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Plug-In and the Bootstrap

The worst mistake one can make in statistics is to confuse the
sample and the population or to confuse estimators and param-
eters. In short, θ̂ is not θ.

But the plug-in principle (slides 78–84, deck 2 and slides 58–
66 and 97, deck 3) seems to say the opposite. Sometimes it
is o. k. to just plug in and estimate for an unknown parame-
ter. In particular, it is o. k. to plug in a consistent estimator of
the asymptotic variance of a parameter in forming asymptotic
confidence intervals for that parameter.

So it is a terrible mistake to confuse a parameter of interest and
an estimator for it, but it may not be a mistake to ignore the
difference between a nuisance parameter and an estimator for it.
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Plug-In and the Bootstrap (cont.)

The “bootstrap” is a cute name for a vast generalization of the

plug-in principle.

The name comes from the cliche “pull oneself up by one’s boot-

straps” which although it describes a literal impossibility actually

means succeed by one’s own efforts.

In statistics, the hint of impossibility is part of the flavor. The

bootstrap seems problematic, but it (usually) works.
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The Nonparametric Bootstrap

The bootstrap comes in two flavors, parametric and nonpara-

metric. We’ll do the latter first.

The theory of the nonparametric bootstrap is all above the level

of this course, so we give a non-theoretical explanation.

The nonparametric bootstrap, considered non-theoretically, is

just an analogy.
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The Nonparametric Bootstrap (cont.)

Real World Bootstrap World

true distribution F F̂n

data X1, . . ., Xn IID F X∗
1, . . ., X∗

n IID F̂n

empirical distribution F̂n F ∗
n

parameter θ = t(F ) θ̂n = t(F̂n)

estimator θ̂n = t(F̂n) θ∗n = t(F ∗
n)

error θ̂n − θ θ∗n − θ̂n

standardized error θ̂n−θ
s(F̂n)

θ∗n−θ̂n
s(F ∗

n)

Objects on the same line are analogous. The notation θ = t(F )

means θ is some function of the true unknown distribution.
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The Nonparametric Bootstrap (cont.)

The notation X∗
1, . . ., X∗

n IID F̂n means X∗
1, . . ., X∗

n are indepen-

dent and identically distributed from the empirical distribution of

the real data.

Sampling from the empirical distribution is just like sampling

from a finite population, where the “population” is the real data

X1, . . ., Xn. To be IID sampling must be with replacement.

X∗
1, . . ., X∗

n are a sample with replacement from X1, . . ., Xn. For

short, this is called resampling.
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The Nonparametric Bootstrap (cont.)

We want to know the sampling distribution of θ̂n or of θ̂n − θ or

of (θ̂n − θ)/s(F̂n).

This sampling distribution depends on the true unknown distri-

bution F of the real data.

It also may be very difficult or impossible to calculate theoret-

ically. Even asymptotic approximation may be difficult, if the

parameter θ = t(F ) is a sufficiently complicated function of the

true unknown F .

The statistical theory we have covered is quite amazing in what

it does, but there is a lot it doesn’t do.
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The Nonparametric Bootstrap (cont.)

In the “bootstrap world” everything is known. F̂n plays the role

of the true unknown distribution, and θ̂n plays the role of the

true unknown parameter value.

The sampling distribution of θ∗n or of θ∗n− θ̂n or of (θ∗n− θ̂n)/s(F ∗
n)

may still be difficult to calculate theoretically, but it can always

be “calculated” by simulation.

See computer examples web page for example.
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The Nonparametric Bootstrap (cont.)

Much folklore about the bootstrap is misleading.

The bootstrap is large sample, approximate, asymptotic. It is

not an exact method.

The bootstrap analogy works when the empirical distribution F̂n

is close to the true unknown distribution F . This will usually be

the case when the sample size n is large and not otherwise.
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Bootstrap Percentile Intervals

The simplest method of making confidence intervals for the un-

known parameter is to take α/2 and 1 − α/2 quantiles of the

bootstrap distribution of the estimator θ∗n as endpoints of the

100(1 − α)% confidence interval.

See computer examples web page for example.

The percentile method only makes sense when there is a sym-

metrizing transformation (some function of θ̂n has an approxi-

mately symmetric distribution with the center of symmetry being

the true unknown parameter value θ. The symmetrizing trans-

formation does not have to be known, but it does have to exist.
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The Parametric Bootstrap

The parametric bootstrap is just like the nonparametric boot-
strap except for one difference in the analogy. We use a para-
metric model Fθ̂n rather than the empirical distribution F̂n as the
analog of the true unknown distribution in the bootstrap world.
Thus the analogy looks like

Real World Bootstrap World

parameter θ θ̂n

true distribution F Fθ̂n
data X1, . . ., Xn IID F X∗

1, . . ., X∗
n IID Fθ̂n

estimator θ̂n = t(X1, . . . , Xn) θ∗n = t(X∗
1, . . . , X

∗
n)

error θ̂n − θ θ∗n − θ̂n

standardized error θ̂n−θ
s(X1,...,Xn)

θ∗n−θ̂n
s(X∗

1,...,X
∗
n)
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The Parametric Bootstrap (cont.)

Simulation from the parametric model Fθ̂n not analogous to fi-

nite population sampling and does not resample the data like the

nonparametric bootstrap does. Instead we simulate the paramet-

ric model. This may be easy (when R has a function to provide

such random simulations) or difficult.

See computer examples web page for example.
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Nonparametric versus Parametric Bootstrap

The nonparametric bootstrap is nonparametric (surprise!). That
means it always does the right thing, except when it doesn’t. It
doesn’t work when the sample size is too small or when the
square root law doesn’t hold or when the data are not IID or
when various technical issues arise that are beyond the scope
of this course — the parameter θ = t(F ) is not a nice enough
function of the true unknown distribution, but we cannot define
the appropriate notion of “nice” nor explain why this matters.

The parametric bootstrap is parametric (surprise!). That means
it is always wrong when the model is wrong (does not contain
the true unknown distribution). On the other hand, when the
parametric bootstrap does the right thing (when the statistical
model is correct), it does a much better job at smaller sample
sizes than the nonparametric bootstrap.

13



Nonparametric versus Parametric Bootstrap (cont.)

When the parameter θ is defined in terms of the parametric

statistical model and can only be estimated using the parametric

model (by maximum likelihood perhaps), the statistical model is

needs to be correct for the parameter estimate θ̂n to make sense.

Since we already need the statistical model to be correct, the

parametric bootstrap is the logical choice.
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