Stat 3011 Midterm 1 (Class Part)

Problem 1

All of this is summarized in the box on p. 25 in Wild and Seber.
On the first issue (what is the difference),

- In an experiment, the experimenter determines which experimental units receive which treatments (ideally by randomized assignment to treatment groups).
- In an observational study, which subject gets which treatment is outside the experimenter's control. Perhaps the subjects or their doctors choose. Perhaps it just happens (exposure to a toxic substance in the environment, for example).

On the second issue (what is the implication)

- A properly designed and executed experiment can reliably demonstrate causation.
- An observational study can only suggest possible causes. It cannot reliably establish causation. A properly designed and executed experiment is needed to follow up results implied by an observational study.

Problem 2

(a) The mean is

$$
\begin{aligned}
\sum_{x} x \operatorname{pr}(x) & =1 \cdot \frac{1}{7}+2 \cdot \frac{1}{7}+3 \cdot \frac{1}{7}+4 \cdot \frac{1}{7}+5 \cdot \frac{1}{7}+6 \cdot \frac{1}{7}+7 \cdot \frac{1}{7} \\
& =\frac{1+2+3+4+5+6+7}{7} \\
& =\frac{28}{7} \\
& =4
\end{aligned}
$$

(b) The standard deviation is

$$
\operatorname{sd}(X)=\sqrt{E\left\{(X-\mu)^{2}\right\}}
$$

where μ is the mean calculated in part (a), and

$$
\begin{aligned}
E\left\{(X-\mu)^{2}\right\}= & \sum_{x}(x-\mu)^{2} \operatorname{pr}(x) \\
= & (1-4)^{2} \cdot \frac{1}{7}+(2-4)^{2} \cdot \frac{1}{7}+(3-4)^{2} \cdot \frac{1}{7}+(4-4)^{2} \cdot \frac{1}{7} \\
& \quad+(5-4)^{2} \cdot \frac{1}{7}+(6-4)^{2} \cdot \frac{1}{7}+(7-4)^{2} \cdot \frac{1}{7} \\
= & \frac{(-3)^{2}+(-2)^{2}+(-1)^{2}+0^{2}+1^{2}+2^{2}+3^{2}}{7} \\
= & \frac{9+4+1+0+1+4+9}{7} \\
= & \frac{28}{7} \\
= & 4
\end{aligned}
$$

Thus $\operatorname{sd}(X)=\sqrt{4}=2$.

Problem 3

(a) By the multiplication rule (using the assumed statistical independence)

$$
\operatorname{pr}(\text { no accidents in } 30 \text { days })=\operatorname{pr}(\text { no accident in one day })^{3} 0
$$

So in order to answer this question we have to first answer the subsidiary question: what is the latter probability? By the complement rule

$$
\begin{aligned}
\operatorname{pr}(\text { no accident in one day }) & =1-\operatorname{pr}(\text { an accident in one day }) \\
& =1-0.002 \\
& =0.998
\end{aligned}
$$

Thus

$$
\operatorname{pr}(\text { no accidents in } 30 \text { days })=0.998^{3} 0=0.941708
$$

(b) The events in parts (a) and (b) of this problem are complementary, so by the complement rule each is one minus the other

$$
\operatorname{pr}(\text { at least one accident in } 30 \text { days })=1-0.941708=0.058292
$$

Problem 4

Curve A: skewed, long right tail, unimodal.
Curve B: symmetric, unimodal.
Curve C: skewed, long right tail, biimodal.
Curve D: symmetric, biimodal.

