
Stat 5102 (Geyer) Final Exam

Problem 1

Looking at the simplest moment first,

E(Xi) =
α

λ
=
θ

θ
= 1,

we see that it is not a function of the unknown parameter and hence useless
for finding a method of moments estimator. Moving up to the second central
moment,

var(Xi) =
α

λ2
=

θ

θ2
=

1
θ

is a simple function of θ and gives the method of moments estimator

θ̂n =
1
Vn
.

(or the same with Vn replaced by S2
n).

Problem 2

The formula for f should be familiar. It defines the location-scale family with
base density g (Sections 4.1 and 9.2 of the course notes). The variables

Yi =
Xi − µ
σ

are i. i. d. with density g. We get the same answer for ARE whether we compare
X̃n and Xn as estimators of µ or whether we compare Ỹn and Y n as estimators
of zero.

Ỹn is asymptotically normal with variance

1
4ng(0)2

=
4
n

(Corollary 7.28 in the notes), and Y n is asymptotically normal with variance

var(Y )
n

=
π2

3n

Thus the ARE is either π2/12 or 12/π2 depending on which way you form the
ratio. The important point is that Xn is the better estimator since

π2

3
= 3.2899

is less than 4.
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Alternate Solution

Things are only a little different if we don’t realize we can give the answer for
Y n and Ỹn instead of Xn and X̃n.

Since Xi = µ+ σYi,
E(Xi) = µ

and

var(Xi) = σ2 var(Yi) =
π2σ2

3
so

Xn ≈ N
(
µ,
π2σ2

3n

)
Note that g is symmetric about zero but f is symmetric about µ, so µ is both

the population mean and the population median. And the asymptotic variance
of X̃n is

1
4nf(µ)2

=
4σ2

n

and

X̃n ≈ N
(
µ,

4σ2

n

)
The ratio of asymptotic variances is the same as before.

Problem 3

We need to apply the delta method to the estimator g(Xn), where

g(x) =
2x

1− x
has derivative

g′(x) =
2

1− x
+

2x
(1− x)2

=
2

(1− x)2

Because g(Xn) is a method of moments estimator it must have asymptotic
mean θ (you can check this if you like, but it is already part of the question
statement and thus not a required calculation in the answer).

The asymptotic variance is

g′(µ)2σ2 = g′
(

θ

2 + θ

)2 2θ
(2 + θ)2(3 + θ)

=

 2(
1− θ

2+θ

)2


2

2θ
(2 + θ)2(3 + θ)

=
(2 + θ)4

4
2θ

(2 + θ)2(3 + θ)

=
θ(2 + θ)2

2(3 + θ)
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Problem 4

If anyone is wondering whether sample size one is “large,” recall that a single
Poisson random variable is approximately normal if the mean is large (Section
F.3 in the appendices of the notes).

The obvious point estimate of µY − µX is

µ̂Y − µ̂X = Y −X = 410− 320 = 90

which has variance

var(µ̂Y − µ̂X) = var(Y ) + var(X) = 410 + 320 = 730

and standard deviation

sd(µ̂Y − µ̂X) =
√

730 = 27.02

Thus the large sample confidence interval is

90± 1.96× 27.02

or
90± 52.96

or
(37.0, 143.0)

Problem 5

The density of the data is

f(x | θ) =
Γ(θ + 1)
Γ(θ)Γ(1)

xθ−1 = θxθ−1, 0 < x < 1

The likelihood for a sample of size n is

Ln(θ) =
n∏
i=1

θxθ−1
i = θn

(
n∏
i=1

xi

)θ−1

= θn exp

(
(θ − 1)

n∑
i=1

log(xi)

)

or, if we introduce the variables yi = log(xi),

Ln(θ) = θne(θ−1)nȳn = θneθnȳne−nȳn

The last term can be dropped, since it does not contain the parameter, giving

Ln(θ) = θneθnȳn
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The log likelihood is thus

ln(θ) = n log(θ) + nθȳn

which has derivatives

l′n(θ) =
n

θ
+ nȳn

l′′n(θ) = − n

θ2

Since the latter does not depend on the data, it is the same as it’s expectation,
so observed and expected Fisher information are the same

Jn(θ) = In(θ) =
n

θ2

Problem 6

The likelihood is

Ln(p) =
n∏
i=1

p(1− p)xi = pn(1− p)
∑
i xi

Note that this is the same functional form as a binomial likelihood. The only
difference is the statistics. Here there are n successes and

∑
i xi failures. Since

Bayesian inference depends only on the log likelihood, there is no difference
between the calculations here an in Example 11.2.3 in the notes. The posterior
distribution is Beta(n+ 1, 1 +

∑
i xi) and the posterior mean is

E(p | x1, . . . , xn) =
n+ 1

n+ 2 +
∑
i xi

Problem 7

(a) The models in question have polynomials of degree 1, 2, 3, 4, and 5 as
regression functions.

To be more precise, the regression functions are of the form

g(x) = β0 +
k∑
i=1

βix
i

for i = 1, 2, 3, 4, 5. Strictly speaking, the model assumptions include the
assumption of i. i. d. normal errors, but almost no one said this and no deduction
was made for not saying it.

(b) Because linear functions are special cases of quadratic, and so forth. You
obtain the models of lower degree by setting the coefficients of higher powers of
x to zero in the larger models.
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(c) Starting at the bottom of the ANOVA table and reading up

• The quintic model fits no better than the quartic (P = 0.6233).

• The quartic model fits no better than the cubic (P = 0.9170).

• But the cubic model fits much better than the quadratic (P < 2× 10−16).

Thus we conclude that the cubic model (Model 3) is correct, which means
its supermodels (Model 4 and Model 5) must also be correct. Or to be more
finicky we conclude that these data do not give any evidence that these models
are incorrect. And we conclude that the quadratic model (Model 2) and its
submodel (Model 1) are incorrect. The evidence for that latter conclusion is
very strong (repeating what was said above, P < 2× 10−16).

Many people were confused by “correct” and “incorrect.” If a model is
correct, then so is every supermodel. If a model is incorrect, then so is every
submodel. Hence in a nested sequence of models, there is a smallest correct
model (here model 3) and all the models above it are also correct, but all the
models below it are incorrect.

Problem 8

f(y | p) = p(1− p)y−1

= exp[log(p) + y log(1− p)− log(1− p)]
= exp[y log(1− p) + logit(p)]

where logit(p) is defined by equation (12.77a) in the notes.
This clearly fits the form of equation (12.78) in the notes with

θ = log(1− p)
φ = 1
w = 1

b(θ) = − logit(p)

Of course, the last equation doesn’t by itself define b(θ). To do that we need
to know p as a function of θ, that is, we have to solve the first equation above
for p giving

p = 1− eθ

and plugging that in to the equation for b(θ) giving

b(θ) = − logit(p)

= − log
(

p

1− p

)
= log

(
1− p
p

)
= log

(
eθ

1− eθ

)
= θ − log(1− eθ)
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or, if you prefer, starting just above the last line

= log
(

1
e−θ − 1

)
= − log(e−θ − 1)

Additional Stuff

This is just added for my curiosity and perhaps to go in the homework problems
some future semester.

b′(θ) =
e−θ

e−θ − 1

=
1

1− eθ

=
1
p

which is indeed the mean of Y given in Section B.1.8 of the appendices to the
notes. Furthermore

b′′(θ) =
eθ

(1− eθ)2

=
1− p
p2

which is indeed the variance of Y given in Section B.1.8 of the appendices to
the notes. So the GLM theory works and Lemma 12.20 in the notes is true (as,
of course, it must be since it is proved in the notes).
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