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1 Web Pages

This handout accompanies the web pages

http://www.stat.umn.edu/geyer/5601/examp/smoo.html
http://www.stat.umn.edu/geyer/5601/examp/smootoo.html

2 The General Smoothing Problem

In simple linear regression, the standard assumptions are that the data
are of the form (xi, yi), i = 1, . . ., n. We are interested in being able to
predict yi values given the corresponding xi values. For this reason we treat
xi as non-random. If the xi are actually random, we say we are conditioning
on their observed values, which is the same thing as treating them as non-
random. The conditional distribution of the yi given the xi is determined
by

yi = α + βxi + ei (1)

where α and β are unknown parameters (non-random but unknown con-
stants) and the ei are IID mean zero normal random variables.

More generally, using multiple linear regression, we can generalize the
model (1) to

yi = α + β1g1(xi) + · · ·+ βkgk(xi) + ei (2)

where g1, . . ., gk are any known functions and the errors ei are as before.
For example, polynomial regression is the case where the gi are mono-

mials
gi(x) = xi, i = 1, . . . , k.

But multiple regression works with any functions gi so long as they are
known not estimated, that is, chosen by the data analyst without looking at
the data rather than somehow estimated from the data (only the regression
parameters α, β1, . . ., βk are estimated from the data).

Even more generally (using we don’t yet know what) we can generalize
the model (2) to

yi = g(xi) + ei (3)

where g is an unknown function and the errors ei are as before. Unlike the
jump from (1) to (2), which involves only a quantitative change from 2 to
k + 1 regression coefficients, the jump from (2) to (3) involves a qualitative
change from k +1 real parameters α, β1, . . ., βk to an unknown “parameter”
that is a whole function g.
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Theoretical statisticians often call such a g an infinite-dimensional pa-
rameter because no finite-dimensional parameter vector θ can parameterize
all possible functions, that is, we cannot write the function g(x) as gθ(x) for
some finite-dimensional parameter θ. In particular, we cannot write

gθ(x) = α + β1g1(x) + · · ·+ βkgk(x)

where θ = (α, β1, . . . , βk) where g1, . . ., gk are known functions. If we could
to that, this would reduce (3) to a special case of (2). But we can’t do that,
so (3) is not a special case of (2).

Those who have had advanced calculus may know that we can generally
write large classes of functions (for example all continuous functions on a
bounded interval) as infinite series

gθ(x) = α +
∞∑
i=1

βix
i

where now θ = (α, β1, β2, . . .) is an infinite-dimensional vector. This is
the sense in which the parameter vector is infinite-dimensional. However,
we won’t actually use this parameterization or any parameterization. The
actual way statisticians estimate the general regression model (3) doesn’t
explicitly use any parameters.

Summary of Section 2. In all forms of regression there are two kinds
of assumptions: (i) those about the regression function and (ii) those about
the error distribution.

It is possible to be nonparametric about either (i) or (ii). Robust re-
gression as implemented by the R functions lmsreg and ltsreg is non-
parametric about the error distribution. These methods are robust against
non-normality of the errors.

In this handout and the accompanying web pages we are making the
standard parametric error assumption IID mean zero normal errors. Instead
we are nonparametric about (i). The regression function is the statisticians
name for the conditional expectation E(Y | x) thought of as a function of
the conditioning variable x.

From (3) we have
E(yi | xi) = g(xi)

because the errors have mean zero and are independent of the xi. So g is
the regression function. We are allowing it to be completely arbitrary (or
almost arbitrary, more on this below). That’s nonparametric.
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3 Some Smoothers

The basic idea of all smoothers is that the unknown regression function
g is smooth, meaning that |g(x)− g(y)| is small when |x− y| is small. From
calculus, we know that these quantities are involved in the derivative

g′(x) = lim
y→x

g(y)− g(x)
y − x

Thus we may assume that the unknown regression function is differentiable
or even differential several times. But differentiability assumptions are not
strictly necessary. Some smoothing methods assume derivatives, and some
don’t.

What all smoothing methods have in common is making some use of
(xi, yi) pairs with xi near x in estimating g(x). Only smoothness of g can
justify this.

If g were arbitrarily rough, so that g(x) is completely unrelated to g(x′)
for x 6= x′, then the only sensible estimate would be data itself, that is, use
yi as our estimate of g(xi) and don’t even try to estimate g(x) for x not
equal to any xi. This hardly qualifies as doing statistics, since it involves
no calculation at all, but without some assumptions about the behavior of
the regression function g, there is no justification for anything else. Hence
assumptions about smoothness of g. See Section 4.2.2 below for more on
this.

3.1 Running Mean Smoother

A running mean smoother averages the values yi such that |xi − x| ≤ h
for some fixed h. For now, we will just treat the number h as a magic
number pulled out of the air. Later we will see that choosing h or the
number or numbers analogous to h in other methods (and every known
smoothing method has some such numbers that must be chosen) can be
done using statistical methodology. A large part of these notes, culminating
in Section 5, is about this issue.

The number h is sometimes called the smoothing parameter but it is more
often referred to by the cutesy name bandwidth, which is a metaphorical use
of a term from communications theory. The bandwidth of a radio signal
is the range of frequencies used. Although the frequency of a radio station
is usually given as a single number, such as KSJN FM 99.5 (the units are
megahertz, abbreviated MHz), but the station actually uses the “band” 0.2
MHz wide (from 99.4 to 99.6). The wider the band, the more information
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that can be transmitted through the communication channel. That’s why
FM radio has higher fidelity than AM radio, which uses only 5 kHz = 0.005
Mhz bandwidth. It’s not clear what this metaphor has to do with smoothing,
but it sounds high tech and statisticians like to use it.

For an example we will use the cholostyramine data set provided with the
R bootstrap package and described in Section 7.3 of Efron and Tibshirani
(1993).

The following R creates the data

> library(bootstrap)

> compliance <- cholost$z

> improvement <- cholost$y

> plot(compliance, improvement)

and makes the plot shown in our Figure 1 and in Figure 7.5 in Efron and
Tibshirani (1993). The figures should (and do) look the same except for
trivial details (like the shape of plotting points).

The following code adds a running mean smoother to the plot (Figure 2).

> plot(compliance, improvement)

> bw <- 10

> lines(ksmooth(compliance, improvement, bandwidth = bw))

3.2 General Kernel Smoothing

One of the problems with the simple running mean smoother, so prob-
lematic that no one uses it on important data (other fancier smoothers are
preferred) is that its estimate of the supposedly smooth function g isn’t very
smooth. The reason it isn’t smooth is that the operation of choosing which
yi contribute to the estimate of g(x) is all or nothing. A given yi contributes
to the estimate for some x and not to other x. It contributes if and only
if |xi − x| ≤ h. This makes the “smooth” estimate actually a discontinuous
function of x. No good!

An obvious choice is to replace all-or-nothing choice with partial use. We
replace the ordinary average with a weighted average. Let w be an arbitrary
known, fixed non-negative function that is symmetric about zero called the
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Figure 1: Scatterplot for the cholostyramine data.
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Figure 2: Scatterplot with running mean smooth (bandwidth 10) for the
cholostyramine data.
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kernel. We estimate g(x) by the kernel regression estimate

ĝ(x) =

n∑
i=1

yiw

(
x− xi

h

)
n∑

i=1

w

(
x− xi

h

) (4)

(we write the denominator with that peculiar space to emphasize that for-
mulas for the numerator and denominator are exactly the same except for
the yi in the numerator that is missing in the denominator).

Note that each ĝ(x) is a weighted average of the yi, which is the operation

p1y1 + · · ·+ pnyn (5)

where the pi are non-negative constants that sum to one. We put (4) in the
form (5) by defining the “weights”

pi =
w

(
x− xi

h

)
n∑

j=1

w

(
x− xj

h

)
Note that a running mean smoother is the special case of a general kernel
smoother (4) where the kernel function is a simple “box” function

w(x) =


0, x < −1
1, −1 ≤ x ≤ 1
0, 1 < x

But if we change, for example, to the “gaussian” kernel

w(x) = exp(−x2/2)

we get much smoother behavior.
The kernel estimate ĝ(x) of the true unknown regression function g(x)

given by (4) obviously is smooth if and only if the kernel w(x) is smooth.
For example, ĝ is continuous if and only if w is continuous, ĝ is differentiable
if and only if w is differentiable, and ĝ is differentiable k times if and only if
w is differentiable k times.

Note finally that “bandwidth” is not comparable between different ker-
nels. For fixed w, it is always true that large h gives smoother smooths and
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Figure 3: Scatterplot with gaussian kernel smooth (bandwidth 10) for the
cholostyramine data.

small h gives rougher smooths. But consider two kernels w1 and w2 related
by w1(x) = w2(3x). Then with smoothing parameters (bandwidths) related
by h1 = 3h2, they give the same smooth. So clearly bandwidth in smoothing
is a rather vague metaphor.

The following code adds a kernel smoother with gaussian kernel to the
plot (Figure 3).

> plot(compliance, improvement)

> lines(ksmooth(compliance, improvement, bandwidth = bw,

+ kernel = "normal"))

Observe how the estimated regression function shown in Figure 3 is much,
much smoother than the estimated regression function shown in Figure 2.
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Figure 4: Gaussian kernel smooth (bandwidth 30) for noiseless pseudo-data
showing edge effects.

3.3 Local Polynomial Smoothing

An issue with kernel smoothing (including running means) is that these
methods have bad behavior at the edges of the plot. Observe what kernel
smoothing does with perfectly regular, noiseless, linear data. (Figure 4).

> x <- seq(1:100)

> plot(x, x)

> bw <- 30

> lines(ksmooth(x, x, bandwidth = bw, kernel = "normal"))

An improvement to kernel smoothing is local polynomial smoothing, which
does the following. To estimate g(x) fit a polynomial to the data (xi, yi),

10



i = 1, . . ., n using weighted least squares with weights

wi = w

(
x− xi

h

)
where w is a kernel function and h the smoothing parameter. Then use the
predicted value at x from this regression as ĝ(x).

To be a bit more concrete in our description, suppose we choose to use
a first degree polynomial (that is, use linear regression), then for each x we
find α̂(x) and β̂(x) that minimize the weighted residual sum of squares

n∑
i=1

w

(
x− xi

h

)
(yi − α− βxi)2 (6)

and set
ĝ(x) = α̂(x) + β̂(x) · x (7)

Note that we have to do this for each x for which we wish to evaluate ĝ(x).
Local polynomial smoothing, because it is fitting lines locally would do

the right thing to the pseudo-data in Figure 4. There would be no curving
of the smooth at the edges. The smooth would follow the points.

Let’s try local polynomial smoothing on the cholostyramine data (Fig-
ure 5).

> library(KernSmooth)

KernSmooth 2.22 installed
Copyright M. P. Wand 1997

> plot(compliance, improvement)

> bw <- 5

> lines(locpoly(compliance, improvement, bandwidth = bw))

3.4 Smoothing Splines

In this section we start over with a completely different rationale for
smoothing. We are not going to use anything remotely resembling a kernel
or “local” use of any well-known statistical procedure. We are going to use
a completely different approach of using penalty functions.

The method of least squares finds the best (according to certain criteria)
model within a certain parametric class to fit the data. But if the parametric

11
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Figure 5: Scatterplot with local polynomial smooth (bandwidth 5) for the
cholostyramine data.
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class is too “big” (generally, whenever there are at least as many parameters
as data points) we just fit the data perfectly. The data are the “smooth”
and effectively we do no analysis at all.

For example, if we have n data points and fit a polynomial of degree
n− 1 (which has n parameters including the intercept). We get a perfect fit
(Figure 6).

> n <- 10

> x <- seq(1, n)

> set.seed(42)

> y <- rnorm(n)

> out <- lm(y ~ poly(x, n - 1))

> xx <- seq(min(x), max(x), length = 1001)

> yy <- predict(out, newdata = data.frame(x = xx))

> plot(x, y, ylim = range(yy))

> curve(predict(out, newdata = data.frame(x = x)),

+ add = TRUE, n = 1001)

And, of course, this “perfect” fit is perfectly useless. At x = xi for some i
it just predicts the data value ĝ(xi) = yi. At other points, it does give nice
smooth predictions, but we don’t believe these wild oscillations. In fact, the
data are simulated from the model with constant regression function and

ĝ(x) = ȳn, for all x

would be a much, much better estimate than the curve in Figure 6.
Thus the method of least squares gives ridiculous results when applied

to a model that is too big. One cure is to “penalize” models that seem less
reasonable. The penalty function that leads to smoothing splines penalizes
integrated squared second derivative. The method of smoothing splines
chooses the g that minimizes “residual sum of squares plus penalty”

n∑
i=1

[
yi − g(xi)

]2 + λ

∫ ∞

−∞
g′′(x)2 dx (8)

where λ is a fixed positive number, called the smoothing parameter that
plays the role that bandwidth plays in kernel smoothing.

It can be shown that the g that minimizes (8) is always a natural cubic
spline with knots at the observed predictor values. Let x(1), . . ., x(k) be the
distinct ordered predictor values, that is, each xi is some x(j) and

x(1) < x(2) < · · · < x(k).

Then a natural cubic spline has the following properties.
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Figure 6: Polynomial interpolating data points.

14



� On each interval between knots (x(j), x(j+1)) the function g is cubic

g(x) = αj + βjx + γjx
2 + δjx

3, x(j) < x < x(j+1) (9)

� On each semi-infinite interval outside the knots the function g is linear

g(x) = α0 + β0x, x < x(1)

g(x) = αk + βkx, x > x(k)

� This specifies g by 4k parameters (α’s, β’s, γ’s, and δ’s).

� At knots g, g′, and g′′ are continuous.

� This imposes 3k conditions, which are equations that are linear in the
parameters. Hence the 4k original parameters can be expressed as
linear functions of k free parameters.

This has the following important consequence. The functions g and g′′

are linear in the parameters (original or free). Thus the penalized least
squares objective function (8) is quadratic in the parameters. To minimize
a quadratic function, one finds a point where all the partial derivatives are
zero. All partial derivatives of (8) are linear in the parameters. Hence the
minimization is carried out by solving linear equations. Moreover, all partial
derivatives of (8) are also linear in the data. Thus the penalized least squares
estimates are linear functions of the data vector y = (y1, . . . , yn) and so is
the predicted value vector ŷ because g(x) is linear in the parameters.

As we adjust λ between zero and infinity the smoothing spline goes from
very rough to very smooth. At λ = ∞ we only have (8) finite if the integral
is zero, which happens only if g′′(x) = 0 for all x, which happens only if g(x)
is a linear function. Thus this case is the same as simple linear regression.
At λ = 0 the smoothing spline interpolates the data (Figure 7, which is
qualitatively like Figure 6 but different in detail).

> out <- spline(x, y, n = 1001, method = "natural")

> plot(x, y, ylim = range(out$y))

> foo <- par("usr")

> out <- spline(x, y, n = 1001, method = "natural",

+ xmin = foo[1], xmax = foo[2])

> lines(out)

> outr <- lm(y ~ x)

> abline(outr, lty = 2)

15
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Note that the oscillations in Figure 7 are much less wild than the oscillations
in Figure 6. That is an important reason why people use smoothing splines
instead of polynomials. Both can be fitted by multiple regression, both have
k free parameters (regression coefficients) for k knots, but splines do a better
job fitting most data.

Figure 7 only shows the extreme behavior (λ = 0) of smoothing splines.
In real applications we are interested in intermediate values of λ. Figure 8
is a smoothing spline for the cholostyramine data. It is produced by the R
statements

> plot(compliance, improvement)

> df <- 10

> lines(smooth.spline(compliance, improvement, df = df))

in which the df argument specifies the smoothness in terms of “effective
degrees of freedom”, which is explained in the following section.

4 Some Theory

The theory in this section closely follows the presentation in Chapters 2
and 3 of Hastie and Tibshirani (1990). although it leaves out a lot of what
they say and fills in a lot of details. Students interested in more information
about smoothing should look at Hastie and Tibshirani (1990). It’s a good
book.

4.1 Linear Smoothers

Every smoother we have discussed so far is a so-called linear smoother.
What this means is that the vector ŷ of predicted values at the observed
predictor values is a linear function of the data vector y. This is obvious
for kernel smoothers. Equation (4) gives predicted values using a formula
that is linear in the yi (the components of y). This is less obvious for local
polynomial smoothers and smoothing splines, but we saw in the preceding
section that we have ŷ a linear function of y for smoothing splines, and the
same also holds for local polynomial smoothing for the following reasons.
The objective function (6) is quadratic in the residuals yi − α− βxi, hence
its partial derivatives with respect to α and β are linear in the residuals,
hence simultaneous linear equations to be solved for α and β that are also
linear in the yi. Hence the solutions α̂(x) and β̂(x) are also linear in the yi.
Then applying (7) we see that the ŷi must be linear in the yi.
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Figure 8: Scatterplot with smoothing spline (effective degrees of freedom =
10) for the cholostyramine data.
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In short, for all of these smoothers we can write

ŷλ = Sλy (10)

where (as we defined them before) y is the data vector and ŷλ is the pre-
dicted values vector and (newly defined here) Sλ is a matrix, called the
smoother matrix, that depends on some smoothing parameter λ and also on
the data vector x = (x1, . . . , xn) although this is not explicitly indicated by
the notation. The smoother matrix Sλ can (and typically does) depend on
λ and x in a highly non-linear way. The only linearity we have in (10) is
linearity in y.

It is of some interest that multiple regression itself fits into this scheme.
In regression theory the smoother matrix is called the “hat matrix” because
it puts the hat on y and has the form

H = X(XTX)−1XT (11)

where X is the so-called “design” or “model” matrix which has as rows the
values of the predictor variables, one row per case. Thus ordinary multi-
ple regression is a special case of “smoothing” where there is no adjustable
smoothing parameter. The amount of “smoothness” is just built into the
model somehow.

4.2 Distribution Theory

4.2.1 Assumptions

The usual “assumptions” for smoothing are the same as those for linear
regression. We assume

y = µ + e (12a)

where
e ∼ Normal(0, σ2I) (12b)

In (12a) the vector µ = (µ1, . . . , µn) is the regression function evaluated at
the “design points”

µi = g(xi)

and in (12b) the matrix I is the n × n identity matrix, so (12b) says that
the components of the error vector e are IID Normal(0, σ2).
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4.2.2 Bias

The (nonparametric) parameter µ is the unknown parameter of interest.
The variance parameter σ2 is a nuisance parameter.

The parameter of interest is the (conditional) mean of y

E(y) = µ.

The estimate of this parameter is the “fitted values” vector ŷλ. The expec-
tation of this estimate is

E(ŷλ) = E
(
Sλy

)
= Sλµ

The difference is the bias of the estimator

bλ = E(ŷλ)− µ =
(
Sλ − I

)
µ

Generally, smoothers are biased. The bias vector bλ is generally not
equal to zero. But (this is a very important point). When you think non-
parametrically, trying to be unbiased is the stupidest thing you can do. An
unbiased smoothing method would have to satisfy

µ = Sλµ, for all µ

and the only matrix Sλ that has that property is the the identity matrix
Sλ = I. But that smoother just“estimates” ŷλ = y. This isn’t data analysis.
When your “estimate” is the raw data, you’re not really doing any statistics.

4.2.3 Variance

The variance of y is variance of e, that is

var(y) = σ2I

From a general theorem about the variance of a linear transformation of a
random vector

var(ŷλ) = σ2SλST
λ (13)

where the superscript T indicates the matrix transpose operation. Also of
interest is the variance of the residual vector

var(y − ŷλ) = var
(
(I− Sλ)y)

)
= σ2(I− Sλ)(I− Sλ)T

= σ2(I− Sλ − ST
λ + SλST

λ )

(14)
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4.2.4 Variance Estimate

We need an estimate of σ2. In multiple regression, we divide the residual
sum of squares

‖y − ŷλ‖2 =
n∑

i=1

(yi − ŷi)2 (15)

by the “degrees of freedom for error” to get an unbiased estimate of σ2.
In smoothing, things are not so simple. Let us calculate the expectation

of (15) and see what we can do with it. First recall from theory that for any
random variable W whatsoever

var(W ) = E(W 2)− E(W )2

or, equivalently,
E(W 2) = var(W ) + E(W )2.

Applying this with
W = yi − ŷλ,i

we see that E(W ) = bλ,i and var(W ) is given by the i, i-th element of the
variance matrix (14).

The sum of the diagonal elements of a matrix is called its trace. We
denote the trace of a matrix A by tr(A). With this notation and the ideas
above, we get

E
{
‖y − ŷλ‖2

}
= σ2 tr(I− Sλ − ST

λ + SλST
λ ) + bT

λbλ

= σ2
(
n− 2 tr(Sλ) + tr(SλST

λ )
)

+ bT
λbλ

(16)

Now we have a slight problem carrying out our program. No multiple of
(15) is an unbiased estimate of σ2. The best we can do is ignore the bias
term and divide (15) by

dferr = n− 2 tr(Sλ) + tr(SλST
λ ) (17)

We call (17) the degrees of freedom for error of a smoother with smoother
matrix Sλ. Then

σ̂2 =
‖y − ŷλ‖2

dferr
is our (biased) estimate of σ2. At least we can say that σ̂2 generally overes-
timates σ2 because its bias bT

λbλ/dferr is necessarily nonnegative.
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4.2.5 Degrees of Freedom

The notion of degrees of freedom doesn’t really apply to smoothers, but

� people are so used to degrees of freedom, we would like to find an
analog, even a strained one, and

� smoothing parameters in general and “bandwidth” in particular mean
different things for different smoothers, so we would like some intrinsic
notion of how much smoothing a smoother does.

We already have one thing we have called degrees of freedom (17).
But (13) gives us another. In ordinary linear regression the analog of the
smoother matrix is the hat matrix (11). It is an orthogonal projection, which
means HT = H and H2 = H. This the analog of (13) for ordinary linear
regression is

var(ŷ) = σ2HHT = σ2H

and tr(H) is the number of regression coefficients in the model (this is tricky,
we won’t try to prove it).

By analogy, this suggests

dfvar = tr(SλST
λ )

as another degrees of freedom notion. Yet a third degrees of freedom notion
is

df = tr(Sλ).

This is the simplest of all, because it doesn’t involve a matrix multiplication.
It arises as the correction in Mallows’s Cp statistic (Section 4.3.2 below) and
also as the correction in generalized cross validation (Section 4.3.6 below).

These three are not directly comparable, because dferr is n minus some-
thing comparable to the others. The three directly comparable degrees of
freedom notions are

tr(Sλ)

tr(SλST
λ )

2 tr(Sλ)− tr(SλST
λ )

All three reduce to trH = p in the case of ordinary linear regression. They
are all different for a general smoother.
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4.3 Performance Criteria

4.3.1 Mean Squared Error

The mean squared error of the estimator ĝλ(x) is

mse(x, λ) = E
{(

ĝλ(x)− g(x)
)2}

Generally, this is different at each x.
The predictive squared error of the estimator ĝλ(x) is

pse(x, λ) = E
{(

y∗ − ĝλ(x)
)2}

where y∗ is a new response value associated with predictor value x (“new”
here meaning not one of the“old”values used in the estimation of ĝλ). There
is a simple relation between these two quantities.

pse(x, λ) = E
{(

y∗ − ĝλ(x)
)2}

= E
{(

y∗ − g(x)
)2}− E

{(
y∗ − g(x)

)(
ĝλ(x)− g(x)

)}
+ E

{(
ĝλ(x)− g(x)

)2}
= E

{(
y∗ − g(x)

)2}+ E
{(

ĝλ(x)− g(x)
)2}

= σ2 + mse(x, λ)

(the expectation of the cross product term is zero because y∗ and the data
used to estimate ĝλ are independent).

And there is an analogous decomposition of mean square error. Students
who have had theory will recall “mse equals variance plus bias squared.” For
those who haven’t had theory, we derive this here. First we get a notation
for bias in this context (bias at x)

bλ(x) = E
{
ĝλ(x)

}
− g(x)

Then

mse(x, λ) = E
{(

ĝλ(x)− g(x)
)2}

= E
{(

ĝλ(x)− g(x)− bλ(x)
)2}

+ bλ(x)E
{(

ĝλ(x)− g(x)− bλ(x)
)}

+ bλ(x)2

= E
{(

ĝλ(x)− g(x)− bλ(x)
)2}+ bλ(x)2

= var
{
ĝλ(x)

}
+ bλ(x)2

23



(here the expectation of the cross product term is zero because g(x) + bλ(x)
is the expectation of ĝλ(x)).

In order to get a single criterion of performance, we average these quan-
tities over the observed x values

mse(λ) =
1
n

n∑
i=1

mse(λ, xi) (18)

and
pse(λ) = σ2 + mse(λ) (19)

We can now go back to our matrix notation

mse(λ) =
1
n

n∑
i=1

mse(λ, xi)

=
1
n

n∑
i=1

var
{
ĝλ(xi)

}
+

1
n

n∑
i=1

bλ(xi)2

=
1
n

n∑
i=1

var(ŷλ,i) +
1
n

n∑
i=1

b2
i

where the ŷλ,i are the components of ŷλ as defined above and the bλ,i are
the components of bλ as defined above. Thus we see

mse(λ) =
tr
(
var(ŷλ)

)
n

+
bT

λbλ

n

=
σ2 tr

(
SλST

λ

)
n

+
bT

λbλ

n

(20)

Hence

pse(λ) = σ2

(
1 +

tr
(
SλST

λ

)
n

)
+

bT
λbλ

n
(21)

4.3.2 Mallows’s Cp

A very bad approximation of pse(λ) is the average squared residual

asr(λ) =
1
n

n∑
i=1

(yi − ŷi)2 =
‖y − ŷλ‖2

n
(22)

This is the criterion that least squares minimizes. The more the model
overfits, the smaller it is.
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We have already calculated its expectation except for a factor of n in
(16)

E{asr(λ)} =
σ2
(
n− 2 tr(Sλ) + tr(SλST

λ )
)

+ bTb
n

= σ2

(
1− 2 tr(Sλ)

n
+

tr(SλST
λ )

n

)
+

bTb
n

Comparing this with (21) we see that

E{asr(λ)} = pse(λ)− σ2 2 tr(Sλ)
n

hence
Cp(λ) = asr(λ) + σ̂2 2 tr(Sλ)

n
(23)

is a sensible estimate of predictive squared error. This is called Mallows’s
Cp statistic. It was originally introduced for model selection in ordinary
regression. In that context p is the number of regression coefficients in the
model. Here it has been generalized to a context where p makes no sense,
but the name of this thingy is “Cp.” Sorry about that. This is why“alphabet
soup” terminology is bad.

4.3.3 Cross Validation

Cross validation is an important idea in regression. The idea is to esti-
mate pse(λ) by

cv(λ) =
1
n

n∑
i=1

(
yi − ĝλ,−i(xi)

)2 (24)

where ĝλ,−i means the smooth estimate for smoothing parameter λ and data
(x1, . . . , xi−1, xi+1, . . . , xn) that “leaves out” xi.

The point is that in pse(λ) we need y∗ that are independent of the “old”
data. We don’t have any such y∗ so we make do with yi. But to get “old”
data independent of yi we have leave yi out of the so-called “old” data. We
do that in turn for each i, using a different “old” data with each yi. Tricky.
And rather complicated. But the best we can do without actually obtaining
some actually new data.

Another formula for cv(λ) is given in Section 4.3.5 below. To derive it
we need some theory from the next section.
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4.3.4 Leave One Out

It seems at first sight that (24) would necessitate doing our smoothing
procedure n times, one for each yi left out. It turns out that this is not so.
We can calculate all the leave-one-out smooths from the original smoother
matrix Sλ.

Temporarily, we leave the λ’s off to simplify the notation. We’ll put
them back later. Let ŷ−i denote the predicted value for the i-th case when
yi is left out of the data doing the fitting.

Actually, it is not completely clear what “leave one out” means in the
context of smoothing. In general, there is no necessary relationship between
a smoother for n data pairs and a smoother for n−1 data pairs. (Of course, a
for a particular kind of smoother, such as a kernel smoother with a particular
kernel and bandwidth or a smoothing spline with a particular smoothing
parameter, there is such a relationship. But there is no relationship in
general.)

One method of finding such a general relationship is to note that any
reasonable smoother is constant preserving, which can be expressed in the
formula S1 = 1, where 1 is the vector with all elements equal to 1. In words,
this says the rows of S sum to one. Thus if we want to use the same smoother
with the i-th row and column deleted to be an (n − 1) × (n − 1) smoother
matrix, we must renormalize the rows to sum to one. Let sij denote the
elements of the original n× n smoother matrix S. When we delete the i-th
column, then the i-th row now sums to 1− sii. So that’s what we divide by
to renormalize.

This line of reasoning gives

ŷ−i =
1

1− sii

n∑
j=1
j 6=i

sijyj (25)

for comparison, the ordinary predicted value is

ŷi =
n∑

j=1

sijyj (26)

If we multiply (25) by 1 − sii and then move a term from one side to the
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other, we get

ŷ−i =
n∑

j=1
j 6=i

sijyj + siiŷ−i

=
n∑

j=1

sijyj + siiŷ−i − siiyi

= ŷi + siiŷ−i − siiyi

From which we conclude

yi − ŷ−i = yi − ŷi + sii(yi − ŷ−i)

and hence
yi − ŷ−i =

yi − ŷi

1− sii
(27)

This equation is very important. The left hand side of (27) is the leave
one out residual. The right hand side of (27) expresses this in terms of the
ordinary residual yi − ŷi.

Thus we do not need to do n smooths to do cross-validation. As long
as we can get the diagonal elements sii of the smoother matrix S, we can
compute the leave one out residuals from the ordinary residuals.

If we put the λ’s back, (27) becomes

yi − ŷλ,−i =
yi − ŷλ,i

1− sλ,ii
(28)

4.3.5 Cross Validation Revisited

Then

cv(λ) =
1
n

n∑
i=1

(
yi − ŷλ,i

1− sλ,ii

)2

(29)

4.3.6 Generalized Cross Validation

A minor variant on cross validation is, so-called generalized cross valida-
tion, which, of course, like most things statisticians call “generalized,” isn’t.
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It replaces the sλ,ii in the denominator with their average tr(Sλ)/n giving

gcv(λ) =
1
n

n∑
i=1

(
yi − ŷλ,i

1− tr(Sλ)/n

)2

=
1

n(1− tr(Sλ)/n)2
1
n

n∑
i=1

(yi − ŷλ,i)
2

=
‖y − ŷλ‖2

n(1− tr(Sλ)/n)2

=
asr(λ)

(1− tr(Sλ)/n)2

(30)

Thus gcv(λ) is a simple function of the average squared residual asr(λ) given
by (22).

5 The Bias-Variance Trade-off

The title of this section is about the inevitability of trade-offs in life. You
can’t have everything.

The “bias” under discussion is the bias term in mse(λ), the second term
on the right hand side of (20), which is

bT
λbλ/n (31)

The “variance” under discussion is the variance term in mse(λ), the first
term on the right hand side of (20), which is

σ2 tr(ST
λSλ)/n (32)

We want both to be as small as possible. If the “bias” (31) is big, then
our estimate ŷλ of the true regression function µ is off center (its sampling
distribution is not centered at µ). If the “variance” (32) is big, then our
estimate ŷλ is too variable (its sampling distribution has too much spread).

Unfortunately, we can’t have both small at the same time. Reducing λ
(less smoothing) reduces bias but increases variance, and vice versa.

To see how the bias-variance trade-off works, let us work through a simple
kernel smoothing example with Gaussian kernel. In order to know the bias
we must know the true regression function µ. So this example must be on
made-up data (where we know the truth).
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Figure 9: Made-up data with true regression curve.

> n <- 50

> x <- seq(0, 2 * pi, length = n)

> mu <- sin(x) + sin(2 * x)

> sigma <- 0.5

> set.seed(42)

> y <- mu + sigma * rnorm(n)

Figure 9 shows these made-up data. It is made by the R commands

> plot(x, y)

> curve(sin(x) + sin(2 * x), add = TRUE)

Because the x values are equally spaced, the following code calculates the
smoother matrix for bandwidth h

> h <- 0.5

> xdiff <- mean(diff(x))
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> j <- seq(-n, n)

> k <- seq(1, n)

> wj <- exp(-(xdiff * j/h)^2/2)

> S <- NULL

> for (i in 1:n) {

+ l <- match(k - i, j)

+ foo <- wj[l]

+ S <- rbind(S, foo/sum(foo))

+ }

Figure 10 is the same as Figure 9 except the smooth estimate is added
R commands

> y.hat <- S %*% y

> plot(x, y)

> curve(sin(x) + sin(2 * x), add = TRUE)

> lines(x, y.hat, lty = 2)

Now that we know how to construct the smoother matrix for some
smoother, we can calculate all kinds of things.

> stuff <- NULL

> hs <- c(seq(0.06, 0.09, 0.01), seq(0.1, 0.9, 0.1))

> for (h in hs) {

+ wj <- exp(-(xdiff * j/h)^2/2)

+ S <- NULL

+ for (i in 1:n) {

+ l <- match(k - i, j)

+ foo <- wj[l]

+ S <- rbind(S, foo/sum(foo))

+ }

+ y.hat <- S %*% y

+ b <- S %*% mu - mu

+ bsq <- sum(b^2)

+ df1 <- sum(diag(S))

+ df2 <- sum(diag(S %*% t(S)))

+ df3 <- 2 * df1 - df2

+ v <- sigma^2 * df2

+ mse <- (v + bsq)/n

+ pse <- sigma^2 + mse

+ rss <- sum((y - y.hat)^2)
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Figure 10: Made-up data with true regression curve (solid curve) and kernel
smooth estimate thereof (bandwidth = 0.5).
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+ sii <- diag(S)

+ cv <- sum(((y - y.hat)/(1 - sii))^2)/n

+ asr <- rss/n

+ gcv <- asr/(1 - df1/n)^2

+ sigmahatsq <- rss/(n - df3)

+ Cp <- asr + sigmahatsq * 2 * df1/n

+ stuff <- rbind(stuff, c(h, df1, df2, df3, bsq,

+ v, pse, cv, gcv, Cp, asr))

+ }

> dimnames(stuff) <- list(rep("", nrow(stuff)), c("h",

+ "df1", "df2", "df3", "bias", "var", "pse", "cv",

+ "gcv", "Cp", "asr"))

> stuff[, 2:4] <- round(stuff[, 2:4], 1)

> round(stuff, 2)

h df1 df2 df3 bias var pse cv gcv Cp asr
0.06 41.7 35.5 47.9 0.00 8.87 0.43 0.46 0.46 0.52 0.01
0.07 36.6 28.6 44.5 0.01 7.15 0.39 0.46 0.46 0.47 0.03
0.08 32.2 23.9 40.5 0.02 5.98 0.37 0.45 0.45 0.45 0.06
0.09 28.7 20.8 36.7 0.03 5.20 0.35 0.45 0.44 0.43 0.08
0.10 25.9 18.6 33.3 0.05 4.64 0.34 0.44 0.44 0.42 0.10
0.20 13.2 9.5 17.0 0.44 2.37 0.31 0.39 0.39 0.38 0.21
0.30 9.0 6.5 11.5 1.45 1.61 0.31 0.41 0.41 0.40 0.27
0.40 6.9 5.0 8.8 3.10 1.24 0.34 0.46 0.46 0.45 0.34
0.50 5.6 4.1 7.1 5.19 1.01 0.37 0.53 0.53 0.53 0.42
0.60 4.7 3.4 6.0 7.47 0.86 0.42 0.61 0.61 0.60 0.50
0.70 4.1 3.0 5.2 9.68 0.75 0.46 0.69 0.68 0.68 0.57
0.80 3.7 2.7 4.6 11.65 0.67 0.50 0.75 0.75 0.75 0.64
0.90 3.3 2.4 4.2 13.31 0.61 0.53 0.80 0.80 0.80 0.70

Not very pretty, but it does show that cv(λ), gcv(λ) and Cp(λ) fairly
closely approximate pse(λ). And it also shows that they all choose the same
bandwidth (h = 0.20) as the optimal choice (among the ones tried), and this
is optimal according to the pse(λ) criterion.

Of course, that’s partly due to the crudeness of our grid of h values. Let’s
try again with a finer grid. (We won’t repeat the code, which is unchanged
except for different h values and different rounding).

h df1 df2 df3 bias var pse cv gcv Cp asr
0.18 14.6 10.5 18.8 0.32 2.62 0.3087 0.3940 0.3949 0.3830 0.1975
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0.19 13.9 9.9 17.9 0.38 2.49 0.3072 0.3927 0.3935 0.3825 0.2051
0.20 13.2 9.5 17.0 0.44 2.37 0.3061 0.3920 0.3925 0.3825 0.2123
0.21 12.6 9.0 16.2 0.51 2.26 0.3054 0.3917 0.3921 0.3828 0.2191
0.22 12.1 8.6 15.5 0.59 2.16 0.3050 0.3919 0.3921 0.3835 0.2256
0.23 11.6 8.3 14.8 0.67 2.07 0.3049 0.3926 0.3925 0.3845 0.2319
0.24 11.1 8.0 14.2 0.76 1.99 0.3051 0.3937 0.3934 0.3859 0.2380
0.25 10.7 7.7 13.7 0.86 1.92 0.3055 0.3953 0.3947 0.3877 0.2441
0.26 10.3 7.4 13.2 0.97 1.85 0.3062 0.3973 0.3964 0.3898 0.2500

Now we see that pse(λ) picks h = 0.23, whereas cv(λ) picks h = 0.21,
gcv(λ) picks either h = 0.21 or h = 0.22, and Cp(λ) picks either h = 0.19 or
h = 0.20.

Figure 11 (page 34) is the same as Figure 9 except the “optimal” smooth
estimate is added.

The general story about bias-variance trade-off is much the same as this
example. For h too small (not enough smoothing) the bias is small but the
variance is huge. For h too big (too much smoothing) the variance is small
but the bias is huge. Somewhere in the middle (h just right) the bias and
variance are both moderate. That’s the amount of smoothing you want.
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Figure 11: Made-up data with true regression curve (solid curve) and kernel
smooth estimate thereof using the optimal bandwidth 0.23.

34


