12-1. The data set in the URL

http://www.stat.umn.edu/geyer/5102/data/prob12-1.txt

has two variables \(x \) (the predictor variable) and \(y \) (the response variable). The response is zero-or-one-valued, so these data are suitable for logistic regression.

(a) Fit a GLM with logit link having natural parameter (linear predictor) that is quadratic in \(x \), that is

\[
\theta_i = \beta_1 + \beta_2 x_i + \beta_3 x_i^2
\]

Report the regression coefficients table for this fit.

(b) Give a 95% confidence interval for the natural parameter value for an individual with \(x_i = 30 \).

(c) Give a 95% confidence interval for the mean parameter value for an individual with \(x_i = 30 \) that is of the form point estimate \(\pm \) critical value \(\times \) standard error.

(d) Give a 95% confidence interval for the mean parameter value for an individual with \(x_i = 30 \) that is made by transforming the endpoints of the interval from part (b) from the natural parameter scale to the mean value parameter scale.

12-2. Redo problem 12-1 substituting probit link for logit link.

12-3. Redo problem 12-1 substituting cauchit link for logit link.

12-4. The data set in the URL

http://www.stat.umn.edu/geyer/5102/data/prob12-4.txt

has three variables \(x_1 \) and \(x_2 \) (the predictor variables) and \(y \) (the response variable). The response is zero-or-one-valued, so these data are suitable for logistic regression.
(a) Fit a GLM with logit link having natural parameter (linear predictor)
that is linear in \(x_1 \) and \(x_2 \), that is
\[
\theta_i = \beta_1 + \beta_2 x_{1i} + \beta_3 x_{2i}
\]
Report the regression coefficients table for this fit.

(b) Same as part (a) but with natural parameter quadratic in \(x_1 \) and \(x_2 \)
(there will be six regression coefficients).

(c) Same as part (a) but with natural parameter cubic in \(x_1 \) and \(x_2 \) (there
will be ten regression coefficients).

(d) Compare the three models fit in parts (a) through (c) using likelihood
ratio tests. There will be two tests, one comparing (a) to (b) and one
comparing (b) to (c).

(e) Interpret these tests. What do they say about the correctness of each
of the models?

12-5. The data set in the URL
http://www.stat.umn.edu/geyer/5102/data/prob12-5.txt
has twenty-one variables \(x_1 \) through \(x_{20} \) (the predictor variables) and \(y \) (the
response variable). The response is normal, so these data are suitable for
ordinary least squares regression.

(a) Use the R function \texttt{regsubsets} in the R package of the same name to
examine all \(2^{20} \) (more than a million) models each containing a subset
of the predictor variables plus an intercept.

(b) Which model fits best according to AIC?

(c) Which model fits best according to BIC?