1. [25 pts.] Find the Jeffreys prior for the Poi(\(\mu\)) distribution. It is proper or improper?
2. [25 pts.] The following Rweb output fits three linear models and does tests of model comparison between them

Rweb:> out1 <- lm(y ~ x1 + x2 + x3)
Rweb:> out2 <- lm(y ~ poly(x1, x2, x3, degree = 2, raw = TRUE))
Rweb:> out3 <- lm(y ~ poly(x1, x2, x3, degree = 3, raw = TRUE))
Rweb:> anova(out1, out2, out3)

Analysis of Variance Table

Model 1: y ~ x1 + x2 + x3
Model 2: y ~ poly(x1, x2, x3, degree = 2, raw = TRUE)
Model 3: y ~ poly(x1, x2, x3, degree = 3, raw = TRUE)

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS Df Sum of Sq</th>
<th>F Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96</td>
<td>4206818</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>9312</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>7747</td>
</tr>
</tbody>
</table>

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(a) Explain what these models are and why they are nested models.
(b) Explain why there are 6 degrees of freedom difference between model 1 and model 2 and why there are 10 degrees of freedom difference between model 2 and model 3.

(c) If one has to choose among the models, which does one choose on grounds of simplicity and statistical significance? Explain.
3. [25 pts.] The following Rweb output fits a generalized linear model.

Rweb:> out <- glm(y ~ x + I(x^2), family = binomial)
Rweb:> summary(out)

Call:
glm(formula = y ~ x + I(x^2), family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.89479 -0.31789 -0.06147 0.37706 1.90034

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.047585 7.036637 -1.144 0.253
x 0.518776 0.758023 0.684 0.494
I(x^2) -0.004293 0.019942 -0.215 0.830

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 40.381 on 29 degrees of freedom
Residual deviance: 17.618 on 27 degrees of freedom
AIC: 23.618

Number of Fisher Scoring iterations: 7

(a) Find a 95% confidence interval for the true unknown regression coefficient for the predictor I(x^2). (Hint: The 0.95 quantile of the standard normal distribution is 1.645, and the 0.975 quantile of the standard normal distribution is 1.96.)
(b) Perform a hypothesis test of whether this same regression coefficient is zero (the null hypothesis) versus nonzero (the alternative hypothesis), reporting and interpreting the P-value.

(c) Perform a hypothesis test of whether this same regression coefficient is zero (the null hypothesis) versus greater than zero (the alternative hypothesis), reporting and interpreting the P-value.
4. [25 pts.] Suppose \(X_1, \ldots, X_n \) are IID Beta(\(\alpha_1, \alpha_2 \)), where both parameters are unknown. Show that \(\prod_{i=1}^n X_i \) and \(\prod_{i=1}^n (1 - X_i) \) are components of a two-dimensional sufficient statistic for this model.
5. [25 pts.] Suppose X_1, \ldots, X_n are IID $\mathcal{N}(0, \nu)$, where $\nu > 0$ is an unknown parameter.

(a) Show that this statistical model is an exponential family. Identify the natural parameter and natural statistic.

(b) Find the maximum likelihood estimate (MLE) for ν.

(c) Show that this is the unique global maximizer. (Hint: use part (a)).
(d) Find the asymptotic distribution of your MLE.

6. [25 pts.] Suppose X_1, \ldots, X_n are IID $\mathcal{N}(\mu, \sigma^2)$. where μ is unknown and σ^2 is known. And suppose we use a flat prior for μ, which is improper. Find the posterior distribution for μ. (Hint: the posterior is a brand name distribution.)
7. [25 pts.] The function

\[f_\theta(x) = \frac{5}{8}[1 - (x - \theta)^4], \quad \theta - 1 < x < \theta + 1 \]

is a PDF, where the parameter \(\theta \) can be any real number. Find the asymptotic relative efficiency (ARE) of the sample mean and sample median of an IID sample from this distribution, both considered as estimators of \(\theta \). Also state which is the estimator is better.
8. [25 pts.] Suppose X_1, \ldots, X_n are IID Beta($\theta, 2$). where $\theta > 0$ is an unknown parameter. The obvious method of moments estimator for θ is

$$\hat{\theta}_n = \frac{2\bar{X}_n}{1 - \bar{X}_n}$$

(you do not have to prove this). Find the asymptotic normal distribution of $\hat{\theta}_n$.