Statistics 5101, Fall 2000, Geyer Homework Solutions \#10

Problem L5-3

Let $Y_{i}=X_{i}^{k}$, then Y_{1}, Y_{2}, \ldots is a sequence of independent identically distributed random variables (functions of independent random variables are independent by Theorem 13 of Chapter 3 in Lindgren) with expectation

$$
\mu_{Y}=E\left(Y_{i}\right)=E\left(X^{k}\right)
$$

Then the LLN says

$$
\bar{Y}_{n} \xrightarrow{P} \mu_{Y}
$$

but this is just other notation for

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} \xrightarrow{P} E\left(X^{k}\right)
$$

Problem L5-6

Write Y for the weight of the 100 booklets. Then

$$
\begin{aligned}
E(Y) & =100 \\
\operatorname{var}(Y) & =100 \times .02^{2}=.04
\end{aligned}
$$

so
$P(Y>100.5)=1-P(Y<100.5)=1-\Phi\left(\frac{100.5-100}{\sqrt{100} \times .02}\right)=1-\Phi(2.5)=.0062$

Problem L5-9

Let $Y \sim \mathcal{U}(-0.5,0.5)$ be one error, then from the appendix on brand name distributions

$$
\begin{aligned}
E(Y) & =0 \\
\operatorname{var}(Y) & =\frac{1}{12}
\end{aligned}
$$

If W is the sum of n i. i. d. such errors then

$$
\begin{aligned}
E(W) & =0 \\
\operatorname{var}(W) & =\frac{n}{12}
\end{aligned}
$$

Thus

$$
\begin{aligned}
P(|W|<\sqrt{n} / 2) & =P(-\sqrt{n} / 2<W<\sqrt{n} / 2) \\
& =\Phi\left(\frac{\sqrt{n} / 2-0}{\sqrt{n / 12}}\right)-\Phi\left(\frac{-\sqrt{n} / 2-0}{\sqrt{n / 12}}\right) \\
& =1-2 \Phi(-\sqrt{3}) \\
& =0.9167355
\end{aligned}
$$

Problem L6-13

By direct count, the probability of a sum of 5 or less rolling a pair of dice is $5 / 18$. Thus, if Y is the number of such rolls in 72 tries, $Y \sim \operatorname{Bin}(72,5 / 18)$, and

$$
\begin{aligned}
E(Y) & =72 \times \frac{5}{18}=20 \\
\operatorname{var}(Y) & =72 \times \frac{5}{18} \times \frac{13}{18}=14.4444 \\
\operatorname{sd}(Y) & =\sqrt{14.4444}=3.8006
\end{aligned}
$$

So, using a continuity correction,

$$
P(Y \geq 28)=1-\Phi\left(\frac{27+0.5-20}{3.8006}\right)=.0242
$$

Problem L6-86

From a picture of the triangular density, the two inside intervals have three times the probability of the outside intervals. Thus the probabilities of the intervals are $\frac{1}{8}, \frac{3}{8}, \frac{3}{8}$, and $\frac{1}{8}$.

Let X_{1}, X_{2}, X_{3}, and X_{4} be the counts in the cells $(1,2,2,1)$, then this is a multinomial random vector and the probability of these counts is

$$
\begin{aligned}
\binom{n}{x_{1}, x_{2}, x_{3}, x_{4}} p_{1}^{x_{1}} p_{2}^{x_{2}} p_{3}^{x_{3}} p_{4}^{x_{4}} & =\frac{6!}{1!2!2!1!}\left(\frac{1}{8}\right)^{1}\left(\frac{3}{8}\right)^{2}\left(\frac{3}{8}\right)^{2}\left(\frac{1}{8}\right)^{1} \\
& =180 \cdot \frac{3^{4}}{8^{6}} \\
& =0.0556183
\end{aligned}
$$

Problem L12-12

Since it is a linear transformation of a multivariate normal random vector, (X, Y) is also multivariate normal with mean vector zero because

$$
\begin{aligned}
& E(X)=E(U)+2 E(V)=0 \\
& E(Y)=3 E(U)-E(V)=0
\end{aligned}
$$

and variance matrix \mathbf{M} with components

$$
\begin{aligned}
m_{11} & =\operatorname{var}(X) \\
& =\operatorname{var}(U+2 V) \\
& =\operatorname{var}(U)+4 \operatorname{var}(V) \\
& =5 \\
m_{22} & =\operatorname{var}(Y) \\
& =\operatorname{var}(3 U-V) \\
& =9 \operatorname{var}(U)+\operatorname{var}(V) \\
& =10 \\
m_{12} & =\operatorname{cov}(X, Y) \\
& =\operatorname{cov}(U+2 V, 3 U-V) \\
& =3 \operatorname{var}(U)-2 \operatorname{var}(V) \\
& =1 \\
m_{21} & =m_{12}
\end{aligned}
$$

Problem N5-7

From the variance formula for the multinomial in the appendix on brand name distributions

$$
\begin{aligned}
\operatorname{var}\left(X_{i}-X_{j}\right) & =\operatorname{var}\left(X_{i}\right)+\operatorname{var}\left(X_{j}\right)-2 \operatorname{cov}\left(X_{i}, X_{j}\right) \\
& =n p_{i}\left(1-p_{i}\right)+n p_{j}\left(1-p_{j}\right)+2 n p_{i} p_{j} \\
& =n\left[p_{i}+p_{j}-\left(p_{i}-p_{j}\right)^{2}\right]
\end{aligned}
$$

Problem N5-10

The problem is to specialize the formula

$$
f_{\mathbf{X}}(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2} \operatorname{det}(\mathbf{M})^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\prime} \mathbf{M}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

for the density of the multivariate normal to the two-dimensional case, when the mean vector is

$$
\boldsymbol{\mu}=\binom{\mu_{X}}{\mu_{Y}}
$$

and the variance matrix is

$$
\mathbf{M}=\left(\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right)
$$

Using the hints

$$
\operatorname{det}(\mathbf{M})=\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)
$$

and

$$
\begin{aligned}
\mathbf{M}^{-1} & =\frac{1}{\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)}\left(\begin{array}{cc}
\sigma_{Y}^{2} & -\rho \sigma_{X} \sigma_{Y} \\
-\rho \sigma_{X} \sigma_{Y} & \sigma_{X}^{2}
\end{array}\right) \\
& =\frac{1}{\left(1-\rho^{2}\right)}\left(\begin{array}{cc}
\frac{1}{\sigma_{X}^{2}} & -\frac{\rho}{\sigma_{X} \sigma_{Y}} \\
-\frac{\rho}{\sigma_{X} \sigma_{Y}} & \frac{1}{\sigma_{Y}^{2}}
\end{array}\right)
\end{aligned}
$$

The constant part of the density is now done

$$
\frac{1}{(2 \pi)^{n / 2} \operatorname{det}(\mathbf{M})^{1 / 2}}=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}}
$$

because $n=2$. So the only thing left is to match up the quadratic form in the exponent.

In general a quadratic form is written out explicitly in terms of components as

$$
\begin{aligned}
\mathbf{z}^{\prime} \mathbf{A} \mathbf{z} & =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} z_{i} z_{j} \\
& =\sum_{i=1}^{n} a_{i i} z_{i}^{2}+2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{i j} z_{i} z_{j}
\end{aligned}
$$

In this case the quadratic form in the exponent is

$$
\begin{aligned}
&(\mathbf{x}-\boldsymbol{\mu})^{\prime} \mathbf{M}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \\
&=\frac{1}{\left(1-\rho^{2}\right)}\left(\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}-\frac{\rho\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}\right)
\end{aligned}
$$

which is the quadratic form in the formula to be proved. So we're done.

Problem N5-11

In this case the elements of the partitioned variance matrix are all scalars

$$
\begin{aligned}
\mathbf{M}_{11} & =\sigma_{X}^{2} \\
\mathbf{M}_{12} & =\rho \sigma_{X} \sigma_{Y} \\
\mathbf{M}_{22} & =\sigma_{Y}^{2} \\
\mathbf{M}_{22}^{-1} & =\frac{1}{\sigma_{Y}^{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
E(X \mid Y) & =\boldsymbol{\mu}_{1}+\mathbf{M}_{12} \mathbf{M}_{22}^{-1}\left(\mathbf{X}_{2}-\boldsymbol{\mu}_{2}\right) \\
& =\mu_{X}+\rho \sigma_{X} \sigma_{Y} \cdot \frac{1}{\sigma_{Y}^{2}}\left(Y-\mu_{Y}\right) \\
& =\mu_{X}+\rho \frac{\sigma_{X}}{\sigma_{Y}^{2}}\left(Y-\mu_{Y}\right) \\
\operatorname{var}(X \mid Y) & =\mathbf{M}_{11}-\mathbf{M}_{12} \mathbf{M}_{22}^{-1} \mathbf{M}_{21} \\
& =\sigma_{X}^{2}-\rho \sigma_{X} \sigma_{Y} \cdot \frac{1}{\sigma_{Y}^{2}} \rho \sigma_{X} \sigma_{Y} \\
& =\sigma_{X}^{2}\left(1-\rho^{2}\right)
\end{aligned}
$$

Problem N5-12

We are to calculate $P\{q(\mathbf{X})<d\}$ for given d, where

$$
q(\mathbf{x})=(\mathbf{x}-\boldsymbol{\mu})^{\prime} \mathbf{M}^{-1}(\mathbf{x}-\boldsymbol{\mu})
$$

and

$$
\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{M})
$$

Now Problem 12-32 in Lindgren referred to in the hint says almost the same what we want

$$
q_{2}(\mathbf{Y})=\mathbf{Y}^{\prime} \mathbf{M}^{-1} \mathbf{Y} \sim \operatorname{chi}^{2}(p)
$$

where

$$
\mathbf{Y} \sim \mathcal{N}(0, \mathbf{M})
$$

The only differences are (1) we have no means subtracted off in q_{2} and (2) \mathbf{Y} has mean zero. However,

$$
q(\mathbf{X})=q_{2}(\mathbf{X}-\boldsymbol{\mu})
$$

and

$$
\mathbf{X}-\boldsymbol{\mu} \sim \mathcal{N}(0, \mathbf{M})
$$

so we can apply the $12-32$ to this problem obtaining

$$
q(\mathbf{X}) \sim \operatorname{chi}^{2}(p)
$$

Thus

$$
P\{q(\mathbf{X})<d\}=F(d)
$$

where F is the the c. d. f. of the $\operatorname{chi}^{2}(p)$ distribution.

Problem N5-13

(a) Write

$$
\mathbf{Z}=\binom{U-V}{V-W}
$$

Then

$$
\mathbf{Z}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{c}
U \\
V \\
W
\end{array}\right)
$$

thus is a linear transformation of multivariate normal, hence multivariate normal with

$$
E(\mathbf{Z})=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\binom{0}{0}
$$

and

$$
\operatorname{var}(\mathbf{Z})=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

(b) From the formula for the variance,

$$
\operatorname{var}\left(Z_{1}\right)=\operatorname{var}\left(Z_{2}\right)=2
$$

and

$$
\operatorname{cor}\left(Z_{1}, Z_{2}\right)=-\frac{1}{2}
$$

Thus the conditional distribution of Z_{1} given Z_{2} is normal with mean

$$
E\left(Z_{1} \mid Z_{2}\right)=-\frac{1}{2} \cdot Z_{2}
$$

and variance

$$
\operatorname{var}\left(Z_{1} \mid Z_{2}\right)=2\left[1-\left(-\frac{1}{2}\right)^{2}\right]=\frac{3}{2}
$$

