
Statistics 5101, Fall 2000, Geyer
Homework Solutions #11

Problem L7-1

(a)

fX(x) =
n∏

i=1

f(xi)

=
n∏

i=1

1
b − a

=
1

(b − a)n
, a < xi < b

(b)

fX(x) =
n∏

i=1

f(xi)

=
n∏

i=1

1√
2πσ2

exp
{
− (xi − µ)2

2σ2

}

=
1

(2πσ2)n/2
exp

{
−

∑n
i=1(xi − µ)2

2σ2

}

(c)

fX(x) =
n∏

i=1

f(xi)

=
n∏

i=1

pxi(1 − p)1−xi

= p
∑ n

i=1 xi(1 − p)n−∑ n
i=1 xi , xi = 0, 1

(d)

fX(x) =
n∏

i=1

f(xi)

=
n∏

i=1

mxie−m

xi!

=
m

∑ n
i=1 xie−nm∏n

i=1 xi!
, xi = 0, 1, 2, ..
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(e)

fX(x) =
n∏

i=1

f(xi)

=
n∏

i=1

(1 − p)xip

= (1 − p)
∑ n

i=1 xipn, x = 0, 1, 2, ..

(f)

fX(x) =
n∏

i=1

f(xi)

=
n∏

i=1

1/π

1 + (xi − θ)2

=
1
πn

1∏n
i=1 1 + (xi − θ)2

Problem L7-4

(a)
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(b)

X =
1
n

n∑
i=1

Xi

=
2250
30

= 75

S =

√√√√ 1
n − 1

n∑
i=1

(Xi − X)2

=

√
4888
29

= 12.98

(c) The two middle values (in sorted order) are both 80. Hence the median is
80.

(d) There are n = 30 data points.
To find the p-th quantile of the empirical distribution, use Theorem 7.5 in

the notes. For the lower quartile, p = 1/4. Then np = 7.5 is not an integer, and
the lower quartile is data point number dnpe = 8 (in sorted order), which is 62.

For the upper quartile, p = 3/4. Then np = 22.5 is not an integer, and the
lower quartile is data point number dnpe = 23 (in sorted order), which is 86.

(e) The interquartile range is 86 − 62 = 24.

Problem L7-6

(a) ∑
X = n × X = 10 × 5 = 50

∑
X2 = nX

2
+ (n − 1)S2

X = 10 × 52 + 9 × 22 = 286.

(b)
Y = 3 + 4X = 3 + 4 × 5 = 23

SY = 4SX = 4 × 2 = 8
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Problem L7-13

X ∼ N(µ, .16)

P (|X − µ| > .8m) = P (|Z| > 2) = 2Φ(−2) = .0456

Problem L7-14

By the corollary on p. 210 in Lindgren we know that

E(S2) = σ2 =
(1 − 0)2

12
=

1
12

.

In order to find the variance of S2 we need to find var(V ) using formula (5)
p. 210 in Lindgren. Since

µ2 = σ2
X =

1
12

,

and

µ4 =
∫ 1

0

(x − 1
2
)4 dx =

1
80

we have
var(V ) =

1
180n

+
1

360n2
− 1

120n3

and

var(S2) =
n2

(n − 1)2
var(V ) =

n2

(n − 1)2

[
1

180n
+

1
360n2

− 1
120n3

]

Sorry. The answer in the back of the book is wrong. It gives var(V ) rather
than var(S2).

Problem L7-16

(a)
E(D) = E(X − Y ) = E(X) − E(Y ) = 80 − 80 = 0

(b)

var(D) = var(X − Y ) = var(X) + var(Y ) =
σ2

nX
+

σ2

nY
=

36
100

+
36
150

= .6
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(c) This cannot be done exactly, since the exact population distribution is not
specified. By the central limit theorem D ≈ N(µD, σ2

D), that is, D ≈ N(0, .6).
So we use that.

P (|D| > 2) = 1 − P (−2 < D < 2)
= 1 − P (−2.582 < Z < 2.582)
= 2Φ(−2.582)
= 0.0098

Problem L7-22

E(D) = 0

and

var(D) = 36
(

1
10

+
1
15

)
= 6

So D ∼ N(0, 6), and

P (|D| > 2) = 1 − P (−2 < D < 2)
= 1 − P (−0.8165 < Z < 0.8165)
= 2Φ(−0.8165)
= .414

Problem L7-25

E

(
Xn − µ

Sn

)
= E

(
1
Sn

)
E(Xn − µ)

by the independence of Sn and Xn (Corollary to Theorem 10 of Chapter 7
in Lindgren or Theorem 7.24 in the notes) assuming the expectations exist.
We know the second expectation exists (because Xn is normal and the normal
distribution has first moments) and is equal to zero because the first central
moment is always zero (Theorem 2.9 in the notes).

Thus the expectation is zero if E(1/Sn) exists. To prove that we need to
look at the density of the gamma distribution of S2

n, Equation (7.34) in the
notes. Write Yn = S2

n so

Yn ∼ Gam
(

n − 1
2

,
n − 1
2σ2

)

Then Sn =
√

Yn so the existence question is: Does E(Y −1/2
n ) exist when Yn

has this gamma distribution? This existence problem was actually done as an
example in the notes (Example 2.5.6). The result there is that if X ∼ Gam(α, 1)
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then Xp has expectation whenever p > −α. The same analysis applied here says
that E(1/Sn) exists if

p = −1
2

> −α = −n − 1
2

that is, if n > 2. So E
{
(Xn − µ)/Sn

}
is zero whenever n > 2 (and otherwise

does not exist).

Problem N6-1

We need to show that if

Yn = X1 + X2 + . . . + Xn ∼ Cauchy(nµ, nσ)

then
1
n

Yn = Xn ∼ Cauchy(nµ, nσ)

Thus this is simply a question about the linear change of variables

Xn =
1
n

Yn

The linear change of variable theorem (Theorem 7 of Chapter 3 in Lindgren)
says

X̄n = Yn/n, by the transformation theorem, the Jacobin J is n, and the density
of X̄n is

fXn
(x) = nfYn

(nx)

= n
nσ

π(n2σ2 + n2[x − µ]2)

=
σ

π(σ2 + [x − µ]2)

which is what was to be shown.

Problem N6-2

By the CLT √
n(X̄n − µ) D−→ Y

where Y ∼ N (0, σ2). And by assumption

Sn
P−→ σ.
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Put these together using Slutsky’s theorem. The function

g(u, v) =
u

v

is continuous except at v = 0 hence is continuous a every point of the form
(u, σ) because σ > 0 by assumption.

Hence √
n(X̄n − µ)

Sn

D−→ 1
σ

Y

and Y/σ is standard normal by the rules for linear transformation of normal
random variables.

Problem N6-3

The Yn = IA(Xn) are i. i. d. because functions of independent random variables
are independent (Theorem 13 of Chapter 3 in Lindgren). The LLN says

Y n
P−→ µY

so we only need to show that µY = P (A), but this is obvious because “proba-
bility is just expectation of indicator functions” (Section 2.6 in the notes).

Problem N6-4

To do this problem, we need to recognize that the Yn defined in the previous
problem are Ber(p) random variables. Every zero-one valued random variable X
is Bernoulli with “success” probability p = P (X = 1). Every indicator function
is zero-one valued, and P (IA = 1) = P (A) by definition (“probability is just
expectation of indicator functions” again).

Therefore

E(Yi) = p

var(Yi) = p(1 − p)

and the LLN and CLT say
Y n

P−→ p

and √
n(Y n − p) D−→ N (

0, p(1 − p)
)

Now
g(u) =

√
u(1 − u)

is a continuous function, so the continuous mapping theorem applied to the LLN
says √

Y n(1 − Y n) P−→
√

p(1 − p
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if we call the left hand side Sn and the right hand side σ (it is the standard
deviation of the Yi), then apply Problem 6.2 to this statement and the CLT, we
get what was to be shown.
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