Stat 5102 (Geyer) Spring 2010 Homework Assignment 8 Due Wednesday, March 31, 2010

Solve each problem. Explain your reasoning. No credit for answers with no explanation. If the problem is a proof, then you need words as well as formulas. Explain why your formulas follow one from another.

- **8-1.** Show that each of the following is an exponential family. Identify the natural parameter and natural statistic.
- (a) The $Poi(\mu)$ family of distributions.
- (b) The $\text{Exp}(\lambda)$ family of distributions.
- (c) The $Gam(\alpha, \lambda)$ family of distributions with both parameters unknown. The natural parameter vector and natural statistic vector are both two-dimensional.
- **8-2.** Suppose X is $Poi(\mu)$ and the prior distribution for μ is $Gam(\alpha, \lambda)$, where α and λ are hyperparameters. Find the posterior distribution for μ .
- **8-3.** Suppose X_1, \ldots, X_n are IID $Gam(\alpha, \lambda)$, where α is known and λ is unknown. Suppose the prior distribution for λ is $Gam(\alpha_0, \lambda_0)$, where α_0 and λ_0 are hyperparameters. Find the posterior distribution for λ .
- **8-4.** Suppose X_1, \ldots, X_n are IID Unif $(0, \theta)$ and the prior distribution for θ is Unif(a, b), where a and b are hyperparameters. Find the PDF of the posterior distribution for θ . Under what conditions on x_1, \ldots, x_n, a , and b does the solution make no sense?
- **8-5.** Suppose the distribution for data X is Geo(p). Show that the beta family of distributions is conjugate.
- **8-6.** Suppose X_1, \ldots, X_n are IID $\mathcal{N}(\mu, 1/\lambda)$, where μ is known and λ is unknown. Find a brand-name family of distributions that is conjugate.
- **8-7.** Suppose X is Geo(p) and the prior distribution for p is $Beta(\alpha_1, \alpha_2)$, where α_1 and α_2 are hyperparameters. Find the posterior distribution for p.
- **8-8.** Suppose X_1, \ldots, X_n are IID $\mathcal{N}(\mu, 1/\lambda)$, where μ is known and λ is unknown. Suppose the prior distribution for λ is a distribution in the brand-name conjugate family of distributions found in problem 8-6. Find the posterior distribution for λ .

- **8-9.** Suppose the situation is the same as in problem 8-8. Find the posterior distribution for $\sigma = \sqrt{1/\lambda}$. **Hint:** change-of-variable formula.
- **8-10.** Suppose $X_1, ..., X_n$ are IID $\text{Exp}(\lambda)$.
- (a) Suppose the prior distribution for λ is flat (an improper prior). Find the posterior distribution for λ .
- (b) Suppose the prior distribution for λ is proportional to λ^{-1} (an improper prior). Find the posterior distribution for λ .

Review Problems from Last Year's Tests

- **8-11.** Suppose X_1, \ldots, X_n are IID $\operatorname{Exp}(\lambda)$, and suppose the prior distribution for λ is $\operatorname{Gam}(\alpha_0, \lambda_0)$, where α_0 and λ_0 are hyperparameters. Find the posterior distribution for λ .
- **8-12.** Suppose X is $Poi(\mu)$. We have only one observation. And suppose the prior distribution for μ is proportional to $\mu^{-1/2}$, an improper prior.
- (a) Find the posterior distribution for μ .
- (b) For what values of the data x does your answer to part (a) make sense?