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1 Web Page

This handout accompanies the web pages

http://www.stat.umn.edu/geyer/5601/examp/subboot.html

http://www.stat.umn.edu/geyer/5601/examp/subtoot.html

2 History

The term “bootstrap” was coined by Efron (1979). He described both
the nonparametric and parametric bootstrap. In particular, his nonparamet-
ric bootstrap is the procedure of resampling with replacement from the original
sample at the same sample size that is by far the most commonly used bootstrap
procedure.

It wasn’t long before people experimented with resampling at different sam-
ple sizes. But the key discovery in that area came later. Politis and Romano
(1994) described resampling without replacement from the original sample at

smaller than the original sample size.
This is different enough from Efron’s idea that in their book (Politis, et al.,

1999) they don’t call it “bootstrap” but just plain “subsampling”.
Whatever you call it, here’s why it is such an important innovation.

• Politis and Romano’s subsampling bootstrap takes samples without re-

placement of size b from the original sample of size n, generally with
b¿ n (read “b much less than n”). Such samples are themselves samples
of size b from the true unknown distribution F of the original sample.

• Efron’s nonparametric bootstrap takes samples with replacement of size
n from the original sample of size n (both sample sizes the same). Such

samples are samples of size n from the empirical distribution F̂n associated
with the original sample.

Each of these procedures does the Wrong Thing.

• The Right Thing is samples of the right size n from the right distribution
F .
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• The Politis and Romano thing is samples of the wrong size b ¿ n from
the right distribution F .

• The Efron thing is samples of the right size n from the wrong distribution
F̂n.

Both Wrong Things are wrong. We would like to do the Right Thing but
we can’t. (More precisely, we have exactly one such sample, the original data,
and can’t get more. Scientists may get more data, but that’s of no interest to
us statisticians.)

So which Wrong Thing do we want to do? Both have pluses and minuses.
The Efron procedure is older, more widely used, and familiar to more people.
It is also easier to use, at least in simple situations. But the Politis and Ro-
mano procedure has the great virtue of working in situations where the Efron
bootstrap fails. The two main classes of such situations are presented in the
following sections.

3 Stationary Time Series

A time series is a sequence X1, X2, . . ., Xn of dependent (note not indepen-
dent) random variables.

A times series is stationary if every consecutive block

Xi+1, Xi+2, . . . , Xi+b (1)

of length b has the same (marginal) distribution. Roughly speaking, what actu-
ally happens changes over time, but the probability distribution of what happens

does not change over time.
The ordinary (Efron) nonparametric bootstrap doesn’t work for time series

or any other form of dependent data. If the data are not i. i. d. then it makes
no sense whatsoever to obtain i. i. d. bootstrap samples from F̂n (or any other
distribution for that matter).

The (Politis and Romano) subsampling bootstrap does work for stationary
time series. Under the stationarity assumption the n− b− 1 consecutive blocks
(1) of length b are identically distributed. Hence the estimators corresponding
to such blocks

θ∗bi = t(Xi+1, Xi+2, . . . Xi+b)

are identically distributed (not i. i. d., just i. d., since they are dependent) and
analogous (in the “bootstrap world”) to

θ̂n = t(X1, X2, . . . Xn)

(in the “real world”). The only problem we have to deal with is that

se(θ̂n) ≈
c√
n
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for some positive constant c (assuming our estimator obeys the “square root
law”) whereas

se(θ∗b ) ≈
c√
b

for the same positive constant c (but different denominator). Thus we need to
scale

se(θ̂n) ≈ se(θ∗b ) ·
√

b

n

to get from se(θ∗b ), which we can estimate by subsampling (as the standard

deviation of the n − b + 1 quantities θ∗bi), to se(θ̂n), which is the quantity we

need to make a confidence interval for θ̂n and which we otherwise have no way
to estimate.

4 Extreme Values

Suppose X1, X2, . . ., Xn are i. i. d. Uniform(0, θ) random variables. Since
the larger the sample the more the largest values crowd up against θ, the natural
estimator of θ is the maximum data value

θ̂n = X(n) = max(X1, X2, . . . , Xn).

This is in fact the maximum likelihood estimate.
The main statistical interest in this estimator is that it is a counter exam-

ple to both the “square root law” and the “usual asymptotics” of maximum
likelihood.

• The “rate” is n rather than
√
n.

• The asymptotic distribution is not normal.

More precisely,

n(θ − θ̂n)
D−→ Exponential(1/θ) (2)

But to use the subsampling bootstrap, we need only know that the actual rate
is n. We do not need to know the actual asymptotic distribution.

Actually, we do not even need to know the rate. By looking at the distri-
bution of θ∗b for different subsample sizes b we can get an estimate of the rate
(described in Section 6 below). But for now we’ll assume we know the rate.

5 Confidence Intervals

The fundamental idea of the subsampling bootstrap is that

τn(θ̂n − θ)
D−→ Something, (3)
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where “Something” denotes any distribution whatsoever. Then, trivially,

τb(θ̂b − θ)
D−→ Something, (4)

converges to the same “Something,” because whether we index by n or b is
merely a matter of notation. Usually, we write (4) as

τb(θ
∗

b − θ)
D−→ Something (5)

to distinguish the estimator θ̂n for the full data and the estimator θ∗b for a

subsample, but it is the key feature of the subsampling bootstrap that θ̂b and θ∗b
are equal in distribution (because the subsampling is done without replacement
as discussed in Section 2).

The basic assumptions of the subsampling bootstrap are

b→∞
b

n
→ 0

τb →∞
τb
τn
→ 0

(6)

where n is the sample size and b the subsample size.
Under these assumptions

τb(θ̂n − θ)
D−→ 0 (7)

just because we would need to multiply by τn rather than τb to get a nonzero
limit and τb/τn goes to zero.

Subtracting (7) from (5) gives

τb(θ
∗

b − θ̂n)
D−→ Something, (8)

where “Something” denotes the same distribution as in (3).
To summarize where we have gotten, the subsampling bootstrap is based

on the assumptions (6) and the convergence in distribution (3). It then follows
from asymptotic theory that (8) describes the same asymptotics as (3).

It does not matter what the limiting distribution is because we approxi-
mate it using the subsampling bootstrap. Suppose the limiting distribution, the
“Something” in (3) has distribution function F . We don’t know the functional
form of F but we can approximate it by the empirical distribution function F ∗

b

of the left hand side of (8) using bootstrap subsampling to simulate θ∗b .
We know that for large n

F−1(α/2) < τn(θ̂n − θ) < F−1(1− α/2) (9)

occurs with probability approximately 1 − α. That’s what the convergence
in distribution statement (3) means when F is the distribution function of the

4



“Something” on the right hand side. F−1(α/2) is the α/2 quantile of this distri-
bution and F−1(1−α/2) is the 1−α/2 quantile. Thus if Y is a random variable
having this distribution and the distribution is continuous, the probability that

F−1(α/2) < Y < F−1(1− α/2) (10)

is 1−α. Since we are assuming Y and τn(θ̂n− θ) have approximately the same
distribution for large n, (9) has approximately the same probability as (10).

Of course, we don’t know F , but F ∗

b converges to F , so for large b and n,
we have

F ∗

b
−1(α/2) < τn(θ̂n − θ) < F ∗

b
−1(1− α/2) (11)

with probability close to 1−α. Rearranging (11) to put θ in the middle by itself
gives

θ̂n − τ−1
n F ∗

b
−1(1− α/2) < θ < θ̂n − τ−1

n F ∗

b
−1(α/2) (12)

which is the way subsampling bootstrap confidence intervals are done.
In practice, we don’t explicitly calculated empirical c. d. f.’s and invert them.

We use the R quantile function to directly calculate quantiles. Assuming we
already have calculated the estimator theta.hat for the original data having
sample size n and a vector theta.star of estimators for bootstrap subsamples
of size b and have previously defined a function tau that calculates the “rate”
and a significance level alpha, the following three R statements calculate the
confidence interval.

z.star <- tau(b) * (theta.star - theta.hat)

crit.val <- quantile(z.star, probs = c(1 - alpha / 2, alpha / 2))

theta.hat - crit.val / tau(n)

6 Estimating the Rate

We aren’t always lucky enough to know the rate of convergence τb. But even
if we don’t, we can estimate the rate from looking at the distribution of θ∗b for
different subsample sizes b. The method described here is that of Chapter 8 of
Politis, et al. (1999).

Suppose τn = nβ for some constant β. This is the usual case. It includes
the “square root law” (β = 1/2) found in the usual asymptotics and most other
examples of interest. Under this supposition, what we need to do is estimate
the unknown constant β.

To do this we take subsamples at different sizes. For each sample size b we
look at the distribution of θ∗b − θ̂n. For each such distribution we determine a
number of differences of quantiles. On the web page, the quantiles are deter-
mined as order statistics. Suppose θ∗b,i denotes the i-th bootstrap estimator for
a subsample of size b and θ∗

b,(i) the i-th order statistic for the estimators for
subsamples of size b. Then we define

yb,i = θ∗b,(li) − θ∗b,(ki)
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where li and ki are some numbers chosen rather haphazardly. However they are
chosen, the scaling of the distributions by nβ means

yb,i ≈ Cn−β

for some constant C or for that matter

ȳb ≈ Cn−β

where ȳb is the average of the yb,i for each b. Taking logs gives

log(ȳb) ≈ log(C)− β log(b)

thus we can estimate β by regressing log(ȳb) on log(b). We don’t need a regres-
sion routine, because this is simple linear regression

β̂ = −cov{ȳb, log(b)}
var{log(b)}

does the job.
As the example on the web page shows, this actually works if n and b are

large enough.
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