Statistics 5101, Fall 2000, Geyer Homework Solutions \#5

Problem L4-29

(a) This density is symmetric about zero, hence the mean is zero. Hence there is no difference between central moments and ordinary moments and $\operatorname{var}(Y)=$ $E\left(Y^{2}\right)$. Now

$$
\begin{aligned}
E\left(Y^{2}\right) & =\int_{-\infty}^{\infty} y^{2} \frac{1}{2} e^{-|y|} d y \\
& =2 \int_{0}^{\infty} y^{2} \frac{1}{2} e^{-|y|} d y \\
& =\int_{0}^{\infty} y^{2} e^{-y} d y \\
& =\Gamma(3) \\
& =2! \\
& =2
\end{aligned}
$$

(b) This density is symmetric about zero, hence the mean is zero and $\operatorname{var}(Y)=$ $E\left(Y^{2}\right)$. Now

$$
\begin{aligned}
E\left(Y^{2}\right) & =\int_{-1}^{1} y^{2}(1-|y|) d y \\
& =2 \int_{0}^{\infty} y^{2}(1-y) d x \\
& =2\left[\frac{y^{3}}{3}-\frac{y^{4}}{4}\right]_{0}^{1} \\
& =2\left(\frac{1}{3}-\frac{1}{4}\right) \\
& =\frac{1}{6}
\end{aligned}
$$

(c) This density is symmetric about $1 / 2$, hence the mean is $1 / 2$. Also

$$
E\left(Y^{2}\right)=\int_{0}^{1} y^{2} 6 y(1-y) d y=6 \int_{0}^{1} y^{3}(1-y) d y=6\left[\frac{y^{4}}{4}-\frac{y^{5}}{5}\right]_{0}^{1}=\frac{6}{20}
$$

Then

$$
\operatorname{var}(Y)=E\left(Y^{2}\right)-E(Y)^{2}=\frac{6}{20}-\left(\frac{1}{2}\right)^{2}=\frac{1}{20}
$$

Problem L4-40ab

(a)

$$
\begin{gathered}
E(X)=1 \times \frac{1}{2}+3 \frac{1}{2}=2 \\
E(Y)=0 \times \frac{1}{3}+1 \times \frac{1}{3}+2 \frac{1}{3}=1 \\
E\left(X^{2}\right)=1^{2} \times \frac{1}{2}+3^{2} \frac{1}{2}=5 \\
E\left(Y^{2}\right)=0^{2} \times \frac{1}{3}+1^{2} \times \frac{1}{3}+2^{2} \frac{1}{3}=\frac{5}{3} \\
\operatorname{var}(X)=E\left(X^{2}\right)-E(X)^{2}=5-2^{2}=1 \\
\operatorname{var}(Y)=E\left(Y^{2}\right)-E(Y)^{2}=\frac{5}{3}-1^{2}=\frac{2}{3} \\
E(X Y)=(1 \times 2) \frac{1}{4}+(3 \times 1) \frac{1}{3}+(3 \times 2) \frac{1}{12}=2 \\
\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)=2-2 \times 1=0 .
\end{gathered}
$$

(the last result is obvious from symmetry).
(b)

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=0
$$

Problem N2-21

Since $X_{1}+\cdots+X_{n}=0$, we also have $\operatorname{var}\left(X_{1}+\cdots+X_{n}\right)=0$, but

$$
\operatorname{var}\left(X_{1}+\cdots+X_{n}\right)=n \operatorname{var}\left(X_{1}\right)+n(n-1) \operatorname{cov}\left(X_{1}, X_{2}\right)
$$

by Theorem 2.22 in the notes. Hence

$$
\operatorname{cov}\left(X_{1}, X_{2}\right)=-\frac{1}{n-1} \operatorname{var}\left(X_{1}\right)
$$

and

$$
\operatorname{cor}\left(X_{1}, X_{2}\right)=\frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\operatorname{sd}\left(X_{1}\right)^{2}}=\frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\operatorname{var}\left(X_{1}\right)}=-\frac{1}{n-1}
$$

Problem N2-22

Almost exactly the same calculation as the preceeding problem, except one starts with the inequality

$$
\operatorname{var}\left(X_{1}+\cdots+X_{n}\right) \geq 0
$$

and consequently derives an inequality.

Problem N2-24

This was CANCELLED, because it turned out to be messier than I thought.

$$
\begin{aligned}
\operatorname{var}\left(\bar{X}_{n}\right) & =\operatorname{var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right) \\
& =\frac{1}{n^{2}} \operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{cov}\left(X_{i}, X_{j}\right) \\
& =\frac{\sigma^{2}}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \rho^{|i-j|}
\end{aligned}
$$

We can get rid of one sum. There are n terms with $i=j$ hence ρ^{0}, and there are $2(n-1)$ terms with $i=j \pm 1$ hence ρ^{1}, and there are $2(n-2)$ terms with $i=j \pm 2$ hence ρ^{2}, and so forth to 2 terms with $i=1$ and $j=n$ or vice versa hence ρ^{n-1}, thus

$$
\operatorname{var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}\left(1+2 \sum_{k=1}^{n-1} \frac{n-k}{n} \rho^{k}\right)
$$

but this does not simplify any further, at least not using the geometric series.
If anyone is wondering how I ever thought this was simple, I was recalling that the limit as n goes to infinity is simple
Using the linear combination form for variance, we have

$$
\lim _{n \rightarrow \infty} n \operatorname{var}\left(\bar{X}_{n}\right)=\sigma^{2}\left(1+2 \sum_{k=1}^{\infty} \rho^{k}\right)
$$

because

$$
\frac{n-k}{n} \rightarrow 1, \quad \text { as } n \rightarrow \infty
$$

and

$$
\begin{aligned}
\sigma^{2}\left(1+2 \sum_{k=1}^{\infty} \rho^{k}\right) & =\sigma^{2}\left(-1+2 \sum_{k=0}^{\infty} \rho^{k}\right) \\
& =\sigma^{2}\left(-1+2 \frac{1}{1-\rho}\right) \\
& =\sigma^{2} \frac{1+\rho}{1-\rho}
\end{aligned}
$$

But we need to cover more material before we can get this far with this problem.

Problem N2-25

First we need to do the analogous equation for covariance, which isn't given in the notes or in Lindgren.

$$
\begin{aligned}
\operatorname{cov}(a+b X, c+d Y) & =E\left\{\left(a+b X-\mu_{a+b X}\right)\left(c+d Y-\mu_{c+d Y}\right)\right\} \\
& =E\left\{b d\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right\} \\
& =b d E\left\{\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right\} \\
& =b d \operatorname{cov}(X, Y)
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{cor}(a+b X, c+d Y) & =\frac{\operatorname{cov}(a+b X, c+d Y)}{\operatorname{sd}(a+b X) \operatorname{sd}(c+d Y)} \\
& =\frac{b d}{|b d|} \cdot \frac{\operatorname{cov}(X, Y)}{\operatorname{sd}(X) \operatorname{sd}(Y)} \\
& =\operatorname{sign}(b d) \operatorname{cor}(X, Y)
\end{aligned}
$$

Problem N2-28

(a)

$$
\begin{aligned}
E\{X(X-1)\} & =\sum_{k=0}^{\infty} k(k-1) \frac{\mu^{k}}{k!} e^{-\mu} \\
& =\mu^{2} \sum_{k=2}^{\infty} \frac{\mu^{k-2}}{(k-2)!} e^{-\mu} \\
& =\mu^{2}
\end{aligned}
$$

(b) We want to use

$$
\operatorname{var}(X)=E\left(X^{2}\right)-E(X)^{2}
$$

and we can get $E\left(X^{2}\right)$ from part (a)

$$
E\{X(X-1)\}=E\left(X^{2}\right)-E(X)=\mu^{2}
$$

so

$$
E\left(X^{2}\right)=\mu^{2}+\mu
$$

and

$$
\operatorname{var}(X)=\left(\mu^{2}+\mu\right)-\mu^{2}=\mu
$$

Problem N2-30

Note the density is

$$
f(x)=\frac{1}{b-a}, \quad a<x<b
$$

because the length of the interval is $b-a$.
This is symmetric about the midpoint of the interval $(a+b) / 2$, so that is the mean.

Then

$$
E\left(X^{2}\right)=\frac{1}{b-a} \int_{a}^{b} x^{2} d x=\frac{\left(b^{3}-a^{3}\right)}{3(b-a)}=\frac{b^{2}+a b+a^{2}}{3}
$$

and

$$
\begin{aligned}
\operatorname{var}(X) & =E\left(X^{2}\right)-E(X)^{2} \\
& =\frac{b^{2}+a b+a^{2}}{3}-\frac{a^{2}+2 a b+b^{2}}{4} \\
& =\frac{a^{2}-2 a b+b^{2}}{12} \\
& =\frac{(b-a)^{2}}{12}
\end{aligned}
$$

Problem N2-32

(a)

$$
\begin{aligned}
E\left(X^{p}\right) & =\int_{0}^{\infty} x f(x) d x \\
& =\int_{0}^{\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha+p-1} e^{-\lambda x} d x \\
& =\frac{\Gamma(\alpha+p)}{\lambda^{p} \Gamma(\alpha)} \int_{0}^{\infty} \frac{\lambda^{\alpha+p}}{\Gamma(\alpha+p)} x^{\alpha+p-1} e^{-\lambda x} d x \\
& =\frac{\Gamma(\alpha+p)}{\lambda^{p} \Gamma(\alpha)}
\end{aligned}
$$

and this cannot be simplified if p is not an integer.
(b) Using part (a) and the recursion formula for the gamma function, (B.2) in the appendix on "brand name distributions" of the notes, twice

$$
E\left(X^{2}\right)=\frac{\Gamma(\alpha+2)}{\lambda^{2} \Gamma(\alpha)}=\frac{(\alpha+1) \Gamma(\alpha+1)}{\lambda^{2} \Gamma(\alpha)}=\frac{(\alpha+1) \alpha \Gamma(\alpha)}{\lambda^{2} \Gamma(\alpha)}=\frac{(\alpha+1) \alpha}{\lambda^{2}}
$$

and

$$
\operatorname{var}(X)=E\left(X^{2}\right)-E(X)^{2}=\frac{(\alpha+1) \alpha}{\lambda^{2}}-\frac{\alpha^{2}}{\lambda^{2}}=\frac{\alpha}{\lambda^{2}}
$$

Problem N2-33

(a) The integral

$$
\int_{1}^{\infty} x^{k} \frac{3}{x^{4}} d x=3 \int_{1}^{\infty} x^{k-4} d x
$$

exists when $k-4<-1$, that is, when $k<3$. If $k \geq 3$, the integral does not exist (or is $+\infty$).

The question asked about positive integers, so the answer is $k=1$ or 2 .
(b) For $k<3$

$$
E\left(X^{k}\right)=3 \int_{1}^{\infty} x^{k-4} d x=\left.\frac{3 x^{-4+k+1}}{-4+k+1}\right|_{1} ^{\infty}=\frac{3}{3-k}
$$

Note (not a part of the problem, but an interesting point) that the formula

$$
E\left(X^{k}\right)=\frac{3}{3-k}
$$

is completely bogus for $k>3$. The formula gives a finite negative number for the expectation, which is ridiculous, the expectation of a positive random variable being positive. Of course, the expectation doesn't exist when $k>3$, but (the point!) you can't tell that from looking at the formula for $E\left(X^{k}\right)$ derived in this section. You have to do the thinking in part (a) not just plow ahead to part (b).

Problem N2-34

(a) The integral

$$
\int_{0}^{1} x^{k} \frac{1}{2 \sqrt{x}} d x=\frac{1}{2} \int_{0}^{1} x^{k-1 / 2} d x
$$

exists when $k-1 / 2>-1$, which is true for all positive k.
Thus $E\left(X^{k}\right)$ exists for $k=1,2, \ldots$ (all positive integers).
(b)

$$
E\left(X^{k}\right)=\frac{1}{2} \int_{0}^{1} x^{k-1 / 2} d x=\frac{1}{2}\left[\frac{x^{k+1 / 2}}{k+1 / 2}\right]_{0}^{1}=\frac{1}{2(k+1 / 2)}=\frac{1}{2 k+1}
$$

