
Stat 5102 (Geyer) Midterm 2

Problem 1

(a) The likelihood is

Ln(p) =
n∏

i=1

pm(1 − p)xi = pmn(1 − p)
∑

i xi = pmn(1 − p)nx̄n

and the log likelihood is

ln(p) = mn log(p) + nx̄n log(1 − p)

The derivatives are

l′n(p) =
mn

p
− nx̄n

1 − p

l′′n(p) = −mn

p2
− nx̄n

(1 − p)2

Since the second derivative is negative for all p, the log likelihood is a strictly
concave and there is at most one local maximum, which is the MLE and the
point where the first derivative is zero, if such a point exists. Setting the first
derivative to zero and solving for p gives

p̂n =
m

m + x̄n

(b) The observed Fisher information is just −l′′n(p)

Jn(p) =
mn

p2
+

nx̄n

(1 − p)2

This is much simpler than calculating expectations or variances.

(c) The asymptotic confidence interval using observed Fisher information is

p̂n ± 1.96
1√

Jn(p̂n)

If you want to simplify that

Jn(p̂n) = mn

(
m + x̄n

m

)2

+ nx̄n

(
m + x̄n

x̄n

)2

= n(m + x̄n)2
(

1
m

+
1
x̄n

)
=

n(m + x̄n)3

mx̄n

However, that is not necessary for full credit.
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Alternate Solutions to Part (b) Calculating expected Fisher information in
part (b) is not advisable unless you recognize that the distribution of the Xi is
related to a negative binomial distribution. In fact

m + Xi ∼ NegBin(m, p)

So we can look up (equation (7) on p. 156 in Lindgren)

E(m + Xi) =
m

p

var(m + Xi) =
m(1 − p)

p2

which can be used to calculate expected Fisher information by either method
(variance of the first derivative of log likelihood or minus the expectation of the
second derivative).

We’ll just do the second here

E(Xn) = E(Xi) =
(

m

p
− m

)
=

m(1 − p)
p

So

In(p) = E{Jn(p)} =
mn

p2
+

nm(1 − p)
p(1 − p)2

=
nm

p2(1 − p)
When we evaluate at the MLE, we actually get the same thing as with observed
Fisher information, that is, In(p̂n) = Jn(p̂n).

Problem 2

(a) The likelihood is

Ln(θ) =
n∏

i=1

θx−θ−1
i = θn

(
n∏

i=1

xi

)−θ−1

= θna−θ−1
n

where to simplify notation we have defined the statistic

an =
n∏

i=1

xi.

The prior is
g(θ) = λe−θλ

so likelihood times prior is

θna−θ−1
n λe−θλ =

λ

an
· θna−θ

n e−θλ =
λ

an
θne−(λ+log an)θ

which (considered as a function of θ) is an unnormalized Gam(n+1, λ+log an)
density. Thus that’s the posterior.

θ | x1, . . . , xn ∼ Gam(n + 1, λ + log an)
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(b) The mean of a gamma is the shape parameter divided by the scale parameter

E(θ | x1, . . . , xn) =
n + 1

λ + log an

Problem 3

(a) This is a job for Corollary 4.10 in the notes. The inverse transformation is

θ = h(ϕ) = eϕ

which has derivative
h′(ϕ) = eϕ

Thus the Fisher information for ϕ is

Ĩ1(ϕ) = I1[h(ϕ)] · [h′(ϕ)]2 =
(eϕ)2

2
· [eϕ]2 =

e4ϕ

2

(b)
√

n(ϕ̂n − ϕ) D−→ N
(

0,
2

e4ϕ

)
or if you prefer

ϕ̂n ≈ N
(

ϕ,
2

ne4ϕ

)
where, of course ϕ = log(θ) is the true parameter value.

Comment. Part (b) could also be done using the delta method, but that
wouldn’t reuse part (a).

Problem 4

An exact test is based on the pivotal quantity

(n − 1)S2
n

σ2
∼ chi2(n − 1)

To make a test statistic, we plug in the parameter value hypothesized under the
null hypothesis σ2 = 1 giving a test statistic T = 9 ∗ 2.3/1 = 20.7.

The P -value is P (Y > 20.7) where Y ∼ chi2(n − 1). From Table Va in
Lindgren, this is between 0.014 and 0.015, say P = 0.015. (R says P = 0.014.)
Since P < 0.05 the null hypothesis is rejected at the 0.05 level of significance.

3



Problem 5

The easiest asymptotic test is based on the asymptotically pivotal quantity

Z =
Xn − µ

σ/
√

n

which is approximately standard normal for large n. To do the test in this
particular problem we need to plug in the mean and standard deviation of the
geometric distribution (from pp. 154–155 in Lindgren)

µ =
1
p

σ2 =
1 − p

p2

So under H0

µ = 4

σ2 = 12

giving a value of

Z =
3.6 − 4√
12/100

= −1.1547

The one-tailed P -value is P (Z < −1.1547) where Z is standard normal. From
Table I in Lindgren, this is between 0.1251 and 0.1230, say P = 0.124. Of
course, here we are doing a two-tailed test, for which the P -value is twice this
P = 0.248. Since P > .05 we accept H0 at the 0.05 level of significance.

Alternate Solution This was not intended as a likelihood inference problem,
but you can make it one. The likelihood is

Ln(p) =
∏
i=1

p(1 − p)xi−1 = pn(1 − p)nx̄n−n

and the log likelihood is

ln(p) = n log(p) + n(x̄n − 1) log(1 − p)

with derivatives

l′n(p) =
n

p
− n(x̄n − 1)

1 − p

l′′n(p) = − n

p2
− n(x̄n − 1)

(1 − p)2

Since the second derivative is negative for all p, the log likelihood is a strictly
concave and there is at most one local maximum, which is the MLE and the
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point where the first derivative is zero, if such a point exists. Setting the first
derivative to zero and solving for p gives

p̂n =
1
x̄n

The observed Fisher information is

Jn(p) = −l′′n(p) =
n

p2
+

n(x̄n − 1)
(1 − p)2

Since E(Xn) = E(Xi) = 1/p, the expected Fisher information is

In(p) = E{Jn(p)}

=
n

p2
+

n/p − 1)
(1 − p)2

=
n

p2
+

n

p(1 − p)

=
n

p2(1 − p)

Although these look a bit different, they are the same when evaluated at the
MLE

Jn(p̂n) = In(p̂n) =
nx̄3

n

x̄n − 1

The asymptotically pivotal quantity we use to make a test is

Z = (p̂n − p)
√

In(p̂n)

which is approximately standard normal for large n. Here is

p̂n =
1

3.6
= 0.277778

In(p̂n) =
100 × 3.63

3.6 − 1
= 1794.46

Z = (0.277778 − 0.25)
√

1794.46 = 1.1767

Almost the same Z as in the simpler method (the two procedures are asymp-
totically equivalent). The two-tailed P -value is P = 0.2394 and again H0 is
accepted at the 0.05 level of significance.
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