
Stat 5102 (Geyer) Final Exam

Problem 1

First define

µ =
α

λ

σ2 =
α

λ2

so

E(Xi) = µ

var(Xi) = σ2

and the CLT says √
n

(
Xn − µ

) D−→ N (
0, σ2

)
.

Now we apply the delta method to the transformation

g(x) = log(x)

because the random variable we want the the asymptotic of is g(Xn). This has
derivative

g′(x) =
1
x

Hence the delta method says

√
n

[
g(Xn) − g(µ)

]
=

√
n

[
log(Xn) − log(µ)

] D−→ N (
0, g′(µ)2σ2

)
Now

g′(µ)2σ2 =
(

λ

α

)2
α

λ2
=

1
α

and
g(µ) = log(α) − log(λ)

Hence √
n

[
log(Xn) − log(α) + log(λ)

] D−→ N (0, 1/α)

or

log(Xn) ≈ N
(

log
(α

λ

)
,

1
nα

)
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Problem 2

Let’s look at the simplest moment first

E(Xi) =
s

s + t
= θ

Thus
θ̂n = Xn

is a perfectly good method of moments estimator of θ. The CLT gives its
asymptotic distribution

θ̂n ≈ N (θ, σ2/n)

where

σ2 = var(Xi) =
st

(s + t + 1)(s + t)2
=

θ(1 − θ)
2

Problem 3

An asymptotic test can be based on the asymptotically pivotal quantity

Z =
Xn − µ

Sn/
√

n

which is approximately standard normal for large n, where Sn is the sample
standard deviation (the “plug-in” theorem allows any consistent estimator of
the population standard deviation σ, but the convenient one here is Sn). To do
the test in this particular problem we need the mean of the beta distribution
(from p. 176 in Lindgren)

µ =
s

s + t

So under H0 (s = t)

µ =
1
2

That’s the value of µ that we plug in to compute Z

Z =
Xn − 1/2
Sn/

√
n

=
0.57 − 0.50√

0.036/100
= 3.7

The first row of Table I in the appendix of Lindgren gives P = 0.0001 for
the one-tailed P -value. Hence the two-tailed P -value is P = 0.0002. (R says
P = 0.000225, so the table is right to one significant figure.)

Since P < 0.05, reject H0.
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Problem 4

First we have to find the posterior. The relevant formulas are given in Exam-
ple 5.2.4 in the notes, equations (5.17a) and (5.17b). The precision of the data
distribution is 1/25 = 0.04 and the prior precision is 1/10 = 0.10. Hence from
(5.17a) the posterior precision is

16 · 0.04 + 0.10 = 0.74

and from (5.17b) the posterior mean is

16 · 0.04 · 31.2 + 0.10 · 20
16 · 0.04 + 0.10

= 29.6865

The posterior standard deviation is√
1

0.74
= 1.162476

The HPD region is
29.6865 ± 1.96 · 1.162476

or
29.6865 ± 2.2784

or
(27.4081, 31.9649)

Problem 5

The model called “Model 1” in the ANOVA table has regression function

h(x) = γ + βx = α + β(x − 11)

where α = γ +11β. This is obtained by setting β1 = β2 = β in the larger model
(called “Model 2” in the ANOVA table). Hence “Model 1” is a submodel of
“Model 2.”

The table gives a P -value P = 0.004277 for the test of model comparison.
Since the P -value is very small, this is strong evidence against the small model.
Thus we conclude that the piecewise linear model fits and the simple linear
model (“Model 1”) doesn’t.

Comment This problem was a learning experience for the teacher. We needed
some homework problems like this. It was harder than I thought it would be.
Most people had no clear idea of how to show the models were nested. Only
two people got full credit.

In order two show the models are nested, you need to show one of two things.

• Every distribution in the little model is also in the big model. Here the
models differ only in their regression functions, so you need to show that
every regression function in the little model is also in the big model.
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• For regression models, we also have the condition that the range of the
design matrix for the little model is a subspace of the range of the design
matrix for the big model.

These two conditions come to much the same thing (as we shall see below).
We can write the regression functions for the little model

h(x) = α + βx

but this is a bad idea given the form of the regression function for the big model

h(x) =

{
α + β1(x − 11), x ≤ 11
α + β2(x − 11), x ≥ 11

(1)

Because the two α’s are not the same. Better to chose another letter (or at least
an embellished alpha) for the intercept in the little model

h(x) = γ + βx (2)

Now the question to be answered is what values of α, β1 and β2 in (1) give (2)?
It is not enough to just assert that there are some such values. You have to find
them.

A little thought suggests β1 = β2 = β, which collapses the two cases in (1)
to one

h(x) = α + β(x − 11) = (α − 11β) + βx, (3)

but the result still doesn’t exactly match (2). You still have to remark about
chosing α − 11β = γ, or what is the same, α = γ + 11β.

The design matrices for the two models are

Xlittle =


1 x1

1 x2

...
...

1 xn−1

1 xn

 Xbig =


1 x1 − 11 0
1 x2 − 11 0
...

...
...

1 0 xn−1 − 11
1 0 xn − 11


How does one show that the range Xlittle is a subspace of the range of Xbig?
One needs to show that for any two-vector βlittle, there exists a three-vector
βbig such that

Xlittleβlittle = Xbigβbig

But this is exactly the same question as asked and answered above, because
Xβ is the regression function described in matrix language. Exactly the same
argument shows that

βlittle = (α, β)

and
βbig = (α − 11β, β, β)

does the job.
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Problem 6

The density of the data is

f(x | θ) =
Γ(θ + 1)
Γ(θ)Γ(1)

xθ−1 = θxθ−1, 0 < x < 1

The prior density is

g(θ | α, λ) =
λα

Γ(α)
θα−1e−λθ ∝ θα−1e−λθ, θ > 0

(the normalizing constant doesn’t matter).
The likelihood for a sample of size n is

Ln(θ) =
n∏

i=1

θxθ−1
i = θn

(
n∏

i=1

xi

)θ−1

= θn exp

(
(θ − 1)

n∑
i=1

log(xi)

)

or, if we introduce the variables yi = log(xi),

Ln(θ) = θne(θ−1)nȳn = θneθnȳne−nȳn

The last term can be dropped, since it does not contain the parameter, giving

Ln(θ) = θneθnȳn

The unnormalized posterior (likelihood times prior) is

θneθnȳnθα−1e−λθ = θn+α−1e−(λ−nȳn)θ

This is clearly proportional to a Gam(α + n, λ − nȳn). So that is the posterior
density.

Sanity Check: Does this make sense? Are both parameters of the posterior
positive? Clearly α+n is positive, because we need α > 0 for the prior to make
sense. How about λ − nȳn? At first sight this doesn’t look positive. We need
λ > 0 for the prior to make sense, but how do we know that the other bit doesn’t
make it negative? Have to think a bit. 0 < xi < 1, so yi = log(xi) < 0 (logs
of numbers less than one are negative), so −ȳn is actually positive despite its
appearance, and everything is o. k.

Problem 7

The regression coefficient in question is -0.011464 and R gives its standard error
as 0.007784 and the degrees of freedom for error as 17. We only need to look
up the t critical value from Table IIIb in Lindgren, which for 90% confidence is
1.74 (note not in the column headed 90, but in the next one over that has 1.645
as the appropriate z critical value at the bottom).

Thus the interval is

−0.011464 ± 1.74 · 0.007784
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or
−0.011464 ± 0.01354416

or
(−0.02500816, 0.0020801)

Problem 8

The sample median X̃n is asymptotically normal center m the population me-
dian and variance 1/4nf(m)2 (Corollary 2.28 in the notes). Here the population
median is zero by symmetry and f(0) = 2/π. Hence

X̃n ≈ N
(

0,
π2

16n

)
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