
Statistics 5101, Fall 2000, Geyer
Homework Solutions #8

Problem L6-48

(a) We have a Poisson process with an average interarrival time of two minutes
(i. e. µ = 2), and rate parameter λ = 1/µ = 1/2 (per min.).

Waiting times are Exp(λ) distributed, so that six minutes will elapse with
no customer arrivals is

P (T > t) = e−λt = e−.5×6 = e−3 = .0498.

(b) Since the arrival process is Poisson,

P (X ≤ 2) =
2∑

k=0

e−λt(λt)n

n!

= e−.5×6

[
1 + (.5 × 6) +

(.5 × 6)2

2!

]

= e−3

[
1 + 3 +

9
2

]

= .423

(c) Since the exponential distribution is “memoryless”:

P (T < t + 2 | T > t) = P (T < 2) = 1 − e−λt = 1 − e−.5×2 = .632.

(d) The waiting time until the third customer arrival has a Gam(3, 1
2 ) distri-

bution, so the expected value is 3
1/2 = 6.

(e) It is the same as average time to the next.

Problem L6-49

(a) The time to the third failure after any point in time is Gam(3, .4). Then
the mean time to the third failure is 3

.4 = 7.5 days.

(b) The expected number of failures in 10 days is λ × t = .4 × 10 = 4.

(c)

P (X = 0) =
e−λt(λt)0

0!
= e−.4 = .670
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(d)

P (X ≤ 3) =
3∑

k=0

e−λt(λt)n

n!

= e−.4×7

[
1 + (.4 × 7) +

(.4 × 7)2

2!
+

(.4 × 7)3

3!

]

= e−2.8

[
1 + 2.8 +

(2.8)2

2
+

(2.8)3

6

]

= .692

Problem L6-50

P (T < t) = 1 − P (T > t)
= 1 − P (T1 > t, T2 > t, T3 > t, T4 > t)

= 1 −
4∏

i=1

P (Ti > t) by independence

= 1 − (e−t/5)4 since λ = 1/5
= 1 − e−.8t

So the distribution of the time to failure of the system is Exp(0.8).

Problem L6-60

E(X) =
1

B(s, t)

∫ 1

0

xxs−1(1 − x)t−1dx

=
1

B(s, t)

∫ 1

0

xs(1 − x)t−1dx

=
B(s + 1, t)

B(s, t)

=
Γ(s + 1)Γ(t)
Γ(s + t + 1)

Γ(s + t)
Γ(s)Γ(t)

=
s

s + t
.
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Problem L6-69

(a)

P (X < 11.5) = P

(
Z <

11.5 − 10
2

)

= Φ(.75)
= .7734.

(b)

P (|X − 10| > 3) = 1 − P (|X − 10| < 3)
= 1 − P (7 < X < 13)
= 1 − [FX(13) − FX(7)]

= 1 − Φ
(

13 − 10
2

)
− Φ

(
7 − 10

2

)

= 1 − Φ(1.5) + Φ(−1.5)
= 1 − .9332 + .0668
= .1336.

c)

E(X2) = var(X) + E(X)2

= 4 + 102

= 104.

(d) Using formula (11) page 181 in Lindgren

E[(X − 10)4] = σ4E(Z4)
= (2 × 2 − 1)(2 × 2 − 3)σ4

= 48.

(e)

E(X3) = E
[
[(X − 10) + 10]3

]
= E[(X − 10)3] + 30E[(X − 10)2] + 300E[(X − 10)3] + 103

= 0 + 30σ2
X + 0 + 1000

= 1120.

f) The quartiles of the standard normal distribution are ±0.674 (or perhaps
0.675, hard to tell) from Table I in Lindgren (p. 576). R says
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> qnorm(0.25)
[1] -0.6744898

The quartiles of a N (µ, σ2) random variable are µ ± 0.674σ or 8.65 and 11.35.
This whole problem can be done in one step by computer

> qnorm(0.25, 10, 2)
[1] 8.65102
> qnorm(0.75, 10, 2)
[1] 11.34898

Problem L6-73

The mapping y = g(x) = |x| is two-to-one, so we need to use Theorem 1.8 in
the notes. The mapping has two right inverses h+(y) = x and h−(y) = −x.
The derivatives are ±1, so the absolute values of the derivatives ignored. Thus,

fY (y) = fX [h−(y)]|h′
−(y)| + fX [h+(y)]|h′

+(y)| = fX(−y) + fX(y)

Since the density fX is symmetric,

fY (y) = 2fX(y).

Thus
fY (y) =

2
σ
√

2π
e−

1
2 y2/σ2

, y > 0,

and

E(Y ) =
1
σ

√
2
π

∫ ∞

0

y exp
(
− y2

2σ2

)
dy

=
1
σ

√
2
π

[
−σ2 exp

(
− y2

2σ2

)]∞

0

= σ

√
2
π

Problem L6-82

Since Exp(λ) = Gam(1, λ),

W =
n∑

i=1

Xi ∼ Gam(n, λ).

and
Y = 2λW ∼ Gam(n, 1/2) = Chi2(2n)

because the second parameter of the gamma is a scale parameter

fY (y) =
1
2λ

fW

( y

2λ

)

by Theorem 7 of Chapter 3 in Lindgren. Doing the plug-in indeed shows Y ∼
Gam(n, 1/2).
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Problem N4-2

E(Y | N) = E(X1 + X2 + . . . + XN | N) = NE(X1) = Nµ.

and
E(Y ) = E{E(Y | N)} = E(Nµ) =

µ

p
.

var(Y ) = E{var(Y | N)} + var{E(Y | N)}
= E(Nσ2) + var(Nµ)

=
σ2

p
+

µ2(1 − p)
p2

Problem N4-5

(a) Write E(X) = µX and E(Y ) = µY so X ∼ Poi(µX), Y ∼ Poi(µY ). Since
X and Y are independent, N = X + Y ∼ Poi(µX + µY ) (marginally).

Now we need to know the joint distribution of X and N to calculate the
conditional, but we aren’t given that. What we can easily do is the joint of X
and Y

f(x, y) = fX(x)fY (y) =
µx

X

x!
e−µX

µy
Y

y!
e−µY

Now we do a change of variables. There is no Jacobian for discrete, change
of variables, but otherwise much the same plug in y as a function of the new
variables, that is, y = n − x, obtaining

f(x, n) =
µx

X

x!
e−µX

µn−x
Y

(n − x)!
e−µY

Now the conditional is joint over marginal

f(x | n) =

µx
X

x!
e−µX

µn−x
Y

(n − x)!
e−µY

(µX + µY )n

n!
e−(µX+µY )

=
(

n

x

) (
µX

µX + µY

)x (
µY

µX + µY

)n−x

=
(

n

x

)
px(1 − p)n−x

if we define
p =

µX

µX + µy
.
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(b) If you didn’t try this, ignore this answer. This is just for the people who
struggled with this failed problem and want to know what the actual answer
was. It is actually fairly obvious when looked at the right way (which the author
of the question, Geyer, obviously didn’t when writing it).

Since X is independent of Y the distribution of Y given X is the same as
the marginal distribution of Y

f(y | x) =
µy

Y

y!
e−µY , y = 0, 1, . . . , (1)

and the distribution of N = X + Y given X is the same as the distribution
of a constant plus a Poisson: X is constant when conditioning on it and Y is
Poisson. Thus we get the density of N given X by plugging y = n − x into (1)

f(n | x) =
µn−x

Y

(n − x)!
e−µY , n = x, x + 1, . . . .

(c) The joint distribution of Z and N is

f(z, n) =
(

n

z

)
qz(1 − q)n−z · (µX + µY )n

n!
e−(µX+µY ), 0 ≤ z ≤ n < ∞

We find the marginal of Z by summing out N

fZ(z) =
∞∑

n=z

(
n

z

)
qz(1 − q)n−z (µX + µY )n

n!
e−(µX+µY )

=
qze−(µX+µY )

z!

∞∑
n=z

(1 − q)n−z(µX + µY )n

(n − z)!

=
qze−(µX+µY )(µX + µY )z

z!

∞∑
k=0

(1 − q)k(µX + µY )k

k!

Now the sum is almost the integral of a Poi
(
(1 − q)(µx + µy)

)
density. It only

needs the exponential factor for that density

fZ(z) =
qze−(µX+µY )(µX + µY )z

z!e−(1−q)(µX+µY )

∞∑
k=0

[(1 − q)(µX + µY )]k

k!
e−(1−q)(µX+µY )

=
qze−(µX+µY )(µX + µY )z

z!e−(1−q)(µX+µY )

=
[q(µX + µY )]z

z!
e−q(µX+µY )

Hence Z ∼ Poi
(
q(µx + µy)

)
.

Problem N4-6

Logically part (a) comes first, but it is a bit easier to see what’s going on if
we do part (b) first, remembering that we’re not sure yet whether the integral
exists.
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(b) If the integral exists

E(Y ) =
∫ ∞

0

1
x
· λα

Γ(α)
xα−1e−λx dx

=
λα

Γ(α)

∫ ∞

0

xα−1−1e−λx dx

=
λα

Γ(α)
· Γ(α − 1)

λα−1

=
λ

α − 1

where we did the integral by recognizing the integrand is an unnormalized
Gam(α − 1, λ) density and simplified the ratio of gamma functions using the
recursion formula Γ(α) = (α − 1)Γ(α − 1).

Note that the integral is clearly bogus if α ≤ 1, because then Γ(α− 1) is not
defined. Also the last line gives zero or a negative number for the expectation
of a positive random variable when α ≤ 1. So presumably the problem in part
(a) is to rule out α ≤ 1 and perhaps other parameter values. We’ll see.

(a) Constants are irrelevant, the question is for what values of α and λ (with
α > 0 and λ > 0 already required just by definition of the gamma distribution)
does the integral ∫ ∞

0

xα−1−1e−λx dx

exist. There are two things to check

• near infinity

• singularities

By Lemma 2.41 in the notes, or just by the fact that e−λx goes to zero as x
goes to infinity faster than any power of x, there is no problem near infinity.

Thus the only problem is near zero, where the integrand behaves like xα−2

and has a singularity if α < 2. But Lemma 2.40 in the notes says the singularity
if integrable if the exponent is greater than −1, that is if α > 1.

So that’s the condition: α > 1 and λ > 0.

Problem N4-7

Since X − Y − Z ∼ N(−2, 6),

P (X − Y − Z > 0) = P

(
X − Y − Z + 2√

6
>

2√
6

)

= 1 − Φ(0.8165)
= 0.2071
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