
Statistics 5101, Fall 2000, Geyer
Homework Solutions #12

Problem L7-1

(a) If X is symmetric about m, then m is the median. If l and u are the lower
and upper quartiles, then u−m = m− l, again by symmetry. Define s = u−m.
Then

P (l < X < m) = P (m < X < u) = 1
4

by symmetry. Hence
P (|X − m| < s) = 1

2

and s is the MAD.

(b) The standard normal distribution is symmetric about zero, hence the me-
dian is m = 0. Hence the MAD is half the interquartile range by part (a). The
upper quartile is u = 0.6745 by linear interpolation in Table I in the Appendix
of Lindgren. Hence that’s the MAD (s = u − m = u, since m = 0).

(c) The median is 80 [answer to 7-4(c)]. The sorted absolute deviations from
the median are

0 0 0 1 1 2 3 3 4 4 6 6 7 7 8
8 8 9 10 11 13 17 18 19 21 21 22 28 28 29

The median is the average of the two middle values. Here both are 8, so the
MAD is 8.

N7-2

The density of X is

f(x) =
λn

Γ(n)
xn−1e−λx

equation (6) on p. 173 in Lindgren. A linear change of variable Y = a + bX has
the effect

fY (y) =
1
|b|fX

(
y − a

b

)

Theorem 7 of Chapter 3 in Lindgren (p. 64). Applying this to Y = 2λX, we get

f(y) =
1
2λ

· λn

Γ(n)

( y

2λ

)n−1

e−λy/2λ

=
1

2nΓ(n)
yn−1e−y/2

1



which is the density of a Gam(n, 1
2 ) distribution, which is the same thing as a

chi2(2n) distribution by Definition 7.3.1 in the notes (also mentioned in Lindgren
at the bottom of p. 182).

N7-6

(a) The median is µ by symmetry, and fµ,σ(µ) = 1/πσ. Hence the asymptotic
variance given by Corollary 7.28 in the notes is π2σ2/4n

(b) Again the median is µ by symmetry, but now fµ,σ(µ) = 1/2σ. Hence the
asymptotic variance is σ2/n

N7-7

(a) To apply the hint for part (a), we need to find the distribution of X(n),
which is the case k = n of formula (7.35) in the notes

fX(n)(x) = nF (x)n−1f(x)

where
f(x) =

1
θ
, 0 < x < θ

is the density and the c. d. f. is the indefinite integral of the density with the
appropriate choice of constant

F (x) =
x

θ
, 0 < x < θ

(this does indeed go from zero at the lower end of the range to one at the upper
end). Thus

fX(n)(x) = n
(x

θ

)n−1 1
θ

It is easy to check that this integrates to

FX(n)(x) =
(x

θ

)n

, 0 < x < θ

and that this has the right constant (goes from zero at zero to one at θ). To be
precise, we should extend this definition to the whole real line

FX(n)(x) =




0, x ≤ 0(
x
θ

)n
, 0 < x < θ

1, x ≥ θ

(1)

The hint says we should show that (1) converges to the c. d. f. of the dis-
tribution concentrated at θ. What is that? The probability at θ is the size of
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the jump of the c. d. f. at θ. A constant random variable is concentrated at one
point, hence puts probability one at that point. Thus the c. d. f. must jump
from zero to one at that point

Fθ(x) =

{
0, x < θ

1, x ≥ θ
(2)

It is easily checked that indeed (1) converges to (2), that

FX(n)(x) → Fθ(x)

for each x. This implies by the definition of convergence in distribution

X(n)
D−→ θ

and this is the same as
X(n)

P−→ θ

by Theorem 2 of Chapter 5 in Lindgren.

(b) To apply the hint for part (a), we need to find the c. d. f. of Yn

FYn
(y) = P (Yn < y)

= P{n(θ − X(n)) < y}
= P

{
θ − y

n
< X(n)

}
= 1 − FX(n)

(
θ − y

n

)
= 1 −

(
θ − y/n

θ

)n

= 1 −
(
1 − y

nθ

)n

Or, being more precise, using the fact that Yn ranges from zero when X(n) = θ
to nθ when X(n) = 0,

FYn
(y) =




0, y ≤ 0
1 − (

1 − y
nθ

)n
, 0 < y < nθ

1, y ≥ nθ

Now using the last part of the hint, this converges to

F∞(y) =

{
0, y ≤ 0
1 − e−y/θ, 0 < y

and comparison with formula (2) on p. 166 in Lindgren shows this is indeed the
c. d. f. of the Exp(1/θ) distribution, so this shows

Yn
D−→ Exp(1/θ)
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The Moral of the Story

Not all asymptotic distributions are normal. Not all asymptotics go at “rate”√
n. Here we have

n(θ − X(n))
D−→ Exp(1/θ)

The asymptotic distribution is not normal, and the “rate” is n not
√

n.
This is not the only example of “nonstandard” asymptotics. In fact, extreme

values always have nonstandard asymptotics. The only reason for doing the
U(0, θ) case here is because the calculations are easiest for it.

N7-9

By Theorem 7.24 in the notes or Theorem 11 in Chapter 7 in Lindgren

Y =
(n − 1)S2

n

σ2

is chi2(n − 1) distributed. Hence

P (S2
n > 2σ2) = P{Y > 2(n − 1)} = P (Y > 18)

Using Table Va in Lindgren, this is 0.035.
R gives the more precise answer

> 1 - pchisq(18, 9)
[1] 0.03517354

N7-10

(a) Use Theorem 7 of Chapter 3 in Lindgren (the change-of-variable theorem
in the special case of a linear transformation). This gives in the case Y = σX

fY (y) =
1
σ

fX(y/σ)

and using the functional form (2.42)

fY (y) =
1
σ
· 1
βαΓ(α)

( y

σ

)α−1

e−(y/σ)/β

=
1

(σβ)αΓ(α)
yα−1e−y/(σβ)

and this is clearly what we were to show.

(b) One could argue as in part (a), but an even simpler way to do the problem
is just to make the substitution β = 1/λ in all the formulas of the problem. This
obviously gives the desired result. You don’t even have to write it out to see it.
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N7-11

We are to calculate E{(Y − µY )k}. Before we do that we need

µY = a + bµX

(equation (1.14a) in the notes). Then

E{(Y − µY )k} = E{(a + bX − a − bµX)k}
= E{(bX − bµX)k}
= E{bk(X − µX)k}
= bkE{(X − µX)k}

by linearity of expectation. That’s what was to be proved.

N7-12

We need to calculate µ2 = σ2 and µ4 for the Exp(λ) distribution. We know
that σ2 = 1/λ2. The fourth central moment is fairly obnoxious if done by hand

µ4 = E{(X − µ)4}
= E(X4 − 4µX3 + 6µ2X2 − 4µ3X + µ4)

= E(X4) − 4µE(X3) + 6µ2E(X2) − 4µ3E(X) + µ4

by linearity of expectation. Now we can use the gamma integral

E(Xk) =
∫ ∞

0

xke−λx dx =
Γ(k + 1)

λk
=

k!
λk

which can be looked up in the textbook as equation (4) on p. 173 in Lindgren
or can be easily derived without looking it up by the trick of “recognizing and
unnormalized density,” in this case a gamma density. Putting these two together
gives

µ4 =
4!
λ4

− 4µ
3!
λ3

+ 6µ2 2!
λ2

− 4µ3 1!
λ1

+ µ4

=
24
λ4

− 4
1
λ
· 6
λ3

+ 6
1
λ2

· 2
λ2

− 4
1
λ3

· 1
λ1

+
1
λ4

=
9
λ4

The easy way is to feed it to Mathematica

In[1]:= f[x_] = lambda Exp[- lambda x]

lambda
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Out[1]= ---------
lambda x
E

In[2]:= mu = Integrate[ x f[x], {x, 0, Infinity},
Assumptions -> {Re[lambda] > 0} ]

1
Out[2]= ------

lambda

In[4]:= mu4 = Integrate[ (x - mu)^4 f[x], {x, 0, Infinity},
Assumptions -> {Re[lambda] > 0} ]

9
Out[4]= -------

4
lambda

Either way we get

µ4 − µ2
2 =

9
λ4

− 1
λ4

=
8
λ4

and

Vn ≈ N
(

1
λ2

,
8

nλ4

)
.

The Moral of the Story Note that here σ = 1/λ so the asymptotic variance
of the sample variance is 8σ4/n here and 2σ4/n in the normal case. Quite a
difference.
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