Statistics 5101, Fall 2000, Geyer Homework Solutions \#4

Problem 4-8

(a) This density is symmetric about 0 , which is thus the mean.
(b) This density is symmetric about 0 , which is thus the mean.
(c) This density is symmetric about $1 / 2$, which is thus the mean.

Problem 4-44

(a)

$$
\operatorname{var}(2 X+3 Y-Z)=2^{2} \operatorname{var}(X)+3^{2} \operatorname{var}(Y)+1^{2} \operatorname{var}(Z)=14
$$

(b)
$\operatorname{cov}(X-2 Y, 3 X+Y+2 Z)=\operatorname{cov}(X, 3 X)+\operatorname{cov}(-2 Y, Y)=3 \operatorname{var}(X)-2 \operatorname{var}(Y)=1$
The other covariances vanish, because X, Y and Z are independent.

Problem 4-49

$$
\begin{aligned}
\operatorname{cov}(X+Y, X-Y) & =\operatorname{cov}(X, X-Y)+\operatorname{cov}(Y, X-Y) \\
& =\operatorname{cov}(X, X)-\operatorname{cov}(X, Y)+\operatorname{cov}(Y, X)-\operatorname{cov}(Y, Y) \\
& =\operatorname{cov}(X, X)-\operatorname{cov}(Y, Y) \\
& =\operatorname{var}(X)-\operatorname{var}(Y)
\end{aligned}
$$

and this equals zero if and only if $\sigma_{X}=\sigma_{Y}$.

Problem N2-3

Take $a=1$ and $b=-1$ in Theorem 2.1 (linearity of expectation).

Problem N2-5

$$
\begin{aligned}
E\left(\bar{X}_{n}\right) & =E\left(\frac{X_{1}+\cdots+X_{n}}{n}\right) \\
& =\frac{1}{n}\left[E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)\right] \\
& =\frac{1}{n} \cdot n \mu \\
& =\mu
\end{aligned}
$$

Problem N2-10

There are two things to be proved. First, since $X-a$ and $a-X$ are equal in distribution, they have the same moments, in particular,

$$
\begin{aligned}
E(X-a) & =E(a-X) \\
E(X)-a & =a-E(X) \\
2 E(X) & =2 a \\
E(X) & =a
\end{aligned}
$$

That proves the first part.
The second part starts the same way except with k-th moments for k odd.

$$
\begin{aligned}
& E\left\{(X-a)^{3}\right\}=E\left\{(a-X)^{3}\right\} \\
& E\left\{(X-a)^{3}\right\}=E\left\{-(X-a)^{3}\right\} \\
& E\left\{(X-a)^{3}\right\}=-E\left\{(X-a)^{3}\right\}
\end{aligned}
$$

because $(-1)^{k}=-1$ if k is odd. Since the only number that is its own negative is zero,

$$
E\left\{(X-a)^{3}\right\}=0
$$

and this is what was to be proved because $\mu=a$ by the first part, so this is the k-th central moment.

Problem N2-11

(a) The inverse transformation $X=a+Y$ has derivative 1, so

$$
f_{Y}(y)=f_{X}(a+y)
$$

(b) The inverse transformation $X=a-Z$ has derivative -1 , so

$$
f_{Z}(z)=f_{X}(a-z)
$$

(c) The two functions defined in parts (a) and (b) are the same if and only if they have the same values for the same argument, say t

$$
\begin{aligned}
f_{Y}(t) & =f_{Z}(t) \\
f_{X}(a+t) & =f_{X}(a-t)
\end{aligned}
$$

which is what was to be proved.

Problem N2-12

(all parts) Since these are symmetric distributions, the medians are the same as the means calculated in Problem 4-8.

Problem N2-14

(a) Since X is either zero or one and $0^{k}=0$ and $1^{k}=1$ for all k, it follows that $X^{k}=X$ for all k, and

$$
E\left(X^{k}\right)=E(X)=\mu
$$

(b) Since $0 \leq X \leq 1$, it follows that

$$
0 \leq E(X) \leq 1
$$

by monotonicity of probability (Theorem 2.8 in the notes).
(c)

$$
\operatorname{var}(X)=E\left(X^{2}\right)-E(X)^{2}=\mu-\mu^{2}=\mu(1-\mu)
$$

Problem N2-16

$$
\operatorname{var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{var}\left(X_{i}\right)
$$

(the covariance terms are all zero if the variables are uncorrelated).

Problem N2-17

Note: There is no need to do this problem if you do N2-17 first. Both parts are special cases of the general formula derived in N2-17. Conversely, if you do this first, $\mathrm{N} 2-17$ can be done easily.

The first part:

$$
E(Z)=E\left(\frac{X-\mu}{\sigma}\right)=\frac{\mu-\mu}{\sigma}=0
$$

and

$$
\operatorname{var}(Z)=\operatorname{var}\left(\frac{X-\mu}{\sigma}\right)=\frac{\sigma^{2}}{\sigma^{2}}=1
$$

The second part:

$$
E(X)=E(\mu+\sigma Z)=\mu+\sigma E(Z)=\mu+\sigma \cdot 0=\mu
$$

and

$$
\operatorname{var}(X)=\operatorname{var}(\mu+\sigma Z)=\sigma^{2} \operatorname{var}(Z)=\sigma^{2} \cdot 1=1
$$

Problem N2-18

We need to solve the equations

$$
\begin{aligned}
\mu_{Y} & =a+b \mu_{X} \\
\sigma_{Y}^{2} & =b^{2} \sigma_{X}^{2}
\end{aligned}
$$

for a and b. Solve the second and then plug into the first

$$
\begin{aligned}
b & =\frac{\sigma_{Y}}{\sigma_{X}} \\
a & =\mu_{Y}-b \mu_{X}=\mu_{Y}-\frac{\sigma_{Y}}{\sigma_{X}} \mu_{X}
\end{aligned}
$$

On the other hand, we could have used the solution to N2-17. First standardize, then "unstandardize"

$$
Y=\mu_{Y}+\sigma_{Y} Z=\mu_{Y}+\sigma_{Y} \frac{X-\mu_{X}}{\sigma_{X}}=\mu_{Y}+\frac{\sigma_{Y}}{\sigma_{X}}\left(X-\mu_{X}\right)
$$

which is the same solution as obtained by solving simultaneous equations.

