
Stat 5102 (Geyer) Midterm 1

Problem 1

The basic fact this problem uses is

Xn − µ

Sn/
√

n
∼ t(n − 1)

(Corollary 7.25 in the notes), which, since µ = 0, specializes to

Xn

Sn/
√

n
∼ t(n − 1) (1)

in this problem. This is the only exact result we have involving both Xn and
Sn, so nothing else is of any use.

To use (1), we must put the event of interest Xn < Sn in a form related to
the left hand side of (1). Clearly, this is equivalent to

Xn

Sn/
√

n
<

√
n = 3

So the probability we need to find P (Y < 3) where Y is a t(n − 1) random
variable (n − 1 = 8 degrees of freedom).

From Table IIIa in Lindgren P (Y > 3) = 0.009, so P (Y < 3) = 1 − 0.009 =
0.991.

Problem 2

To use the method of moments, we first need to find some moments. Since this
is not a “brand name” distribution, we must integrate to find the moments. The
obvious moment to try first is the first moment (the mean)

µ =
∫ 1

0

xfβ(x) dx

=
2

1 + β

∫ 1

0

[x + (β − 1)x2] dx

=
2

1 + β

[
x2

2
+ (β − 1)

x3

3

]1

0

=
1 + 2β
3 + 3β

Solving for β as a function of µ, we get

β =
3µ − 1
2 − 3µ
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(the numerator and denominator are both positive because 1/3 < µ < 2/3.)
Either way, we get a method of moments estimator by plugging in Xn for µ

β̂n =
3Xn − 1
2 − 3Xn

Problem 3

(a) The asymptotic distribution of Xn is, as usual, by the CLT,

Xn ≈ N
(

µ,
σ2

n

)
.

Plugging in σ2 = µ gives
Xn ≈ N

(
µ,

µ

n

)
.

(b) The asymptotic distribution of Vn is, by Corollary 7.17 in the notes,

Vn ≈ N
(

µ2,
µ4 − µ2

2

n

)
.

where µ2 = σ2 = µ and µ4 = µ + 3µ2 are given in the problem statement.
Plugging these in gives

Vn ≈ N
(

µ,
µ + 2µ2

n

)
.

(c) The ARE is the ratio of the asymptotic variances, either 1 + 2µ or the the
reciprocal 1/(1 + 2µ), depending on which way you write it.

(d) The better estimator is the one with the smaller asymptotic variance, in
this case Xn.

Problem 4

This is a problem for the delta method. We know from the properties of the
exponential distribution

E(Xi) =
1
λ

and
var(Xi) =

1
λ2

Hence the CLT says in this case

Xn ≈ N
(

1
λ

,
1

nλ2

)
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For any differentiable function g, the delta method says

g(Xn) ≈ N
(

g
( 1

λ

)
, g′

( 1
λ

)2 1
nλ2

)

The g such that Wn = g(Xn) is

g(x) =
x

1 + x
(2)

which has derivative
g′(x) =

1
(1 + x)2

(3)

so
g
( 1

λ

)
=

1
1 + λ

and

g′
( 1

λ

)
=

λ2

(1 + λ)2

and

Wn ≈ N
(

1
1 + λ

,
λ2

n(1 + λ)4

)

Problem 5

There are several different ways to proceed here.

Using a Confidence Interval for the Mean

The mean is µ = 1/p. Thus we could just get a confidence interval for µ and
take reciprocals of the endpoints to get a confidence interval for p.

A confidence interval for µ can be found using Theorem 9.8 in the notes.
From Section B.1.8 of the notes

var(Xi) =
1 − p

p2
= µ(µ − 1)

so by the LLN and the continuous mapping theorem

Sn =
√

Xn(Xn − 1)

is a consistent estimator of the population standard deviation σ needed for the
theorem. The theorem gives

Xn ± 1.96

√
Xn(Xn − 1)

n
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as an asymptotic 95% confidence interval for µ. So

1

Xn + 1.96
√

Xn(Xn−1)
n

< p <
1

Xn − 1.96
√

Xn(Xn−1)
n

is an asymptotic 95% confidence interval for p = 1/µ. Plugging in the numbers
gives

0.180 < p < 0.256

Using the Delta Method

The obvious point estimator for p is

p̂n =
1

Xn

The CLT says

Xn ≈ N
(

1
p
,
(1 − p)

np2

)
Applying the delta method with the transformation

g(u) =
1
u

with derivative
g′(u) = − 1

u2

gives

g
(1

p

)
= p

and
g′

(1
p

)
= −p2

and

p̂n ≈ N
(

p,
p2(1 − p)

n

)
which gives an asymptotic 95% confidence interval

p̂n ± 1.96

√
p̂2

n(1 − p̂n)
n

Plugging in the numbers gives

0.2114 ± 0.03680

or
0.1746 < p < 0.2482

which is pretty close to the other interval.
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Solving Quadratic Inequalities

The really hard way to do this problem is to start with

Xn ≈ N
(

1
p
,
1 − p

np2

)

and standardize giving the asymptotically standard normal quantity

Xn − 1
p√

1−p
np2

from which we conclude that the set of p such that∣∣∣∣∣∣
Xn − 1

p√
1−p
np2

∣∣∣∣∣∣ < 1.96

is an asymptotic 95% confidence interval for p. It turns out this is solvable,
equivalent to

1.962 >

∣∣∣∣∣∣
Xn − 1

p√
1−p
np2

∣∣∣∣∣∣
2

=
n(Xnp − 1)2

1 − p

Or, writing z = 1.96, we see the confidence interval has endpoints satisfying the
quadratic equation

(1 − p)z2 = n(Xnp − 1)2

which has roots
2nXn − z2 ± z

√
4nXn + z2 − 4nXn

2nX
2

n

or
0.17375 < p < 0.247366
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