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1 Web Pages

This handout accompanies the web pages

http://www.stat.umn.edu/geyer/5601/examp/subboot.html
http://www.stat.umn.edu/geyer/5601/examp/subtoot.html

2 History

The term “bootstrap” was coined by Efron (1979). He described both the
nonparametric and parametric bootstrap. In particular, his nonparametric
bootstrap is the procedure of resampling with replacement from the original
sample at the same sample size that is by far the most commonly used boot-
strap procedure.

It wasn’t long before people experimented with resampling at different sam-
ple sizes. But the key discovery in that area came later. Politis and Romano
(1994) described resampling without replacement from the original sample at
smaller than the original sample size.

This is different enough from Efron’s idea that in their book (Politis, et al.,
1999) they don’t call it “bootstrap” but just plain “subsampling”.

Whatever you call it, here’s why it is such an important innovation.

• Politis and Romano’s subsampling bootstrap takes samples without re-
placement of size b from the original sample of size n, generally with
b � n (read “b much less than n”). Such samples are themselves samples
of size b from the true unknown distribution F of the original sample.

• Efron’s nonparametric bootstrap takes samples with replacement of size
n from the original sample of size n (both sample sizes the same). Such
samples are samples of size n from the empirical distribution F̂n associated
with the original sample.

Each of these procedures does the Wrong Thing.

• The Right Thing is samples of the right size n from the right distribution
F .
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• The Politis and Romano thing is samples of the wrong size b � n from
the right distribution F .

• The Efron thing is samples of the right size n from the wrong distribution
F̂n.

Both Wrong Things are wrong. We would like to do the Right Thing but
we can’t. (More precisely, we have exactly one such sample, the original data,
and can’t get more. Scientists may get more data, but that’s of no interest to
us statisticians.)

So which Wrong Thing do we want to do? Both have pluses and minuses.
The Efron procedure is older, more widely used, and familiar to more people.
It is also easier to use, at least in simple situations. But the Politis and Ro-
mano procedure has the great virtue of working in situations where the Efron
bootstrap fails. The two main classes of such situations are presented in the
following sections.

3 Stationary Time Series

A time series is a sequence X1, X2, . . ., Xn of possibly dependent random
variables.

A times series is stationary if every consecutive block

Xi+1, Xi+2, . . . , Xi+b (1)

of length b has the same (marginal) distribution. Roughly speaking, what actu-
ally happens changes over time, but the probability distribution of what happens
does not change over time.

The ordinary (Efron) nonparametric bootstrap doesn’t work for time series
or any other form of dependent data. If the data are not IID then it makes
no sense whatsoever to obtain IID bootstrap samples from F̂n (or any other
distribution for that matter).

The (Politis and Romano) subsampling bootstrap does work for stationary
time series. Under the stationarity assumption the n− b− 1 consecutive blocks
(1) of length b are identically distributed. Hence the estimators corresponding
to such blocks

θ∗bi = s(Xi+1, Xi+2, . . . Xi+b)

are identically distributed (not IID just ID, since they are dependent) and anal-
ogous (in the “bootstrap world”) to

θ̂n = s(X1, X2, . . . Xn)

(in the “real world”). The only problem we have to deal with is that

se(θ̂n) ≈ c√
n
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for some positive constant c (assuming our estimator obeys the “square root
law”) whereas

se(θ∗b ) ≈ c√
b

for the same positive constant c (but different denominator). Thus we need to
scale

se(θ̂n) ≈ se(θ∗b ) ·
√

b

n

to get from se(θ∗b ), which we can estimate by subsampling (as the standard
deviation of the n − b + 1 quantities θ∗bi), to se(θ̂n), which is the quantity we
need to make a confidence interval for θ̂n and which we otherwise have no way
to estimate.

4 IID Situations

4.1 Extreme Values

Suppose X1, X2, . . ., Xn are IID Uniform(0, θ) random variables. Since the
larger the sample the more the largest values crowd up against θ, the natural
estimator of θ is the maximum data value

θ̂n = X(n) = max(X1, X2, . . . , Xn).

This is in fact the maximum likelihood estimate.
The main statistical interest in this estimator is that it is a counter example

to both the “square root law” and the “usual asymptotics” of maximum likeli-
hood.

• The “rate” is n rather than
√

n.

• The asymptotic distribution is not normal.

More precisely,
n(θ − θ̂n) D−→ Exponential(1/θ) (2)

But to use the subsampling bootstrap, we need only know that the actual rate
is n. We do not need to know the actual asymptotic distribution.

Actually, we do not even need to know the rate. By looking at the distri-
bution of θ∗b for different subsample sizes b we can get an estimate of the rate
(described in Section 6 below). But for now we’ll assume we know the rate.

4.2 Other IID Situations

More generally, suppose X1, X2, . . ., Xn are IID from some distribution and
we are interested in a parameter estimate

θ̂n = s(X1, X2, . . . , Xn).
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And we assume that there is an asymptotic distribution at some “rate”

τn(θ̂n − θ) D−→ Something, (3)

where “Something” denotes any distribution whatsoever. Here τn can be any
known sequence. Usually we have τn =

√
n, in which case we say the estimator

obeys the “square root law.” But in the preceding section we saw an estimator
for which we needed τn = n. And on the homework we will see an estimator for
which we will need τn = n1/3.

Under the IID assumption, the
(
n
b

)
ways to choose a subsample of size b

without replacement from X1, X2, . . ., Xn are all identically distributed and
the estimators

θ∗b = s(X∗
1 , X∗

2 , . . . , X∗
b )

are analogous (in the “bootstrap world”) to

θ̂n = s(X1, X2, . . . , Xn)

(in the “real world”). The only problem is that the distribution of θ∗b − θ differs
from that of θ̂n − θ by a factor of τb/τn. Hence, as we saw above, we need to
rescale our standard errors by this factor. Or, as we will see below, we need to
rescale any procedure we do.

5 Confidence Intervals

The fundamental idea of the subsampling bootstrap that some asymptotics
(3) hold. It does not matter what the “Something” is (the asymptotic distribu-
tion of estimator) and it does not matter what the τn is (the rate). As long as
we have asymptotics at all, the subsampling bootstrap works.

Then, trivially,
τb(θ̂b − θ) D−→ Something, (4)

converges to the same“Something,”because whether we index by n or b is merely
a matter of notation. Usually, we write (4) as

τb(θ∗b − θ) D−→ Something (5)

to distinguish the estimator θ̂n for the full data and the estimator θ∗b for a
subsample, but it is the key feature of the subsampling bootstrap that θ̂b and θ∗b
are equal in distribution (because the subsampling is done without replacement
as discussed in Sections 2 and 4).

The basic assumptions of the subsampling bootstrap are

b →∞
b

n
→ 0

τb →∞
τb

τn
→ 0

(6)
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where n is the sample size and b the subsample size.
Under these assumptions

τb(θ̂n − θ) D−→ 0 (7)

just because we would need to multiply by τn rather than τb to get a nonzero
limit and τb/τn goes to zero.

Subtracting (7) from (5) gives

τb(θ∗b − θ̂n) D−→ Something, (8)

where “Something” denotes the same distribution as in (3).
To summarize where we have gotten, the subsampling bootstrap is based

on the assumptions (6) and the convergence in distribution (3). It then follows
from asymptotic theory that (8) describes the same asymptotics as (3).

It does not matter what the limiting distribution is because we approxi-
mate it using the subsampling bootstrap. Suppose the limiting distribution, the
“Something” in (3) has distribution function F . We don’t know the functional
form of F but we can approximate it by the empirical distribution function F ∗

b

of the left hand side of (8) using bootstrap subsampling to simulate θ∗b .
We know that for large n

F−1(α/2) < τn(θ̂n − θ) < F−1(1− α/2) (9)

occurs with probability approximately 1 − α. That’s what the convergence in
distribution statement (3) means when F is the distribution function of the
“Something” on the right hand side. F−1(α/2) is the α/2 quantile of this distri-
bution and F−1(1−α/2) is the 1−α/2 quantile. Thus if Y is a random variable
having this distribution and the distribution is continuous, the probability that

F−1(α/2) < Y < F−1(1− α/2) (10)

is 1−α. Since we are assuming Y and τn(θ̂n − θ) have approximately the same
distribution for large n, (9) has approximately the same probability as (10).

Of course, we don’t know F , but F ∗
b converges to F , so for large b and n, we

have
F ∗

b
−1(α/2) < τn(θ̂n − θ) < F ∗

b
−1(1− α/2) (11)

with probability close to 1−α. Rearranging (11) to put θ in the middle by itself
gives

θ̂n − τ−1
n F ∗

b
−1(1− α/2) < θ < θ̂n − τ−1

n F ∗
b
−1(α/2) (12)

which is the way subsampling bootstrap confidence intervals are done.
In practice, we don’t explicitly calculate empirical CDFs and invert them.

We use the R quantile function to directly calculate quantiles. Assuming we
already have calculated the estimator theta.hat for the original data having
sample size n and a vector theta.star of estimators for bootstrap subsamples
of size b and have previously defined a function tau that calculates the “rate”
and a significance level alpha, the following three R statements calculate the
confidence interval.

5



z.star <- tau(b) * (theta.star - theta.hat)
crit.val <- quantile(z.star, probs = c(1 - alpha / 2, alpha / 2))
theta.hat - crit.val / tau(n)

5.1 A Time Series Example

Here we redo the time series example from the web pages. First the state-
ments

> library(bootstrap)

> data(lutenhorm)

> y <- lutenhorm[, 4]

> n <- length(y)

> foo <- function(w) {

+ z <- w - mean(w)

+ m <- length(w)

+ out <- lm(z[-1] ~ z[-m] + 0)

+ as.numeric(coefficients(out))

+ }

> beta.hat <- foo(y)

> beta.hat

[1] 0.5857651

create a time series y and an estimator of the AR(1) coefficient calculated by
the function foo.

Since this is a time series, we calculate subsampling bootstrap estimates by

> b <- 8

> nboot <- n - b + 1

> beta.star <- double(nboot)

> for (i in 1:nboot) {

+ y.star <- y[seq(i, i + b - 1)]

+ beta.star[i] <- foo(y.star)

+ }

Figure 1 shows the histogram of beta.star with the position of beta.hat
shown (as usual by a vertical dotted line). It is made by the code

> hist(beta.star)

> abline(v = beta.hat, lty = 2)

We can see from the figure that the distribution of β∗ is badly biased and hence
(assuming a close analogy between the “bootstrap world” and the “real world”)
so is the distribution of β̂.

Actually, we aren’t much interested in this particular histogram. We really
want to look at the distribution of

z =
√

n(β̂ − β)

6



Histogram of beta.star
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Figure 1: Histogram of β∗ with position of β̂ shown by dashed line.
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Histogram of z.star
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Figure 2: Histogram of z∗ given by (13)

which is approximated by
z∗ =

√
b(β∗ − β̂) (13)

Figure 2 shows this histogram, which is made by the code

> z.star <- sqrt(b) * (beta.star - beta.hat)

> hist(z.star)

We use quantiles of the distribution shown by Figure 13 to calculate critical
values. For a 95% confidence interval, this goes as follows

> conf.level <- 0.95

> alpha <- 1 - conf.level

> crit.val <- quantile(z.star, probs = c(1 - alpha/2, alpha/2))

> beta.hat - crit.val/sqrt(n)

97.5% 2.5%
0.4719918 0.8641141
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6 Estimating the Rate

We aren’t always lucky enough to know the rate of convergence τb. But even
if we don’t, we can estimate the rate from looking at the distribution of θ∗b for
different subsample sizes b. The method described here is that of Chapter 8 of
Politis, et al. (1999).

Suppose τn = nβ for some constant β. This is the usual case. It includes
the “square root law” (β = 1/2) found in the usual asymptotics and most other
examples of interest. Under this supposition, what we need to do is estimate
the unknown constant β.

To do this we take subsamples at different sizes. For each sample size b we
look at the distribution of θ∗b − θ̂n. For each such distribution we determine
a number of differences of quantiles. The quantiles are estimated by order
statistics. Suppose θ∗b,i denotes the i-th bootstrap estimator for a subsample of
size b and θ∗b,(i) the i-th order statistic for the estimators for subsamples of size
b. Then we define

yb,i = θ∗b,(li)
− θ∗b,(ki)

where li and ki are some numbers chosen rather haphazardly. However they are
chosen, the scaling of the distributions by nβ means

yb,i ≈ Cin
−β

for some constant Ci or for that matter

ȳb ≈ Cn−β

for some other constant C, where ȳb is the average of the yb,i for each b.
Taking logs gives

log(ȳb) ≈ log(C)− β log(b)

thus we can estimate β by regressing log(ȳb) on log(b). We don’t need a regres-
sion routine, because this is simple linear regression, so

β̂ = −cov{ȳb, log(b)}
var{log(b)}

does the job.

6.1 An IID Example

The data for the example on the web page can be loaded into R by

> X <- read.table(url("http://www.stat.umn.edu/geyer/5601/mydata/big-unif.txt"),

+ header = TRUE)

> names(X)

[1] "x"

> attach(X)

(this is essentially what Rweb does when loading a file from a dataset URL).

9



The data are IID Uniform(0, θ) and have “rate” τn = n, but we pretend for
the purposes of this example that we don’t know this. The estimator of interest
is calculated by the max function.

> theta.hat <- max(x)

> theta.hat

[1] 2.717583

The following code (quite tricky, explained below) calculated several boot-
strap subsamples with different subsample sizes b

> nboot <- 20000 - 1

> b <- c(40, 60, 90, 135)

> b <- sort(b)

> theta.star <- matrix(NA, nboot, length(b))

> for (i in 1:nboot) {

+ x.star <- x

+ for (j in length(b):1) {

+ x.star <- sample(x.star, b[j], replace = FALSE)

+ theta.star[i, j] <- max(x.star)

+ }

+ }

Here b is a vector of subsample sizes (we need at least two) chosen with
no very scientific theory. They should all be large compared to 1 and small
compared to n, which in this case is

> length(x)

[1] 10000

Thus very roughly, all of the b’s should be about
√

10000 = 100. Also, since we
intend to regress log(ȳb) on log(b), we choose the log(b) equally spaced, which
means the b themselves increase by a constant factor, here 1.5 (that is 60 is
1.5 × 40 and 90 is 1.5 × 60 and so forth). This type of spacing isn’t necessary,
but makes the plots below look nicer.

This code uses a minor innovation of our own (not from Politis and Romano)
which is to use the principle of common random numbers from Monte Carlo
theory. This says that when comparing random (simulated) objects (here the
subsamples for different b) it always helps to use the same random numbers as
much as possible. We do this by reusing the basic Politis and Romano idea:
a subsample of size b without replacement from a sample of size n does not
change the distribution. It is just like directly taking a sample of size b from
the population.

Thus we first take our largest subsample, here of size 135, and then (here’s
where the principle of common random numbers comes in) take our next largest
subsample, here of size 90, from the subsample of size 135 (rather from the
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Figure 3: Parallel Boxplots of θ∗b − θ̂n.

original sample of size 1000). This makes the two subsamples of different sizes
positively correlated and improves everything else we do. The smaller subsam-
ples of size 60 and 40 are done analogously.

The estimates for each sample are stored in an nboot by length(b) matrix
theta.star.

Figure 3 shows parallel boxplots of θ∗b − θ̂n for the different sample sizes. It
is made by the code

> zlist <- list()

> for (i in 1:length(b)) {

+ zlist[[i]] <- theta.star[, i] - theta.hat

+ }

> names(zlist) <- b

> boxplot(zlist, xlab = "subsample size", ylab = expression(hat(theta)[b] -

+ hat(theta)[n]))

From Figure 3 we see several things.

• The spread of the θ∗b − θ̂n values decreases as b increases.
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• The θ∗b − θ̂n values are all negative.

But this figure doesn’t tell us directly anything about the rate.
The rate estimation method of Politis and Romano requires us to calcu-

late some differences of quantiles of these distributions. We estimate them by
differences of order statistics.

> qlist <- list()

> k <- (nboot + 1) * seq(0.05, 0.45, 0.05)

> l <- (nboot + 1) * seq(0.55, 0.95, 0.05)

> k

[1] 1000 2000 3000 4000 5000 6000 7000 8000 9000

> l

[1] 11000 12000 13000 14000 15000 16000 17000 18000 19000

> for (i in 1:length(b)) {

+ z.star <- zlist[[i]]

+ sz.star <- sort(z.star, partial = c(k, l))

+ qlist[[i]] <- sz.star[l] - sz.star[k]

+ }

Figure 4 shows a “stripchart” of the logs of these quantities for the different
sample sizes. It is made by the code

> names(qlist) <- b

> lqlist <- lapply(qlist, log)

> stripchart(lqlist, xlab = "subsample size", ylab = "log(high quantile - low quantile)",

+ vertical = TRUE)

From Figure 4 we see several things.

• The four “stripcharts” are about equally spread (on this log scale).

• If we think of these points as a scatter plot, a simple linear regression
doesn’t look too bad.

Of course, these points are not typical regression data (there are not a
straight line plus IID errors). We are only using linear regression as tool to
put a straight line on this plot.

Our estimate of β is minus the slope of this “regression line”and is calculated
by

> y <- sapply(lqlist, mean)

> beta <- cov(-y, log(b))/var(log(b))

> beta

[1] 0.8822342
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Figure 4: Stripchart of Subsample Quantiles.
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Figure 5: Stripchart of Subsample Quantiles with “Regression Line.”

and, just out of curiosity, we also calculate the intercept

> inter <- mean(y) + beta * mean(log(b))

and add the “regression line” to the plot giving Figure 5. It is made by the code

> plot(log(rep(b, each = length(k))), unlist(lqlist), xlab = "log(subsample size)",

+ ylab = "log(high quantile - low quantile)")

> abline(inter, -beta)

From Figure 5 we can see how the method works.
It’s certainly not the one and only way to get a rate estimate. And the rate

estimate isn’t all that good, 0.8822342 when we know from theory that the
correct rate is exactly 1.

Now, finally, we are ready for a confidence interval calculation, which pro-
ceeds exactly like the preceding example, except we use “rate” τn = nβ where β
is the estimate just obtained.

> conf.level <- 0.95

> alpha <- 1 - conf.level
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> m <- 3

> b <- b[m]

> b

[1] 90

> theta.star <- theta.star[, m]

> crit.val <- sort(z.star)[(nboot + 1) * alpha]

> theta.hat - c(0, crit.val)/n^beta

[1] 2.717583 2.719533

Note this is a one-sided confidence interval, because in this particular exam-
ple we know that θ̂ < θ with probability one. In general, we want a two-sided
interval, which we leave to the web page.

Also a little trickly, we have not obtained a new bootstrap of θ∗ but rather
used one we already had, the one with b = 90, with is theta.star[ , 3] the
way we stored them.
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