and p2. The corresponding hat matrices

Hi = Mi(M
T
i Mi)

−1MT
i

are both n× n. The corresponding spaces of mean vectors are

Vi = {Miβ : β ∈ Rpi }

are both vector subspaces of Rn.

We say the model 1 is nested within model 2 if V1 ⊂ V2.
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Nested Models (cont.)

This technical definition of nesting is, in general, hard to verify.
So we usually use a simpler notion. Model 1 is nested within
model 2 if all of the columns of M1 are columns of M2 or if all
of the terms in the R formula specifying model 1 are also present
in the R formula specifying model 2.

Either of these implies the technical condition V1 ⊂ V2, but the
technical condition is more general.

The model with formula y ~ x1 + x2 is nested within the model
with formula y ~ x1 + x2 + x3 + x4 + x5.

The model with formula y ~ poly(x1, x2, degree = 2) is nested
within the model with formula y ~ poly(x1, x2, degree = 3).
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Nested Models (cont.)

Lemma. If model 1 is nested within model 2, then

H1H2 = H2H1 = H1

(I−H1)(I−H2) = (I−H2)(I−H1) = (I−H2)

Proof. We prove only

H2H1 = H1 (∗)
(I−H1)(I−H2) = (I−H2) (∗∗)

since these imply the other two.
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Nested Models (cont.)

One of these implications

(I−H2)(I−H1) = I−H2 −H1 + H2H1

= I−H2

uses (∗), and the other

H1H2 = [I− (I−H1)][I− (I−H2)]

= I− (I−H1)− (I−H2) + (I−H1)(I−H2)

= I− (I−H1)

= H1

uses (∗∗).
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Nested Models (cont.)

For any y the projection H1y is in V1 hence in V2. The projection
H2H1y of this point on V2 does nothing (the nearest point in V2
to a point already in V2 is that point itself). Hence H2H1y = H1y

for all y, which is (∗).

We already know (slide 38) that the dimensions of Vi and V ⊥i
add up to n, hence an orthogonal basis for Vi combined with an
orthogonal basis for V ⊥i makes an orthogonal basis for Rn. Thus
V ⊥i consists of all vectors perpendicular to all elements of Vi.
From this we see that V1 ⊂ V2 implies V ⊥2 ⊂ V

⊥
1 .

Hence the proof of (∗∗) is exactly like the proof of (∗) above,
except with I − Hi replacing Hi and V⊥i replacing Vi. That
finishes the proof of the lemma.
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Hypothesis Tests of Model Comparison

Theorem. Suppose the nested models setup on the preceding

four slides, and suppose Y ∼ N (µ, σ2I), where µ = M1β1. Then

(I−H2)Y and (H2−H1)Y are independent random vectors, and

‖(I−H2)Y‖2

σ2
∼ chi2(n− q2)

‖(H2 −H1)Y‖2

σ2
∼ chi2(q2 − q1)

‖(H2 −H1)Y‖2/(q2 − q1)

‖(I−H2)Y‖2/(n− q2)
∼ F (q2 − q1, n− q2)

where qi is the dimension of Vi and the rank of Mi.
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Hypothesis Tests of Model Comparison (cont.)

The first assertion follows from the theorem on slide 31. The

last assertion follows from the preceding ones and the definition

of an F random variable as the ratio of independent chi-squares

each divided by its degrees of freedom.

To prove the independence assertion, we show the random vec-

tors in question are uncorrelated

cov{(I−H2)Y, (H2 −H1)Y}
= E{(I−H2)(Y − µ)(YT − µ)T (H2 −H1)}

= σ2(I−H2)(H2 −H1)

= σ2(H2 −H1 −H2
2 + H2H1)

is zero because H2
2 = H2 and H2H1 = H1.
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Hypothesis Tests of Model Comparison (cont.)

The argument on slides 35–38 generalizes to prove the following.

Lemma. Suppose W ∼ N (0,H), where H is a projection matrix.

Then ‖W‖2 has a chi-square distribution with degrees of freedom

equal to the rank of H.

It only remains to be shown that H2−H1 is symmetric and idem-

potent and has rank q2− q1. Symmetry is obvious. Idempotence

is

(H2 −H1)2 = H2
2 −H1H2 −H2H1 + H2

1

= H2 −H1 −H1 + H1

= H2 −H1
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Hypothesis Tests of Model Comparison (cont.)

Thus H2 −H1 is a projection matrix. Since

H2 −H1 = H2(I−H1)

this matrix projects on the vector subspace

V2 ∩ V ⊥1
where H2 projects on V2 and H1 projects on V1. Hence the rank

of H2 −H1 is the dimension of this subspace.

Consider an orthogonal basis for V1, which has q1 vectors. Extend

this basis by adding q2− q1 vectors to make an orthogonal basis

for V2. These additional q2 − q1 vectors are an orthogonal basis

for V2 ∩ V ⊥1 . That finishes the proof of the theorem.
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Categorical Covariates and Dummy Variables

Suppose, as in the computer example we have one quantitative
covariate x and one categorical covariate color which takes values
"red", "green", and "blue".

How do we deal with that? It depends on what model we want
to fit. If we write down the equation giving means as a function
of regression coefficients, then that implicitly defines the model
matrix.

Suppose we want to fit parallel regression lines. The regres-
sion lines for different colors have the same slope but different
intercepts

µi = βcolori + γxi
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Categorical Covariates and Dummy Variables (cont.)

There are four regression coefficients, three betas, one for each

color, and γ. In order to see the model matrix clearly we need

to re-express the formula specifying the model so that all of the

betas occur as coefficients

µi =
∑

c∈colors

dicβc + xiγ

Where

dic =

1, individual i is color c

0, otherwise

Think of dic as the elements of a matrix, then each of its columns

is a column of the model matrix, and the model matrix has one

additional column whose elements are xi.
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Categorical Covariates and Dummy Variables (cont.)

The general principle follows. Whenever one has a categorical

covariate with k categories, replace it with k indicator variables,

the j-th of which is one if individual i is in category j and zero

otherwise.

These k new variables are sometimes called dummy variables.
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Dummy Variables and Intercepts

By default the R formula mini-language includes an “intercept”,
that is, it includes a column of ones in the model matrix.

If an intercept is included, then one of the dummy variables must
be dropped, because

k∑
j=1

dij = 1

(every individual is in one and only one category). Thus the
dummy variables for a category add up to the the “intercept”
variable.

Thus the dummy variables and the “intercept” variable are not
linearly independent and any model matrix that contains all of
them cannot be full rank.
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Dummy Variables and Intercepts (cont.)

If there are multiple categories, then one dummy variable must

be dropped from each group if an “intercept” variable is included

in the model. This is the default strategy of the R formula mini-

language.

A categorical covariate with k categories corresponds to

k − 1 dummy variables, which are columns of the model

matrix.

Which category is “dropped” (not one of the k− 1 dummy vari-

ables included) is arbitrary. This is another aspect of “regression

coefficients are meaningless” (slides 19–23).
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Dummy Variables and Intercepts (cont.)

If one chooses not to include an intercept — which, somewhat

confusingly is indicated by adding either “- 1” or “+ 0” to the

R model formula — then there is no reason to drop a dummy

variable if there is only one categorical predictor. All must be

included.

If there is more than one categorical covariate and no “inter-

cept”, then one dummy variable must be dropped from all but

one group. Which group keeps all of its dummy variables is ar-

bitrary. This is another aspect of “regression coefficients are

meaningless” (slides 19–23).
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Categorical Covariates and Dummy Variables (cont.)

The R terminology for a categorical covariate is factor.

R automatically assumes any non-numeric variable appearing in
a model formula is a factor, and it automatically assumes any
numeric variable appearing in a model formula is not a factor.

If you want a numeric variable to be treated as a factor, you
must explicitly say so.

out <- lm(y ~ factor(fred) + x)

or

fred <- factor(fred)

out <- lm(y ~ fred + x)
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One-Way ANOVA

When all covariates are categorical this is called analysis of vari-

ance (ANOVA). When there is only one covariate and it is cat-

egorical, this is called one-way ANOVA.

The linear model that includes all of the dummy variables and

no intercept has the form

µi = βci

where ci is the category for the i-th individual. In effect, we fit

a separate mean for each category.
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One-Way ANOVA (cont.)

Because we assume (as always in linear models) all components

of the response have the same variance, this generalizes the two-

sample t procedures that assume equality of variance (deck 2,

slides 130–135 and the hypothesis test using the same pivotal

quantity).
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One-Way ANOVA (cont.)

Because there are several parameters of interest and no single

parameter is of much interest by itself, the primary interest is

on F tests of model comparison. That is what all the computer

examples are about.

Nevertheless, ANOVA are linear models just like any other. All

of the theory and practice in this deck of slides is applicable to

them. In particular, one can do confidence intervals for regression

coefficients or means or prediction intervals for new data. The R

function predict works the same way for linear models in which all

predictors are categorical as it does for any other linear models.
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Two-Way ANOVA

When there are two and only two covariates and both are cat-

egorical, a linear model is called two-way ANOVA. Again, the

primary interest is in F tests of model comparison.

We say the model has only main effects if the R formula speci-

fying the model is y ~ c + d, where y is the response and c and

d are the categorical predictors.

As discussed above this leads to a model matrix that includes

one column of all ones (the “intercept”) k − 1 dummy variables

for the first predictor and m− 1 dummy variables for the second

predictor if they have k and m categories, respectively.
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Two-Way ANOVA (cont.)

This results in the mean being the sum of two terms

µi = βci + γdi (∗)

the mean for individual i is the sum of the main effect for the

first predictor and the main effect for the second predictor, in

both cases for the categories containing individual i.

If we actually used the parametrization (∗), the model matrix

would not be full rank and the regression coefficients would not

have unique least squares estimates.
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Two-Way ANOVA (cont.)

There are many ways to rewrite the model so that it has k+m−1

parameters and the model matrix is full rank. The theoretically

elegant way, found in many textbooks is to write

µi = α+ βci + γdi

where the constraints

k∑
j=1

βj = 0

m∑
j=1

γj = 0

are imposed. These constraints allow the elimination of two

parameters, leaving k +m− 1.

79



Two-Way ANOVA (cont.)

Theoretically elegant this may be, but R does something simpler.

It puts in an intercept and drops one of each group of dummy

variables. In effect, it uses the model

µi =


α+ βci + γdi, ci 6= 1 and di 6= 1

α+ βci, ci 6= 1 and di = 1

α+ γdi, ci = 1 and di 6= 1

α, ci = 1 and di = 1

For some purposes, it is o. k. to be a bit vague about how the

model is parametrized. For other purposes, particularly if regres-

sion coefficients are being interpreted, it is crucial to understand

the parametrization completely.

80



Two-Way ANOVA (cont.)

The next step in model complication is to add an “interaction”

term.

We say the model having y as the response and c and d as the

categorical predictors, has main effects and interaction if the R

formula specifying the model is y ~ c * d.
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Two-Way ANOVA (cont.)

This results in the mean being different for each different pair

of categories. Essentially the model is

µi = βcidi

the mean for individual i is the same as for all individuals classified

the same way by both categorical covariates.
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Two-Way ANOVA (cont.)

The same model can also be written

µi = α+ βci + γdi + δcidi
imposing the constraints

k∑
j=1

βj = 0

m∑
j=1

γj = 0

k∑
j=1

δju = 0, u = 1, . . . ,m

m∑
j=1

δuj = 0, u = 1, . . . , k
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Two-Way ANOVA (cont.)

The same model can also be written

µi =


α+ βci + γdi + δcidi, ci 6= 1 and di 6= 1

α+ βci, ci 6= 1 and di = 1

α+ γdi, ci = 1 and di 6= 1

α, ci = 1 and di = 1

This is the parametrization R uses by default.
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