
Stat 5102 (Geyer) Midterm 1

Problem 1

(a) The joint density is

f(x | θ) =
n∏
i=1

θxθ−1
i = θn

(
n∏
i=1

xi

)θ−1

= θnaθ−1
n

where for convenience we have defined

an =
n∏
i=1

xi

That is also the likelihood when considered a function of θ rather than x. The
prior density is

g(θ) = λe−λθ

Hence the unnormalized posterior is likelihood× prior

h(θ | x) ∝ θnaθ−1
n · λe−λθ =

λ

an
θne−λθ+θ log(an)

This is clearly an unnormalized Gam(n + 1, λ − log an) density. So that is the
posterior distribution.

(b) Equation (11.36) in the notes gives the mode of the gamma distribution:
shape parameter minus one over scale parameter, in this case

n

λ− log an

Problem 2

(a) By Example 11.2.4 in the notes, the posterior distribution is Normal(a, b−1)
where

a =
nλx̄n + λ0µ0

nλ+ λ0

b = nλ+ λ0

and where λ, µ0, and λ0 are the precision of the data distribution and the mean
and precision of the prior distribution, respectively. Since the variances are 4
and 1, the precisions are λ = 1/4 and λ0 = 1. Also µ0 = 0. Plugging those in
gives

a =
nx̄n
n+ 4

b =
n+ 4

4
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(b) The HPD region for a normal posterior distribution is

posterior mean± 1.96× posterior standard deviation

which in this case is
nx̄n
n+ 4

± 1.96

√
4

n+ 4

(recall that b is posterior precision, which is one over posterior variance).

Problem 3

(a) The likelihood for λ is

Ln(λ) =
n∏
i=1

(
1− e−λ

)
e−λxi

=
(
1− e−λ

)n
e−λ

∑
i xi

=
(
1− e−λ

)n
e−nλx̄n

The log likelihood is

ln(λ) = −nλx̄n + n log
(
1− e−λ

)
and

l′n(λ) = −nx̄n + n
e−λ

1− e−λ

which is equal to zero when

x̄n =
e−λ

1− e−λ
=

1
eλ − 1

Solving for λ gives

λ̂n = log
(

1 +
1
x̄n

)
(b)

l′′1 (λ) = −e
−λ(1− e−λ) + e−2λ

(1− e−λ)2

= − e−λ

(1− e−λ)2

Since this does not contain Xi, it is nonrandom, and hence its negative is the
Fisher information

I1(λ) =
e−λ

(1− e−λ)2

and the Fisher information for a sample of size n is In(λ) = nI1(λ).
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(c) A 95% C. I. for θ is

λ̂n ± 1.96
1√

In(λ̂n)

Problem 4

Equation (10.37) in the notes gives the log likelihood for the two-parameter
normal. To convert to the log likelihood for this problem we need to plug in θ
for both µ and σ giving

ln(θ) = −n log(θ)− 1
2θ2

n∑
i=1

(xi − θ)2 (1)

and derivatives

l′n(θ) = −n
θ

+
1
θ2

n∑
i=1

(xi − θ) +
1
θ3

n∑
i=1

(xi − θ)2

l′′n(θ) = − 4
θ3

n∑
i=1

(xi − θ)−
3
θ4

n∑
i=1

(xi − θ)2

The observed Fisher information is

Jn(θ) = −l′′n(θ) =
4
θ3

n∑
i=1

(xi − θ) +
3
θ4

n∑
i=1

(xi − θ)2

Because E(Xi−θ) = 0 and E{(Xi−θ)2} = θ2, the expected Fisher information
is

In(θ) = E{Jn(θ)} =
3n
θ2

Alternate Solution

The solution given above is perhaps the easiest. Another contender for the
easiest expands the binomial in (1) giving

ln(θ) = −n log(θ)− n

2
+

1
θ

n∑
i=1

xi −
1

2θ2

n∑
i=1

x2
i

and derivatives

l′n(θ) = −n
θ
− 1
θ2

n∑
i=1

xi +
1
θ3

n∑
i=1

x2
i

l′′n(θ) = +
n

θ2
+

2
θ3

n∑
i=1

xi −
3
θ4

n∑
i=1

x2
i
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So the observed Fisher information is

Jn(θ) = −l′′n(θ) = − n

θ2
− 2
θ3

n∑
i=1

xi +
3
θ4

n∑
i=1

x2
i

Because E(Xi) = θ and E(X2
i ) = var(Xi) +E(Xi)2 = 2θ2, the expected Fisher

information is
In(θ) = E{Jn(θ)} =

3n
θ2

The deriviatives are a bit easier and the expectations are a bit harder than
the first solution, but both are fairly easy.

More Alternate Solutions

The alternate solution that uses the empirical parallel axis theorm to “simplify”
(1) giving

ln(θ) = −n log(θ)− n

2θ2

n∑
i=1

[vn + (x̄n − θ)2] (2)

actually anti-simplification, because this doesn’t simplify any derivatives and
makes the expectations a lot harder.

E(Vn) =
n− 1
n

θ

E{(Xn − θ)} = var(Xn) =
θ

n

The alternate solution that expands the binomial in (2) giving

ln(θ) = −n log(θ)− n

2
+
nx̄n
θ
− n(vn + x̄2

n)
2θ2

further complicates the expectations although the derivatives are somewhat sim-
plified. Now in addition to E(Vn) given above we need

E(Xn) = θ

E(X
2

n) = var(Xn) + E(Xn)2

=
θ2

n
+ θ2

We won’t give all the details. Of course In(θ) must be the same no matter how
calculated (as long as no mistakes are made). For observed Fisher information
we get

Jn(θ) =
4n
θ3

(x̄n − θ) +
3n
θ4

[vn + (x̄n − θ)2]

= − n

θ2
− 2nx̄n

θ3
+

3n(vn + x̄n)2

θ4
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Problem 5

Example 9.5.4 in the notes gives the math for this problem. The natural esti-
mates of p and q are p̂ = 0.38 and q̂ = 0.464. The natural test statistic is p̂− q̂
divided by its standard error (estimated standard deviation). As explained in
the example, the natural choice for the standard error when we assume p = q
uses the pooled estimate of p (and q), which is

r̂ =
mp̂+ nq̂

m+ n
=

250 · 0.38 + 250 · 0.464
250 + 250

=
0.38 + 0.464

2
= 0.422

Then the standard error is

se(p̂− q̂) =

√
r̂(1− r̂)

(
1
m

+
1
n

)

=

√
0.422(1− 0.422)

(
1

250
+

1
250

)
= 0.04417384

So the test statistic is

z =
p̂− q̂

se(p̂− q̂)
=

0.38− 0.464
0.04417384

= −1.9016

which has an asymptotic standard normal distribution under H0. The P -value
for this (one-tailed, lower tailed) test is the area under the standard normal
curve to the left of z, which is

Φ(z) = .0287

(no interpolation necessary since z is so close to 1.900).
Not part of the question, but of interest in real life is the interpretation of the

P -value. According to conventional standards of evidence, this is a “statistically
significant” result because P < .05. Since P = .029 is not that far below .05,
this is not absolutely compelling evidence of effectiveness of the new treatment,
but it is fairly compelling.

Alternate Calculation of r̂

The pooled estimator of p and q under H0 is just the number of deaths in both
groups divided by the number of subjects in both groups, so is also

r̂ =
95 + 116
250 + 250

= 0.422
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Alternate Solution

An asymptotically equivalent way to do the problem (almost no difference when
m and n are large and H0 is true) uses the standard error estimate

se(p̂− q̂) =

√
p̂(1− p̂)

m
+
q̂(1− q̂)
m

=

√
0.38(1− 0.38)

250
+

0.464(1− 0.464)
250

= 0.04401382

So the test statistic is

z =
p̂− q̂

se(p̂− q̂)
=

0.38− 0.464
0.04401382

= −1.9085

giving a P -value
Φ(z) = .0282

(or .0281 if you don’t interpolate).
Note that this method is not recommended in real life, not because there is

anything wrong with it, but because it’s not the method taught in intro statistics
books and hence people will argue.
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