Stat 5102 (Geyer) Spring 2013 Homework Assignment 9 Due Wednesday, April 17, 2013

Solve each problem. Explain your reasoning. No credit for answers with no explanation. If the problem is a proof, then you need words as well as formulas. Explain why your formulas follow one from another.

9-1. Suppose X is Bin(n, p) and the prior distribution for p is flat (a proper prior, since p is bounded).

- (a) Find the posterior distribution for p.
- (b) Find the mean of the posterior distribution for p.
- (c) Find the standard deviation of the posterior distribution for p.
- (d) Find the mode of the posterior distribution for p.
- (e) In the case x = 0, n = 10, find the posterior median for p.

9-2. Suppose X_1, \ldots, X_n are IID $\text{Exp}(\lambda)$ and the prior distribution for λ is flat (an improper prior). The posterior distribution for λ was found in problem 8-10 (a).

- (a) Find the mean of the posterior distribution for λ .
- (b) Find the standard deviation of the posterior distribution for λ .
- (c) Find the mode of the posterior distribution for λ .
- (d) In the case $\bar{x}_n = 23.7$, n = 10, find the posterior median for λ .

9-3. Find the Jeffreys prior for the NegBin(r, p) distribution, considering r fixed and known and p the unknown parameter. It is proper or improper?

9-4. Find the Jeffreys prior for the $Gam(\alpha, \lambda)$ distribution, where α is known and λ unknown, so we want a prior distribution for λ . It is proper or improper?

9-5. Find the posterior mean and variance of μ when the data are IID normal and the prior is a general normal-gamma prior. Say for which values of the hyperparameters of the prior the posterior mean and variance of μ exist.

9-6. Suppose X_1, \ldots, X_n are IID $\mathcal{N}(\mu, 4)$, the prior distribution for μ is $\mathcal{N}(10, 9)$, and the sample mean of a sample of size 10 is $\overline{X}_n = 12$. Calculate a 90% HPD region for μ (note not 95%).

9-7. Suppose X_1, \ldots, X_n are IID $\mathcal{N}(\mu, \lambda^{-1})$, the prior distribution for (μ, λ) is the conjugate normal-gamma prior with

$$\begin{split} \lambda &\sim \operatorname{Gam}(3,3) \\ \mu \mid \lambda &\sim \mathcal{N}(10,16\lambda^{-1}) \end{split}$$

the sample mean of a sample of size 15 is $\overline{X}_n = 12$ and the sample variance is $S_n^2 = 50$ (note not V_n).

(a) Calculate a 95% HPD region for μ .

(b) Calculate the exact frequentist 95% confidence interval for μ .

9-8. Suppose X_1, \ldots, X_n are IID $\text{Exp}(\lambda)$ and the prior distribution for λ is Gam(3,3).

(a) Calculate the posterior probabilities of the events

$$H_0: \lambda \ge 1$$

 $H_1: \lambda < 1$

when n = 4 and $\bar{x}_n = 1.9$.

- (b) Calculate the prior probabilities of the same events.
- (c) Calculate the Bayes factor

$$\frac{\Pr(H_0 \mid \mathbf{x})}{\Pr(H_1 \mid \mathbf{x})} \cdot \frac{\Pr(H_1)}{\Pr(H_0)}$$

(d) Calculate an exact frequentist *P*-value for these hypotheses based on the exact sampling distribution of $X_1 + \cdots + X_n$.

9-9. Suppose X_1, \ldots, X_n are IID $\text{Exp}(\lambda)$. In this problem we are interested in the hypotheses (models)

$$m_1 = H_0 \colon \lambda = 1$$
$$m_2 = H_1 \colon \lambda \neq 1$$

Suppose the prior distribution for λ given model m_2 is Gam(3,3). The prior distribution for λ given model m_1 is concentrated at the point $\lambda = 1$. Suppose n = 4 and $\bar{x}_n = 1.9$. Calculate the Bayes factor (model 1 over model 2). Hint: For both models, proceed as if the data were $X_1 + \cdots + X_n$.