
Stat 5102 Notes: Markov Chain Monte Carlo and

Bayesian Inference

Charles J. Geyer

March 30, 2012

1 The Problem

This is an example of an application of Bayes rule that requires some
form of computer analysis. We will use Markov chain Monte Carlo (MCMC).

The problem is the same one that was done by maximum likelihood
on the computer examples web pages (http://www.stat.umn.edu/geyer/
5102/examp/like.html). The data model is gamma. We will use the Jef-
freys prior.

1.1 Data

The data are loaded by the R command

> foo <- read.table(url("http://www.stat.umn.edu/geyer/5102/data/ex3-1.txt"),

+ header = TRUE)

> x <- foo$x

1.2 R Package

We load the R contributed package mcmc, which is available from CRAN.

> library(mcmc)

If this does not work, then get the library using the package menu for R.

1.3 Random Number Generator Seed

In order to get the same results every time, we set the seed of the random
number generator.

> set.seed(42)

To get different results, change the seed or simply omit this statement.

1

1.4 Prior

We have not done the Fisher information matrix for the two-parameter
gamma distribution. To calculate Fisher information, it is enough to have
the log likelihood for sample size one. The PDF is

f(x | α, λ) =
λα

Γ(α)
xα−1 exp (−λx)

The log likelihood is

l(α, λ) = log f(x | α, λ) = α log(λ)− log Γ(α) + (α− 1) log(x)− λx

which has derivatives

∂l(α, λ)

∂α
= log(λ)− d

dα
log Γ(α) + log(x)

∂l(α, λ)

∂λ
=
α

λ
− x

∂2l(α, λ)

∂α2
= − d2

dα2
log Γ(α)

∂2l(α, λ)

∂α∂λ
=

1

λ
∂2l(α, λ)

∂λ2
= − α

λ2

Recall that ∂2 log(Γ(α))/∂α2 is called the trigamma function. So the Fisher
information matrix is

I(θ) =

(
trigamma(α) −1/λ
−1/λ α/λ2

)
Its determinant is

|I(θ)| =
∣∣∣∣trigamma(α) −1/λ
−1/λ α/λ2

∣∣∣∣ =
α trigamma(α)− 1

λ2

and the Jeffreys prior is

g(α, λ) =

√
α trigamma(α)− 1

λ

2

2 The Markov Chain Monte Carlo

2.1 Ordinary Monte Carlo

The “Monte Carlo method” refers to the theory and practice of learning
about probability distributions by simulation rather than calculus. In ordi-
nary Monte Carlo (OMC) we use IID simulations from the distribution of
interest. Suppose X1, X2, . . . are IID simulations from some distribution,
and suppose we want to know an expectation

µ = E{g(Xi)}.

Then the law of large numbers (LLN) then says

µ̂n =
1

n

n∑
i=1

g(Xi)

converges in probability to µ, and the central limit theorem (CLT) says

√
n(µ̂n − µ)

D−→ N (0, σ2)

where
σ2 = var{g(Xi)}

which can be estimated by the empirical variance

σ̂2 =
1

n

n∑
i=1

(
g(Xi)− µ̂n

)2
and this allows us to say everything we want to say about µ, for example,
an asymptotic 95% confidence interval for µ is

µ̂n ± 1.96
σ̂n√
n

The theory of OMC is just the theory of frequentist statistical inference.
The only differences are that

• the “data”X1, . . ., Xn are computer simulations rather than measure-
ments on objects in the real world,

• the “sample size” is the number of computer simulations rather than
the size of some real world data, and

3

• the unknown parameter µ is in principle completely known, given by
some integral, which, unfortunately, we are unable to do.

Often we say that n is the Monte Carlo sample size to distinguish it
from anything else that may be called a sample size. Often we say that µ̂n
is the Monte Carlo estimate or Monte Carlo approximation or Monte Carlo
calculation of µ to distinguish it from anything else that may be called an
estimate. Often we say that σ̂n/

√
n is the Monte Carlo standard error of

µ̂n to distinguish it from anything else that may be called a standard error.
Great! The only problem is that is is very difficult to simulate IID

simulations of random variables or random vectors whose distribution is not
a brand name distribution.

3 Markov Chains

A Markov chain is a sequence of dependent random variables X1, X2,
. . . having the property that the conditional distribution of the future given
the past depends only on the present: the conditional distribution of Xn+1

given X1, . . ., Xn depends only on Xn.
We say the Markov chain has stationary transition probabilities if the

conditional distribution ofXn+1 givenXn is the same for all n. This property
is so important that it is often assumed without comment. Every Markov
chain used in MCMC has stationary transition probabilities, but this goes
without saying.

We say the Markov chain has an invariant distribution, or stationary
distribution, or equilibrium distribution if whenever Xn has this equilibrium
distribution and the conditional distribution of Xn+1 given Xn is that of the
transition probabilities of the Markov chain, then Xn+1 also has this equilib-
rium distribution (same as Xn). Thus if X1 has the equilibrium distribution,
then so does Xn for all n.

4 The Metropolis Algorithm

It turns out that there is an algorithm for simulating a Markov chain
having any equilibrium distribution for which one has an unnormalized PDF,
called the Metropolis-Hastings-Green algorithm. An R contributed package
mcmc has a function metrop that does this using the most basic version, called
the normal random walk Metropolis algorithm. It works as follows, suppose
the current state of the Markov chain is Xn and suppose the unnormalized

4

density of the desired equilibrium distribution is h. Then the next step of
the Markov chain is simulated as follows.

• Simulate Yn having a N (0, τ2) distribution.

• Calculate

r =
h(Xn + Yn)

h(Xn)

• Simulate Un having a Unif(0, 1) distribution.

• If Un < r, then set Xn+1 = Xn + Yn, otherwise set Xn+1 = Xn.

The algorithm works just as well when the state of the Markov chain is a
vector. We just replace normal font with bold face, and the variance τ2 with
a variance matrix M. Suppose the current state of the Markov chain is Xn

and suppose the unnormalized density of the desired equilibrium distribution
is h. Then the next step of the Markov chain is simulated as follows.

• Simulate Yn having a N (0,M) distribution.

• Calculate

r =
h(Xn + Yn)

h(Xn)

• Simulate Un having a Unif(0, 1) distribution.

• If Un < r, then set Xn+1 = Xn + Yn, otherwise set Xn+1 = Xn.

The only thing we can adjust, and must adjust, in the algorithm is the
proposal variance, τ2 in the scalar version and M in the vector version. If
we make the variance too small, then the chain only takes little baby steps
and takes a very long time to equilibrate. If we make the variance too big,
then the algorithm proposes very large steps Yn or Yn, but most of those
steps are not used in the last step because r calculated in the third step is
too small.

5 The Markov Chain Monte Carlo

MCMC is much like OMC. Most Markov chains used in MCMC obey
the LLN and the CLT. These are the Markov chain LLN and Markov chain
CLT and are not quite the same as the IID LLN and CLT. However, they
serve the purpose.

5

Suppose X1, X2, . . . is a Markov chain whose initial distribution is its
equilibrium distribution, and suppose we want to know an expectation

µ = E{g(Xi)}.

Then the law of large numbers (LLN) then says

µ̂n =
1

n

n∑
i=1

g(Xi)

converges in probability to µ, and the central limit theorem (CLT) says

√
n(µ̂n − µ)

D−→ N (0, σ2)

where

σ2 = var{g(Xi)}+ 2
∞∑
k=1

cov{g(Xi), g(Xi+k)}

which can be estimated by the method of batch means (more on this later).
These results are stated in terms of a Markov chain started at equilib-

rium, which usually cannot be done, but they also hold regardless of the
initial distribution, meaning µ̂n is calculated for a Markov chain started in
any distribution, but E{g(Xi)}, var{g(Xi)}, and cov{g(Xi), g(Xi+k)} refer
to a Markov chain with the same transition probabilities and stationary
initial distribution.

Thus MCMC works just like OMC, except the variance in the CLT is
more complicated and must be estimated differently.

6 Batch Means

The Markov chain CLT says that µ̂n is approximately normal and cen-
tered at the quantity µ that we are trying to calculate approximately. All
we need to know is estimate the variance, which the CLT says obeys the
square root law. It is of the form σ2/n for some constant σ2, which we don’t
know.

However, the estimate µ̂b for a subsection of the chain of length b, should
also be approximately normal with mean µ and variance σ2/b, so long as b
is large enough. Suppose b evenly divides n and we form the means

µ̂b,k =
1

b

bk+b∑
i=bk+1

g(Xi)

6

for k = 1, . . ., m = n/b. Each of these “batch means” is approximately
normal with mean approximately µ and variance approximately σ2/b. Thus
their empirical variance

1

m

m∑
k=1

(µ̂b,k − µ̂n)2

estimates σ2/b. And b/n times this estimates σ2/n, the asymptotic variance
of µ̂n.

Alternatively, we can just make a t confidence interval using the m batch
means as data.

7 Trying it Out

7.1 Log Unnormalized Posterior

We need to define an R function that calculates the log unnormalized
posterior.

> lupost <- function(theta) {

+ stopifnot(is.numeric(theta))

+ stopifnot(is.finite(theta))

+ stopifnot(length(theta) == 2)

+ alpha <- theta[1]

+ lambda <- theta[2]

+ if (alpha <= 0) return(- Inf)

+ if (lambda <= 0) return(- Inf)

+ logl <- sum(dgamma(x, shape = alpha, rate = lambda, log = TRUE))

+ lpri <- (1 / 2) * log(alpha * trigamma(alpha) - 1) - log(lambda)

+ return(logl + lpri)

+ }

The only tricky bit is that we define this function to be −∞ off of the
parameter space. This corresponds to the unnormalized posterior value of
zero, and results in the Metropolis algorithm never taking a step into this
region.

7.2 Try 1

> out <- metrop(lupost, initial = c(1, 1), nbatch = 1e4)

> print(out$accept)

[1] 0.0826

7

> print(out$time)

user system elapsed

0.509 0.000 0.512

7.3 Try 2

Now we need to adjust the scale. We set the variance matrix M in the
Metropolis algorithm to be τ2I, where I is the identity matrix. Try τ = 0.5.

> out <- metrop(out, scale = 0.5)

> print(out$accept)

[1] 0.2243

> print(out$time)

user system elapsed

0.550 0.000 0.551

The idea is to get an acceptance rate, which is the fraction of iterations in
which Un < r in step 4 of the Metropolis algorithm so Xn+1 6= Xn, to be
roughly 20%. Now we have done that.

8 Diagnostics

8.1 Time Series Plots

Figure 1 (page 9) shows the time series plot made by the R statement

> plot(ts(out$batch, names = c("alpha", "lambda")))

What we are looking for is no obvious trend. If the beginning of the run looks
very different from the end, then the simulated Markov chain is nowhere near
stationarity and we need to run longer. This looks o. k.

8.2 Autocorrelation Plots

Figure 2 (page 10) shows the autocorrelation plot made by the R state-
ment

> acf(ts(out$batch, names = c("alpha", "lambda")), lag.max = 50)

8

1.
0

2.
0

3.
0

al
ph

a

0.
5

1.
0

1.
5

2.
0

2.
5

0 2000 4000 6000 8000 10000

la
m

bd
a

Time

ts(out$batch, names = c("alpha", "lambda"))

Figure 1: Time series plot of MCMC output.

9

0 10 20 30 40 50

0.
0

0.
4

0.
8

Lag

A
C

F

alpha

0 10 20 30 40 50

0.
0

0.
4

0.
8

Lag

alpha & lambda

−50 −40 −30 −20 −10 0

0.
0

0.
4

0.
8

Lag

A
C

F

lambda & alpha

0 10 20 30 40 50

0.
0

0.
4

0.
8

Lag

lambda

Figure 2: Autocorrelation plot of MCMC output.

10

The diagonal plots show the autocovariance function

k 7→ cov{g(Xi), g(Xi+k)}
var{g(Xi)}

where g(Xi) is the first or second coordinate of the state vector. The off-
diagonal plots show the autocrosscovariance function

k 7→ cov{g1(Xi), g2(Xi+k)}
sd{g1(Xi)} sd{g2(Xi)}

where g1(Xi) is the first coordinate and g2(Xi) is the second coordinate of
the state vector.

What we are looking for is what lag the autocorrelations decrease to
being not significantly different from zero (within the blue confidence region).
It looks like about lag 40. We want batches for the method of batch means
larger than that, perhaps much larger.

9 More Tries

9.1 Try 3

> out <- metrop(out, blen = 200, nbatch = 500)

> print(out$accept)

[1] 0.22094

> print(out$time)

user system elapsed

5.437 0.000 5.441

From this we can make frequentist confidence intervals for the posterior
means of α and λ.

> alpha <- out$batch[, 1]

> lambda <- out$batch[, 2]

> t.test(alpha)

One Sample t-test

data: alpha

11

t = 291.0746, df = 499, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

1.663320 1.685927

sample estimates:

mean of x

1.674624

> t.test(lambda)

One Sample t-test

data: lambda

t = 252.922, df = 499, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

0.9968048 1.0124127

sample estimates:

mean of x

1.004609

The confidence intervals are fairly tight. We are done with our MCMC
calculation if all we wanted to do is estimate the posterior means.

The package vignette for the mcmc package illustrates also calculating
posterior variances and posterior standard deviations.

9.2 Try 4

Let also do a run without batches, so we can make histograms of the
marginal distributions.

> out4 <- metrop(out, blen = 1, nbatch = 1e5)

> print(out4$accept)

[1] 0.22261

> print(out4$time)

user system elapsed

5.415 0.002 5.426

12

1.
4

1.
6

1.
8

2.
0

2.
2

al
ph

a

0.
8

1.
0

1.
2

1.
4

0 100 200 300 400 500

la
m

bd
a

Time

ts(out$batch, names = c("alpha", "lambda"))

Figure 3: Time series plot of MCMC output. Batches of length 200

10 More Diagnostics

10.1 Time Series Plots

Figure 3 (page 13) shows the time series plot made by the R statement

> plot(ts(out$batch, names = c("alpha", "lambda")))

What we are looking for is no obvious trend. If the beginning of the run looks
very different from the end, then the simulated Markov chain is nowhere near
stationarity and we need to run longer. This looks o. k.

10.2 Autocorrelation Plots

Figure 4 (page 14) shows the autocorrelation plot made by the R state-
ment

13

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F

alpha

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

alpha & lambda

−20 −15 −10 −5 0

0.
0

0.
4

0.
8

Lag

A
C

F

lambda & alpha

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

lambda

Figure 4: Autocorrelation plot of MCMC output. Batches of length 200

> acf(ts(out$batch, names = c("alpha", "lambda")))

What we are looking for is that the autocorrelations of the batches are not
significant at all lags other than lag zero (where it is defined to be one for
the diagonal plots). Looks o. k.

11 Marginal Distributions

11.1 Histograms

Figure 5 (page 15) shows the histogram made by the R statements

> alpha <- out4$batch[, 1]

> hist(alpha, freq = FALSE)

Figure 6 (page 16) shows the histogram made by the R statements

14

Histogram of alpha

alpha

D
en

si
ty

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5: Histogram of marginal posterior for parameter α.

15

Histogram of lambda

lambda

D
en

si
ty

0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

Figure 6: Histogram of marginal posterior for parameter λ.

> lambda <- out4$batch[, 2]

> hist(lambda, freq = FALSE)

11.2 Smooth Density Plots

Figure 7 (page 17) shows the histogram made by the R statements

> out <- density(alpha)

> plot(out)

Figure 8 (page 18) shows the histogram made by the R statement

> out <- density(lambda)

> plot(out)

16

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

density.default(x = alpha)

N = 100000 Bandwidth = 0.03576

D
en

si
ty

Figure 7: Smooth density plot of marginal posterior for parameter α.

17

0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

density.default(x = lambda)

N = 100000 Bandwidth = 0.02519

D
en

si
ty

Figure 8: Smooth density plot of marginal posterior for parameter λ.

18

11.3 Smooth Density Plots Done Right

The plots produced in the previous section are undersmoothed because
the “bandwidth selection” algorithm expects IID data rather than Markov
chain output. We can find the correct bandwidth by giving the density

function an approximately independent subsample of the data. From Fig-
ure 2 we see that lag 30 gives nearly uncorrelated data. So we subsample
the output at spacing 30. Then we use the “bandwidth” calculated for the
subsample to make a density plot using all the output.

Figure 9 (page 20) shows the histogram made by the R statements

> i <- seq(1, length(alpha), by = 30)

> out.sub <- density(alpha[i])

> out <- density(alpha, bw = out.sub$bw)

> plot(out)

Figure 10 (page 21) shows the histogram made by the R statements

> out.sub <- density(lambda[i])

> out <- density(lambda, bw = out.sub$bw)

> plot(out)

Figures 9 and 10 are much nicer. No unsightly and unbelievable bumps
resulting from undersmoothing. Of course, these still have Monte Carlo
sampling error. They are only approximations to the true posterior rather
than exact, as can be seen by rerunning with a different random number
generator seed.

19

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

density.default(x = alpha, bw = out.sub$bw)

N = 100000 Bandwidth = 0.07093

D
en

si
ty

Figure 9: Smooth density plot of marginal posterior for parameter α. Band-
width selected based on subsample with spacing 30.

20

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

density.default(x = lambda, bw = out.sub$bw)

N = 100000 Bandwidth = 0.0508

D
en

si
ty

Figure 10: Smooth density plot of marginal posterior for parameter λ. Band-
width selected based on subsample with spacing 30.

21

